
QoS-based Resource Discovery in Intermittently Available Environments

Yun Huang and Nalini Venkatasubramanian

Dept. of Information & Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA
{yunh, nalini}@ ics.uci.edu

Abstract

In this paper, we address the problem of resource

discovery in a grid based multimedia environment, where

the resources providers, i.e. servers, are intermittently
available. Given a graph theoretic approach, we define

and formulate various policies for QoS-based resource

discovery with intermittently available servers that can

meet a variety of user needs. We evaluate the performance

of these policies under various time-map scenarios and

placement strategies. Our performance results illustrate

the added benefits obtained by adding flexibility to the

scheduling process.

1. Introduction

The evolution of the Internet and differentiated

services has enhanced the scope of applications that can

execute in global information infrastructures. We are
observing a dramatic increase in the amount of multimedia

content being delivered over the Internet today. This is

fueled by multimedia-enhanced applications and websites

e.g. distance learning, video-conferencing, news-on–

demand etc. Such applications are resource intensive, and

consume significant network, storage and computational

resources. Furthermore, multimedia applications also have

Quality-of-Service (QoS) requirements that specify the

extent to which properties such as timeliness can be

violated. Efficient and adaptive resource management

mechanisms are required to ensure effective utilization of

resources and support an increasing number of requests.
Global grid infrastructures [14, 2] allow the use of idle

computing and communication resources distributed in a

wide-area environment; a properly managed grid system

can form the infrastructure upon which multimedia

applications can be executed. In fact, applications that

provide delivery of multimedia information are especially

well suited for grid based environments; often, the content

delivered is read-only, and coherence of multiple replicas

is not an issue. However, systems on a computational grid

are available only intermittently.

We define “intermittently available” systems as those
in which servers and service providers may not be

available all the time, e.g. grid-based systems might

provide resources/services for only a few hours a day.

Effective load management in an intermittently available

multimedia environment requires:

(a) resource discovery and scheduling mechanisms that

will ensure the continuity of data to the user while

servers are intermittently available.

(b) data placement mechanisms to ensure that popularly

requested information is replicated such that the data is

always available.
In this paper, we focus on the first of these two

problems. Using a graph-theoretic approach, we propose a

generalized resource discovery algorithm that can

determine suitable scheduling plans for incoming

multimedia requests. User requests vary widely in the

immediacy of the response (startup latency), continuity

needs of the applications and resource characteristics of the

client end systems. We propose and evaluate a family of

policies that can cater to the various user requirements

discussed above.

The rest of this paper is organized as follows. We

illustrate the system architecture in Section 2. Section 3
introduces a generalized version of the Discovering

Intermittently Available Resources (DIAR) algorithm in

such an intermittently available environment. Section 4

details DIAR policies for satisfying various QoS

requirements. We evaluate the performance of the

proposed techniques in Section 5 and conclude in Section 6

with future research directions.

2. System Architecture

The system architecture is depicted in Fig 1. The system

consists of clients and multimedia servers distributed

across a wide area network. The distributed servers provide

resources to store the multimedia data that can be streamed
or downloaded to clients at suitable QoS levels. The

resources provided include high capacity storage devices

(e.g. hard-disks), processor, buffer memory, and high-

speed network interfaces for real-time multimedia retrieval

and transmission. Servers may be intermittently available

and the time map of servers containing available server

times is predetermined. However, the availability of

resources on servers can vary dynamically. To

accommodate a large number of video objects, the

environment includes tertiary storage
1
.

Clients issue requests for multimedia information that
may be replicated across servers. Client requests can vary

significantly; hence requests are parameterized to specify

the data resource requirements and service characteristics –

i.e. earliest start time, latest finish time, service duration,

and whether the service required is continuous or

discontinuous etc. The key component of the

infrastructure is a brokerage service. All incoming

requests from clients are routed to the broker that

determines whether or not to accept the request based on

current system conditions and request characteristics.

Specifically, the broker:
(a) discovers the appropriate set of resources to

handle an incoming request;

(b) coordinates resource reservation and schedules

these requests on the selected resources.

