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Abstract—This paper considers the reliable delivery of sensor
data from Internet of Things (IoT) devices to distributed cloud
service instances in the face of localized failures for event de-
tection, community infrastructure management, and emergency
response. We develop and explore the notion of GEOgraphically
Correlated Resilient Overlay Networks (GeoCRON) to capture
the localized nature of community IoT deployments and their
impact/vulnerability in the context of small failures and massive
disruptions such as that caused by a large seismic event. As a
focus use case, we study the viability and utility of GeoCRON
in two different community sensor networks. The first, a large
participatory sensing-style network of small inexpensive seismic
sensors, reports ground motion in homes and businesses to
a cloud service for detecting and characterizing earthquakes.
The second, a smaller infrastructure-based network of wireless
devices embedded in the water distribution network, reports
water pressure changes at pipe junctions that may be indicative of
leaks that require human intervention. Using realistic topologies
derived from experiences with real world community scale
deployments, we study the impact of geo-correlated failures on
the combined network infrastructure and evaluate a range of
GeoCRON heuristics to improve commnunications resilience in
this context. We validate the promise of the proposed GeoCRON-
based approach using extensive simulations and an initial proto-
type system implementation.

I. COMMUNITY IOT DEPLOYMENTS

Advances in sensing, cloud computing, and wireless com-
munications has created an emerging Internet-of-things (IoT)
ecosystem - it has enabled the proliferation of small inexpen-
sive devices and the ability to connect and manipulate sen-
sor/actuator systems to create instrumented smartspaces, smart
civil infrastructures and associated applications for the public.
Examples of such smartspaces include personal spaces such
as homes, offices, senior facilities, critical infrastructures such
as airports, shipping and port facilities, and organizations such
as schools and hospitals. Applications range from surveillance
and security to personal safety and situational awareness in
emergency response scenarios. While IoT devices are often
deployed for a dedicated purpose, such as monitoring critical
infrastructures, their data may be repurposed and exploited
for new applications if access to this information are made
available through open APIs.

As these devices penetrate more homes, offices, and com-
munity spaces, new efforts have aimed to improve the safety
and quality of life for occupants of these instrumented spaces.
For example, the Quake-Catcher Network [8] and Community
Seismic Network [3] use small inexpensive accelerometers
driven by volunteers’ computers to monitor homes/offices

for possible indications of seismic activity, as evidenced
by anomalies in the detected ground shaking. Recently, the
Safe Community Awareness and Alerting Network (SCALE)
Project [9] uses multi-sensor multi-network devices deployed
in homes along with cloud-based data exchange and analytics
services, and an Internet phone service to alert residents and
emergency personnel about potential emergencies in instru-
mented homes. SCALE is an example of a public-private
partnership initiated in response to the NIST/WhiteHouse
SmartAmerica Challenge, aiming to transform the lives of
our general publics, irrespective of their economic strata or
physical ability through the creation of community wide
smartspaces. It demonstrates the ability to develop CPS plat-
forms that are scalable, flexible, inexpensive and easy to
deploy/manage at a community wide scale and support the
creation of actionable situational awareness for the safety of
our publics. This will help in alleviating an often-overlooked
chasm in the digital divide where such technologies are often
only available to those with the ability to afford it and the
expertise to setup/manage it. Other recent projects look at
instrumenting critical infrastructure or city spaces to improve
efficiency, lower maintenance costs, and make data available
for scientific studies. Such examples include Sentilo [5], an
IoT platform developed in Barcelona to expose a RESTful
API for both sensor and actuator devices, and AquaSCALE
[19], an extension to SCALE for monitoring water distribution
networks and quickly identifying potential water leaks.

As more individuals come to rely on these systems, es-
pecially for personal safety, we must clearly ensure a high
degree of confidence in their reliable operation. IoT devices
often tend to be low-powered, inexpensive, embedded systems
with little intelligence and are therefore susceptible to a
variety of problems including including faulty components,
inaccurate sensing, and software bugs. As IoT systems scale
and increasingly rely on cloud services to operate, resilience of
these services, the software and algorithms comprising them,
and the networks that link them with end devices are also
crucial considerations. Resilient operation of applications and
services in the presence of failures and disruptions is a key
issue, especially as seen in recent disasters (e.g. Haiti/Japan
earthquakes, Hurricane Sandy). While IoT deployments can
be used to create dependable awareness and consequently
improved decision making in disaster settings, this data must
be quickly delivered in the face of massive geo-correlated
network outages caused by large events.

In this paper, we focus on a specific resilience concern -
that of resilient communications, in particular during large-
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Fig. 1. A general IoT community example with emphasis on water infrastructure. As an example, the cloud constantly collects data from instrumented water
meters and seismic sensors via basestations and the regional internet. Based on the analysis of results, a first responder might be dispatched for rescuing.

scale geographically-correlated failures, e.g. due to a high-
magnitude earthquake. Resilience techniques to deal with
limitations/disruptions in community IoT networking infras-
tructures can be addressed at two different levels - a lower
connectivity level (how to deliver reliably) and a higher mes-
saging level (what to deliver for improved utility). We focus
on the former, i.e. reliable delivery, by exploiting redundant
paths to ensure commnunication of critical safety data to the
backend cloud where it is stored and analyzed. For this, we
extend the the notion of resilient overlay networks (RON),
originally designed in the context of wired networks to IoT
deployments. RONs, originally proposed in [6], have been
studied extensively for routing around Internet failures and
congestion. To capture the geographically correlated nature
of the deployed infrastructure and associated damage regions
in disasters, we explore the use of Geographically-Correlated
Resilient Overlay Network (GeoCRON) [7] and design a mid-
dleware that extends the RON concept with awareness of the
geographic placement of nodes in the underlay. It uses this
information, as well as knowledge about the underlying routing
infrastructure, to choose multiple geo-diverse routes in order
to improve the chances of a message reaching the destination
during large-scale geo-correlated failures.

