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Abstract 

In this paper, we address the problem of resource 

discovery in a grid based multimedia environment, where 

the resources providers, i.e. servers, are intermittently 
available. Given a graph theoretic approach, we define 

and formulate various policies for QoS-based resource 

discovery with intermittently available servers that can 

meet a variety of user needs. We evaluate the performance 

of these policies under various time-map scenarios and 

placement strategies. Our performance results illustrate 

the added benefits obtained by adding flexibility to the 

scheduling process.  

 

1. Introduction 

 

The evolution of the Internet and differentiated 

services has enhanced the scope of applications that can 

execute in global information infrastructures. We are 
observing a dramatic increase in the amount of multimedia 

content being delivered over the Internet today.  This is 

fueled by multimedia-enhanced applications and websites 

e.g. distance learning, video-conferencing, news-on–

demand etc. Such applications are resource intensive, and 

consume significant network, storage and computational 

resources. Furthermore, multimedia applications also have 

Quality-of-Service (QoS) requirements that specify the 

extent to which properties such as timeliness can be 

violated. Efficient and adaptive resource management 

mechanisms are required to ensure effective utilization of 

resources and support an increasing number of requests.   
Global grid infrastructures [14, 2] allow the use of idle 

computing and communication resources distributed in a 

wide-area environment; a properly managed grid system 

can form the infrastructure upon which multimedia 

applications can be executed. In fact, applications that 

provide delivery of multimedia information are especially 

well suited for grid based environments; often, the content 

delivered is read-only, and coherence of multiple replicas 

is not an issue. However, systems on a computational grid 

are available only intermittently. 

We define “intermittently available” systems as those 
in which servers and service providers may not be 

available all the time, e.g. grid-based systems might 

provide resources/services for only a few hours a day.  

Effective load management in an intermittently available 

multimedia environment requires: 

(a) resource discovery and scheduling mechanisms that 

will ensure the continuity of data to the user while 

servers are intermittently available. 

(b) data placement mechanisms to ensure that popularly 

requested information is replicated such that the data is 

always available. 
In this paper, we focus on the first of these two 

problems.  Using a graph-theoretic approach, we propose a 

generalized resource discovery algorithm that can 

determine suitable scheduling plans for incoming 

multimedia requests.   User requests vary widely in the 

immediacy of the response (startup latency), continuity 

needs of the applications and resource characteristics of the 

client end systems. We propose and evaluate a family of 

policies that can cater to the various user requirements 

discussed above.  

The rest of this paper is organized as follows. We 

illustrate the system architecture in Section 2. Section 3 
introduces a generalized version of the Discovering 

Intermittently Available Resources (DIAR) algorithm in 

such an intermittently available environment. Section 4 

details DIAR policies for satisfying various QoS 

requirements. We evaluate the performance of the 

proposed techniques in Section 5 and conclude in Section 6 

with future research directions.  

 

2. System Architecture 

 

The system architecture is depicted in Fig 1. The system 

consists of clients and multimedia servers distributed 

across a wide area network. The distributed servers provide 

resources to store the multimedia data that can be streamed 
or downloaded to clients at suitable QoS levels.  The 

resources provided include high capacity storage devices 

(e.g. hard-disks), processor, buffer memory, and high-



speed network interfaces for real-time multimedia retrieval 

and transmission. Servers may be intermittently available 

and the time map of servers containing available server 

times is predetermined.  However, the availability of 

resources on servers can vary dynamically. To 

accommodate a large number of video objects, the 

environment includes tertiary storage
1
. 

Clients issue requests for multimedia information that 
may be replicated across servers.  Client requests can vary 

significantly; hence requests are parameterized to specify 

the data resource requirements and service characteristics – 

i.e. earliest start time, latest finish time, service duration, 

and whether the service required is continuous or 

discontinuous etc.  The key component of the 

infrastructure is a brokerage service.  All incoming 

requests from clients are routed to the broker that 

determines whether or not to accept the request based on 

current system conditions and request characteristics.  

