Agenda

• Project 3
 • Grades & soln in EEE dropbox
• Project 4: Due in 1 week!
 • Reduced load & head start with skeleton code
• Homography estimation
• Least squares
• Warping

Slides from Andrew Zisserman, Serge Belongie, Steve Seitz, Rick Szeliski
Some of your results...

Jason Newton
Some of your results...

Sam Hallman
2-view geometry

Corresponding points are images of the same scene point

Triangulation

The back-projected points generate rays which intersect at the 3D scene point
Human brain triangulates as well

cross-eye viewing random dot stereogram

Eyes = 2 cameras with small baseline
Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera centres and scene point.

The camera centres, corresponding points and scene point lie in a single plane, known as the epipolar plane.
Epipolar lines from pure translation
Parallax

E is determined by relative location of cameras \((R,T)\)

- Let \(X_1\) be 3d non-homogenous point “p” viewed from cam1 (likewise for cam2)
- Define position of cam1 to be at origin \((R_1 = I, T_1 = 0)\)
- Assume instrinsics \(K\) are identical for both cameras

\[
X_2 = RX_1 + T
\]
Map 3D to 2D

Write 3D points as 2D homogenous points with unknown depth

\[X_1 = \lambda_1 x_1, \quad X_2 = \lambda_2 x_2 \]

\[\lambda_2 x_2 = R \lambda_1 x_1 + T \]
Matrix representation of the vector cross product

The vector product $\mathbf{v} \times \mathbf{x}$ can be represented as a matrix multiplication

$$
\mathbf{v} \times \mathbf{x} = \begin{pmatrix}
 v_2x_3 - v_3x_2 \\
 v_3x_1 - v_1x_3 \\
 v_1x_2 - v_2x_1
\end{pmatrix} = [\mathbf{v}]_\times \mathbf{x}
$$

where

$$
[\mathbf{v}]_\times = \begin{bmatrix}
 0 & -v_3 & v_2 \\
 v_3 & 0 & -v_1 \\
 -v_2 & v_1 & 0
\end{bmatrix}
$$

- $[\mathbf{v}]_\times$ is a 3×3 skew-symmetric matrix of rank 2.
- \mathbf{v} is the null-vector of $[\mathbf{v}]_\times$, i.e. $[\mathbf{v}]_\times \mathbf{v} = 0$,
 since $\mathbf{v} \times \mathbf{v} = [\mathbf{v}]_\times \mathbf{v} = 0$
Essential matrix

\[
\lambda_2 x_2 = R \lambda_1 x_1 + T
\]

Take the cross product of both sides with \(T\),

\[
\lambda_2 \hat{T} x_2 = \hat{T} R \lambda_1 x_1 + \hat{T}T \underline{=} 0
\]

take the inner product with \(x_2\),

\[
\lambda_2 x_2^\top \hat{T} x_2 \underline{=} x_2^\top \hat{T} R \lambda_1 x_1 \underline{=} 0
\]

\[
x_2^\top \hat{T} R x_1 = 0
\]

\[
x_2^\top E x_1 = 0
\]
Essential matrix

\[x_2^\top E x_1 = 0 \]

\[E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \in \mathbb{R}^{3\times3} \]

Thus to map a point in one image to a line in the other using the essential matrix, we apply the following equations:

\[l_2 \sim E x_1 \]

(2.13)

\[x_2^\top l_2 = 0 \]

Alternatively, you can go the other way:

\[l_1 \sim E^\top x_2 \]

(2.14)

\[x_1^\top l_1 = 0 \]

where \(l_1, l_2 \) are epipolar lines (specified in homogeneous coordinates).
Can we find a direct linear map
\[x_2 = Hx_1 \]?

- Recall such a transformation is a homography
- Let’s make some simplifying assumptions
Scene is planar

Let X_1 be any point on plane P
Let N be a unit-norm vector pointing from cam1 to plane
Let $d = \text{distance from plane to cam1}$

$$N^\top X_1 = n_1 X + n_2 Y + n_3 Z = d$$

$$\frac{1}{d} N^\top X_1 = 1 \quad \forall X_1 \in P$$
Homography derivation

\[X_2 = RX_1 + T \]

\[\frac{1}{d} N^T X_1 = 1 \quad \forall X_1 \in P \]

Multiply both together....

\[X_2 = RX_1 + T \frac{1}{d} N^T X_1 = HX_1 \]

\[H = R + \frac{1}{d} TN^T, \quad H \in \mathbb{R}^{3 \times 3} \]

