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Abstract—
We present a cyber-physical-human distributed computing

framework, AquaSCALE, for gathering, analyzing and localizing
anomalous operations of increasingly failure-prone community
water services. Today, detection of pipe breaks/leaks in water
networks takes hours to days. AquaSCALE leverages dynamic
data from multiple information sources including IoT (Internet
of Things) sensing data, geophysical data, human input, and
simulation/modeling engines to create a sensor-simulation-data
integration platform that can accurately and quickly identify vul-
nerable spots. We propose a two-phase workflow that begins with
robust simulation methods using a commercial grade hydraulic
simulator - EPANET, enhanced with the support for IoT sensor
and pipe failure modelings. It generates a profile of anomalous
events using diverse plug-and-play machine learning techniques.
The profile then incorporates with external observations (NOAA
weather reports and twitter feeds) to rapidly and reliably isolate
broken water pipes. We evaluate the two-phase mechanism in
canonical and real-world water networks under different failure
scenarios. Our results indicate that the proposed approach
with offline learning and online inference can locate multiple
simultaneous pipe failures at fine level of granularity (individual
pipeline level) with high level of accuracy with detection time
reduced by orders of magnitude (from hours/days to minutes).

I. INTRODUCTION

Water is a critical resource and a lifeline service to com-
munities worldwide; it is essential for sustaining the eco-
nomic and social viability of a community [1]. Often the
infrastructures that capture, deliver and store water in cities
are many decades old. With the rise in urban populations,
these infrastructures have become increasingly complex and
vulnerable to failures due to natural, technological and man-
made events. When human health and safety, and lives are
at stake, it is important to quickly isolate faulty regions and
prevent ripples into other interdependent infrastructures. Such
cascading impact results in community disruptions ranging
from temporary interruptions in services to floods, extended
loss of business and mass relocation of residents.

Pipe leak is one of the most frequent types of failures in
community water networks [2, 3]. Recent reports from Los
Angeles Department of Water/Power (LADWP) and Wash-
ington Suburban Sanitary Commission (WSSC) indicate that
communities are experiencing an unusual increase in pipe
beaks, mainly in old pipes that are susceptible to corrosion
problems and pipe joint displacements caused by surface
deformations. Extreme weather and heavy rainfall (e.g. Hur-
ricane Sandy 2012, El Niño 2016, La Niña 2017) can stress
already weakened pipes to the point of causing major pipe
breaks and significant increases in leak rates. Additionally,
large-scale disasters can cause pipe failures that may drain
vital water supplies required for extinguishing fires and other

hazards. Note that about 14-18% of water treated in the United
States is wasted through damaged pipelines. Quality of water
can also be compromised via contaminant propagation through
a faulty pipe. A large-scale pipe failures or a pipe burst may
cause severe flooding. Those failures in water infrastructure
can have implications on other lifelines [4] - water loss often
leads to additional energy expenditures for transporting water
from natural resources to end users; polluted water can create
a serious public health danger; severe flooding can result in
transportation network collapse.

Present status of instrumentation: Water is relatively
inexpensive resource. Consequently, most water networks are
metered only for billing purposes. In the absence of any
metering on water pipes, a utility can do little about leak
localization except respond to customer complaints.

Unlike buildings or above-ground structures where damage
can be visibly seen, damage to underground pipes is often
hidden. The only way to confirm break is to observe water
that leaks to the surface. With the advent of sophisticated
monitoring systems, such as SCADA (supervisory control
and data acquisition) [5] and WaterBox [6], it is possible
to monitor pressure values and flow rates at key points
within the water network e.g. pump stations. However such
network-level automatic control is too coarse-grained and
cannot identify specific pipes that are suffering the effect
of break. Instrumenting the entire system of pipelines with
IoT sensors (pressure transducers and/or flow meters) is both
unfeasible (inaccessibility of locations) and expensive. Also
community water systems are typically densely connected and
complex networks with highly correlated measurements. It is
therefore non-trivial to isolate anomalies accurately even with
a complete observation.

Related localization approaches: One current practice is to
use acoustic instruments listening for variation in the reflected
signal, yet their effectiveness is only valid within an area
around the leak and doing this is expensive [7]. Another
approach adopted by utilities is to use a calibrated hydraulic
simulator to localize the leak by enumerating possible leaky
points for a best match between the simulation result and the
inlet and outlet meter data [8]. Although this appears plausible
and is also proposed in [9–11], it is computationally expensive
or prohibitive for single/multi-leak localization in large-scale
water networks. Because the position and severity of a leak
jointly affect the hydraulic behavior, making it difficult to
enumerate a match. Alternative methods studied in [12–15]
are based on fluid transient modelings, since a sudden break
often causes a pressure change followed by a transient wave
traveling along the pipe. However, the feasibility of this tech-



nique is complex due to the difficulty of obtaining a reliable
transient model for a pipeline network (rather than a single
pipe evaluated in the previous work). Several other techniques
using current-flow centrality based approach [16, 17], state
estimation [18] or machine learning (ML) based techniques
[19–24] have also been investigated. The performance of these
techniques, however, are limited by specific contexts (e.g.
single leak, a complete observation of the network, very small
and simple network topology).

Our study addresses a more realistic case where the avail-
able measurement is limited by the type and number of
sensors and the objective is to localize multiple concurrent
leaks (instead of single failure) of a real-world water network
(instead of simple topology) in seconds/minutes (instead of
hours/days). To capture the dynamics of complex water net-
work, we introduce AquaSCALE, a computational framework
enabling the fusion of multiple different data sources, robust
simulation engines and plug-and-play ML techniques. To the
best of our knowledge, AquaSCALE is the first cyber-physical-
human system (CPHS) enabled platform that (a) models com-
munity water distribution infrastructures and pipe breaks/leaks,
and (b) supports the integration of various information for
identifying multiple pipe failures.