Several kinds of information are required to ensure

effective resource provisioning – this includes server

resource availabilities, server time maps, replica maps,

network conditions etc. This information is held in a

1
 For the purposes of this study, however, we do not model dynamic

transfer from tertiary storage.

directory service (DS) that is accessed and updated suitably

by the broker. Using state information in the DS, the

broker determines a candidate sever or a set of servers that

can satisfy the request. Once a solution for the incoming

request (i.e. scheduled servers and times) has been

determined, the broker will update the directory service to

reflect the allocated schedule. The goal is to improve the

overall system performance, in order to facilitate more
requests. If the broker determines that more than one

server must provide the desired service, it transforms the

single user request into multiple requests that will execute

on the different servers. The service provided may be

continuous or discontinuous; and can be finished without

or with some delay. In the typical mode of operation, the

servers guarantee the provisioning of appropriate QoS to

each request, once resources have been reserved.

3. Discovering Intermittently Available

Resources – The DIAR Algorithm

In this section, we present a generalized algorithm for

discovering intermittently available resources (DIAR) by

modeling the DIAR problem using a graph-theoretic

approach. We develop a generalized solution based on a

network flow analogy; further refinements will be

discussed in the next section.

Broker WWW

(2’) (Video# 1, 11am, 12pm)

(1) (Video# 1, 9am, 1pm)

Client B

(3) Video stream

(2) (Video# 1, 9am, 11am)

Client C

Time-Map:

4am-10pm

11am - 9pm

4am-12pm

5pm-9pm

10pm-12am

Directory

Service

4am – 8pm

8am-11am

2pm-6pm

Server

Client A

Server

Server

(4) Video stream

Server

Fig 1. System Architecture: the arrows indicate the processing of a request from client A.

3.1. Modeling the DIAR problem as a Network
Flow Diagram

Without loss of generality, we assume that the

incoming request is for a video object. We model the

incoming request R from the client as:

R: < VID R , ST R , ET R , Type R, QoS R >

Where VID R corresponds to the requested video ID; ST R
is the request start time; ET R is the end time by which the

request should be finished; Type R represents the type of

the request including (a) immediacy of the response (b)

whether the request must be continuous or can be

discontinuous and (c) whether the request must be

executed on a simple server or may be executed on

multiple servers. QoS R represents the QoS parameters of

the request, i.e. the resources required by the request and

the duration for which these resources are needed. We

model the resources needed by a request using 4

parameters: the required disk bandwidth (R DBW), required

memory resource (R MEM), required CPU (R CPU) , and the
required network transfer bandwidth (RNBW); Dv represents

the duration for which these resources are required. The

above QoS parameters may be assumed to be defined for

each video and may therefore be known by the broker

ahead of time. Note that since many requests can obtain

service from the same copy of the video object, the actual

storage (i.e. disk space) occupied by an object is not

relevant to the scheduling process; the storage bandwidth is

consumed on a per request basis and is the relevant factor

that must be considered.

We describe each server s with the following
configuration: server time map (STMs) indicating the times

at which a server is available and a server resource map

(SRMs) indicating server resources available at the

different times. For simplification, we divide the time of a

day into fixed size units, (for example, 24 units to present

24 hours of the day). We represent the available resources

of a server s at a particular time t using four parameters

[20]: CPU cycles (SAvailCPU(t)), memory buffers
(SAvailMEM(t)), network transfer bandwidth (SAvailNBW(t)),

and disk bandwidth (SAvailDBW(t)). Hence SRMs(t) =

(SAvailCPU(t), SAvailMEM(t), SAvailNBW(t), SAvailDBW(t)).

In order to deal with the capacity of each server over

time in a unified way, we define a Load Factor (R, S, t) for

a request r on server s at time t, as

Thus, the Load Factor [16] of a server s at time t,

LF(R, S, t), is determined by the bottleneck resource at

time t. Furthermore, the order in which we explore

potential servers uses a worst-case assumption on the load-

factor over all time units (between ST R and ET R) during

which the server is available. For example, if the

granularity of the time units in a day is 24 (24 hours/day),

and ST R is 5am and ET R is 10am, then we consider
LF (s) = Max (LF5, LF6, LF7, LF8, LF9, LF10).

A more optimistic approach would be to use the average

load-factor over the time period. Since we have

information about future reserved resources on a server, it

is possible to estimate the load-factor based on existing

system conditions and future scheduled requests.

We model the DIAR algorithm as a directed graph

G<V, E> (see Fig 2). Nodes O and F are artificial nodes

and represent the source vertex and sink node respectively

[11]. C represents the client, while Sj represents server j,

(Nj ≤≤1 , if there are N servers). We introduce a set of

time nodes, TN that represent the entire time period. Each

time node
2,1 tt

TN represents the period of time from t1 to

t2, [t1, t2).