Specifically, the broker:  
(a) discovers the appropriate set of resources to 

handle an incoming request; 

(b) coordinates resource reservation and schedules 

these requests on the selected resources.   

Several kinds of information are required to ensure 

effective resource provisioning – this includes server 

resource availabilities, server time maps, replica maps, 

network conditions etc. This information is held in a 

                                                   

1
 For the purposes of this study, however, we do not model dynamic 

transfer from tertiary storage. 

directory service (DS) that is accessed and updated suitably 

by the broker.  Using state information in the DS, the 

broker determines a candidate sever or a set of servers that 

can satisfy the request. Once a solution for the incoming 

request (i.e. scheduled servers and times) has been 

determined, the broker will update the directory service to 

reflect the allocated schedule. The goal is to improve the 

overall system performance, in order to facilitate more 
requests.  If the broker determines that more than one 

server must provide the desired service, it transforms the 

single user request into multiple requests that will execute 

on the different servers. The service provided may be 

continuous or discontinuous; and can be finished without 

or with some delay.   In the typical mode of operation, the 

servers guarantee the provisioning of appropriate QoS to 

each request, once resources have been reserved.  

 

3. Discovering Intermittently Available 

Resources – The DIAR Algorithm 

 

In this section, we present a generalized algorithm for 

discovering intermittently available resources (DIAR) by 

modeling the DIAR problem using a graph-theoretic 

approach.  We develop a generalized solution based on a 

network flow analogy; further refinements will be 

discussed in the next section.  
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Fig 1. System Architecture: the arrows indicate the processing of a request from client A. 



3.1. Modeling the DIAR problem as a Network 
Flow Diagram 

 

Without loss of generality, we assume that the 

incoming request is for a video object. We model the 

incoming request R from the client as: 

R: < VID R , ST R , ET R , Type R, QoS R > 

Where VID R corresponds to the requested video ID; ST R 
is the request start time; ET R is the end time by which the 

request should be finished; Type R represents the type of 

the request including (a) immediacy of the response (b) 

whether the request must be continuous or can be 

discontinuous and (c) whether the request must be 

executed on a simple server or may be executed on 

multiple servers. QoS R represents the QoS parameters of 

the request, i.e. the resources required by the request and 

the duration for which these resources are needed. We 

model the resources needed by a request using 4 

parameters: the required disk bandwidth (R DBW), required 

memory resource (R MEM), required CPU (R CPU ) , and the 
required network transfer bandwidth (RNBW); Dv  represents 

the duration for which these resources are required. The 

above QoS parameters may be assumed to be defined for 

each video and may therefore be known by the broker 

ahead of time.  Note that since many requests can obtain 

service from the same copy of the video object, the actual 

storage (i.e. disk space) occupied by an object is not 

relevant to the scheduling process; the storage bandwidth is 

consumed on a per request basis and is the relevant factor 

that must be considered.   

We describe each server s with the following 
configuration: server time map (STMs) indicating the times 

at which a server is available and a server resource map 

(SRMs) indicating server resources available at the 

different times. For simplification, we divide the time of a 

day into fixed size units, (for example, 24 units to present 

24 hours of the day). We represent the available resources 

of a server s at a particular time t using four parameters 

[20]: CPU cycles (SAvailCPU(t)),   memory buffers 
(SAvailMEM(t)), network transfer bandwidth (SAvailNBW(t)), 

and disk bandwidth (SAvailDBW(t)). Hence SRMs(t) = 

(SAvailCPU(t),  SAvailMEM(t), SAvailNBW(t), SAvailDBW(t)).  

In order to deal with the capacity of each server over 

time in a unified way, we define a Load Factor (R, S, t) for 

a request r on server s at time t, as  

Thus, the Load Factor [16] of a server s at time t, 

LF(R, S, t), is determined by the bottleneck resource at 

time t.  Furthermore, the order in which we explore 

potential servers uses a worst-case assumption on the load-

factor over all time units (between ST R and ET R) during 

which the server is available. For example, if the 

granularity of the time units in a day is 24 (24 hours/day), 

and ST R is 5am and ET R is 10am, then we consider 
LF (s) = Max (LF5, LF6, LF7, LF8, LF9, LF10).  