Contributions of this paper:
•Design and development of a CPHS enabled computational
framework to integrate multiple data sources and techniques
for localizing leaks in community water networks - (Sec. II).
•A novel two-phase process for leak identification using an
offline profile generation for quickly identifying potential
faulty pipes and online live data integration for accurately
localizing damaged pipelines - (Sec. III/IV).
•A plug-and-play analytic engine that enables selec-
tion/integration of statistical ML techniques for fault identifica-
tion and transforms low level pipeline information into higher
level impact (e.g. floods) - (Sec. IV).
•Extensive evaluations of the proposed approach under diverse
failure scenarios using real-world water network - (Sec. V).
•A prototype implementation of AquaSCALE that integrates
multiple sources of information - (Sec. VI).

II. APPROACH AND SYSTEM OVERVIEW

To quickly identify leak events in real-world water net-
works, we argue that an integrated approach to fusing multiple
(incomplete) sources of information is necessary. AquaSCALE
is designed as a CPHS system - the architecture aims to inte-
grate multiple technologies and information sources for local-
izing leak events. IoT sensing data from water infrastructures
can track variations in the network and determine pipe breaks
based on reduction in pressure heads and increase in flow rates
at failure points [9]. The installation of IoT devices is time
consuming and expensive; furthermore their measurements are
subject to uncertainty due to sensing errors and measurement
correlations. To abstract out correct information with limited
IoT observations in a timely manner, sophisticated and high
performance algorithms are required. External conditions can
be used as additional information for failure detection. For

example, extremely cold temperature is likely to cause pipe
breaks due to ice blockage - this knowledge can be used to
capture patterns of changes in pressure heads (increasing first
due to pipe freeze and decreasing due to pipe leak). Human
leak-related reports can provide deterministic information. The
aggregation of external observations can help improve our
assessment of leak events.

As shown in Fig. 1, the core of AquaSCALE framework is a
data-driven simulation engine that executes a logical observe-
analyze-adapt loop. The input to the analyzer is derived from
Observations gathered from diverse data sources, and stored in
the data management module. The Analytics module subsumes
models and techniques developed by domain experts and oper-
ates on live data to generate higher level awareness for specific
application tasks (e.g. leak detection and flood prediction).
The awareness then triggers corresponding logical Adaptations
within the framework (e.g. visualization tools for decision
support, actuation and control of water infrastructures). To
realize this observe-analyze-adapt loop, AquaSCALE is de-
signed as a workflow based system comprised of multiple
modules described in Sec. VI.

In the paper, we apply AquaSCALE for pipe leak identifi-
cation. AquaSCALE supports a novel two-phase approach for
managing water workflows at multiple levels of observation
and control. In the first phase, statistical approaches are used
to drive the offline creation of a profile model of faults and
their impact to help rapid identification of the problem in
near real-time. While this initial phase significantly reduces
the online detection time, the second phase exploits the avail-
ability of dynamic data and compensates for the limitation
of the offline model to improve accuracy and efficiency. To
support a flexible suite of methods for leak events detection,
AquaSCALE incorporates a plug-and-play analytic engine that
enables the selection/integration of statistical techniques for
improved identification of faults. Statistical based data inte-
gration algorithms are used to incorporate IoT measurements
with additional observations. This analytic engine facilitates
the discovery of an efficient composition of techniques for
failure localization in a given water network. In our prototype,
robust simulations using an enhanced version of a commercial
grade hydraulic simulator EPANET (with added support for
IoT sensors and failure modelings) are used offline to train a
profile model of anomalous events. The profile and multiple
information sources are then used for online rapid coarse
fault isolation and fine-grained fault localization (i.e. leak
detection).

III. MODELING RESILIENCE IN WATER INFRASTRUCTURE

Pipe leaks or breaks, as one of the most frequent types
of failures, represent a very high cost vulnerability and is
associated with public health implications and wastage of
limited resources. It is often caused by operation degradation
of pipelines, extremely cold temperature, and large-scale dis-
asters (e.g. earthquake). Leak events may be identified through
diverse information sources - an unexpected reduction on
pressure heads; an abnormal increase in flow rates; leak-related
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Fig. 1: AquaSCALE prototype architecture. AquaSCALE enables the identification of anomalous events at two layers, a higher
service layer that determines water service availability and a lower layer that determines built infrastructure availability, via
information integration and plug-and-play capability.

messages posted on social media platforms. Thus we introduce
multiple information sources into AquaSCALE, and evaluate
its efficacy in the treatment of pipe leaks.

This section introduces the modeling of leak event, IoT
measurement in water infrastructures, weather information,
and human input. Our experience indicates that IoT measure-
ment alone may work well to identify a single leak event,
but, as we explain later in Sec. III-A, it is not sufficiently
accurate to isolate multiple concurrent failures. The combina-
tion of diverse information sources provides new possibilities
for enabling detection of multiple pipe failures. In the real
world, extremely low temperatures can cause ice forming in
a pipe that leads to complete ice blockage, and continued
freezing and expansion inside the pipe increase water pressure
heads that leads to pipe breaks. Thus ambient temperature,
though is coarse-grained (city-level information), can provide
an additional pattern of pressure changing for leak localization.
The damage to underground infrastructures is often hidden,
and most pipe failures are silent until noticed by people.
In the case where IoT measurement is unavailable, human
reports on leak events provide indispensable information. Such
weather temperature and human input when integrated with
IoT measurement can help improve the detection outcome with
a higher accuracy in a shorter amount of time.