Load Factor (R, S, t)

 = Max [CPU a , MEM a , NBW a , DBW a]

CPU a = R CPU / SAvailCPU(t)

MEM a = R MEM / SAvailMEM(t)
NBW a = R NBW / SAvailNBW(t)

DBW a = R DBW / SAvailDBW(t)

Fig 2. A Graph-based representation of the DIAR algorithm

 F

∞

∞

∞

∞

TN1, 2

 TNt 1, t2

C(s1, TN 1, 2)

…

 TN 2, 3

O

 …

C(o, c)

C(c, s1)

C(c, s2)

 S2

 S1

C

 Sk

C(c, s k)

C(sk , TN t 1 , t 2)

We assign directed edges connecting these nodes with

weights as follows:

� C(o, c) = D v, (duration of the requested video).

� C(c, sj) = the total amount of service time units that
server j can provide within the request time period.

� C(sj , TN t 1, t 2) = t2-t1, if server j can provide service

in the time period [t1, t2). For simplicity, we also

assume that all time nodes represent equal durations

(one hour in our simulation).

� C(TN t 1, t 2 , F) = ∞.

Thus, each edge has a nonnegative weight. If we treat

this graph as a Network Flow Graph, the DIAR problem

can be cast as a maximum flow problem, i.e. find the

maximum network flow),(|| coCf = . The flow |f| is a

measure of the maximum weight along paths in a

weighted, directed graph [1].

The feasibility condition: An Augmenting Path [11]

),(
2,1 ttj TNSp from o to F is a path with nonnegative

weight on the edges along the path. An augmenting path is

feasible if and only if it satisfies all the following
conditions:

� VIDR ∈ the set of videos for which the server j can

provide service.

�
,

NBWNBWAvail
RS ≥ ,

CPUCPUAvail
RS ≥

MEMMEMAvail
RS ≥ , ,

DBWDBWAvail
RS ≥

(The available resources can meet the resource

requirements of this video).

� ST R ≤ t1, t2 ≤ ET R.

We define a feasible set X p as a set of all the augmenting

paths that meet the feasibility conditions:

),(),(
2,1

coCTNSC
ttj

≥∑ ; for
pttj

XTNS ∈∀),(
2,1

.

This corresponds to a feasible scheduling solution of this

video request.

Optimality of DIAR: Given a client request R:

<VIDR , QoS R , ST R , ET R , Type R>, a solution X p is

optimal if and only if it satisfies the feasibility condition

and a policy dependent optimality criterion. Examples of
optimality criteria include minimum number of servers,

least-load factor, earliest-starting-time, earliest-finishing

time, most continuous service, etc. The policies defined

later in the paper use two of the above criteria that we

believe are highly relevant for the proposed environment,

i.e. least Load Factor and earliest-starting time.

3.2. The DIAR algorithm.

The DIAR algorithm uses well known network flow

techniques (e.g. Ford – Fulkerson Algorithm [11]) to

determine the Maximum flow | f | (see Fig 3).

DIAR (G<V, E>, R: < VID R , QoS R , ST R , ET R , Type R> {
/* Initialization:*/

(1) for each edge (u , v) ∈ E

(2) f (u , v) � 0 /* f (u , v) is the flow of the edge (u, v) */
(3) f (v , u) � 0

(4) /*Reduce the graph:*/

Eliminate infeasible servers that can not provide the service for VID R ;

 Eliminate irrelevant time nodes that can not provide service during the request period.

(i.e. ET R ≤ t1or t2 ≤ ST R)

(5) /*ordering the server and time nodes: */

Reorder the left server nodes of S i and S j , so that e.g. ji ≤ ,)()(jLFiLF ≤ .

(6) define the weight of each edge (u , v) ∈ E, such as:

• C(o, c) = D v, (duration of the requested video);

• C(c, sj) = the total amount of service time units that server j can provide;

• C(sj , TN t 1, t 2) = t2-t1, if server j can provide service in the time period [t1, t2);

• C(TN t 1, t 2 , F) = ∞.

