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ABSTRACT
A class of synchronization protocols for dense, large-scale
sensor networks is presented. The protocols build on the
recent work of Hong, Cheow, and Scaglione [5, 6] in which
the synchronization update rules are modeled by a system
of pulse-coupled oscillators. In the present work, we define a
class of models that converge to a synchronized state based
on the local communication topology of the sensor network
only, thereby lifting the all-to-all communication require-
ment implicit in [5, 6]. Under some rather mild assumptions
of the connectivity of the network over time, these protocols
still converge to a synchronized state when the communica-
tion topology is time varying.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Algorithms, Theory

Keywords
Sensor networks, Synchronization, Pulse-Coupled Oscilla-
tors

1. INTRODUCTION
Wireless ad-hoc sensor networks are typically envisioned

to be comprised of a large number of small, low-cost, low-
power platforms cooperating in a clever way to infer some
desired properties from the environment. Realizing the prom-
ise and expectations of this new computing paradigm re-
quires the development of scalable, energy efficient commu-
nication and inferencing algorithms that leverage the col-
lective sensing capabilities of the network while operating
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within the constraints posed by the limited resources of the
individual sensors. Thus there has been considerable in-
terest in developing localized algorithms with low compu-
tational complexity. As a prototypical example motivating
the need for local algorithms, consider the well known trade-
off between communication range and power consumption.
While an all-to-all communication policy satisfies the need
for simplicity, the large number of sensors and their spa-
tial distribution precludes broadcast communication due its
heavy draw on power resources. Hence there exists a vast
literature on ad-hoc routing and networking.

Synchronization in time is perhaps the most important
initial calibration task of the network. There has been con-
siderable interest in developing strategies for time synchro-
nization [2, 3, 9]. This is because several important capa-
bilities of the network depend on the existence of a global
clock: MAC layer routing and energy conservation, tracking
time varying phenomena, and developing strategies for co-
operative sensor reachback, to name a few. This latter task
is the problem of getting information out of the network.
Time synchronization allows the network to cooperate as a
distributed transmission array capable of broadcasting in-
formation to distant users or fusion centers [9]. Thus, in
a sense, localized time synchronization protocols provide a
workaround to the power/range tradeoff described above.

In this note, we present a localized version of a recent
proposal for synchronization in large-scale sensor networks.
Inspired by the onset of synchronization in biological sys-
tems [15], Scaglione and coworkers have proposed a simple,
yet potentially powerful, methodology for distributed time
synchronization and change detection [5, 6]. In their pro-
posal, synchronization updates are modeled by the dynami-
cal evolution of a set of pulse-coupled oscillators which have
been shown to converge to synchrony in a variety of circum-
stances. However, a significant drawback of their scheme
is the reliance on an all-to-all communication model which
can cause instability in the synchronization scheme due to
long delays in signal propagation time and increased noise
in the communication channel. Moreover, it is unlikely that
the biological systems that these equations are intended to
model operate in such a manner. In fact, there is empirical
evidence supporting the emergence of clusters of synchro-
nized behavior before convergence to synchrony of the entire
colony.

Drawing from some recent results in multi-agent control
(see for example [11, 18, 19, 20, 16, 17]), we propose a
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simple method for synchronization without the all-to-all as-
sumption. Specifically, we explore conditions on the update
protocol that lead to synchrony with bidirectional nearest
neighbor coupling. Noise in the detection model and propa-
gation delay are not explicitly considered here, however one
can argue that by extending the results of [5, 6] to nearest
neighbor interactions only, these effects may be minimized.

The synchronization scheme is briefly described as fol-
lows. Each sensor node emits a pulse signal at a time that
is controlled by the evolution of a state variable, xi, that
monotonically increases from 0 to 1. When xi reaches 1,
the sensor emits the signal and resets its state variable to
0. Without coupling to the network, the sensor fires repeat-
edly with fixed frequency. The collective behavior of a large
number of sensors operating in this manner would result in
a cacophony of pulse emissions with equal frequency but out
of phase. The coupling procedure is designed to drive the
phase differences to zero. When a sensor node receives a sig-
nal from a neighboring node, it increments its state variable
by an amount given by ǫg(xi) where ǫ is a small coupling
constant and g(xi) is the phase response function. In our ap-
plications, g(·) is chosen to be positive on the interval [0, 1] .
Thus the effect of a single coupling decreases the time to fire
of the receiving node. Scaglione and coworkers appeal to the
following sufficient condition to guarantee convergence (al-
most always) of the synchronization procedure:

Theorem 1. [15] If the function governing the evolution
of the state variables is smooth, monotonically increasing
and concave down, then the set of initial states, xi(0) ∀i,
that never result in synchrony has measure zero.