A. Modeling Leak Events

A water system is represented as an undirected graph
G(V, E) (water can flow in both directions) with vertices V
that represent nodes (the joint of pipes), and edges E that
represent pipelines. | · | denotes the cardinality of a set. The
leak event is denoted as e = {e}, where an event e = (l, s, t)
is identified by location e.l, size e.s, and starting time slot
e.t. The goal is to locate e.l for ∀e ∈ e. We use and
enhance EPANET with the support for IoT devices and failure
modelings, named EPANET++. In EPANET++, pipe failures
are simulated by emitter that is device associated with node
to model the flow through a nozzle or orifice that discharges
to the atmosphere [25]. Leakage continuously increases with
pressure, and it is often computed using (1) in civil engineering
domain [26–28]. More detail refer to [29]. The pipe leak is
modeled by

Q = EC · pβ (1)

where Q is discharge flow rate at the leak point, EC is
effective leak area depending on the discharge coefficient and
leak area, p is current pressure head at the leaky node and β
is pressure exponent. β typically varies between 0.5 and 2.5
depending on the leak type, and we set it to 0.5 for general
purpose [29]. EC indicates the leak size, i.e. e.s, and the
greater EC the more severity of a leak event. In single leak
context, a node will be assigned as an emitter with a EC and
a time stamp where the node is leak location (e.l), EC is
leak size (e.s), and time stamp is leak starting point (e.t). In
multi-leak case, one or more nodes will be assigned as emitters
with different EC but same time stamp, to simulate multiple
concurrent leaks.

Compared with single leak identification, multiple pipe
failures become much more complex to detect and locate.
By executing EPANET++, our empirical results show that the
changes on pressure head and flow rate are easy to be captured
in single failure case (Fig. 2). In scenario 1 where there is
a single leak, the total change on pressure values of nodes
in a certain distance range of e1 decreases with increasing
distance to e1.l (Fig. 2b - Scenario 1), and similarly for flow
rates that is not shown in the paper for saving space. Here
the distance refers to the shortest path between two nodes,
and the distance between two adjacent nodes is the length
of the connection pipeline. This is because a sudden pipe
leak often causes a pressure decrease and a flow rate increase
which is followed by a transient wave traveling along the pipe
[12, 30]. This pattern can be learnt and captured to identify
a leak event. However it is hard to follow a certain changing
pattern when multiple failures occur simultaneously, as shown
in Scenarios 2 and 3. Multiple leak events interact with each
other and jointly affect the hydraulic behavior, resulting in
a set of highly correlated observations that makes it difficult
to extract correct message in a timely manner. In this case,
external data sources and a hybrid of ML based techniques are
used to compensate for the limitation of individual information
and improve the localization performance. It is worth noting
that multiple failures refer to multiple concurrent leak events
where the interval between the occurrence of any two events is
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Fig. 2: Failure scenarios with corresponding changes on
pressure head. (a) Three failure scenarios with single leak
event e = {e1}; two events e = {e1, e2}; three events
e = {e1, e3, e4}. (b) The sum of changes on pressure heads of
nodes within a certain range of the location of e1 along with
increasing distance to e1.l for each scenario.

less than the sampling frequency of IoT devices. The problem
then cannot be reduced to single failure detection because leak
events cannot be separated by time series.

B. Modeling IoT Measurements

The variation in pressure heads and flow rates due to pipe
leaks can be used to obtain critical information on which parts
of the system are suffering from the effects of water leaks.
To model IoT measurements, a set of pressure and/or flow
rate sensors A are simulated using EPANET++, where A ⊆
V ∪ E since pressure head is measured on node while flow
rate is measured on pipeline. The hydraulic time step, time
interval between re-computation of system hydraulics, is used
to simulate the sampling frequency of IoT devices. The IoT
observations are filtered out based on the pre-defined sensor
set A from the computed results of all nodes and links during
the simulation time period.

We consider X as a set of IoT measurements collected from
sensors, and Y as a set of event variables, i.e. the states of
each node (leak or not) that we wish to identify. An arbitrary
assignment to X is denoted by a vector x = {xa : a ∈ A}.
Similarly for Y , an assignment y = {yv : v ∈ V} is
a vector of labels taking from the label set L = {0, 1}
where yv = 1 indicates a leakage at node v. Note that the
leak event is assumed to occur at node (the joint of pipes),
since the interconnect points are more risky than others [1].
In our implementation, leak locations are arbitrarily assigned
meaning that the structure of labels is independent, therefore
the conditional probability p(yv|x) can be modeled and trained
by using supervised ML based techniques [31]. This is a
multi-output classification problem since the dimension of the
output is more than one. Due to the mutual independence
of labels, the problem is then transformed to multiple binary
classifications where a binary classifier is trained for each node
independently [32]. The goal is to maximize the number of
correctly classified labels by learning a set of classifiers that
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Fig. 3: Average number of pipe breaks per day along with
ambient temperatures in the regions of Prince George’s and
Montgomery County’s for recent five years (2012-2016).

maps x→ y, which is

ŷv = arg max
yv∈y

fv∈V(x, yv) (2)

Each fv is a compatibility function indicating how well yv fits
the input x, and ŷv is the prediction for x that maximizes the
compatibility. Given the knowledge of a water network, ML
based techniques can be used to find a solution to (2), however
the prediction capability may be limited by the uncertainty of
IoT measurements due to noise and interference, incomplete
observations due to inaccessible locations and high cost, and
highly overlapped observations due to tightly interconnected
network structures.