/* Main Loop */

(7) while there exists an Augmenting Path p [11] from O to F in G :

(8) C(p) � min (C (e) | e∈ p)
/* e is the edge of p, C (e) is the weight of edge e.*/

(9) for each edge (u , v) ∈ p
(10) f (u , v) � f (u , v) + C (p)

(11) f (v , u) � - f (u , v)

}
Fig 3. Discovering Intermittently Available Resources Algorithm

The methods used for searching the augmenting path

decide the characteristics of the final result. If the request

must be executed by a single server, the search will start

from the server nodes to determine the first server that can
provide service for the entire time duration, which ensures

the least Load Factor criterion. On the other hand, if the

request can be finished by multiple servers, we will search

the augmenting path by the time nodes; this will implement

an earliest-starting time policy.

If the maximum flow | f | of the graph equals),,(coC

the flows we get are correspondent with a schedule

solution we can use to accept this request. In the following

section, we describe several policies to determine a
suitable augmenting path according to request

characteristics. If N is the number of server nodes in the

order of increasing Load Factor, and the T is number of

time nodes, the complexity of DIAR will be O(N*T).

4. A Family of DIAR policies

In this section, we describe the different DIAR policies

to satisfy various QoS requirements of multimedia

requests. We classify the policies based on three criteria:

(a) whether the request must be immediately started

with zero startup latency (IS) or if the request

startup can be delayed (DS);

(b) whether the request must be continuously (C)

processed until completion or if the request can be
discontinuously (D) executed;

(c) whether the service is provided by one single

server (SS) , or if the service can be provided by

multiple servers (MS).

The classification of DIAR policies is illustrated in Fig

4. Six policies are proposed: IS-C-SS, IC-C-MS, DS-C-SS,

DS-C-MS, DS-D-SS, and DS-D-MS
2
. We will use the

above nomenclature in the remainder of this paper to refer

to the six policies studied. In the implementation of the

above policies, the technique used to search for
augmenting paths may be server-driven (pick a server first

and then determine suitable time nodes) or time-driven

(pick a time-node first and then select a feasible server). In

general, the single-server policies will be server-driven and

multiple server policies will be time-driven.

Immediate Start Continuous Single Server (IS-C-
SS): IS-C-SS is the most restrictive of the policies studied

and is used to provide continuous service without delay by

only one single server. This implies that a video request

can be accepted only if it can execute continuously to

completion without any delay. Since this policy has such
strict requirements, we anticipate that it will exhibit the

worst performance in terms of request acceptance. To

implement this DIAR policy, we calculate augmenting

paths of potential servers in the order of increasing load

factor (LF) and stop when we find the first server that can

meet the request constraints. If no feasible server is found,

the request is rejected.

Immediate Start Continuous Multiple Servers (IS-C-
MS): IS-C-MS is similar to IS-C-SS; the only difference is

that we can use multiple servers to provide immediate

continuous service. We expect that more requests will be

accepted with this policy in comparison to IS-C-SS since
there is a wider choice of possible servers. In order to

realize this policy, we search for augmenting paths in the

DIAR network flow graph for each time node and pick the

least loaded server within each time period. The request

will be rejected only if there is no feasible server for any

time node within the duration of service.

Delayed Start Continuous Single Server (DS-C-SS):
The DS-C-SS policy permits a startup delay as long as

2
 We ignore the cases where immediate start requests are discontinuous

since many applications that have zero startup latency requirements also

require continuous service.

Immediate
Start

Process

(IS)

Delayed

Start

Process

(DS)

DIAR

Scheduling

Policies

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

Assumed to

be continuous

service (C)

Continuous
Service (C)

Discontinuous

Service (D)

Single Server (SS)

Multiple Servers (MS)

Single Server (SS)

Multiple Servers (MS)

Single Server (SS)

Multiple Servers (MS)

Fig 4 DIAR Scheduling Policies

service is completed before the stipulated completion time

(ETR); The search for augmenting paths is server-driven,

i.e. we follow the chain of servers beginning with the least

loaded server and stop when we find the first server in the

sequence that can provide continuous service obeying the

completion time constraint. Furthermore, we select the
earliest feasible starting time that is available on the server.

The request is rejected if there are no feasible servers.

Delayed Start Continuous Multiple Servers (DS-C-
MS): DS-C-MS relaxes the single server constraint of the

DS-C-CS policy. It permits multiple servers to provide the

required service. The search for augmenting paths is time-

driven; the least loaded server within each time period is

selected. As before, service is initiated at the earliest-

feasible time at which a server can provide the requested

service. The request is rejected if no server combination

exists to provide continuous service.