A more optimistic approach would be to use the average 

load-factor over the time period. Since we have 

information about future reserved resources on a server, it 

is possible to estimate the load-factor based on existing 

system conditions and future scheduled requests.   

We model the DIAR algorithm as a directed graph 

G<V, E> (see Fig 2). Nodes O and F are artificial nodes 

and represent the source vertex and sink node respectively 

[11]. C represents the client, while Sj represents server j, 

( Nj ≤≤1 , if there are N servers).  We introduce a set of 

time nodes, TN that represent the entire time period.   Each 

time node  
2,1 tt

TN  represents the period of time from t1 to 

t2, [t1, t2).   

Load Factor (R, S, t) 

 = Max [ CPU a  , MEM a  , NBW a  , DBW a  ] 

CPU a = R CPU / SAvailCPU(t) 

MEM a = R MEM / SAvailMEM(t) 
NBW a   = R NBW / SAvailNBW(t) 

DBW a   = R DBW / SAvailDBW(t) 

Fig 2. A Graph-based representation of the DIAR algorithm
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We assign directed edges connecting these nodes with 

weights as follows: 

� C(o, c) = D v, (duration of the requested video). 

� C(c, sj ) = the total amount of service time units that 
server j can provide within the request time period. 

� C(sj , TN t 1, t 2) = t2-t1, if server j can provide service 

in the time period [t1, t2). For simplicity, we also 

assume that all time nodes represent equal durations 

(one hour in our simulation). 

� C(TN t 1, t 2 , F) = ∞. 

Thus, each edge has a nonnegative weight. If we treat 

this graph as a Network Flow Graph, the DIAR problem 

can be cast as a maximum flow problem, i.e. find the 

maximum network flow ),(|| coCf = .  The flow |f| is a 

measure of the maximum weight along paths in a 

weighted, directed graph [1]. 

The feasibility condition: An Augmenting Path [11] 

),(
2,1 ttj TNSp from o to F is a path with nonnegative 

weight on the edges along the path. An augmenting path is 

feasible if and only if it satisfies all the following 
conditions: 

� VIDR  ∈  the set of videos for which the server j can 

provide service. 

� 
,

NBWNBWAvail
RS ≥ ,

CPUCPUAvail
RS ≥  

MEMMEMAvail
RS ≥ ,   ,

DBWDBWAvail
RS ≥   

(The available resources can meet the resource 

requirements of this video).  

� ST R ≤  t1, t2 ≤  ET R.  

We define a feasible set X p as a set of all the augmenting 

paths that meet the feasibility conditions: 

),(),(
2,1

coCTNSC
ttj

≥∑ ;  for 
pttj

XTNS ∈∀ ),(
2,1

. 

This corresponds to a feasible scheduling solution of this 

video request.   

Optimality of DIAR: Given a client request R: 

<VIDR , QoS R , ST R , ET R , Type R>, a solution X p is 

optimal if and only if it satisfies the feasibility condition 

and a policy dependent optimality criterion. Examples of 
optimality criteria include minimum number of servers, 

least-load factor, earliest-starting-time, earliest-finishing 

time, most continuous service, etc.  The policies defined 

later in the paper use two of the above criteria that we 

believe are highly relevant for the proposed environment, 

i.e. least Load Factor and earliest-starting time. 

 

3.2. The DIAR algorithm. 

The DIAR algorithm uses well known network flow 

techniques (e.g. Ford – Fulkerson Algorithm [11]) to 

determine the Maximum flow | f | (see Fig 3). 

DIAR (G<V, E>, R: < VID R , QoS R , ST R , ET R , Type R> {
/* Initialization:*/ 

(1) for each edge  (u , v) ∈ E 

(2) f (u , v) � 0  /* f (u , v) is the flow of the edge (u, v) */ 
(3) f (v , u) � 0 

(4) /*Reduce the graph:*/ 

Eliminate infeasible servers that can not provide the service for VID R ; 

 Eliminate irrelevant time nodes that can not provide service during the request period.  