To contextualize our work further, we focus on deploy-
ments and use cases surrounding massive network failures
affecting two different community IoT systems within the
same geography. The first, a large participatory sensing-
style seismic network of small inexpensive seismic sensors
modeled after CSN [3] (a Community Seismic Network in
Pasadena, CA), reports ground motion in homes and businesses
to a cloud service for detecting and characterizing earthquakes.
The second, a smaller infrastructure-based network of wireless
devices embedded in a smart water distribution network,
reports water pressure changes at pipe junctions that may
be indicative of leaks that require human intervention. We

consider a realistic water distribution network provided by
EPANet, a simulation framework from the Environmental
Protection Agency (EPA). In this network, we place the water
sensors at pipe junctions, wireless basestations to cover this
whole network, and then construct a realistic network topology,
using IGen [20], based on population density derived from
the demands on this water network. Corresponding to the two
deployment scenarios, we consider a resilient overlay network
(RON) comprised of two types of nodes, i.e. seismic sensing
nodes and the wireless basestations that receive the water
sensor readings. We develop cost-effective mechanisms to
support fast and reliable data transfer over the multiple physical
network connectivities, taking into account the shared nature
of access and dynamic workloads in a community setting. We
study the similarities, differences, and interplay between these
two community IoT systems in such a situation in order to
identify common patterns that improve communications re-
silience in both systems as well as strategies for enabling them
to collaborate effectively. Some of these differences include
timing constraints on the data delivery, last-hop connectivity,
and physical placement of network nodes.

We use simulations to study geo-correlated failures on
this combined network infrastructure and the use of our
proposed GeoCRON middleware to route messages along geo-
diverse paths in order to improve the chances of data delivery.
GeoCRON measures path geo-diversity through various for-
mulations, and so we apply these various measures to create
a family of heuristics for choosing geo-diverse paths and
compare their performance with each other.

Key contributions of this paper include:

• Development of a methodology for inferring IoT com-
munication networks structure for multiple community
infrastructures in a geography (seismic/water in this
case) towards the creation of a common GeoCRON



topology (Sec 2)

• Design of the state-of-the-art algorithms to exploit
path geo-diversity for the construction, maintenance
and effective use of GeoCRON overlays in a realistic
multi-network geo-correlated failure scenario (Sec 3)

• Validation of the diverse GeoCRON techniques with
appropriate geo-diversity metrics using extensive sim-
ulations and analysis of improved resilience to com-
munications network failures, gained by sharing net-
work resources between IoT deployments using an
overlay middleware (Sec 4)

• A Prototype implementation of the GeoCRON reliable
communication methodology in the SCALE platform
to understand operational and deployment challenges
in a real world community setting (Sec 5).

II. IOT COMMUNICATIONS RESILIENCE

In this section, we begin discussion of resilient IoT com-
munications in the Internet. We present two IoT networks
as concrete examples and propose a strategy for designing a
realistic resilient communications network to support them:
a volunteer seismic sensor network and a water distribution
sensor network.

A. Improving Network Resilience

The original Internet architecture was designed as a scal-
able high-performance resilient network for delivering data.
Throughout its evolution, researchers and engineers applied
a variety of techniques to improve its resilience. Some of
these techniques generalize and reappear at various points
in different networking stacks. For example, the concept of
redundancy is applied in terms of transmitting over multiple
wireless channels to avoid interference, maintaining redundant
networking equipment (e.g. routers, wireless basestation cov-
erage) in case of failure, aggregating multiple physical links
in a wired topology in case one fails, and even retransmitting
unacknowledged packets when using TCP. Another application
of redundancy that we will exploit in this paper is maintaining
multiple network paths between two nodes. This may take the
form of recomputing alternative routes in routing infrastruc-
ture given knowledge of the complete topology (e.g. OSPF),
maintaining different flows and either intelligently choosing
between them with a higher level logic or copying data over
both (e.g. MPLS, TCP multi-homing), or maintaining loops for
fast re-routing of traffic in response to failures (e.g. SONET).
These techniques, while capable of quickly and effectively
handling transient network failures such as packet loss due to
congestion or faulty networking equipment, break down during
massive failure scenarios.

In the face of failures and congestion, the underlying
routing infrastructure may take several minutes to identify
alternative routes due to reconvergence of the routing proto-
cols. Studies have identified issues with Internet routing, in
particular with the Border Gateway Protocol (BGP), during
massive failure scenarios. For example, [27] found paths that
needlessly passed through other continents following a major
earthquake in Taiwan. It also claimed that BGP policies
negatively impact resilience on the Internet by not allowing

certain paths. The authors of [10] found that most visible
failures in the Internet did not exceed 5-15 minutes while
the authors of [16] found that BGP route update convergence
could take up to 15 minutes after a fault. Hence, we see that
we cannot always rely on network routing infrastructure to
address all failure scenarios. Part of the reason for this is the
simplification of intelligence in the core of the network to
improve performance and scalability.

A common design paradigm for the Internet architecture
as well as protocols/applications that rely on it is that of
pushing intelligence as close to the edge as possible. Not
only does this allow the network core to focus specifically
on high-speed packet routing by limiting the amount of logic
those devices contain, it also allows for a hierarchical design
methodology in terms of deploying heterogeneous devices to
handle different tasks within a network. For example, customer
devices run TCP in order to ensure reliable delivery of data
(if possible) through the best-effort Internet service. Gateway
routers at the edges of networks handle these customer devices’
traffic and may send packets through different flows in the
network to offer a particular quality-of-service or shape certain
traffic types (e.g. p2p applications). In enterprise networks,
middleboxes offer services such as firewalls or caches that
would overly complicate finely-engineered routers. This hi-
erarchical design also allows these networks to scale in an
efficient and cost-effective manner. Routers at the edges of
the network aggregate data flows from many customer devices
and forward them along a fewer number of links into the core
of the network. The core routers, which are much fewer in
number, will then forward this traffic along high-speed long-
haul links to other core routers and back up this hierarchy
to the destination customer devices. In this manner, the more
complex logic to handle applications and new network services
resides in customer devices. With the advent of IoT systems,
designers often disrupt this paradigm by further extending
the hierarchy as IoT devices are less capable of supporting
more complex logic. They often deploy gateway nodes or
basestations to collect traffic from sensor devices (or send
commands to devices) and determine how to handle it (e.g.
send to cloud or process immediately). These nodes offer
opportune points at which to add software intelligence for
complementing the Internet’s resilience mechanisms in order
to address the aforementioned problems, a concept we will
return to in Section III-B.