Delayed Start Discontinuous Single Server (DS-D-
SS): In DS-D-SS, the request may execute discontinuously

but on a single server. To realize this policy, the search for

augmenting paths is server-driven, only if a server can

provide the whole period of service time for the request,

request will be accepted regardless of whether the service

will be continuous or discontinuous. If there is no feasible

server, the request will be rejected.

Delayed Start Discontinuous Multiple Servers (DS-
D-MS): DS-D-MS can provide delayed service

discontinuously by multiple servers. Intuitively, this

policy should exhibit the minimum number of rejections as
compared to the other policies studied. In the DIAR

algorithm, we begin searching for an augmenting path

from the time nodes until we find enough time nodes to

service the requested video, otherwise, the request will be

rejected.

5. Performance Evaluation of the Resources

Discovery Policies

In this section, we evaluate the performance of
different resource discovery policies under various server

resource constraints and time configurations.

5.1. System Model

The basic video server configuration used in this

simulation includes 20 data servers and 100 video objects;
each server has a storage of 100 GB and network transfer

bandwidth of 100Mbps. These parameters will be

appropriately altered for simulation studies. For simplicity,

the CPU and memory resources of the data servers are

assumed not to be bottlenecks. In the following

simulations, we also assume that the duration of each video

is 3 hours; each video replica requires 2 GB of disk

storage; and a network transmission bandwidth of 2 Mbps.

5.2. Time Map and Placement Strategies

The service time map for each server keeps the

information of when the server will be available during a

day. We study three approaches to model the time map of

each server:

• T1: Uniform availability – All the servers are

available (or unavailable) for an equal amount of time;

furthermore, the servers are divided into groups, such

that within each group, the time distribution covers the

entire 24-hour day, as shown in Fig 5. In our
simulations, we use the uniform availability with

duration = 6 hours as the first time map strategy, T1.

We also executed the entire set of experiments with a

finer granularity of the time map, with available

duration = 3 hours, and the results obtained were

similar to the coarse granularity case where duration =

6 hours.

• T2: Random availability – We randomly choose the

number of hours during the day when a server is

available. The time at which a server is available is

also randomly chosen on a per-hour basis; hence the

available times may be continuous, discontinuous or
partially continuous.

• T3: Total availability – All the servers are available

all the time.

When using T1 or T2, clustering the servers into

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Server1

Server2

Server3

Server4

…

Fig 5. A sample uniform availability Time Map - the above figure illustrates the time map where the size of
each server group is equal to 4; and the servers are continuously available for a duration of 6 hours.

“server groups” is an important concept for ensuring that at

least one replica of video objects is always available. This

implies that there are no “blank” spots in service

availability. Note that the placement strategies will take

this issue into account.

A data placement model specifies the number of
replicas for each video object, and the servers on which the

replicas are placed. Placement policies may be statically

determined during system initialization or dynamically

altered at run-time. Dynamic strategies, e.g. [12], are

inherently more adaptive; however in an intermittently

available environment such strategies can be quite

complex. For instance, requests can reserve server

resources ahead of the execution time. This enforces more

constraints on the dereplication process since replicas not

immediately required (but required in the future) cannot be

dereplicated unless there is a guarantee that the replica will

be reinstated when required. Optimal placement strategies
are beyond the scope of this paper and will be addressed

elsewhere; we focus on static placement strategies in our

simulations.

We propose deterministic and non-deterministic

placement policies to determine which replica is created on

which server. We select three widely different placement

strategies to evaluate our scheduling mechanisms.

• P1: Group-based equal placement – Ignore the

popularity information of the video objects. Cluster

the servers into groups so that the total available

service time of each group covers the entire day. Each
video object is associated with exactly one group, so

that every server in the group has a replica of this

video object.

• P2: Popularity-enhanced deterministic placement –

We classify the video objects into two groups, i.e.

very-popular and less-popular. A replica of very-

popular video objects is placed on every server,

assuming resource availability. Less-popular video

objects are evenly placed in the remaining storage

space. The even placement policy attempts to create an

equal number of replicas for less-popular video
objects.

• P3: Popularity-based random placement – Choose the

number of replicas for a video object based on its

popularity, and randomly distributed these replicas

among the feasible servers, that have available disk

storage.

In the remainder of this paper, we will use T1, T2 and

T3 to identify the three time map strategies; P1, P2 and P3

to identify the three placement strategies.

5.3. Request Model

Since the focus application of this paper is the delivery of

multimedia services, we choose an appropriate request

model to characterize incoming requests to the broker, i.e.,

Zipfian law [12], with the request arrivals per day for each

video Vi being given by:

i

K
requrestedisVP M

iIr
=)(

.