(i.e. ET R ≤  t1or t2 ≤  ST R) 

(5) /*ordering the server and time nodes: */ 

Reorder the left server nodes of S i and S j , so that e.g. ji ≤ , )()( jLFiLF ≤ .   

(6) define the weight of each edge  (u , v) ∈ E, such as:  

• C(o, c) = D v, (duration of the requested video); 

• C(c, sj ) = the total amount of service time units that server j can provide; 

• C(sj , TN t 1, t 2) = t2-t1, if server j can provide service in the time period [t1, t2); 

• C(TN t 1, t 2 , F) = ∞. 

 
/* Main Loop */ 

(7) while there exists an Augmenting Path  p  [11]  from O to F in G :  

(8)         C(p) � min (C (e) | e∈ p )  
/* e is the edge of p, C (e) is the weight of edge e.*/ 

(9)         for each edge  (u , v) ∈ p 
(10)                   f (u , v) � f (u , v) + C (p) 

(11)                  f (v , u) � - f ( u , v) 

} 
Fig 3. Discovering Intermittently Available Resources Algorithm 



The methods used for searching the augmenting path 

decide the characteristics of the final result. If the request 

must be executed by a single server, the search will start 

from the server nodes to determine the first server that can 
provide service for the entire time duration, which ensures 

the least Load Factor criterion. On the other hand, if the 

request can be finished by multiple servers, we will search 

the augmenting path by the time nodes; this will implement 

an earliest-starting time policy.  

If the maximum flow | f | of the graph equals ),,( coC  

the flows we get are correspondent with a schedule 

solution we can use to accept this request. In the following 

section, we describe several policies to determine a 
suitable augmenting path according to request 

characteristics. If N is the number of server nodes in the 

order of increasing Load Factor, and the T is number of 

time nodes, the complexity of DIAR will be O(N*T). 

 

4. A Family of DIAR policies 

 

In this section, we describe the different DIAR policies 

to satisfy various QoS requirements of multimedia 

requests. We classify the policies based on three criteria: 

(a) whether the request must be immediately started  

with zero startup latency (IS)  or if the request 

startup can be delayed (DS);  

(b) whether the request must be continuously (C)  

processed until completion or if the request can be 
discontinuously (D) executed;  

(c) whether the service is provided by one single 

server (SS) , or if the service can be provided by 

multiple servers (MS).  

The classification of DIAR policies is illustrated in Fig 

4. Six policies are proposed: IS-C-SS, IC-C-MS, DS-C-SS, 

DS-C-MS, DS-D-SS, and DS-D-MS
2
. We will use the 

above nomenclature in the remainder of this paper to refer 

to the six policies studied.  In the implementation of the 

above policies, the technique used to search for 
augmenting paths may be server-driven (pick a server first 

and then determine suitable time nodes) or time-driven 

(pick a time-node first and then select a feasible server). In 

general, the single-server policies will be server-driven and 

multiple server policies will be time-driven. 

Immediate Start Continuous Single Server (IS-C-
SS): IS-C-SS is the most restrictive of the policies studied 

and is used to provide continuous service without delay by 

only one single server. This implies that a video request 

can be accepted only if it can execute continuously to 

completion without any delay.  Since this policy has such 
strict requirements, we anticipate that it will exhibit the 

worst performance in terms of request acceptance. To 

implement this DIAR policy, we calculate augmenting 

paths of potential servers in the order of increasing load 

factor (LF) and stop when we find the first server that can 

meet the request constraints. If no feasible server is found, 

the request is rejected. 

Immediate Start Continuous Multiple Servers (IS-C-
MS): IS-C-MS is similar to IS-C-SS; the only difference is 

that we can use multiple servers to provide immediate 

continuous service. We expect that more requests will be 

accepted with this policy in comparison to IS-C-SS since 
there is a wider choice of possible servers.  In order to 

realize this policy, we search for augmenting paths in the 

DIAR network flow graph for each time node and pick the 

least loaded server within each time period.  The request 

will be rejected only if there is no feasible server for any 

time node within the duration of service. 