B. Resilient IoT Network Design

Here we describe our two motivating IoT deployments and
a process for how we would construct a realistic resilient multi-
technology communications network to serve them.

1) Seismic Sensing Network: We model our seismic net-
work use case after the Community Seismic Network (CSN)
[3] system deployed in California. CSN uses low-cost ac-
celerometers deployed in homes, businesses, and schools.
Volunteers provide space and power for these sensors, which
may be connected to a desktop computer or a dedicated low-
power computer, such as a plug computer or Raspberry Pi.
We envision such a deployment expanding in the future as
more individuals deploy IoT sensor devices in their homes that
often incorporate accelerometers (e.g. home security, smart-
phones), which could contribute shaking measurements to



the CSN system. These sensor devices monitor background
shaking for anomalies and report data about them when
detected in messages called picks to a cloud service (e.g.
Google AppEngine for CSN, IBM BlueMix for SCALE),
which sits outside the earthquake-prone region and analyzes
recent picks possible earthquakes. By effectively identifying
and categorizing earthquakes in a timely manner, the CSN
system, in conjunction with traditional seismographs, could
lead to a real-time fine-grained targeted early warning system
and provide people precious seconds to take shelter before a
seismic wave propagates to their location. To accomplish this
despite severe congestion and packet loss due to sudden traffic
spikes from people contacting each other as well as failures
caused by the tremor, the picks must arrive at the server for
analysis within a few seconds of the event. Such failures will
often be localized due to the geographic scope of an earthquake
as well as cascading failures introduced by e.g. failures in
the power grid. This motivates the failure model proposed in
Section IV-B that we use in this study.

2) Water Sensing Network: We model the water sensor
network based on the realistic water network provided by
EPANet [22], [26]. It consists of 118 pipelines, 96 junctions
(i.e. pipe joints), a pump, a valve, a storage tank, and 2
reservoirs located throughout a 9.26 km × 7.77 km geo-
graphical region. Each junction has its own level of demand
(i.e. consumption), and each pipeline has different properties
including length, diameter, roughness coefficient, and status
(i.e. open or closed). To mimic a real-world setting, we
place approximately 50 sensors in this network at sporadic
junctions since these interconnection points are more prone
to failures [2]. The sensors periodically send pressure/flow
rate values to the cloud service for leak detection. Because
modern water networks typically do not have such sensor
instrumentation currently built into them, we assume that these
sensors are mostly retrofitted into the infrastructure. Therefore,
we assume that sensor data collection will be done wirelessly.
Because these sensor devices will likely be low-powered and
frequently battery-operated, we model the wireless network
after a low-power long-range technology such as Sigfox’s
ultra-narrowband, which we used extensively in the SCALE
project. Multiple wireless base stations (BSs) would cover the
water network (see Section II-B3) and forward sensor data to
the cloud.

3) Topology Construction: To construct two realistic net-
work topologies (one less redundant and one more redundant)
for this study, we started with the sensorized water distribution
network described in Section II-B2 as our target geography
from which to build communications and seismic networks
alongside. By applying real-world network design techniques
inspired by the resilience considerations outlined in Section
II-A and proposed in [20] , we performed the following steps
to generate the topologies:

1) Use the water demand values at each junction to
derive an estimate of population density around that
point. Normalize these demands across the total de-
mand of the whole network to get the density.

2) Use these densities to randomly place 225 nodes rep-
resenting customer locations (businesses, residential
neighborhoods, etc.), each of which have community
seismic sensors running on their network.

Seismic Sensor

Water Sensor

Base Station (BS)

Gateway Router

Backbone Router

BS Coverage

Wireless link

Low-BW wired link

High-BW wired link

Legend Unit: km

Fig. 2. Partial network topology as an example to show different node and
link types. Other topology plots will follow this legend and exclude the legend
for clarity.

Fig. 3. The less redundant of our two network topologies.



3) Place 20 additional router nodes based on K-Means
with respect to the seismic nodes’ locations.

4) Use the techniques adopted by the network topology
generator IGen [20], we build a full network topology
interconnecting the routers and splitting them into
gateway routers and backbone ones. 4 backbone
routers are chosen from all the router nodes using
K-Medoids. The backbone routers are linked in a
full mesh topology, whereas the gateway routers
are linked into a sparse mesh using a Delaunay
Triangulation. This is an efficient way of obtaining a
cost-effective topology with redundancy. It produces
alternate paths between nodes, while minimizing the
number of such paths [20]. We also removed a few
redundant long-haul connections between backbone
routers as this would reduce network construction
costs.

5) Augment the resulting network to have some long-
haul connections outside of the city through a few
different paths to represent connections to the cloud
service where the data should all be uploaded.

6) Connect each of the customer nodes to the closest
gateway routers.

7) Place long-range wireless basestations (BSs). We
deploy 4 in the less redundant topology and 7 in
the other using K-Means [13] to place each BS at
the center of sensor clusters and then move them
slightly to ensure full coverage (2km range) over the
water sensors. The basestations, which we modeled
after the Sigfox ultra-narrowband network we worked
with during the SCALE project, are each linked to
the closest backbone router via a wired link as well
as to the closest basestation via a wireless link.
The wireless links between basestations represent
microwave links used to link radio towers, especially
useful during emergencies when wired connectivity
may be affected. We modeled this after Montgomery
County, which deploys microwave technology on
many its government buildings and radio towers to
ensure continuity of operations even during large
outages.

8) Placed the cloud data center (server node) far outside
target geography because we assume nodes will al-
ways try to send sensor data outside of the affected
region. This mimics the CSN system, which runs
its cloud service outside of California to lessen the
possibility of data being trapped within a failed
region. The server is connected to 3 of the backbone
routers so that there exist redundant options for the
overlay to utilize if the default path fails. While we
only place a single server node in this topology, it
actually represents a connection to the cloud. That
is, it represents many servers in different locations,
but for the purposes of studying connectivity to any
of them we only need a single node.