The leaky integrate-and-fire model, originally proposed as
a model for the cardiac pacemaker, provides such a state
function. In this model the state variables evolve according
to a set of identical differential equations

ẋi(t) = α− βxi(t), 0 < xi < 1, ∀i, α > β > 0 . (1)

A constant coupling function is chosen in [5, 6] yielding the
pulse-coupled equations

ẋi(t) = α− βxi(t) + ǫ
X

j 6=i

δ(t− t∗j ) (2)

where t∗j is the firing time of the jth oscillator. Note that
we have simplified the coupling equations appearing in [5,
6] by not considering the entire history of firing times in the
evolution equations. Note also, that the summation in (2)
is over all sensors in the network.

An intriguing contribution of [5, 6] is the incorporation of
sensor data into the evolution equations. Assume that each
node has some ability to classify some phenomenon. Assume
that the system is initially synchronized and at a specified
sampling time each sensor uniformly perturbs its state dy-
namics to embed the result of its local classification. For
a binary classifier, two out of sync clusters will emerge and
thus the coupling procedure will be initiated. By suitable de-
sign of the perturbation, the resulting phase shift depends on
the proportion of nodes detecting the phenomenon, thereby
disseminating the local decisions throughout the network.
A similar procedure can be used for sensor reachback. We
refer the reader to [5, 6] for a more complete description of
this novel idea. We include these remarks here to highlight
the versatility of the synchronization protocols and that the
methods we propose can accommodate such encoding.
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Figure 1: Sensor Net Topology

In this note, we extend this synchronization scheme to
where the case where all-to-all communication is not feasi-
ble. By casting the pulse-coupled equations as a dynamical
system of the phase deviations, a stability result based on
nearest neighbor coupling can be obtained.

2. PRELIMINARIES
In this section we provide the introductory background

on graph theory [1, 4] and the phase model of pulse-coupled
oscillators [7, 10].

2.1 Algebraic Graph Theory
The interconnection topology of the network is specified

by a graph with an edge joining neighboring nodes. For-
mally, let G = (V, E) denote a graph with an n-dimensional
vertex set, V, and an e-dimensional edge set E ⊂ V × V .
Vertices are denoted vi and if (vi, vj) ∈ E , then vi and vj
are said to be neighbors. The set of neighbors of node vi is
denoted by Ni = {j : (vi, vj) ∈ E} .The number of neighbors
of a vertex, |Ni|, is the degree of the vertex. The n × n di-
agonal matrix ∆(G) whose i-th diagonal entry is the degree
of node vi is called the degree matrix. A graph G is given an
orientation by choosing a direction for each edge. Define the
n×e incidence matrix, C(G) , of an oriented graph with (i, j)
entry equal to 1 if edge j terminates in vertex vi, -1 if edge
j originates in vertex vi, and 0 otherwise. The Laplacian
matrix of G is defined by

L(G) = C(G)C(G)t = ∆(G) −A(G)

where A(G) is the adjacency matrix whose (i, j) entry is
equal to 1 if (vi, vj) ∈ E and 0 otherwise. Finally, a graph
G is said to be connected if there exists a path between any
two vertices.