, where
1

1

1
−

=

= ∑

M

i

M

i
K

.

We compute the probability of request arrival in hour j to

be:)/(1 φ−
= jcp

j
for 241 ≤≤ j , where Φ is the degree of

skew and is assumed to be 0.8, and

)),/1(/(1 1 φ−

∑= jc 241 ≤≤ j . From the request arrivals

per day for each video and the probability distribution of

requests for each hour, the number of requests that arrive

in each hour for each video Vj is computed. The validity of

this model is confirmed in the studies of Chervenak [6] and

Dan, Sitaram and Shahabuddin [13], whose analyses

examined statistics in magazines for video rentals and

reports from video store owners. Both of them concluded

that the popularity distribution of video titles could be

fitted into a zipfian distribution.

5.4. Performance Evaluation

We evaluate system performance with the time map

and placement strategies explained above and use the

number of rejections (i.e. success of the admission control

process) as the main metric of evaluation. We compare

how the different DIAR policies perform under varying

system configurations (such as server storage) and varying

number of data servers. Finally, we determine the tradeoff

between the service quality and the system performance.

Request admission performance

We compare the performance of the above six

scheduling policies under different placement and time

map strategies. Fig 6 represents the number of rejections

over the time for the six policies. The title of each graph

indicates the placement and the time map strategy used in

this simulation environment. The results produced with the

random time-map and random placement strategies are

averaged over several executions.

Intuitively, when servers are always available, the

multiple server cases should always have a better
acceptance rate. This is because, in general, the single

server case is a constrained version of the multiple server

case and therefore has fewer options for resource selection.

However, we notice in our experiments that another factor

comes into play: i.e. the amount of available resources; and

this introduces variation in the outcome. Consider the case

of the P2-T3 configuration; the algorithm causes resources

in multiple servers to be reserved in the future, hence

larger number of resources become unavailable to new

incoming immediate-start requests in the next round. This

is also true sometimes in P1-T3 and P3-T3, i.e. DS-D-MS

exhibits higher rejection rates than DS-D-SS.

In the case of intermittently available servers, the

single server case becomes highly restricted since finding a

single continuously available server that meets the timing

requirements is difficult. The multiple server policy offers

much more flexibility, since request execution times can

span multiple servers. However, this can cause the non-
popular requests to be distributed across servers that

contain popular objects and cause early saturation of

servers with popular objects, resulting in the rejection of

many popular requests. As can be observed, the multiple

server policies perform better within the time map T1 and

T2. As expected, the most restrictive policy, i.e. IS-C-SS

exhibits the worst performance and the most flexible policy

DS-D-MS has the smallest number of rejections.

Impact of the service time map

In this section, we analyze the impact of different time

maps. In the T3 strategy, servers are available all the time,

hence for a given placement strategy, we notice that T3 has

the fewest number of rejected requests. This serves as a

comparison point. On comparing the average performance

of T1 and T2, we observe that the T2 strategy, which

exhibits more randomness in the availability of servers

performs better. We attribute this to the fact that the

average server up-time is larger with T2 than with T1.
Hence at any point in time, more servers are available for

scheduling.

Impact of placement strategies

In this section, we analyze the impact of different

placement strategies. In general, we observe that the

number of rejections of policy P1 is always much larger
than P2 and P3 since P1 does not take the request

popularity into account. In all cases, the random placement

policy, P3, has the smallest number of rejections. Though

both P2 and P3 take request popularity into account, P3 is

better than P2, because the random distribution enlarges

the possibility for the replica to be created on more servers

P1-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r

o
f

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P1-T2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r

o
f

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P1-T3

0

1000

2000

3000

4000

5000

6000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
time (hours)

n
u

m
b

e
r

o
f

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P2-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b
e
r

o
f

re
je

c
ti
o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P2-T2

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 13 17 21 25 29 33 37 41 45 49

time (hours)

n
u

m
b

e
r

o
f

re
je

c
ti
o

n
s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P2-T3

0

100

200

300

400

500

600

700

800

900

1000

1 5 9 13 17 21 25 29 33 37 41 45 49

time (hour)

n
u

m
b

e
r

o
f
re

je
c
ti
o

n
s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P3-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r

o
f
re

je
c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P3-T2

0

1000

2000

3000

4000

5000

6000

7000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r

o
f
re

je
c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P3-T3

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u
m

b
e
r

o
f
re

je
c
ti
o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

Fig 6. System performance of three time map strategies and three placement strategies – the caption of “Px-Ty”
for each figure implies that this result is studied by using the x placement strategies and the y time map model
that are explained in Section 5.3. Each figure represents the number of rejections over the time for the six
scheduling policies.

with different time maps, so that the servers with the

replicas of this video requests can be available for more

time.