III. RESILIENT OVERLAYS FOR IOT

This section introduces the concept of Resilient Over-
lay Networks (RONs) and our proposed Geographically-
Correlated Resilient Overlay Network (GeoCRON) system. It
details the architecture and algorithms used in GeoCRON for
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Fig. 4. An overview of the layered multi-system architecture being studied.

constructing and using the resilient overlay as well as choosing
geo-diverse paths.

A. Resilient Overlay Networks

In this paper, we make use of Resilient Overlay Networks
(RONs) to improve the resilience of our large scale IoT system.
Previous research [6], [10] has shown that RONs can substan-
tially improve delivery of messages, as well as latency, during
failures, unavailability, and congestion. Indeed, [10] found that
“overlay networks can typically route around 50% of failures.”
RONs accomplish this by routing messages along functioning
alternative paths disjoint with the presently-unavailable or
congested Internet-routed ones. Peers in the overlay facilitate
this alternative routing by acting as intermediary hops, which
tricks the underlying routing infrastructure into sending the
packet first to this intermediary and then from the intermediary
to the destination (in the two-hop case) as shown in Figure 5.
When an end-host perceives a failure, or simply wishes to
improve chances of delivery by utilizing an alternate path, it
chooses such an intermediary overlay peer according to some
metrics (e.g. latency, current load) and requests that it route
traffic to the destination.

B. GeoCRON: Exploiting Network Edge Intelligence for Fail-
ure Recovery

As discussed in Section II-A, networked systems com-
monly follow the paradigm of pushing intelligence towards
the edges of the network to streamline the core and allow
heterogeneous logic on these edge devices. Because many IoT
devices, including our model seismic sensing nodes, feature
general CPUs, we can easily add software intelligence to
enable middlewares for sharing resources between IoT devices.
This allows us to share networking capabilities and implement
the aforementioned RON approach to significantly enhance
communications resilience in IoT systems. Thus, we exploit
the existence of a multitude of end-host devices without
requiring Internet Service Providers to offer additional services
in their networks. Our proposed IoT deployments allow us
to add this logic by running the GeoCRON overlay on the



seismic nodes, which run on commodity computers, and water
sensor basestations, which are assumed to be running high-
performance hardware.

When a GeoCRON node tries to send sensor data to the
cloud server(s), it tries to maximize the delivery rate of the data
by sending multiple copies along disjoint paths to each known
server. In our previous work [7], we explored sending one
message and awaiting a timeout before trying a different path,
up to a predetermined number of retries. However, we found
that this frequently required a full 5-10 seconds to deliver
the majority of the messages, and so, given the low-latency
requirements of our seismic sensing scenario, we instead opted
to send all message attempts at the same time to decrease
latency. We note that other IoT systems, such as the water
sensing network, may opt to relax this constraint and use
a hybrid of these two techniques, but we save this study
for future work. We define the multi-path fanout k as the
number of message copies sent to each server. This value
is configurable within the client code and is experimentally
determined to maximize data delivery without introducing too
much congestion into the network. The first of these packets is
sent directly to the server without any overlay hops to minimize
latency. The remaining k−1 are sent using geo-diverse overlay
paths chosen from the available peers as described in Section
III-D. In [11], the authors discovered that the vast majority of
node pairs only require a single overlay hop in order to exhibit
the same diversity as multiple hops. Therefore, we use as each
possible path a 2-hop overlay path where the first hop is some
overlay peer and the second is the destination server. The list
of overlay peers from which to choose is based on the overlay
construction described below.

C. Overlay Construction

In order to pick an overlay peer to help create a geo-
diverse path to the destination, each GeoCRON client must
know about other clients in the network. All GeoCRON nodes
must at least know the locations and IP addresses of these peer
clients; specific heuristics will request additional information
(e.g. physical route to the other node) in order to construct
the overlay. As IoT networks can scale to a large number of
nodes, it is clearly impractical for each client, which typically
runs on a low-powered embedded computer, to maintain this
information for every other client in the overlay. Therefore, we
must restrict the number of other peers known by each client
to a subset of the entire network.

Because GeoCRON nodes report data to a cloud service for
analysis and storage, we consider GeoCRON a hybrid peer-
to-peer network. The cloud service instances maintain knowl-
edge of the full network and associated metadata, including
underlying route information, to simplify bootstrapping new
nodes in the network. When a GeoCRON node comes online,
it contacts one of the servers and retrieves a list of geo-diverse
peers according to the metrics described in Section III-D.
These peers use tools such as traceroute to gather information
about the paths between them and both the server(s) and
other nodes, including physical routers and link latencies. This
data is uploaded to the server(s), where the path geo-diversity
algorithms are run to select the best overlay path choices for
each node.

The maintenance of the overlay would be a crucial consid-
eration if our system involved more node churn (e.g. mobile
nodes). However, the in situ placement of the sensors means
the overlay topology and node locations are expected to
remain essentially static except due to failures, in which case
nodes are not expected to come back online quickly. Our
current architecture thus does not concern itself with overlay
maintenance, but we do intend to incorporate mobile nodes
and study it in the future. It is well-known that maintaining
an peer overlay where each node in the overlay knows about
O(log(n)) (n being the number of nodes) other nodes will
allow the network to scale to practical sizes. Similar to other
overlay-based systems [15], [17], GeoCRON could bootstrap
nodes with the aforementioned centralized approach and then
allow nodes to gossip with known peers to refine these initial
choices according to some metric. For example, [17] used an
simulated annealing-like approach in which connections are
chosen to decrease the distance between peers while assuring
a low probability of disconnect during random failures by
keeping an average node degree. To address more sophisticated
and realistic route choice strategies, we are exploring assigning
peers based on geo-spatial metrics so that clients are aware of
both nearby peers as well as those in diverse areas. We are
currently considering three different approaches:

• Assigning peers with a probability inversely propor-
tional to their distance from the client node

• Choosing peers to be as uniformly distributed spatially
as possible by breaking the area under consideration
into a grid and picking some number of peers from
each cell

• Choosing peers based on clusters (a structured ap-
proach) by breaking the area into a hierarchical grid
and choosing a predetermined number of peers from
each cluster

These approaches would guarantee a client knowing about
peers that are both nearby and distant. This would allow for
a client to contact another peer far away in order to request
information about additional peers in this distant region, sim-
ilar to the method used by Pastry [23] for contacting far away
peers based on some key, which in this case would be location.

