Link Analysis

Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org
Draw a graph with 10 nodes

1) such that 1 node clearly has the highest PageRank
Draw a graph with 10 nodes

2) such that 4 nodes have very high and equal PageRank
Link Analysis - Exercises

[Image of a link analysis diagram with nodes and edges]

[Code snippet for a JSON-like data structure]

```
[1, "a", 2.0, [2,1.0]],
[2, "b", 2.0, [2,1.0]],
[3, "c", 2.0, [4,1.0]],
[4, "d", 2.0, [4,1.0]],
[5, "e", 2.0, [6,1.0]],
[6, "f", 2.0, [6,1.0]],
[7, "g", 2.0, [8,1.0]],
[8, "h", 2.0, [8,1.0]],
[9, "i", 2.0, [1,1.0],[3,1.0],[10,1.0]],
[10, "j", 2.0, [5,1.0],[7,1.0],[9,1.0]]
```
Draw a graph with 10 nodes

3) such that no node has the same PageRank
Link Analysis - Exercises

```json
[1, "a", 2.0, [2, 1.0], [3, 1.0], [4, 1.0], [5, 1.0], [6, 1.0], [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[2, "b", 2.0, [3, 1.0], [4, 1.0], [5, 1.0], [6, 1.0], [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[3, "c", 2.0, [4, 1.0], [5, 1.0], [6, 1.0], [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[4, "d", 2.0, [5, 1.0], [6, 1.0], [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[5, "e", 2.0, [6, 1.0], [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[6, "f", 2.0, [7, 0.0], [8, 1.0], [9, 1.0], [10, 1.0]],
[7, "g", 2.0, [8, 1.0], [9, 1.0], [10, 1.0]],
[8, "h", 2.0, [9, 1.0], [10, 1.0]],
[9, "i", 2.0, [10, 1.0]],
[10, "j", 2.0],
```
How could PageRank be calculated in Hadoop?
PageRank with MapReduce

- PageRank is iterative
- MapReduce is not
- This solution describes how to do one iteration of PageRank using MapReduce
- Multiple iterations would be required to converge
Quick review of PageRank

- PageRank determines which pages are well-connected
- A connection is a social signal that a web page is important
- A connection is a vote for importance
- Connections take time to form
 - Not so good for real-time data
- Mathematically this is a Markov Chain
Quick review of PageRank

A Markov Chain
- Has a starting probability
- Has a set of states
- Has transition probabilities

The web forms a graph which can be treated like a Markov Chain

If the Markov Chain is ergodic, then PageRank converges
PageRank with MapReduce

• Quick review of PageRank
 • A Markov Chain
 • Has a starting probability P_0
 • Has a set of states N
 • Has transition probabilities A_{ij}
 • The web forms a graph which can be treated like a Markov Chain
 • If the Markov Chain is ergodic, then PageRank converges
\[P_1 = P_0 A \]

\[\text{PageRank} = \lim_{n \to \infty} (P_n) \]
PageRank with MapReduce

• Assumptions
 • Initial probability is uniform
 • A transition is made up of
 • outlinks O
 • deadend teleports D
 • random teleports T
 • a mixing constant $0 \leq \alpha \leq 1$

\[A_{ij} = \alpha O + \alpha D + (1 - \alpha)T \]
Assumptions

- Initial probability is uniform

A transition is made up of

- outlinks O
- deadend teleports D
- random teleports T
- a mixing constant $0 \leq \alpha \leq 1$

$$A_{ij} = \alpha O + \alpha D + (1 - \alpha)T$$
PageRank with MapReduce

Map

- Input is
 - key: page id, \(i \)
 - value: \([p_i, \text{set of outlinked pages } O_i]\)
- One output for every page \(j \in (1..n) \)
 - key: page id, \(j \)
 - value:
 - if \((O_i == \{\})\)
 \((\alpha f_D(i, j) + (1 - \alpha) f_T(i, j))p_i \)
 - if \((j \in O_i)\)
 \((\alpha f_O(i, j) + (1 - \alpha) f_T(i, j))p_i \)
 - if \((j \notin O_i)\)
 \((\alpha(0) + (1 - \alpha) f_T(i, j))p_i \)

\[
p_i(\alpha \frac{1}{|O_i|} + (1 - \alpha) \frac{1}{n})
\]
PageRank with MapReduce

- Outlink probability
 - uniform

- When you hit a deadend
 - jump to a random page uniformly

- When you teleport
 - teleport to a random page uniformly

- More sophisticated extensions are imaginable

\[f_O(i, j) = \frac{1}{|O_i|} \]

\[f_D(i, j) = \frac{1}{n} \]

\[f_T(i, j) = \frac{1}{n} \]
PageRank with MapReduce

- Reduce collects the probabilities and adds them
 - Input is
 - key: page id, i
 - value: probability of $j \rightarrow i$
 - Output is
 - key: page id, i
 - value: sum of all input probabilities

$$p_i = \sum_j p_j A_{ji}$$
PageRank with MapReduce

• Summary

• Each step of PageRank computes one iteration of

\[P_{n+1} = P_n A \]

• Each Map job handles the probability mass of one page being split across many pages

• Each Reduce job collects the probabilities of one page coming from many pages
input: node_a: [P(node_a), [node_b, node_c]]

map out: [node_b, P(node_a)/2]
 [node_c, P(node_a)/2]
 [node_a, [node_b, node_c]]

reduce in:
 node_x: [P(in1),...,P(in3),...,[node_y, node_z]]

reduce out:
 node_x: [sum(P(in1)...P(in3)), [node_y, node_z]]