The spectrum of the Laplacian captures topological prop-
erties of the graph which are crucial in proving the synchro-
nization results cited below. See for example Ref [1]. Most
notably, for a connected graph, the Laplacian has a unique
zero eigenvalue and the associated eigenvector is given by
the vector of ones, 1 ≡ [ 1, 1, . . . , 1 ]t .
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2.2 Pulse Coupled Oscillators and the Phase
Model

Consider a set of n oscillators coupled according to an in-
terconnection graph G . Let xi ∈ [ 0, 1 ] be the state variable
of the i-th oscillator. When xi reaches 1, the oscillator emits
a pulse and xi resets to 0. The dynamics of coupled system
is given by a system of differential equations of the form

ẋi = fi(xi) + ǫ
X

j∈Ni

gij(xi)δ(t− t∗j ) (3)

where fi(xi) describes the dynamics of the i-th oscillator,
gij(xi) is the coupling function between oscillators i and
j , t∗j is the firing time of the j-th oscillator and ǫ is the
(small) coupling constant. Note that the summation in (3)
is over the set of neighbors of each oscillator. This embodies
the nearest-neighbor coupling among sensors. Due to the δ
function in (3), the firing an oscillator increments the state
variable of its neighbors by ǫgij(xi) , i.e. if j ∈ Ni

xj = 1 =⇒



xi → xi + ǫgij(xi) if xi + ǫgij(xi) < 1
xi → 0 otherwise .

Note that once a neighboring oscillator fires, only local infor-
mation (xi) is required to implement the update procedure.
Our goal is to characterize the synchronization of the fir-
ing time of the oscillators without the all-to-all assumption.
To do so, it is beneficial to recast (3) in terms of a phase
variable.

Consider the uncoupled dynamics

ξ̇i = fi(ξi), ξi(0) = 0 .

The solution, ξi(t), is periodic with period

Ti =

Z 1

0

dt =

Z 1

0

dt

dξi
dξi

and frequency

ωi =
2π

Ti
.

A phase variable, θi ∈ S
1, is introduced to simplify the

representation of the pulse-coupled oscillators (3). When no
oscillator is firing the phase variable, θ, evolves according to

θ̇i = ωi ,

it thus represents the natural frequency of the uncoupled os-
cillator. Coupling among the oscillators can induce a phase
shift in the frequency of an oscillator. A phase deviation
variable φi, evolving on S

1, is introduced to capture this
phase shift. Now

θ(t) = ωt+ φ .

The oscillators (3) evolving in [0, 1]n are transformed to the
phase variables θ and then averaged [10, 7, 12] to obtain
an evolution equation of the phase deviation variables only.
In the following, we show how this representation facilitates
the convergence analysis. Note that here we represent S

1 as
the interval [−π, π] by defining −π ≡ π. The direct product
of n copies of S

1 is an n-torus and will be denoted T
n. These

remarks are summarized by the following lemma, taken di-
rectly from Ref. [10], though adapted to the general inter-
connection case. See also [7].

Lemma 1. Let G be an undirected graph describing the
coupling topology of a system of oscillators of the form (3)
and let Ni be the set of neighbors of node i in G. If the
oscillators evolve according to identical uncoupled dynamics
fi(x) = f(x) > 0, ∀x ∈ [0, 1] , then there exists an ǫ0 > 0
such that for all ǫ < ǫ0, there is a continuous change of
variables that transforms (3) into the phase model

φ̇i = ǫ
X

j∈Ni

γij(φj − φi) + O(ǫ2) (4)

where

γij(ψ) =
ω2

2π

gij(ξ(
ψ

ω
))

f(ξ(ψ
ω

))
. (5)

A similar representation, valid in the limit as ǫ → 0 and
n→ ∞, was obtained by Kuramoto [13] with methods from
statistical physics and mean field theory.

Synchronization of the oscillators, i.e. all the xi firing
with identical phase and frequency, is equivalent to showing
that the coupling procedure drives the phase deviations to
a common value, i.e.

φ(t) = [φ1(t), φ2(t), . . . , φn(t)]
t → φ∗[1, 1, . . . , 1]t

for some φ∗ ∈ S
1.

3. SYNCHRONIZATION
Consider a system of n pulse-coupled oscillators of the

form

ẋi = f(xi) + ǫ
X

j∈Ni

g(xi)δ(t− t∗j ), xi ∈ [0, 1]. (6)

Note that each oscillator follows identical uncoupled dy-
namics and applies an identical coupling function. The
phase model for this class of systems is reminiscent of a
class of problems studied in the cooperative control litera-
ture. Similar results appear in [11, 20, 18, 19, 16, 17]. In
particular, consult references [18, 17].