Furthermore, by introducing such gossip mechanisms to
GeoCRON in addition to overlay routing, nodes can further
coordinate with each other during a disaster to learn about
new peers and paths, especially if contact with the server(s)
has been disrupted. In this manner, they may share information
about perceived failures and known good paths to further
improve adaptation to dynamic events. This can be further
improved if multiple devices are located within a local area
network, especially if equipped with wireless technologies.
Note also that such a mechanism can be exploited to implement
rich techniques for compression, local event detection and
content aggregation, which is a topic for further work.

D. Geo-diverse Route Selection

Resilience to Internet failures has been extensively studied,
though few works address massive geo-correlated failures.
Large-scale failures tend to be geographically-correlated in



nature, whether due to a particularly impactful natural phe-
nomenon (e.g. earthquake, tornado), a cascading failure from
another network (e.g. power grid), or perhaps a targeted attack
by human adversaries (e.g. electro-magnetic pulse weapon).
Some research attempts to formally model these failures and
extrapolate design methodologies for improving network in-
frastructure reliability from them. Straight line segments drawn
through a network topology, failing any intersected links, were
used in [18] to study geo-correlated failures. In [12], the most
damaging link cuts possible for a given network provider is
used to plan a more resilient network. Further general network
resilience challenges are discussed in [24] and [25]. Geo-
diverse multipath routing within an autonomous system (AS)
is studied in [21], and we borrow and expand on their geo-
diversity metrics in this work.

1) Model and Notation: This section introduces notation
that we use to model and reason about GeoCRON formally.

Network Model Let G = (V,E) be the graph defining the
network under consideration, where V is the set of nodes rep-
resenting routers and end hosts and E is the set of undirected
edges representing physical links between nodes. Each edge
e ∈ E is assigned a weight w ∈ N to represent the latency
(as measured in milliseconds) of the links. For the purposes of
this study, we assume the latency of a link is constant (other
than queueing delays) and bidirectional.

Node Locations Each node v ∈ V is assigned a physical
location as measured in geographic coordinates. Let loc : vi →
(xi, yi), for xi, yi ∈ R, be the function mapping each node
vi to its physical coordinates and dist : (v0, v1) → R be
the function mapping each node pair to the physical distance
between their locations.

Overlay and Server Nodes Let S ⊂ V be the servers
(sinks) to which each sensor node reports data to.

Network Paths When a sensor node sends a message
to some server s ∈ S the packet will travel a particular
path through the network as determined by the underlying
infrastructure. Let p = (v0, e0, v1, ..., en−1, vn), for vi ∈
V, ei ∈ E, be a sequence of nodes and interconnecting edges
that represent such a path. When a sensor node chooses to send
such a message using overlay nodes as intermediaries, we may
consider only the sequence of overlay peers rather than the
entire physical path. As such, let h = (o0, ..., on), for oi ∈ O,
be the sequence of overlay peer hops taken by such a message,
where on ∈ S is the final destination server. Currently, we
only consider 2-hop overlay paths in which the second hop is
the destination server s0. That is, h = (o0, ..., s0). Let also
P = {p0, p1, ...} be the set of all possible paths in G and
path : h → p ∈ P map overlay paths to physical topology
paths. This is done by joining together the physical paths from
the source peer o0 to the first hop o1 with with the path from
the first hop o1 to the second hop o2 and so on.

Modeling Path Diversity In order to assess the diversity
of a potential path choice, we must define some model for
quantifying it. We define diversity as a measure of how dif-
ferent two paths are in terms of shared components, proximity
of component locations, or even both. The goal is to identify
paths that are less likely to suffer geo-correlated disruptions
at the same time. Let D(pa, pb) : {pa, pb} → R be the ab-
stract diversity function for comparing two physical paths. Let
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Fig. 5. A GeoCRON node chooses an overlay based on geographic
information.

D(ha, hb) : {ha, hb} → R be the abstract diversity function
for measuring the diversity between two overlay paths. These
function templates are used to measure the diversity according
to one of the concrete heuristics defined in Section III-D2.

2) Geo-diverse Path Heuristics: In this section, we propose
a family of techniques and heuristics used to rank the geo-
diversity of various overlay path options. When a GeoCRON
node o1 has data to send to the server, it first sends the data
directly without use of the overlay as described in Section
III-B. For the sake of discussion, let us just consider the case
of a single server s acting as the destination for this data.
Let p0 = (o1, e1, v2, . . . , s) be this non-overlay direct path
to the destination s. If configured with k > 1, o1 will also
send out additional packets along geo-diverse overlay routes
P ∗ = (p1, . . . , pk−1) to s. Clearly it is impractical to assume
that o1 will have knowledge of the failures along overlay
path p1 = (o1, e1, v2, . . . , oi, . . . s) before either attempting the
path or receiving some (possibly out-of-band) communications
regarding the failures. Therefore, GeoCRON nodes must make
the best local decision possible regarding which geo-diverse
paths to use.

In our previous work [7], we tested various heuristics that
chose paths (p1, . . . , pk−1) using only the locations of the
overlay nodes. We found little benefit from these heuristics
over the baseline (random choice of peer), and so in this paper
we consider knowledge of the underlying physical network
path p1 and even the locations of the routers therein. Therefore,
when determining pi’s diversity, o1 may consider information
such as the components of the path v, e ∈ p1, the location of
each router v ∈ pi, and the location of the overlay peer choice
o1 ∈ O. By exploiting this knowledge, these heuristics aim to
pick paths that are more diverse (less correlated) and therefore
improve the resilience of the system to failures.