C. Modeling Weather Information

When the ambient temperature falls to 20 degrees F or
below, pipes may be subject to freezing in the event of
extremely cold weather [33]. According to general manager’s
report from WSSC and weather report from National Oceanic
and Atmospheric Administration (NOAA), pipes become more
brittle during the winter and the chance of water main breaks
rises significantly as the temperature drops (Fig. 3). Cold
weather can be a root cause of pipe breaks. The measurement
based study in [33] addresses that frozen pipe itself does
not typically cause a break. Instead continued freezing and
expansion inside the pipe increase water pressure that can
dramatically increase stress on a pipe and cause the pipe
break following a pressure decrease. Therefore, the pattern of
a pressure increase followed by a decrease can help isolate a
faulty pipe. That is if the ambient temperature is below 20◦F ,
a time series of pressure values will be processed that may
provide additional information for a faulty pipe. As mentioned,
the paper is to evaluate the effect on leak localization by
integrating multiple information sources and techniques. Thus
weather information is modeled straightforward using proba-
bility representation. For each node v, we define pv(freeze) as
the probability of freezing if the temperature is below 20◦F ,
and pv(leak|freeze) as the conditional probability of leak due
to freezing. Markov chain will be studied for the modeling of
weather information in the future.

D. Modeling Human Inputs

To leverage human inputs, we bring in social media, Online
Social Network (OSN), for the incorporation of human sens-



ing. OSN has become a major platform for information sharing
in which we can mine interested patterns. Human reports on
pipe leak events, such as leak messages posted on Twitter,
can help identify the potential damaged region by extracting
the associated geographic information. Compared with IoT
measurement, human input is considered as deterministic
information because it is highly likely to have pipe breaks
in a region if people living around report it on OSN. The
more reports the higher the level of confidence on the event.
Therefore, we incorporate human inputs with the predicted
outcome from IoT measurements to improve the detection
performance.

Data collected from Twitter represents a previously un-
tapped resource for detecting a pipe break and locating the
failure. Human input to AquaSCALE is enabled by integrating
a novel Tweet Acquisition System (TAS) [34] developed at
UC Irvine, which enhances the monitoring of tweets based on
client/application needs in an online adaptive manner such that
the quality and quantity of results improve over time. Given
a group of interested patterns, TAS can extract related tweets
that are then used to help track and locate leak. Twitter users
are “sensors” and the posted message with a mention of water
pipe break such as “Pipe bursts @ Sunset Boulevard north of
the UCLA campus.” is an indicator of leak event. To model
the human inputs, let C = {c : c = {v : |lc−lv| < γ∧v ∈ V}}
represent a set of subsets of V (i.e. a set of cliques) inferred
from tweets. Here, a clique c is associated with the location
lc where people post the event, and |lc − lv| < γ means that
the distance between lv (the location of node v) and lc is less
than threshold γ. The threshold γ is a pre-defined parameter
indicating the coarseness of the collected Twitter data. For
example, if γ is set to 1 km, nodes within 1 km distance to
lc are considered to be likely to leak and will be added into
the clique c.

Although there is a high probability for a region to have
a pipe break if leak message posted on Twitter, a tweet can
be erroneously treated as an indicator of a leak event. For
example, tweets like this “LeakFinderST - innovative leak
detection and location in water pipes.” may be collected but
it does not relate to a leak event that we wish to identify.
Thus we define a probability of false positive error as pe, i.e.
the likelihood of a tweet that is improperly considered to be
relevant, where 0 < pe < 1. The confidence that there is a
leak within a certain region is represented by

pt = 1− (pe)
k (3)

where k is the number of tweets collected over a period
of time, and with more tweets collected the confidence pt
increases. To model the number of messages received along
with the time, we use Poisson distribution that is popular for
modeling the number of times an event occurs in an interval
of time or space. The human input is assumed to arrive
independently of the time. The average number of human
reports received in a sampling interval (of IoT devices) is
designated as λ that is called arrival rate. The probability of
receiving k reports in n elapsed time slots is given by the
equation

P (k reports in n intervals) =
(nλ)ke−(nλ)

k!
(4)

where e is the Euler’s number and n ∈ N. Combine (3) and
(4), the confidence that there is a pipe leak in an area can be
computed.

IV. A COMPOSITE LEAK IDENTIFICATION ALGORITHM

To enable an accurate and timely leak events identifica-
tion, we discuss a two-phase approach where the profile
model is generated offline by learning an extensive amount
of measurements in water infrastructures (Phase I) and the
additional observations are integrated with the predicted results
from the profile model when live data coming in (Phase II).
The proposed composite algorithm reduces the detection time
by orders of magnitude by generating a profile offline and
improve the detection accuracy by incorporating multiple data
sources.

A. Phase I: Training Profile Model Using Measurements In
Water Infrastructures

In Phase I, the objective is to train a set of classifiers fv∈V in
(2) to generate a robust profile model f using a great amount of
measurements collected in water infrastructures. Here we drop
the subscript v and use f to represent a set of trained fv∈V as
the profile model. We first discuss the generation of training
features and samples that are then input into the classifiers for
a profile model generation. The enabling of plug and play ML
based techniques allows us to explore the knowledge of which
technologies work well in terms of speed and accuracy under
different configurations.