Almost there...
We’ve defined a linear mapping for 3D points on a plane
\[X_2 = HX_1 \]
3D to 2D

\[X_2 = H X_1 \quad X_1, X_2 \in \mathbb{R}^3 \]

\[\lambda_1 x_1 = X_1, \quad \lambda_2 x_2 = X_2, \quad \text{therefore} \quad \lambda_2 x_2 = H \lambda_1 x_1 \]

We can write

\[x_2 \sim H x_1 \]

where \(\sim \) means equal in homogenous coordinates

Done! - given 3x3 matrix H, we know how to map every image coordinate in image1 to image2
Purely rotating camera

\[X_2 = RX_1 \]

\[X_2 = HX_1 \quad X_1, X_2 \in \mathbb{R}^3 \]

\[H = R + \frac{1}{d}TN^\top \]

H approaches R as d approaches infinity

How do pixels change as camera rotates?

We can model as a homography transformation where the plane is infinitely far away
Rotation mosaics

Project 4

Reference material: online notes from UCSD course (will place link)
Project 4

- “Mosaic” = composite all images transformed to align with base image
- For every base+im pair, label a bunch of point correspondences between 2 images
- We discussed automatic ways of doing this (harris corner + sift matching)
- You’ll do this by hand
- Given point correspondences for a given base+im pair, we want to estimate H
- H tells us how to transform im to align with base
 \[x_2 \sim Hx_1 \]
How many points do we need?

• In homogenous coordinates...

\[
\begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
\end{bmatrix} = \begin{bmatrix}
 H_{11} & H_{12} & H_{13} \\
 H_{21} & H_{22} & H_{23} \\
 H_{31} & H_{32} & H_{33}
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
\end{bmatrix} \Leftrightarrow x_2 = Hx_1
\]

How many DOFs in H?
How many constraints does a single correspondence give?
Homography estimation

In inhomogenous coordinates \((x'_2 = x_2/z_2 \text{ and } y'_2 = y_2/z_2) \),

\[
x'_2 = \frac{H_{11}x_1 + H_{12}y_1 + H_{13}z_1}{H_{31}x_1 + H_{32}y_1 + H_{33}z_1}
\]

\[
y'_2 = \frac{H_{21}x_1 + H_{22}y_1 + H_{23}z_1}{H_{31}x_1 + H_{32}y_1 + H_{33}z_1}
\]

Without loss of generality, set \(z_1 = 1 \) and rearrange:

\[
x'_2(H_{31}x_1 + H_{32}y_1 + H_{33}) = H_{11}x_1 + H_{12}y_1 + H_{13}
\]

\[
y'_2(H_{31}x_1 + H_{32}y_1 + H_{33}) = H_{21}x_1 + H_{22}y_1 + H_{23}
\]

We want to solve for \(H \). Even though these inhomogeneous equations involve the coordinates nonlinearly, the coefficients of \(H \) appear linearly.
Cont’d

To estimate H, we start from the equation $\mathbf{x}_2 \sim H\mathbf{x}_1$ and cross both sides with \mathbf{x}_2:

$$\hat{x}_2\mathbf{x}_2 \sim \hat{x}_2 H\mathbf{x}_1$$
$$\Rightarrow \hat{x}_2 H\mathbf{x}_1 = 0$$

To solve, stack H into $H^s \in \mathbb{R}^9$ (i.e. $\mathbb{H}(:) \text{ in matlab}$).

$$a^\top H^s = 0.$$

“a” is a 9X3 matrix of cross-terms

The above is a constraint from a single correspondence

(on board)
Homogenous linear system

Collect the a's for each correspondence into a “design matrix” χ,

$$\chi = [a^1 \ a^2 \ \cdots \ a^n]^\top \in \mathbb{R}^{3n \times 9}, \text{ then } \chi H^s = 0$$

If we have N correspondences, $X = 3N \times 9$ matrix

How to solve?
Homogenous linear system

Given a (possibly non-square) matrix A, we want to solve for z

$$Az = 0$$

Any matrix A can be decomposed into a product of 3 matrices

$$A = UΣV^T$$

(On board description)

Solution c is column from V associated with smallest singular value
Homogenous linear system

Collect the a’s for each correspondence into a “design matrix” χ,

$$\chi = [a^1 \ a^2 \ \cdots \ a^n]^\top \in \mathbb{R}^{3n \times 9}, \ \text{then} \quad \chi H^s = 0$$

Given X, we can find H by

$$\gg [U,S,V] = \text{svd}(X);$$

If singular values are already sorted from largest to smallest,

$$\gg H = V(:,\text{end});$$

Reshape 9x1 vector H into 3x3 matrix

$$\gg H = \text{reshape}(H, 3, 3);$$
Warping