Below we discuss the implementation of various heuristics
(other than Random and Ideal since they are straightforward)
used to choose geo-diverse overlay paths. They have varying
degrees of awareness regarding existence and locations of
network infrastructure, including the end devices. In order of



decreasing topology and location knowledge, these are:

• Ideal (oracle heuristic that finds any working path),

• Gsford (router proximity-aware),

• AreaDistance (router minimum distance and path area-
aware),

• Intersection (shared router and link-aware),

• Random (uniformly random path choice).

Gsford: This heuristic is derived from some our previous
work [14], [15]. In [14], we considered lessening the impact of
geographically-correlated failures by picking geo-diverse paths
considering whether their routers were within some threshold
distance (Tdist) of one another. As detailed in Algorithm
III-D2, the very first overlay peer chosen is the one with the
lowest latency. All subsequent path choices are compared with
all other currently chosen paths and penalized by one point for
each router on those paths within Tdist of a router on this path.
The diversity value is the inverse of this penalty, and so the
chosen path will be the one with the lowest penalty score.
This technique was applied to a geo-social notification system
(GSFord) in [15], where the heuristic gets its name from.

Algorithm 1 Path diversity scoring function used in the
GSFord system [14], [15]. Paths are penalized for having
routers within a threshold distance of a router on another path.
Require: Tdist ← distance threshold for path components

1: function GSFORDGETDIVERSITYSCORE(h)
2: H ← GETCURRENTMULTIPATH
3: if H .size() = 1 then
4: return 1/GETLATENCY(h)
5: proximity ← 0
6: p0 ← PATH(h)
7: for h′ ∈ H do
8: p1 ← PATH(h′)
9: for router v1 ∈ p0 do

10: for router v2 ∈ p1 do
11: if DIST(v1, v2) < Tdist then
12: proximity ← proximity +1

13: diversity ← 1/(proximity+1) . avoid divide by 0
14: return diversity

AreaDistance: This heuristic is based on a geodiversity
metric proposed in [21]. The goal of this heuristic is to choose
physical paths that are as far away from each other as possible.
They define the geodiversity of two paths according to:

Dg(Pb, Pa) = αd2min + βA (1)

Where α, β ∈ [0, 1] are configurable weight parameters, d2min
is the square of the minimum distance between any two routers
in Pb, Pa, and A is the area of the polygon bounded by the
locations of all components in Pb and Pa. AreaDistance is
called to evaluate the geodiversity of each currently chosen
path and the current possible path choice. For each path, its
aggregate geodiversity is chosen as the minimum of those
when compared with all of the other paths. The justification for
this method is that although a path may be very diverse from
another, it could also be extremely correlated with another yet,
and so it is geodiverse only in so far as it is geodiverse from all

currently chosen paths. Ties are broken by taking the choice
with the lower path length (number of routers and links).

Path Intersection: This heuristic is also based on a
diversity metric proposed in [21]. However, it is not truly a
geodiversity metric as it does not consider the physical loca-
tions of the topology components. Rather, it simply considers
whether or not the two paths share the same components. It
measures the size of the paths’ intersection, hence its name,
and measures the diversity of two paths according to the
following metric:

D(Pb, Pa) = 1− | Pb ∩ Pa |
|Pa|

(2)

Where |Pa| ≤ |Pb|. Note that our implementation takes
min(|Pa|, |Pb|) as the factor in the denominator to ensure
|Pa| ≤ |Pb|. Note also that we must ensure both paths have at
least one component each in order to avoid dividing by 0. Just
like AreaDistance, Intersection computes the diversity between
the path under consideration and each currently chosen path,
assigning the aggregate diversity for this path as the minimum
of all these. It also breaks ties by choosing the path of shorter
length.

IV. EXPERIMENTAL EVALUATION

Due to practical considerations with respect to deploying
an IoT network within critical infrastructure and testing its
performance in an earthquake, we implemented and studied
our system in a simulation-based environment. We opted to
use the ns-3 [4] network simulator because we wanted to be
able to modify the source code to fit our scenario. Below we
describe our simulation design and implementation, the code
for which is freely available for others to download, use, and
modify 1. We then present the experiments we ran with this
simulation and discuss the results.

A. Simulation Design

To support collecting physical path information, we ex-
tended ns-3’s NixVectorRouting model, which is used for more
computationally efficient routing in large networks. This new
function returns the physical path that will be used to reach a
destination (identified by its IP address).

To read our network topology and sensor locations (see
Section II-B3), we created a new TopologyReader model that
extends the InetTopologyReader. This new model reads in all
of the node and link information the same as for Inet, but it
stores the different types of nodes in different NodeContainers
so that we can properly configure each group separately. It
also sets the locations of nodes for use in the failure model.

We implemented a GeoCRON Application in ns-3 that
attempts to upload sensor data to the server(s) via multiple
geo-diverse routes at a predetermined time. Each Application
adds a slight random delay (uniformly random within a range
of 1.5 seconds) to this scheduled send time when sending
packets via the overlay so as to avoid high packet loss rates
that we encountered initially due to too many nodes sending
messages at the exact same instant. We chose a small delay and

1The interested reader can find all of our ns-3 code on the geocron branch
at https://github.com/KyleBenson/ns3



to send all multi-path messages at once because the use case
scenario requires very low latency data delivery. Furthermore,
each node would be sending messages at a slightly different
time in a real scenario due to e.g. detecting the seismic wave
at different times. Overlay forwarding was handled by adding
a new header that specifies the IP address of the peer hops,
which is used by overlay peers to determine where to forward
a packet to. When a server receives a message, it logs this fact
in a trace file and responds with an ACK through the same
overlay path.

