Warping

slides from Alyosha Efros
Affine transformation

\[T(x, y) \]
Homography transform

\[T(x,y) \]
Image warping

- Given a coordinate transform \((x',y') = T(x,y)\) and a source image \(f(x,y)\), how do we compute a transformed image \(g(x',y') = f(T(x,y))\)?
Forward warping

- Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image

Q: what if pixel lands “between” two pixels?
Forward warping

- Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x',y')
 - Known as “splatting”
 - Check out `griddata` in Matlab
Inverse warping

• Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x',y') \) in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

- Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic
 - Check out interp2 in Matlab
Forward vs. inverse warping

• Q: which is better?

• A: usually inverse—eliminates holes
 — however, it requires an invertible warp function—not always possible...

For Proj 3, you’ll use inverse warping
The inverse of a homography is H^{-1}
We’ll use Matlab’s interp2 interpolation