The Quality-Performance Tradeoff

In this section, we study the tradeoff between the

service quality and the system performance. As before, in

order to avoid the influence of other unpredictable factors,

we choose the P2-T1 configuration. By varying the

required network bandwidth of each video from 0.5Mbps

to 2Mbps, we get the results shown as Fig. 7. In general,

most policies (except IS-C-SS) are sensitive to the quality

of the transmission; a reduction in service quality brings
fewer rejections. The most dramatic effect is observed in

the delayed-start (DS) multiple server (MS) policies, i.e.

DS-C-MS and DS-D-MS that can take advantage of

resources on any server any time. In the most constrained

case, i.e IS-C-SS, a change in resource requirements does

not have a significant enough impact on system

performance since continuous availability of a single

server is of primary concern. In this case, lowering service

quality will not help in improving the system performance.

Other factors affecting the system performance

We also study the impact of server storage and the

number of data servers on system performance. We notice

that more storage improves the system performance, but
only up to a certain point. This is because as storage levels

increase, more video objects can be placed causing the

rejection rate to fall. But, at higher levels of storage, there

is another factor, i.e. network transmission bandwidth, that

becomes the prime limiting factor, especially in overload

situations. A larger number of servers improves the overall

system performance; the flexible policies benefit more

from increased number of servers than the constrained

policies. With a larger number of servers, more resources

are available for multiple server policies. Under the single

server policy, e.g. IS-C-SS, system performance cannot

improve with a larger number of servers unless the new

servers have sufficient continuous service time.

5.5. Summary of performance

In summary, flexibility of resource allocation (as is the

case with multiple server delayed start policies) is
important to ensure that intermittently available systems

perform well. Randomized placement strategies exhibit

better performance with more servers available to service a

given request at any point in time. While increasing the

server storage is useful in decreasing the number of request

rejects, this benefit is observed only with low storage

levels. At low levels of storage, storage space is the

limiting factor; while with high levels of storage, the

network bandwidth is the limiting factor. Reducing the

quality of service to enhance performance is useful except

in the most constrained scheduling environments. Scaling
up the system with more servers, i.e. increasing the level of

metacomputing, is highly beneficial if multiple server

scheduling is applicable.

6. Related work and Future Research

Directions

We address related work in existing grid system

management and scheduling in computational grid

systems. We indicate how the techniques proposed in this

paper can be incorporated into existing grid environments.

Legion [9] presents users with wide range of services

for security, performance, and functionality. The Resource

Allocation Manager (GRAM) of Globus [8] provides the

local component for resource management. Resource and

computation management services are implemented in a

hierarchical fashion. Currently, the Globus Architecture for

Reservation and Allocation (GARA) [15] aims to address

issues of dynamic discovery, advance or immediate
reservation of resources. Our scheduling algorithms can be

applied within the information service component of the

Globus and GARA [17] resource management

architectures to support a larger class of applications.

AppLeS [5] performs resource selection as an initial

step, and its default scheduling policy chooses the best

schedule among the resulting candidates based on the

user’s performance criteria; other scheduling policies may

be provided by the user. Prophet [21], and MARS [4], use

only one criterion: the performance goal for all

applications is minimal execution time. The adaptive
scheduling algorithm proposed in [10] uses a queuing

theory based approach for scheduling computationally

intensive tasks. NetSolve[7], Nimrod [3] and Ninf [18] are

management platforms targeted for scientific applications.

The Bricks performance evaluation system introduced in

tradeoff between network bandwidth and system

performance with P2-T1 strategies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ISCSS ISCMS DSCSS DSCMS DSDSS DSDMS
Policies

ra
ti

o
 o

f
re

je
c
ti

o
n

s
 i
n

th
e
 t

h
ir

d
 d

a
y
 o

f

s
im

u
la

ti
o

n

0.5

1

1.5

2

Fig 7. Tradeoff between network bandwidth
requirement and system performance - This figure
represents the rejection ratio of six scheduling
policies for four different network bandwidth
requirements.