The parameters to consider for an experiment are all spec-
ified by command line configuration. These include: disaster
location, base failure probability p(fail) , number of geo-
diverse paths to attempt, which heuristics and their (optional)
model parameters, and the number of times to run each unique
configuration so as to average results over many different
applications of the failure model, random heuristic choices,
etc. The simulator iterates over all combinations of specified
parameters applying them in a particular order so as to ensure
a consistent comparison, with respect to one parameter e.g.
application of failure model, between configurations. This
lessens the amount of variance we see between treatment
groups and gives a more accurate estimation of the underlying
distribution(s) that determine the results.

B. Failure Model

The failure model assumes an earthquake occurs at a
predetermined time (immediately before each client reports
sensor data) and that all non-server nodes and all links within
the region under study are failed with a particular probability
(p(fail) ). We assume the server (cloud data center) resides
far enough away from the region under study so as to remain
unaffected by the disaster. The motivation for this assumption
comes from the CSN deployment, which specifies its server
instance to run outside of California in order to lessen the
chance of data being trapped within the area affected by the
earthquake. Non-server nodes and links fail with a probability
inversely proportional to the network component’s distance
from the earthquake’s epicenter according to the following
equation:

p(fail)

2D∗S/B
(3)

Where p(fail) is the base failure rate input into the simula-
tion, D is the distance from the component to the earthquake
epicenter, S is a factor that determines how quickly p(fail)
decreases with distance D, and B is the length of the square
boundary representing the entire region under study.

All failures happen at the same time (before the Applica-
tions attempt data upload), although we are exploring the use
of a more sophisticated model that would allow for dynamic
evolving failures to represent e.g. propagating seismic waves,
secondary failures, aftershocks, and other disasters such as
tornadoes, floods, etc.

C. Experimental Results

This section describes the results of our simulation ex-
periments. We ran each unique configuration of simulation

parameters 24 times. For each unique parameter configuration,
we averaged the results of all the runs to lessen the effects of
edge cases and better compare the experimental groups with
each other.

To quantitatively compare each experimental group, we
use the delivery rate of the individual nodes’ original sensor
data message. That is, a message counts as delivered if at
least one copy of it reaches at least one server. This message
count is normalized by the number of active (non-failed) nodes
so that this delivery rate falls in the range [0, 1]. The plots
below show this delivery rate as a function of time. Note that
the starting point of the curves in these plots represents the
performance without the overlay. This is because the messages
sent directly to the server go out first and the overlay messages
are sent after a short time delay. Note that in the legends
each experimental group is labeled with the name of the
heuristic and the following parameters in brackets: f - failure
probability; k - multipath fanout; D - distance threshold for
Gsford heuristic.

1) Comparison of Heuristics: Before comparing the vari-
ous heuristics with each other, we had to identify a somewhat
narrow set of parameters to run them with in order to avoid the
combinatorial explosion of exploring every possible configura-
tion, which would make each simulation run prohibitively long.
We settled on a p(fail) of 0.1, though we also experimented
with 0.2, 0.3, and 0.5 (see below). For the multipath fanout,
we used k = 5 (though we also used k = 3, k = 9, and
k = 17 as described below) based on the findings in [21] that
some topologies showed strong increases in diversity for k < 4
whereas others showed strong increases for k < 7.

For Gsford’s Tdist parameter, we ran experiments on the
values Tdist ∈ {20, 30, 40, 50, 75100, 1000, 2500}. The Gsford
heuristic performs better for smaller Tdist values, which intu-
itively makes sense as setting this value to 1 would essentially
turn it into an approximation of the Path Intersection heuristic,
which we show below performs the best. We settled on
Tdist = 30 as performing generally well both in this current
experimental setup as well as in some previous studies using
different randomly generated topologies.

We also ran experiments on different disaster locations and
on both the less redundant and more redundant topologies we
created. The results described below hold across these different
parameters as well.

Figure 6 shows the results comparing all the heuristics
described in Section III-D2. Recall that the Ideal heuristic
represents the absolute upper bound on the delivery rate that
can be achieved with overlay routing. We see that Gsford
and Path Intersection perform similarly, though the latter has
a clear slight advantage. It is interesting to note that Path
Intersection would be easier to implement in a real system
as it does not need to know the physical locations of the
routing components along a physical path. Because of the
above two facts, we chose Path Intersection as our best non-
optimal heuristic and use it in a few experiments described
below. The AreaDistance heuristic does not appear to perform
particularly well, especially as it is usually matched by the
Random heuristic, which has the simplest implementation of
all.
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Fig. 6. The delivery rate for each of the heuristics.
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2) Comparing Other Parameters: We also ran experiments
to explore how the multipath fanout and failure probability
affect the delivery rate.

Figure 7 shows the results for using k ∈ {3, 5, 9, 17}
with the Path Intersection heuristic. We see that using k = 5
achieves almost as high an improvement as for much higher
values. This appears to reproduce the aforementioned results
in [21]. When considering the detrimental effects of too
many message copies flowing through an already-challenged
network, we believe that using a smaller value for k would be
ideal.

Figure 8 shows the upper bounds (using the Ideal
heuristic) on delivery rates for 1 and 2 servers and f ∈
{0.1, 0.2, 0.3, 0.5}. This demonstrates how impactful a slight
increase in p(fail) can be on the network’s performance. We
see that the curves tighten with higher p(fail) values, indicat-
ing that the performance improvement becomes less during
more failures as fewer working paths are available. When the
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Fig. 8. The theoretically optimal delivery rate for even higher values of
p(fail) .

percentage of network components failing goes beyond 25%
it appears as though the delivery rate expected drops below
acceptable values, even with the use of RONs.

3) Sharing Network Resources Between IoT Deployments:
To study the possibility of both IoT deployments joining the
same GeoCRON overlay and sharing network resources, we
also ran some experiments in which we applied three different
treatments for comparison: only seismic nodes participating,
only water sensor basestations participating, and both types of
nodes participating in the same overlay. The previously pre-
sented results above are from this last case where all IoT nodes
actively participate. For this experiment, we isolated only the
results of one network or another (i.e. only seismic nodes both
in the case where they were the only ones participating and
also when they could use the water sensor basestations as an
overlay).