Features of internal measurements in water infrastructures
include the topology of the network and IoT observations. The
basic topology information, denoted as T , includes node ele-
vation, pipe length, diameter and roughness coefficient, which
are static parameters for a given water network. Dynamic IoT
measurements X collected from IoT sensors depend on the
type and location of the devices. Techniques based on the
measurements from pressure and flow rate devices allow a
more effective and less costly search in situ [35]. Thus we use
pressure transducers and flow meters in the paper. Water pipe
leak identification is based on the premise that leakage in one
or more locations of the network involves local liquid outflow
at leaky points, which will change the pressure head and flow
rate at monitoring points [35]. Therefore, we use the difference
between two sets of consecutive readings from IoT devices as
the features of X . That is xa is the change on pressure head
or flow rate of sensor a. The dynamic IoT observations X
aggregated with the static topology T are then the features of a
training sample. AquaSCALE in conjunction with EPANET++

enables the selection of a sensor set A giving the type and
number of IoT devices. It allows the study of sensor placement
by evaluating different sensor configurations. The problem of
identifying an optimal sensor placement for leak detection will
be studied in future work. In this paper, given the number
of available devices, we use k-medoids algorithm to select a
group of locations as the sensor set. K-medoids is a clustering
algorithm related to k-means, but it is more robust to noise



and outliers [36, 37]. k-medoids partitions |V|+ |E| potential
sensor locations into certain number of clusters and assigns
cluster centers as the sensor locations, based on the pressure
head and flow rate read from nodes and pipes.

As discussed in Section III-B, this multi-output classifica-
tion problem is transformed to multiple binary classification
problems where the classifier is trained separately for each
potential leak location v using same datasets and its true labels
denoted as Yv . The profile model f : T ∪X → R can be an
ensemble of a set of linear/nonlinear predictors, decision trees,
or weak learners, and the parameters of f can be learnt by
ML based techniques on the basis of the analysis of pressure
and flow rate variations produced by the leak. Note that the
performance of specific techniques depends on the structure of
water networks, the type and number of IoT devices and their
deployment. AquaSCALE allows to test different techniques in
isolation or combination, and a hybrid approach may improve
the performance since it is thought of as a way to compensate
the limitations of individual algorithms.

In the paper, we used scikit-learn package for data process-
ing and analysis [38], and compared multiple well-known ML
algorithms including Linear Regression (LinearR), Logistic
Regression (LogisticR), Gradient Boosting (GB), Random
Forest (RF) and Support Vector Machine (SVM). We proposed
a hybrid approach named HybridRSL, a combination of RF
and SVM via LogisticR, because RF and SVM remain robust
with decreasing number of IoT sensors, and LogisticR has low
variances and is less prone to overfitting. As shown in Fig. 4,
the same dataset is trained and predicted by RF and SVM
separately, and their predicted results, i.e. leak probabilities
for each node, are then aggregated as a new feature set and
input into LogisticR for further learning. Algorithm 1 shows
how classifiers are trained and updated to generate the profile
model for Phase II.

Fig. 4: A sketch of the workflow of HybridRSL approach.

Algorithm 1 Training the Profile Model

1: Input water network topology T , IoT measurements X ,
true leak events Yv and classifiers fv for v ∈ V

2: Output the profile model f = {fv : v ∈ V}
3: Objective update fv to best fit training samples

4: for v in V do
fv.fit(T,X, Yv)

5: end for

B. Phase II: Inferring Leak Locations Using Live Ingress Data

In Phase II, we sequentially aggregate multiple data sources
to infer the leak locations. Compared with human inputs, IoT

measurements and ambient temperatures are relatively stable
data sources. We can expect telemetry readings from these
two sources at a certain interval once the sensing devices
are deployed. Due to dynamic and complex social behavior,
however, human reports on leak event maybe not available.
Therefore, we first use IoT and temperature streams for event
prediction, and use additional human inputs for event tuning.

The live IoT observations x = {xa : a ∈ A} together
with the topology information T are firstly learnt by the
profile model f . It uses predict proba and predict methods
built in the scikit-learn package, whose outcomes are the
score/probability of leak for each node, i.e. P = {pv(i) =
score(yv = i) : 0 6 pv(i) 6 1 ∧

∑
i pv(i) = 1 ∧ i =

{0, 1} ∧ ∀v ∈ V} with yv = 1 indicating having a leak
at node v, and a subset of V that are predicted to leak,
i.e. S = {v : pv(1) > pv(0) ∧ v ∈ V}. If the ambient
temperature is below 20◦F and a location v is detected to
be frozen, its predicted leak probability pv(1) will aggregate
with pv(leak|freeze) based on Bayes’ theorem [39]. This is a
well-known method to combine probability distributions from
experts in risk analysis, and to apply it into AquaSCALE, we
simply consider each information source as an expert. The
updated leak probability at node v is

p∗v(1) =
q∗v(1)

1 + q∗v(1)
(5)

where

q∗v(1) =

n∏
j=1

g1j(pj |qv = 1)

g0j(pj |qv = 0)
(6)

q∗v(1) is the posterior odds of the occurrence of leakage at
node v; g1j (g0j) represents the probability of source j giving
probability pj conditional on the occurrence (non-occurrence)
of leakage at node v. Here, the predicted probabilities come
from two information sources, IoT measurements and weather
data. In this manner (5), more sources of information means
more certainty. For example, if the probability of leak is 0.6
predicted by both two sources, then p∗v(1) will tend to be
much higher than 0.6. The aggregated results then updated
P and S correspondingly. In set S, potential faulty pipes
are identified. However ML based techniques with noisy IoT
sensing data work on the predictive perspective whose output
is probabilistic. We use entropy to measure the uncertainty of
a predicted event (leak or not) at node v on the basis of its
leak probability, which is defined as

H(yv) = −
1∑
i=0

pv(i) log pv(i) (7)

The corresponding uncertainty function is given by

E[y] =
∑
v∈V

H(yv) (8)

In order to minimize (8), AquaSCALE integrates additional
human input to help to enhance the knowledge of leaks and
increase the determinacy of the predicted events.