[19] supports a task model of global computation that can

be used for scheduling.

In summary, we have proposed a generalized

technique for resource discovery in intermittently available

environments and developed specialized policies to deal

with varying user requirements. We intend to conduct
further performance studies with heterogeneous servers

and combinations of request patterns. In order to improve

the system scalability and adapt to changing requirements,

we are developing dynamic placement strategies for

intermittently available environments.

We currently assume a centralized broker that can be a

bottleneck as the system scales in size. In order to achieve

the scalability of such a system in a large scale

heterogeneous network environment, we intend to extend

our technique to the hierarchical frameworks [22] for

effective and faster wide-area service directory

organization and management. Future work will also
address resource management in grid based systems with

mobile clients. Eventually, we believe that the grid-based

infrastructure will play an important role in promoting the

widespread use of multimedia applications.

References

[1] M. J. Atallah, Algorithms and Theory of Computation
Handbook, page 7-3. 1998.

[2] R.J. Allan. Survey of Computational Grid, Meta-computing
and Network Information Tools, Parallel Application Software on
High Performance Computers. 1999.

[3] D. Abramson, I.Foster, J. Giddy, A. Lewis, R. Sosic, and R.
Sutherst. The Nimrod Computational Workbench: A Case Study
in Desktop Metacomputing. In Proc. of the 20th Autralasian
Computer Science Conference, Feb. 1997.

[4] M. Buddhikot, G. Parulkar, and J. Cox. Design of a large scale
multimedia storage server. In Proc. INET’ 94, 1994.

[5] F. Berman and R. Wolski. The AppLeS project: A status
report. Proceedings of the 8th NEC Research Symposium, 1997.

[6] A.L.Chervenak. Tertiary Storage: An Evaluation of New

Applications, Ph.D. Thesis, UC Berkeley, December, 1994.

[7] H. Casanova and J. Dongarra. NetSolve: A network server for
solving computational science problems. Tech. Report CS-95-
313, 1995.

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke. A resource management

architecture for Metacomputing system. In The Fourth Workshop
on Job Scheduling Strategies for Parallel Processing, 1998.

[9] S.J.Chapin, D. Katramatos, J.F. Karpovich, A. Grimshaw,
Resource Management in Legion, University of Virginia
Technical Report CS-98-09, February 1998.

[10] H. Casanova, M. Kim, J. S. Plank, Adaptive Scheduling for
Task Farming with Grid Middleware, 1999.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to
Algorithms. MIT, 1999,page 579-599.

[12] A. Dan and D.Sitaram. An online video placement policy
based on bandwidth to space ration (bsr). In SIGMOD ’95, pages
376-385, 1995.

[13] A. Dan, D. Sitaram, P. Shahabuddin. Scheduling Policies for
an On-Demand Video Server with Batching, Second Annual
ACM Multimedia Conference and Exposition, 1994.

[14] I. Foster, C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure, book, preface, 1998.

[15] I. Foster, A. Roy, V. Sander. A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation, International Workshop on Quality of
Service, 2000.

[16] Z. Fu and N. Venkatasubramanian. Directory Based
Composed Routing and Scheduling Policies for Dynamic
Multimedia Environments. Proc. of the IEEE International
Parallel and Distributed Processing Symposium 2001.

[17] V. Sander, W. Adamson, I. Foster, A. Roy. End-to-End
Provision of Policy Information for Network QoS, 10th IEEE Intl.

Symp. on High Performance Distributed Computing, IEEE Press,
115-126, 2001.

[18] S. Sekiguchi, M.Sato, H.Nakada, S. Matsuoka, and
U.Nagashima. Ninf: Network Based Information Library for
Globally High Performance Computing. In Proc. Of Parallel
Object-Oriented Methods and Applications (POOMA), 1996.

[19] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, U.

Nagashima, Overview of a Performance Evaluation System for
Global Computing Scheduling Algorithm, Proc. Of HPDC 99, pp.
97-104, August 1999.

[20] N. Venkatasubramanian and S. Ramanathan. Load
Management in Distributed Video Servers, Proceedings of the
Intl. Conference on Distributed Computing Systems, 1997.

[21] J. Weissman and X. Zhao. Runtime support for scheduling
parallel applications in heterogeneous NOWS. HPDC 1997.

[22] Dongyan Xu, Klara Nahrstedt, Duangdao Wichadakul, Qos-
Aware Discovery of Wide-Area Distributed Services. 2001.