Delayed Start Continuous Single Server (DS-C-SS): 
The DS-C-SS policy permits a startup delay as long as 

                                                   

2
 We ignore the cases where immediate start requests are discontinuous 

since many applications that have zero startup latency requirements also 

require continuous service. 
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service is completed before the stipulated completion time 

(ETR); The search for augmenting paths is server-driven, 

i.e. we follow the chain of servers beginning with the least 

loaded server and stop when we find the first server in the 

sequence that can provide continuous service obeying the 

completion time constraint.  Furthermore, we select the 
earliest feasible starting time that is available on the server. 

The request is rejected if there are no feasible servers. 

Delayed Start Continuous Multiple Servers (DS-C-
MS): DS-C-MS relaxes the single server constraint of the 

DS-C-CS policy.  It permits multiple servers to provide the 

required service. The search for augmenting paths is time-

driven; the least loaded server within each time period is 

selected. As before, service is initiated at the earliest-

feasible time at which a server can provide the requested 

service. The request is rejected if no server combination 

exists to provide continuous service.  

Delayed Start Discontinuous Single Server (DS-D-
SS): In DS-D-SS, the request may execute discontinuously 

but on a single server. To realize this policy, the search for 

augmenting paths is server-driven, only if a server can 

provide the whole period of service time for the request, 

request will be accepted regardless of whether the service 

will be continuous or discontinuous. If there is no feasible 

server, the request will be rejected. 

Delayed Start Discontinuous Multiple Servers (DS-
D-MS): DS-D-MS can provide delayed service 

discontinuously by multiple servers.  Intuitively, this 

policy should exhibit the minimum number of rejections as 
compared to the other policies studied. In the DIAR 

algorithm, we begin searching for an augmenting path 

from the time nodes until we find enough time nodes to 

service the requested video, otherwise, the request will be 

rejected. 

 

5. Performance Evaluation of the Resources 

Discovery Policies 

 

In this section, we evaluate the performance of 
different resource discovery policies under various server 

resource constraints and time configurations. 

 

5.1. System Model 
 

The basic video server configuration used in this 

simulation includes 20 data servers and 100 video objects; 
each server has a storage of 100 GB and network transfer 

bandwidth of 100Mbps. These parameters will be 

appropriately altered for simulation studies. For simplicity, 

the CPU and memory resources of the data servers are 

assumed not to be bottlenecks. In the following 

simulations, we also assume that the duration of each video 

is 3 hours; each video replica requires 2 GB of disk 

storage; and a network transmission bandwidth of 2 Mbps. 

 

5.2. Time Map and Placement Strategies  
 

The service time map for each server keeps the 

information of when the server will be available during a 

day. We study three approaches to model the time map of 

each server: 

• T1: Uniform availability – All the servers are 

available (or unavailable) for an equal amount of time; 

furthermore, the servers are divided into groups, such 

that within each group, the time distribution covers the 

entire 24-hour day, as shown in Fig 5. In our 
simulations, we use the uniform availability with 

duration = 6 hours as the first time map strategy, T1. 

We also executed the entire set of experiments with a 

finer granularity of the time map, with available 

duration = 3 hours, and the results obtained were 

similar to the coarse granularity case where duration = 

6 hours. 

• T2: Random availability – We randomly choose the 

number of hours during the day when a server is 

available. The time at which a server is available is 

also randomly chosen on a per-hour basis; hence the 

available times may be continuous, discontinuous or 
partially continuous.  

• T3: Total availability – All the servers are available 

all the time. 

When using T1 or T2, clustering the servers into 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Server1                         

Server2                    

Server3                    

Server4                         

…                         

Fig 5. A sample uniform availability Time Map - the above figure illustrates the time map where the size of 
each server group is equal to 4; and the servers are continuously available for a duration of 6 hours. 



“server groups” is an important concept for ensuring that at 

least one replica of video objects is always available. This 

implies that there are no “blank” spots in service 

availability. Note that the placement strategies will take 

this issue into account. 