Human reports on leak events as deterministic information
are able to correctly reflect pipe failures within a certain
region, but are unable to specify an exact damaged position
due to various social behaviors. Therefore, the human input
is used as an additional subzone-level information, working



with the pipeline-level outcomes P and S, to enforce the
event consistency and improve the prediction results. The event
consistency here refers to the consistency of the pipeline-level
and subzone-level predictions. An inconsistent event means
that none of pipes in the subzone identified by human inputs
is currently predicted to leak. To leverage the human inputs,
we apply the higher order potential concepts used in the
image segmentation problems, which is used to enforce label
consistency in image regions [40]. We define a higher order
potential function Φc : L|c| → R on clique c to assign a
cost to each possible configurations (or labelings) of y. By
incorporating human inputs, (8) can now be written as

E[y] =
∑
v∈V

H(yv) +
∑
c∈C

Φc (9)

that is the energy function to be minimized. Because the effects
of human inputs is considered to be non-negative in the paper,
Φc can assign a very high cost to clique c if none of nodes
in c is currently predicted to leak, i.e. @v ∈ S for ∀v ∈ c.
In this case, the node in clique c with the highest entropy
(uncertainty) will be selected for further processing.

The higher order potential used by us can be written as

Φc =

 0 if ∃v ∈ S for v ∈ c
0 else if H(yv) < Γ for ∀v ∈ c
Inf else

(10)

Here we introduce a threshold Γ to decide if a pipeline-level
prediction is considered to be determinate enough to ignoring
the subzone-level information. That is if the entropy for node v
is less than the threshold Γ meaning that the current predicted
event is likely to occur, then the leak information on node v
will not be updated by human inputs. According to (9) and
(10), an inconsistent event can push the energy to the infinity.
In order to minimize (9), in Algorithm 2, a set of leak locations
S is firstly identified by the profile model f and then updated
based on clique c by adding a candidate v∗ if Φc = Inf and
v∗ = arg maxv∈cH(yv). Correspondingly, pv∗(0) and pv∗(1)
will be updated to 0 and 1, and H(yv∗) will be 0. In this
manner, the inconsistent events will be forced to change and
the total energy will be reduced because the infinite potentials
are eliminated and the entropy of certain nodes are reduced.

V. EXPERIMENTAL STUDY - USING AQUASCALE FOR
LEAK EVENT IDENTIFICATION

In this section, we evaluated the proposed identification
approach on single- and multi-failure scenarios, tested mul-
tiple ML based techniques in isolation and combination, and
examined the impact of incorporating IoT measurements and
additional observations. We begin by describing the setup
and datasets under which the experiments are conducted, and
introduce the performance metrics and the results.

A. Experimental Setup and Datasets Generation

Water Networks. AquaSCALE is evaluated using two
water networks - a canonical water network provided by the
EPANET (named EPA-NET) and a real subzone of WSSC wa-
ter service area provided by WSSC (named WSSC-SUBNET).

Algorithm 2 Inferring Leak Events

1: Input water network topology T , IoT measurements
x, profile model f , leak probability due to frozen
pv∈V(leak|freeze) and human inputs C

2: Output an updated set of leak locations S
3: Objective minimize E[y] in (9)

4: /* Event Prediction */

5: P = f.predict proba(T,x); S = f.predict(T,x)
6: for v in V do
7: if v is detected to be frozen then
8: q∗v(1) = pv(1)

pv(0)
∗ pv(leak|freeze)

1−pv(leak|freeze)

9: pv(1) =
q∗v(1)

1+q∗v(1)

10: pv(0) = 1− pv(1)
11: S = S ∪ {v} if pv(1) > pv(0)
12: end if
13: end for

14: /* Event Tuning */

15: C = {c : c = {v : |lc − lv| < γ ∧ v ∈ V}}; Φc∈C = Inf
16: for c in C do
17: if ∃v ∈ S for ∀v ∈ c then
18: Φc = 0, break
19: end if
20: if Φc 6= 0 then
21: v∗ = arg maxv∈cH(yv)
22: if H(yv∗) > Γ then
23: pv∗(1) = 1, pv∗(0) = 0, S = S ∪ {v∗}
24: end if
25: end if
26: end for

A graph representation of EPA-NET with |V| = 96 and
|E| = 118, and WSSC-SUBNET with |V| = 299 and
|E| = 316 is shown in Figure 5. The elevation of pipes
varies with the topography, and each pipe has four attributes
- length, diameter, roughness coefficient, and status (open or
close controlled by a valve). Each node has a pattern of time
variation of the demand (i.e. consumption), and leak events are
simulated at nodes. EPANET++ is used to perform extended
period simulation of hydraulic behavior, which computes pres-
sure heads at nodes and flow rates at pipes.