We found that combining the overlays did not actually
have a significant impact, either negatively or positively, on
the delivery ratio. We believe that this result is due to a
combination of several factors. First, the density of the seismic
sensor node deployment and the fact the overlay topology is
fully connected in the simulations means that the seismic nodes
are already capable of finding nearly all of the same paths
using only seismic node peers and so the addition of using
the basestations does not open up many further possibilities.
Second, the structure of our network topology is such that
the basestation nodes are already highly resilient and so do
not benefit from using the seismic nodes as overlay peers.
Because the basestations are connected to each other with
long-range wireless links that do not fail when the failure
model is applied, they can easily contact each other to route
around failures. We actually noted that the use of GeoCRON
resulted in achieving a 100% delivery ratio for most scenarios
when p(fail) = 0.1. Therefore, we see that the application
of GeoCRON does generalize across different types of IoT
networks beyond the seismic sensing scenario. Because of
these findings, we intend to repeat these experiments with
different network topologies and scenarios in the future in



order to determine whether these results generalize across
further networks and IoT deployments.

V. TOWARDS A SCALABLE IMPLEMENTATION

To begin testing GeoCRON in real-world settings, we
created an initial prototype implementation. To leverage our
existing deployments and infrastructure, we implemented it
within our ongoing IoT effort: the Safe Community Awareness
and Alerting Network (SCALE) [9].

A. SCALE Overview

SCALE (see Figure 9) aims to demonstrate the use of a
middleware solution for IoT devices to sense the environment,
locally analyze data for possible events of interest, upload
events to a cloud data exchange, further analyze them for
emergency event-detection in a cloud service, and alert resi-
dents and emergency dispatch using an Internet phone service.
SCALE client devices are implemented using a Raspberry Pi in
a box full of sensors (e.g. motion, seismic, gas) and associated
networking equipment (Wi-Fi, Sigfox ultra-narrowband, etc.).
The clients run an asynchronous Python-based middleware that
manages interacting with the various sensors, local data pro-
cessing, and reporting sensed events to the cloud data exchange
through several different communications media and protocols
(MQTT and HTTP). We implemented this middleware using
abstract and concrete components loosely coupled around an
internal publish-subscribe broker. In this manner, we can easily
implement new modules that support different sensors, net-
works, and platforms, thereby improving the system’s ability
to handle heterogeneous devices.

B. Extending SCALE with GeoCRON

In our initial implementation, a SCALE client using the
GeoCRON overlay feature will contact its SCALE server
and request a list of geo-diverse peers. We implemented a
location-sensing module to collect the geographic locations of
SCALE nodes based on their IP address or a user-specified
configuration. The SCALE client middleware contains a group
of modules, referred to as EventSinks, that handle reporting
sensed events to the data exchange using the appropriate
networking technologies. The GeoCRON EventSink chooses
a configurable number of overlay peers, packs necessary
information (e.g. server IP address) into a Google protobuf
[1], and transmits this header along with the sensed event to
each chosen overlay peer over UDP. The overlay peers read
the header info and forward the packet to the requested server.

To determine the overhead incurred by the overlay routing,
we set up an experiment with SCALE devices. We configured
a GeoCRON overlay on 6 Raspberry Pis to send sensor data
(over Wi-Fi) directly to a laptop acting as the server as well
as through each other. The server recorded the timestamps
at which the different packets were received so we could
determine the difference in latency from the direct message
and the overlay message. We ran the experiment a number of
times and varied the number of such messages sent (100 and
1000) and the number of hops in the overlay (1-5). The results
(see Table V-B) indicate very low latency increases when using
the overlay. The latency increase appears non-linear as we add
more hops, but it has high variance, possibly due to effects

Fig. 9. The SCALE system.

# hops min max mean stdev
1 0.0002279 0.42008 0.02377 0.02418
2 0.0004408 0.35384 0.04049 0.03435
3 0.0004480 0.29621 0.05441 0.03706
4 0.0006402 0.34069 0.07287 0.04285
5 0.0004800 1.61702 0.12674 0.10012

TABLE I. LATENCY DIFFERENCE IN SECONDS BETWEEN OVERLAY
AND DIRECT PACKET FOR 100 MESSAGES.

of operating system scheduling. Future work will include
setting up an experimental testbed for studying the resilience
improvement of using our GeoCRON implementation in a real-
world setting as well as repeating the above experiment with
devices not on the same local area network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discussed the concept of communications
resilience in IoT deployments. To motivate our research, we
discuss two IoT systems (seismic and water infrastructure
sensing) and the design of a realistic network topology to sup-
port them. We proposed the use of Geographically-Correlated
Resilient Overlay Networks (GeoCRON) for improving these
systems’ data delivery during a large-scale geo-correlated
failure event (earthquake). This middleware is run on IoT
systems where inexpensive devices deployed in communities
communicate information with remote cloud platforms. We
presented and evaluated (in simulations) several heuristics



for choosing multiple geo-diverse overlay paths in IoT de-
ployments with varying degrees of knowledge regarding the
underlying network topology. This paper also discussed the
design and implementation of an initial prototype system for
GeoCRON in the context of the SCALE IoT platform.

As we continue exploring resilience issues in the SCALE
system, we plan to address the following future work in the
generic GeoCRON middleware:

• More realistically modeling correlated failures due to
shared link bundles and cascading failures (e.g. power
grid dependencies).

• Incorporating wireless ad-hoc networking so that
physically hyper-close nodes can work closely on data
delivery and event detection.

• Modeling and testing against dynamic failures in
which failures happen over a period of time, rather
than instantaneously, and also recover over time. The
overlay heuristics and implementation should not neg-
atively impact the network during recovery, and the
peers should coordinate overlay maintenance so none
become disconnected. Furthermore, overlay peers can
exchange information about perceived failures in the
network to improve this dynamic adaptation.

• Incorporating additional network technologies (e.g.
cellular), infrastructures (e.g. transportation), and fail-
ure models (e.g. flood, fire).

• Studying different strategies for overlay usage accord-
ing to the application requirements of different IoT
systems (e.g. quality-of-service levels).

• Studying whether GeoCRON also generalizes to mo-
bile nodes (e.g. smartphones).
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