Introduction to Information Retrieval INF 141/ CS 121 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Information need

- Remember the user has an information need
 - not a query
- Relevance is assessed in relation to the information need, not the query
 - e.g., I am looking for information on whether drinking red wine is more effective than eating chocolate at reducing risk of heart attacks
 - Query: red wine heart attack effective chocolate risk

• Does the document address the need, not the query

Relevance benchmarks

- TREC National Institute of Standards and Testing (NIST) has run a large IR test bed for many years
- Reuters and other benchmark document collections
- Retrieval tasks which are specified
 - sometimes as queries
- Human experts mark, for each query and for each document
 - Relevant or Irrelevant

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

Elister Fr

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

$$Recall = \frac{TP}{TP + FN}$$

Unranked retrieval - Accuracy

- The difficulty with measuring "accuracy"
 - In one sense accuracy is how many judgments you make correctly

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Documents A - F, Query q

Document	Relevant(q)	Not $Relevant(q)$
A		
B		\checkmark
C		
D		
E		
F		

• If my system returns A,C,D,E to query q....

How many TP, TN, FP, FN do I have?

Exercise Retrieved: A C D E

Document	Re	levant(q)	Not $Relevant(q)$
A			
B			
C			
D			
E			
F			
		Relevant	Not Relevant
Retrieved		TP	FP
Not Retriev	ved	FN	TN

Exercise Retrieved: A C D E

Exercise

• What is our precision?

$$Precision = \frac{TP}{TP + FP} \qquad \begin{array}{c} TP & 2 \\ FP & 2 \\ FP & 2 \\ FN & 1 \\ TN & 1 \end{array}$$

What is our recall?
$$Recall = \frac{TP}{TP + FN} \qquad \begin{array}{c} TP & 1 \\ TN & 1 \end{array}$$

Eliza El

• What is our accuracy?
$$TP + TN$$
$$Accuracy = \frac{TP + FN}{TP + FP + FN + TN}$$

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	Not $Relevant(q)$
A	\checkmark	
B		
C		
D		
$\mid E$		
F	\checkmark	

Elize Fr

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

• What do I want Precision to be?

	Relevant	Not Relevant	TP
Retrieved	TP	FP	$Precision = \frac{1}{\pi D + \pi D}$
Not Retrieved	FN	TN	TP + FP

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	Not $Relevant(q)$
A	\checkmark	
B		\checkmark
C		
D		
E		
F	\checkmark	

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

• What do I want Recall to be?

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

 $Recall = \frac{TP}{TP + FN}$

Eline in

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	Not $Relevant(q)$
A	\checkmark	
B		\checkmark
C		
D		
E		\checkmark
F	\checkmark	-

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

• What do I want Accuracy to be?

		Relevant	Not Relevant		
	Retrieved	TP	FP		
	Not Retrieved	FN	TN	$TP \perp TN$	
	$Accuracy = \frac{11 + 11}{\pi}$				
TP + FP + FN + TN					

Unranked retrieval - Accuracy

- Welcome to my search engine
 - I guarantee a 99.999% accuracy.
 - Bring on the venture capital

Be	ø PITTERPATTERSONFINDE			
	Search for:			

Unranked retrieval - Accuracy

 Most people want to find something and can tolerate some junk

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Accuracy = \frac{0+\uparrow}{0+0+\epsilon+\uparrow}$$

Else E

Unranked retrieval - ROC curve Receiver Operating Characteristic (ROC) curve

Unranked retrieval - ROC curve

Receiver Operating Characteristic (ROC) curve

Ranked Retrieval

- Precision and Recall are set-based measures
 - They are computed independent of order
 - But, web search return things in lists
 - Lists have order.
 - A better metric of user happiness/relevance is warranted

Ranked Retrieval

- Let's use our existing metrics and extend them to ranked retrieval
 - In one system we can get many samples
 - We can get the top X results:
 - X= 10, 20, 30, 40, etc...
 - Each one of those sets has a precision and recall value
 - Each of those sets corresponds to a point on the ROC curve.

Ranked Retrieval

• Each of those sets corresponds to a point on the ROC

Ranked Retrieval

- One option is to average the precision scores at discrete points on the ROC curve
- But which points?
- We want to evaluate the system, not the corpus
- So it can't be based on number_{0%}
 of documents returned

Ranked Retrieval - 11 point precision

- Evaluate based on precision at defined recall points
- Average the precision at 11 points
- This can be compared across corpora
 - because it isn't based on corpus size or number of

results returned

Ranked Retrieval - Mean Average Precision

- Why just 11 points?
- Why not average over all points?
- This is roughly equivalent to measuring the area under the

curve.

page or two

Ranked Retrieval - Precision at k

- Users don't care about results past a
- So area under the curve is too naive.
- Let's evaluate precision with k results Recall
- Highly dependent on number of relevant documents
- If k is 20 and relevant docs is 8

best score is 8/(8+12) = 0.4

Ranked Retrieval - Precision at R

- We know the number of relevant documents, r, so
- rather than looking at k results let's look at the top r results
- If r is 20
 - best score is 20/(20) =1.0
 - best score is always 1.0

Ranked Retrieval - Precision at R

- It turns out that Precision at R is the break-even point
 - When Precision and Recall are equal
 - Do we care about this point for any rational reason?