IoT Sensing Data. Extensive simulations are run on these
two networks using EPANET++. Given the number of devices,
we first identify a set of sensor locations, and generate a
great amount of IoT measurements for profile training. As
mentioned, features of a training sample are the topology
of a water network and changes on sensing values. The
number of training and testing samples are 20, 000 and 2, 000
respectively. For each simulation run, there is at least one
and at most 5 leak events, and the number of events follows
the uniform distribution i.e. U (1, 5). The leak events are
generated with arbitrary locations and sizes but same starting
time since we aim to study concurrent failures that are harder
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Fig. 5: A graph representation of EPA-NET - a canonical water
network provided by EPANET with 96 nodes, 118 pipes, 2
pumps, one valve, 3 tanks and 2 water sources, and WSSC-
SUBNET - a subzone of WSSC service area with 299 nodes,
316 pipes, 2 valves and one water source.

to pinpoint. The sensor set A is selected using k-medoids
algorithm based on the given information of IoT devices. The
sampling frequency of IoT devices is 15 minutes. Since the
goal is to identify leak locations, we assume that the leak
starting time e.t is known. The change on pressure heads and
flow rates is then computed by taking the differences between
the sensing values at e.t−1 and e.t+n, where n is the number
of elapsed time slots after leaking, as in (4).

Human Sensing Data. From January 6, 2016 to April
1, 2016, the east coast of the US experienced extremely
cold temperatures, while the west coast experienced high
precipitation due to El Niño effects. We collected 30 million
“leak-related” tweets posted in the US during this period using
TAS system. Since this data contains significant noise, it was
treated as described (Sec. III-D). Based on the result statistics,
the arrival rate λ of human inputs is set to 1 per 15 minutes,
and the false positive error pe is set to 0.3. The coarseness
parameter γ, determining the clique c, is set to different values
to test the impact of incorporating with human inputs. More in-
depth analysis of those tweets, such as the distribution among
different facilities and how soon after the leaks are the tweet
posted, will be discussed in future work. In Algorithm 2,
the node in c with the highest entropy will be considered
as the most risky point, and it will be predicted to leak if
the entropy is greater than threshold Γ. Here Γ is set to 0 to
always consider human effect. For each simulation run, given
an elapsed time slot n, a random number between 0 and 1
is generated for obtaining the number of received tweets k
based on (4), and the confidence probability pt can then be
computed based on (3). With the lapsed of time, more human
reports can be collected to help identify pipe failures.

Environmental information - Ambient Temperature. In
the paper, the probability pv(freeze) and pv(leak|freeze) are
set to 0.8 and 0.9 respectively for all v ∈ V . It might
be different for every node since the vulnerability to low
temperature depends on a variety of factors, e.g. material,
age, location, which will be studied in future work. For each
simulation run, a random number between 0 and 1 is generated
for each node and it will be used to decide if the connected

pipe is frozen based on the pre-defined probabilities. It is likely
to have more pipe failures under extreme cold temperatures,
which will be used to drive failure scenarios.

Failure Scenarios. We evaluate the proposed composite al-
gorithm of pipe leak identification through two-failure scenar-
ios over different evaluation strategies. We generated 20, 000
single- and multi-failure scenarios separately for training and
2, 000 for each for testing. Single Pipe Failure represents
that there is only one leak event, which is denoted as e =
{l, s, t}. While multiple pipe failures represents that multiple
leak events occur simultaneously, denoted as a set of events
e = {ei : i = 1, ...,m} where m is the number of leaky
points and ei = {li, si, ti}. Multi-failure is often caused by
the ice blockage in winter, thus Pipe Failures due to Low
Temperature is considered as the use case of multiple leaks.
The faulty pipes will be located by using different strategies -
measurements in water infrastructures with diverse ML based
techniques, weather information, and/or human inputs.

B. Performance Metrics

The effectiveness of the proposed algorithm is evaluated
in terms of following metrics. Hamming Score is defined as∑
v∈V

1[ŷv=1∧yv=1]
1[ŷv=1∨yv=1] where 1 is an indicator function. It is the

number of leak events correctly predicted divided by the union
of predicted and true leak events. The score is bounded by 1
and the higher the score the greater number of leaks that are
identified. Percentage of IoT Observations is the percentage
of IoT deployment penetration. In practice, we want to reduce
the number of devices since the installation and maintenance
are very expensive. HereA = V∪E with |A| = |V|+|E| refers
to the full (100%) IoT observations. Elapsed Time Slot is the
number of time slots elapsing after the leak event, denoted as
n. A time slot is a 15 minutes time interval, determined by the
sampling frequency of IoT device. With n increasing, on one
side, more observations including IoT data and human input
will be collected, which may provide more information. On
the other side, it may also waste more water, and increase the
risk to public health due to water contamination and to other
infrastructures due to cascading events.

C. Experimental Results

In this section, the proposed approach for leak event identi-
fications is validated through a detailed simulation study. We
begin by plugging and playing several ML based techniques
for both single- and multi-failure scenarios using EPA-NET
network, and apply Hybrid-RSL technique that outperforms
others for following experiments. The effectiveness of integrat-
ing diverse data sources for failure detection is evaluated by
running extensive simulations on both EPA-NET and WSSC-
SUBNET networks. Flood as a cascading event is modeled
and predicted to help explore the impact of pipe failures.

Figure 6 illustrates the comparison of different ML based
techniques for single leak identification. Those techniques
have similar high hamming scores as using 100% IoT ob-
servations (Fig. 6a), while RF and SVM can keep a better
performance even with 10% IoT (Fig. 6b). Figure 7a/7b show



the comparison of RF, SVM and Hybrid-RSL in terms of
hamming score for single- and multi-failure scenarios. With a
lower percentage of IoT observations, RF yields a higher score
compared with SVM. With more IoT data available, SVM
outperforms RF as using around 70% IoT in multi-failure
scenarios. With the aggregation of RF and SVM, HybridRSL
has the best performance in both single- and multi-failure
cases. It also shows that multi-failure is much harder to locate.
Other ML and data fusion techniques can also be plugged and
tested using AquaSCALE.

