Link Analysis
 Introduction to Information Retrieval INF 141/ CS 121
 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Link Analysis - Exercises

Calculate the Page Rank of this graph with 70\% chance of teleporting

Link Analysis - Exercises

Calculate the Page Rank of this graph with 70\% chance of teleporting


```
>> x 
> **P
ans =
    0.1000 0.3000 0.1000 0.1000 0.1000
> \mp@subsup{x}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}\mp@subsup{P}{}{*}P
ans =
\begin{tabular}{llllllll}
0.1250 & 0.1250 & 0.1250 & 0.1250 & 0.1250 & 0.1250 & 0.1250 & 0.1250
\end{tabular}
```


Link Analysis - Exercises

Calculate the Page Rank of this graph with no teleporting, just deadend handling

Link Analysis - Exercises

Calculate the $\mathrm{F} \times$ -

 $40 \begin{array}{lllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ teleporting, jus
$>P$
$P=$

0	1.0000	0	0	0	0	0	0
0	0	0.5000	0.5000	0	0	0	0
0	0	0	0	0.5000	0.5000	0	0
0	0	0	0	0	0	0.5000	0.5000
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250

$\gg x^{*} P$
ans $=$
$\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$>x^{*} P^{*} P$
ans =

0
0.5000
0.5000

0
0
0
$\gg x^{*} P^{*} P^{*} P$
ans $=$

0
0
0
0
0.2500
0.2500
0.2500
0.2500
$\gg x^{*} P^{*} P$
ans $=$

0.0667	0.1333	0.1333	0.1333	0.1333	0.1333	0.1333	0.1333

Link Analysis - Exercises

Calculate the Page Rank of this graph with no teleporting, just deadened handling

Link Analysis - Exercises

Calculate the teleporting, ju

```
>>
x =
```

$>P$

$P=$

0.5000	0.5000	0	0	0	0	0	0
0	0	0.5000	0.5000	0	0	0	0
0	0	0	0	0.5000	0.5000	0	0
0	0	0	0	0	0	0.5000	0.5000
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250
0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250

$\gg x^{*} P$
ans =

$$
0.5000
$$

0.5000

0
0
0
0
0
0
$\gg x^{*} P^{*} P$
ans $=$

0.2500

0.2500
0.2500
0.2500

0
0
0
0

ans $=$
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250
0.1250

Link Analysis - Exercises

Draw a graph with 10 nodes

1) such that 1 node clearly has the highest PageRank

Link Analysis - Exercises

edu.uci.ics.luci.lucipagerank.gui.ProcessingWindow

Link Analysis - Exercises

Draw a graph with 10 nodes

2) such that 4 nodes have very high and equal PageRank

Link Analysis - Exercises

edu.uci.ics.luci.lucipagerank.gui.ProcessingWindow

Link Analysis - Exercises

Draw a graph with 10 nodes

3) such that no node has the same PageRank

Link Analysis - Exercises

edu.uci.ics.luci.lucipagerank.gui.ProcessingWindow

Link Analysis - Exercises

How could PageRank be calculated in Hadoop?

arthicis.

Link Analysis - Exercises

input: node_a:[P(node_a), [node_b,node_c]]
map out: [node_b, P(node_a)/2]
[node_c, P(node_a)/2] [node_a,[node_b,node_c]]
reduce in:
node_x: [P(in1),...,P(in3)....[node_y,node_z]]
reduce out:
node_x: [sum(P(in1)...P(in3)),[node_y,node_z]]