A data placement model specifies the number of 
replicas for each video object, and the servers on which the 

replicas are placed. Placement policies may be statically 

determined during system initialization or dynamically 

altered at run-time. Dynamic strategies, e.g. [12], are 

inherently more adaptive; however in an intermittently 

available environment such strategies can be quite 

complex.  For instance, requests can reserve server 

resources ahead of the execution time. This enforces more 

constraints on the dereplication process since replicas not 

immediately required (but required in the future) cannot be 

dereplicated unless there is a guarantee that the replica will 

be reinstated when required.  Optimal placement strategies 
are beyond the scope of this paper and will be addressed 

elsewhere; we focus on static placement strategies in our 

simulations. 

We propose deterministic and non-deterministic 

placement policies to determine which replica is created on 

which server. We select three widely different placement 

strategies to evaluate our scheduling mechanisms.  

• P1: Group-based equal placement – Ignore the 

popularity information of the video objects. Cluster 

the servers into groups so that the total available 

service time of each group covers the entire day. Each 
video object is associated with exactly one group, so 

that every server in the group has a replica of this 

video object.  

• P2: Popularity-enhanced deterministic placement – 

We classify the video objects into two groups, i.e. 

very-popular and less-popular. A replica of very-

popular video objects is placed on every server, 

assuming resource availability. Less-popular video 

objects are evenly placed in the remaining storage 

space. The even placement policy attempts to create an 

equal number of replicas for less-popular video 
objects. 

• P3: Popularity-based random placement – Choose the 

number of replicas for a video object based on its 

popularity, and randomly distributed these replicas 

among the feasible servers, that have available disk 

storage. 

In the remainder of this paper, we will use T1, T2 and 

T3 to identify the three time map strategies; P1, P2 and P3 

to identify the three placement strategies.  

5.3. Request Model 
 

Since the focus application of this paper is the delivery of 

multimedia services, we choose an appropriate request 

model to characterize incoming requests to the broker, i.e., 

Zipfian law [12], with the request arrivals per day for each 

video Vi being given by: 

i
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We compute the probability of request arrival in hour j to 

be:  )/( 1 φ−
= jcp

j
for 241 ≤≤ j , where Φ  is the degree of 

skew and is assumed to be 0.8, and 

)),/1(/(1 1 φ−

∑= jc 241 ≤≤ j . From the request arrivals 

per day for each video and the probability distribution of 

requests for each hour, the number of requests that arrive 

in each hour for each video Vj is computed. The validity of 

this model is confirmed in the studies of Chervenak [6] and 

Dan, Sitaram and Shahabuddin [13], whose analyses 

examined statistics in magazines for video rentals and 

reports from video store owners. Both of them concluded 

that the popularity distribution of video titles could be 

fitted into a zipfian distribution. 

 

5.4. Performance Evaluation 
 

We evaluate system performance with the time map 

and placement strategies explained above and use the 

number of rejections (i.e. success of the admission control 

process) as the main metric of evaluation. We compare 

how the different DIAR policies perform under varying 

system configurations (such as server storage) and varying 

number of data servers.  Finally, we determine the tradeoff 

between the service quality and the system performance.  

 

Request admission performance 

We compare the performance of the above six 

scheduling policies under different placement and time 

map strategies. Fig 6 represents the number of rejections 

over the time for the six policies. The title of each graph 

indicates the placement and the time map strategy used in 

this simulation environment. The results produced with the 

random time-map and random placement strategies are 

averaged over several executions. 

Intuitively, when servers are always available, the 

multiple server cases should always have a better 
acceptance rate.  This is because, in general, the single 

server case is a constrained version of the multiple server 

case and therefore has fewer options for resource selection. 

However, we notice in our experiments that another factor 

comes into play: i.e. the amount of available resources; and 

this introduces variation in the outcome. Consider the case 

of the P2-T3 configuration; the algorithm causes resources 

in multiple servers to be reserved in the future, hence 

larger number of resources become unavailable to new 

incoming immediate-start requests in the next round. This 

is also true sometimes in P1-T3 and P3-T3, i.e. DS-D-MS 

exhibits higher rejection rates than DS-D-SS.  