In the following result, HybridRSL with the highest score
will be used, and the integration of multiple data sources
will be examined. Here the distance threshold γ for human
inputs is set to 30 meters. Figure 8 describes how much do
weather and human data together contribute toward identifying
Multiple Failures due to Low Temperature using real-world
WSSC-SUBNET. In Fig. 8a, only IoT data is applied, and the
result obtained by aggregating temperature and human input is
shown in Fig. 8b. The plotted surface shows how the hamming
score varies with the percentage of IoT observations and the
elapsed time slots. It clearly illustrates that AquaSCALE with
the integration of weather and human information is robust for
locating leak events even with limited IoT data. Incorporating
with human input can increase the score, however, more
human inputs as the time elapsing do not provide significant
improvement. Because the false positive error of human data is
small in the simulation. Figure 7c/8c present the increment on
hamming score by incorporating weather and human data, and
the incrementation is more significant with less IoT data. Fig-
ure 9 shows that the efficacy of incorporating with human input
decreases with the coarser Twitter data. By adding temperature
information, however, it can compensate the impact of loose
human data and keep the score higher. In Fig. 10, detection
using only IoT data is sensitive to the maximum number of
leak events, but the aggregation of additional information can
help locate failures and output a better result.
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Fig. 6: EPA-NET with Single Failure - Comparison of ML
techniques for single leak identifications using (a) full and (b)
10% IoT observations.

D. Exploring Impact - Flood modeling and prediction

To capture the impacts of pipe failures and improve post-
event awareness, AquaSCALE incorporates flood modeling
and prediction to study cascading events. We apply BreZo sim-
ulator for flood prediction on WSSC-SUBNET water network.
BreZo is a hydraulic model and has been successfully applied

in simulation of dam breaks [41, 42] and floods [43, 44]. It
can efficiently simulate water flows in varying shapes of the
earth surface. A detailed description can be seen in [45]. In
BreZo, the flood is predicted based on the digital elevation
map (DEM), interpolated from node elevations, shown in Fig.
11a. To feed leak information into the flood model, we use (1)
to calculate the outflow rate based on pressure readings, which
is then input into BreZo for flood simulations. Two leak events
are simulated at v1 and v2 with different leak sizes but same
start time, and Fig. 11b shows that the flood spreads along the
earth’s surface. This information can be used by water agencies
and city planners for damage control, community notifications
and evacuation plans.

VI. TOWARDS A PROTOTYPE IMPLEMENTATION

AquaSCALE framework is a flexible and extensible plat-
form to capture and visualize dynamic community water sys-
tems at multiple levels. Our initial implementation of AquaS-
CALE is designed as a workflow based system comprised of
multiple components.

The Scenario Generation Module enables water managers
and analysts to provide meaningful and diverse water contexts
to the framework by generating a range of situations. A
user of the tool can start defining a situation by choosing a
geographic region, entity elements of interest in that region,
and using additional modules to identify hazard, vulnerability,
restoration, and impact of the hazard at a temporal and spatial
scales of choice. The Sensor Data Acquisition Module
enables gathering of real-time field information for predefined
scenarios by projecting the effects of new updates from the
field on simulation outcomes. The Integrated Simulation and
Modeling Engine executes EPANET++ and BreZo to simulate
the dynamic behavior of water networks and interactions
between water infrastructures and floods. EPANET++ allows
us to model sensor devices and embed them at interested loca-
tions, collect pressure heads and flow rates, capture hydraulic
and water quality behavior, simulate single/multiple leaks and
study impact of damage to infrastructure components. A Plug
and Play Analytics Module is used to plug and unplug
specific information, such as data sets and algorithms, at
will depending on the specific context of applications, and to
understand the advantage and limitation of diverse strategies
in isolation and combination. Users/operators/analysts interact
with AquaSCALE using the Decision Support Module to
manage devices at runtime as they identify vulnerable spots
and address accuracy/cost tradeoffs and, to optimize sensor
placement for a better performance.

VII. CONCLUDING REMARKS

In the paper, we introduced AquaSCALE, a CPHS compu-
tational framework, and use it for localizing leaks in commu-
nity water networks. We formulated multi-leak identification
problem, developed an ML based integration mechanism for
fusing information from multiple sources, and evaluated it
using real-world and synthetic networks. AquaSCALE can
be used by water agency operators with expertise in civil
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Fig. 7: A group of comparisons running on EPA-NET. Comparison of RF, SVM and HybridRSL in terms of hamming score for
(a) single- and (b) multi-leak identifications. (c) Average increment on hamming score by adding weather and human inputs.
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Fig. 8: WSSC-SUBNET with Multiple Failures due to Low Temperature - Average hamming score for multi-leak identifications
using (a) IoT and (b) multiple data sources, and (c) increment on hamming score by integrating weather and human data.
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Fig. 11: Flood prediction based on (a) DEM
of WSSC-SUBNET with leaks at v1 and v2.
(b) Zoom-in flooding map overlaying over the
DEM. Flood flows from the center to the outer.
H represents the flood depth in meter.

infrastructures to explore problems and solutions in cyberspace
before instantiating them into a physical infrastructure. For
example, a large section of water systems (usually an entire
pressure zone) can be shutdown to prevent cascading failures
of pipe burst and to preserve critical water supplies. Such
exploration, proactive planning and their effective instantiation
during damage/shutdown is relevant in global contexts and is

a topic of future research.
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