Theorem 2. Let Gc be a connected graph describing the
coupling topology of a system of oscillators of the form (6).
If γ ∝ g/f is an uneven function such that γ(0) = 0 and
ψ · γ(ψ) > 0, ∀ψ 6= 0, then in the limit as ǫ → 0, the system
asymptotically synchronizes for any initial condition x0 ∈ D,
where D is a compact subset of [0, 1]n.

Proof. In the small ǫ limit, the truncated phase model
is an accurate description of the original system (6). The
truncated system can be written in vector form as

φ̇ = −ǫΩ Cγ(Ctφ), (7)

where Ω is a constant depending on the natural frequency
ω and C is the incidence matrix of Gc with respect to some
orientation of Gc. To see this, note that the |E|−dimensional
vector χ = Ctφ is the vector of nearest neighbor phase dif-
ferences and since γ(·) is uneven, the expression γ(Ctφ) does
not depend on the (arbitrary) orientation of Gc .

Let Dφ ⊂ T
n denote the compact image of D in the new

coordinates. Now consider the positive definite function

V (φ) =
1

2
||φ||2. (8)
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The function V (φ) is non-increasing along trajectories of (7),
since

V̇ (φ) = φtφ̇ = −ǫΩφtCγ(Ctφ) (9)

= −ǫΩχtγ(χ) ≤ 0 . (10)

Where the last inequality follows from the conditions on γ.
Thus V (φ) is a Lyapunov function [12] for the system (7).
Lasalle’s Invariance Principle [12] asserts that if there ex-
ists a Lyapunov function that is negative semidefinite along
trajectories of a differential equation, then solutions, origi-
nating in Dφ, converge to the largest invariant set contained
in

E = {φ : V̇ (φ) = 0 }. (11)

To show that the system asymptotically synchronizes, we
show that the only solution to (11) is given by

φ = φ∗[1, 1, . . . , 1]t .

To see this note that (9) can be written as

V̇ (φ) = −ǫΩφtCWCtφ (12)

where CWCt is the weighted Laplacian [4] formed by the |E|×
|E| positive definite diagonal matrix W whose i-th diagonal
entry is given by 1

Wii = wiuv =
γ(φu − φv)

φu − φv

where v ∈ Nu . Now, for a connected graph, by the proper-
ties of the graph Laplacian, the unique solution to

CWCtφs = 0

is given by the vector of ones. �

Remark 1. The Lyapunov function provides a bound on
the rate of convergence for the truncated phase model.

V̇ (φ) = −ǫΩφtCWCtφ (13)

= −ǫΩ
X

(u,v)∈E

wuv(φu − φv)
2 (14)

≤ −ǫΩwmin
X

(u,v)∈E

(φu − φv)
2 (15)

= −ǫΩwminφ
tCCtφ (16)

= −ǫΩwminφ
tL(G)φ . (17)

Denote the least non-zero eigenvalue of the graph Laplacian
by λ2(G), this eigenvalue is known as the algebraic connec-
tivity of the graph. By a corollary to the Rayleigh-Ritz in-
equality [8], we have

λ2(G) ≤
φt⊥L(G)φ⊥

||φ⊥||2
(18)

where φ⊥ is any vector orthogonal to 1. Combining these,
we have

V̇ (φ) ≤ −ǫΩwminλ2(G)||φ⊥||
2 . (19)

Thus the truncated model converges to the synchronized state
exponentially with rate characterized by ǫ,Ω and λ2(G). The
algebraic connectivity, λ2(G), is known to be large for dense
graphs and relatively small for sparse graphs. In this bound

1Here we define γ(0)/0 ≡ 1 .
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Figure 2: Linear Protocol

on the convergence rate we see the tradeoff between the con-
nectivity of the graph, the smallness of ǫ (required for our
analysis) and the natural frequency of pulse emissions, re-
flected by the presence of Ω.