In the case of intermittently available servers, the 

single server case becomes highly restricted since finding a 

single continuously available server that meets the timing 

requirements is difficult. The multiple server policy offers 

much more flexibility, since request execution times can 

span multiple servers. However, this can cause the non-
popular requests to be distributed across servers that 

contain popular objects and cause early saturation of 

servers with popular objects, resulting in the rejection of 

many popular requests. As can be observed, the multiple 

server policies perform better within the time map T1 and 

T2. As expected, the most restrictive policy, i.e. IS-C-SS 

exhibits the worst performance and the most flexible policy 

DS-D-MS has the smallest number of rejections.  

 

Impact of the service time map  

In this section, we analyze the impact of different time 

maps. In the T3 strategy, servers are available all the time, 

hence for a given placement strategy, we notice that T3 has 

the fewest number of rejected requests.  This serves as a 

comparison point.  On comparing the average performance 

of T1 and T2, we observe that the T2 strategy, which 

exhibits more randomness in the availability of servers 

performs better.  We attribute this to the fact that the 

average server up-time is larger with T2 than with T1. 
Hence at any point in time, more servers are available for 

scheduling.  

 

Impact of placement strategies  

In this section, we analyze the impact of different 

placement strategies. In general, we observe that the 

number of rejections of policy P1 is always much larger 
than P2 and P3 since P1 does not take the request 

popularity into account. In all cases, the random placement 

policy, P3, has the smallest number of rejections. Though 

both P2 and P3 take request popularity into account, P3 is 

better than P2, because the random distribution enlarges 

the possibility for the replica to be created on more servers 

P1-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r 

o
f 

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P1-T2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r 

o
f 

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

P1-T3

0

1000

2000

3000

4000

5000

6000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
time (hours)

n
u

m
b

e
r 

o
f 

re
je

c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

P2-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b
e
r 

o
f 

re
je

c
ti
o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P2-T2

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 9 13 17 21 25 29 33 37 41 45 49

time (hours)

n
u

m
b

e
r 

o
f 

re
je

c
ti
o

n
s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

P2-T3

0

100

200

300

400

500

600

700

800

900

1000

1 5 9 13 17 21 25 29 33 37 41 45 49

time (hour)

n
u

m
b

e
r 

o
f 
re

je
c
ti
o

n
s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

P3-T1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r 

o
f 
re

je
c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

P3-T2

0

1000

2000

3000

4000

5000

6000

7000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u

m
b

e
r 

o
f 
re

je
c
ti

o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

P3-T3

0

100

200

300

400

500

600

700

800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

time (hours)

n
u
m

b
e
r 

o
f 
re

je
c
ti
o
n

s

IS-C-SS

IS-C-MS

DS-C-SS

DS-C-MS

DS-D-SS

DS-D-MS

 

Fig 6. System performance of three time map strategies and three placement strategies – the caption of “Px-Ty” 
for each figure implies that this result is studied by using the x placement strategies and the y time map model 
that are explained in Section 5.3. Each figure represents the number of rejections over the time for the six 
scheduling policies. 



with different time maps, so that the servers with the 

replicas of this video requests can be available for more 

time. 

 

The Quality-Performance Tradeoff  

In this section, we study the tradeoff between the 

service quality and the system performance. As before, in 

order to avoid the influence of other unpredictable factors, 

we choose the P2-T1 configuration. By varying the 

required network bandwidth of each video from 0.5Mbps 

to 2Mbps, we get the results shown as Fig. 7. In general, 

most policies (except IS-C-SS) are sensitive to the quality 

of the transmission; a reduction in service quality brings 
fewer rejections. The most dramatic effect is observed in 

the delayed-start (DS) multiple server (MS) policies, i.e. 

DS-C-MS and DS-D-MS that can take advantage of 

resources on any server any time. In the most constrained 

case, i.e IS-C-SS, a change in resource requirements does 

not have a significant enough impact on system 

performance since continuous availability of a single 

server is of primary concern. In this case, lowering service 

quality will not help in improving the system performance. 

Other factors affecting the system performance 

We also study the impact of server storage and the 

number of data servers on system performance. We notice 

that more storage improves the system performance, but 
only up to a certain point. This is because as storage levels 

increase, more video objects can be placed causing the 

rejection rate to fall. But, at higher levels of storage, there 

is another factor, i.e. network transmission bandwidth, that 

becomes the prime limiting factor, especially in overload 

situations. A larger number of servers improves the overall 

system performance; the flexible policies benefit more 

from increased number of servers than the constrained 

policies. With a larger number of servers, more resources 

are available for multiple server policies. Under the single 

server policy, e.g. IS-C-SS, system performance cannot 

improve with a larger number of servers unless the new 

servers have sufficient continuous service time.  

 

5.5. Summary of performance 

In summary, flexibility of resource allocation (as is the 

case with multiple server delayed start policies) is 
important to ensure that intermittently available systems 

perform well. Randomized placement strategies exhibit 

better performance with more servers available to service a 

given request at any point in time. While increasing the 

server storage is useful in decreasing the number of request 

rejects, this benefit is observed only with low storage 

levels.   At low levels of storage, storage space is the 

limiting factor; while with high levels of storage, the 

network bandwidth is the limiting factor. Reducing the 

quality of service to enhance performance is useful except 

in the most constrained scheduling environments. Scaling 
up the system with more servers, i.e. increasing the level of 

metacomputing, is highly beneficial if multiple server 

scheduling is applicable. 

 

6. Related work and Future Research 

Directions 

 
We address related work in existing grid system 

management and scheduling in computational grid 

systems. We indicate how the techniques proposed in this 

paper can be incorporated into existing grid environments.  

Legion [9] presents users with wide range of services 

for security, performance, and functionality. The Resource 

Allocation Manager (GRAM) of Globus [8] provides the 

local component for resource management. Resource and 

computation management services are implemented in a 

hierarchical fashion. Currently, the Globus Architecture for 

Reservation and Allocation (GARA) [15] aims to address 

issues of dynamic discovery, advance or immediate 
reservation of resources. Our scheduling algorithms can be 

applied within the information service component of the 

Globus and GARA [17] resource management 

architectures to support a larger class of applications.  

AppLeS [5] performs resource selection as an initial 

step, and its default scheduling policy chooses the best 

schedule among the resulting candidates based on the 

user’s performance criteria; other scheduling policies may 

be provided by the user. Prophet [21], and MARS [4], use 

only one criterion: the performance goal for all 

applications is minimal execution time. The adaptive 
scheduling algorithm proposed in [10] uses a queuing 

theory based approach for scheduling computationally 

intensive tasks. NetSolve[7], Nimrod [3] and Ninf [18] are 

management platforms targeted for scientific applications. 

The Bricks performance evaluation system introduced in 

tradeoff between network bandwidth and system 

performance with P2-T1 strategies
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Fig 7. Tradeoff between network bandwidth 
requirement and system performance - This figure 
represents the rejection ratio of six scheduling 
policies for four different network bandwidth 
requirements. 

 



[19] supports a task model of global computation that can 

be used for scheduling.  

In summary, we have proposed a generalized 

technique for resource discovery in intermittently available 

environments and developed specialized policies to deal 

with varying user requirements. We intend to conduct 
further performance studies with heterogeneous servers 

and combinations of request patterns. In order to improve 

the system scalability and adapt to changing requirements, 

we are developing dynamic placement strategies for 

intermittently available environments.   

We currently assume a centralized broker that can be a 

bottleneck as the system scales in size. In order to achieve 

the scalability of such a system in a large scale 

heterogeneous network environment, we intend to extend 

our technique to the hierarchical frameworks [22] for 

effective and faster wide-area service directory 

organization and management. Future work will also 
address resource management in grid based systems with 

mobile clients.  Eventually, we believe that the grid-based 

infrastructure will play an important role in promoting the 

widespread use of multimedia applications. 
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