Remark 2. The truncated models can be shown to con-
verge even with a dynamic communication topology. That
is, consider the system

φ̇ = −ǫΩC(Gσ(t))γ(C
t(Gσ(t))φ), (20)

where the switching signal, σ(t) is a piece-wise constant func-
tion taking values in an index set I and {Gi : i ∈ I} is a
family of graphs describing the communication topology of
the network. If the switching is among connected graphs,
then the Lyapunov function of the preceding analysis can
be shown to be a so-called common Lyapunov function [14]
thereby ensuring convergence of the switched system. In fact
a more sophisticated analysis reveals a much weaker condi-
tion regarding the connectivity of the family of graphs [17].
Namely, if there exists a time, T, such that the union of
all interconnection graphs is connected over any interval of
length T, then the system will synchronize. This property
is particularly attractive when considering synchronization
protocols for sensor networks due to the unavoidable disrup-
tions in service due to noise, node failure, sleep periods, etc.

4. EXAMPLES

4.1 Linear
In this example, the coupled state equations are given by

ẋi =
1

T
+ ǫ

X

j∈Ni

xiδ(t− t∗j ) . (21)

Thus the firing time updates are given by

xj = 1 =⇒



xi → xi + ǫxi if xi + ǫxi ≤ 1
xi → 0 otherwise .

This corresponds to a nearest neighbor phase model of the
form,

φ̇i = −
ǫω

2π

X

j∈Ni

(φi − φj), φ(0) ∈ [−π, π] . (22)

The system of oscillators can be written in terms of the
graph Laplacian, L,

φ̇ = −
ǫω

2π
Lφ, φ(0) ∈ T

n. (23)
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Figure 3: Sine Protocol

It can be shown [19] that with the linear model, conver-
gence to synchronization is robust with respect to time delay
in the communication link, provided the delay is less that

π

2λmax(G)
.

Figure 2 shows the phase convergence for a network with
topology depicted in Figure 1. In this simulation and those
that follow, ǫ = .1,Ω = 1 and

φ∗ =
1

n

X

i

φi(0) = 0.593974 .

4.2 Sine
In this example, the coupled state equations are given by

ẋi =
1

T
+ ǫ

X

j∈Ni

sin(πxi)δ(t− t∗j ) . (24)

Note that an oscillator is insensitive to coupling when x = 1
or x = 0 . This is known as a refractory period for the firing
and is implicit in the model proposed in [5].

The firing time updates are given by

xj = 1 =⇒



xi → xi + ǫ sin(πxi) if xi + ǫ sin(πxi) ≤ 1
xi → 0 otherwise .

The phase model in this case is given by

φ̇i = −ǫω
X

j∈Ni

sin

„

φi − φj
2

«

, φi(0) ∈ [−π, π] . (25)

We write the phase model in vector form as

φ̇ = −ǫω C sin

„

Ct
φ

2

«

, φ(0) ∈ T
n . (26)

4.3 Hyperbolic Sine
Here we present a variation on the leaky integrate-and-fire

model [15]. The choice of the coupling function was made
to ensure an uneven function governing the dynamics in the
phase model representation. The coupled oscillators evolve
according to,

ẋi = α− βxi + ǫ
X

j∈Ni

„

2α

β
xi − x2

i

«

δ(t− t∗j ) (27)

where α > β > 0. The solution to the uncoupled dynamics,
ξi(t), is given by the concave function

ξi(t) =
α

β

“

1 − e−βt
”

, ξi(0) = 0 . (28)
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Figure 4: Hyperbolic Sine Protocol

In the phase coordinates, the dynamics are governed by

γ(ψ) =
ω2α2

2πβ2

1 − e−2 βψ
ω

αe−
βψ
ω

(29)

=
ω2α

2πβ2

“

e
βψ
ω − e−

βψ
ω

”

(30)

=
ω2α

πβ2
sinh

„

βψ

ω

«

. (31)

Thus the phase model becomes,

φ̇ = −
ǫω2α

πβ2
C sinh

„

Ct
βφ

ω

«

, φ(0) ∈ T
n . (32)

4.4 Simulation with the Linear Model
In this section we present simulation results with the lin-

ear model, described by (21). For these simulations, we as-
sume that the pulse propagation time between the neighbor-
ing nodes is negligible and hence can be treated as zero. We
show convergence results with both static and time-varying
topologies. Even though we only present results with a spe-
cific initial state, results with other initial conditions have
similar characteristics.

Figures 5 and 6 are results for the static topology de-
picted in Figure 1. Here we use the same parameter as in
the phase model simulation given in Figure 2 with T = 1

2π
and ǫ = 0.1. Figure 5 plots the firing time (of any node
in the network) versus the time between consecutive firings
(or the time elapsed from the previous firing). We can see
that the time between firings converges to T ≈ 0.1592 be-
fore 3 time units. This implies that the entire network is
synchronized before 3 time units. Figure 6 shows the state
trajectories of node 1, 8, and 20. It can be seen that nodes
1 and 8 are synchronized before they are synchronized with
node 20, which is at the edge of the network with only one
neighbor. Comparing with the simulation of corresponding
phase model (Figure 2), we notice that the protocol con-
verges much faster in the time domain. This is due to the
property that the state of a node with model (21) would
make an instantaneous “jump” with amplitude ǫx when it
receives a pulse from a neighboring node. If the state of
the node is very close to 1, then the jump would trigger a
firing and force the node to synchronize with the neighbor
immediately (since we assume the propagation time between
neighbors is zero). This discontinuity is not captured in the
phase model.

To evaluate the protocol for time-varying topologies, we
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Figure 5: Time between Firings for Static Sensor
Net Topology

consider the scenario where the topology of the sensor net-
work is switching periodically between two topologies every
Ts = 10T time units. The two topologies are obtained from
the topology in Figure 1 by severing the edges terminating
in node 7 and 17. Note that neither of these two topolo-
gies is connected. Nevertheless, the union of the sequence
of topologies over every 2Ts time units is connected. This
meets the weaker connectivity condition defined in [16]. The
convergence result under such switching topologies is given
by Figures 7 and 8.

5. DISCUSSION
By drawing from results in the cooperative control litera-

ture, we have extended a recently proposed synchronization
scheme to the case where all-to-all communication is not
feasible. This method is attractive due to its provable con-
vergence and relative simplicity. Operationally, this local-
ized synchronization scheme is quite simple due to the pulse
signal encoding of information. Careful attention must be
given to any distributed algorithm mediated by a wireless
network, since quantization and encoding can introduce er-
rors in the message passing that may be difficult to charac-
terize and correct. Note that in this approach, there is no
signal to transmit except for the pulse. Any quantization
errors would occur locally, when the individual processor
updates its state equation. We are also confident in this ap-
proach with regard to noise. Given a static network, a noisy
link would be modeled as a “dropped pulse”, which would
effectively represent a change in communication topology.
However, given that these protocols are robust with respect
to changes in communication topology, we are confident that
convergence would not be adversely effected. Of course,
these simple heuristic remarks must be supplemented with
models and rigorous results. We hope to provide these in an
extended version of this paper.

We are particularly interested in these techniques for syn-
chronizing information in a sensor network beyond simple
time synchronization. Though it should be noted that time
synchronization is still an area receiving attention from the
research community. The analysis presented here may be
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Figure 6: State Trajectory of Node 1, 8, and 20 with
Static Topology
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Figure 7: Time between Firings with Switching
Topologies

useful in providing a more theoretical understanding of the
novel encoding schemes for decentralized binary hypothesis
testing and change detection proposed in [5, 6]. It can be
shown that these phase models converge to the average of
the initial conditions of the phases. A detailed understand-
ing of how this fact manifests in the phase shift experienced
at each oscillator may be useful in determining a closed form
expression for the proportion of sensors detecting the event
that can be evaluated at each sensor. This analysis would
require a more rigorous treatment of the O(ǫ2) term in the
phase model transformation.

Finally, we note that these ideas could be extended to
accommodate directed graphs by following the results of [19,
20, 16]. This, perhaps trivial, extension would provide more
confidence in the robustness of this approach by allowing
for situations where bidirectional communication cannot be
guaranteed. However, these dynamical systems do not solve
the average consensus problem.
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Figure 8: State Trajectory of Node 1, 7, and 20
with Switching Topologies (arrows mark approxi-
mated switching times)
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