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Abstract 

As billion transistor System-on-chips (SoC) become 

commonplace and design complexity continues to increase, 

designers are faced with the daunting task of meeting 

escalating design requirements in shrinking time-to-market 

windows, and have begun using an IP-based SoC design 

methodology that permits reuse of key SoC functional 

components. Since the communication architectures 

connecting components in these SoC designs significantly 

impact system performance, it is imperative that designers 

explore the communication design space efficiently, quickly 

and early in the design flow. Transaction Level Modeling 

(TLM) is an emerging abstraction that facilitates early 

exploration of SoC architectures. This paper outlines a 

typical IP-based SoC design flow, and presents the Cycle 

Count Accurate at Transaction Boundaries (CCATB)

modeling abstraction which is a fast, efficient and flexible 

approach for exploring bus-based communication 

architectures in SoC designs. The CCATB models not only 

take less time to model but are also faster to simulate than 

existing modeling abstractions for communication 

architecture exploration such as pin-accurate BCA (PA-

BCA) and transaction based BCA (T-BCA). Experimental 

results on several industrial SoC subsystem case studies 

show that CCATB models are faster than PA-BCA by as 

much as 120% on average and by 67% on average when 

compared to T-BCA, demonstrating the advantages of 

CCATB-based TLM abstraction for exploring bus-based SoC 

communication architectures. 

1. Introduction 

System-on-chip (SoC) designers today are faced with 

incredible complexity in the light of billion transistor designs 

that have already become a reality [1-2] and ever increasing 

numbers of components (processors, memories, peripherals, 

custom hardware) being integrated on a single chip. The 

onslaught of digital convergence has resulted in requirements 

for SoC designs which can support more and more 

functionality (e.g. cell phones with built in MP3 players, 

digital cameras, AM/FM radios, portable gaming support and 

PDA functionality) even as the design cycle time keeps 

shrinking rapidly due to market pressures. Designers today 

thus have to cope with a large design complexity versus 

designer productivity gap (Figure 1) which continues to 

widen with each passing year [3]. 

1.1.  IP-based Design 

In addition to their inherent complexity, SoC designs 

today also have to support the added burden of being flexible 

and quickly adaptable to meet changing needs of increasingly 

fickle customers. To meet these challenges, Intellectual 

Property (IP) based design and reuse [4-6] has been proposed 

and now widely accepted as an effective way to decrease 

time-to-market and improve designer productivity. Designing 

parameterized IP cores [7-8] with a well defined interface [4] 

allows cores to be quickly customized and integrated into 

multiple design projects. The VSIA [9] and OCP-IP [10] 

standards have produced specifications which dictate core 

interfaces to promote IP reuse and speed up integration. It 

should be noted that there is an initial investment involved in 

creating reusable components and this inevitably lengthens 

the design time for the first project. However, productivity in 

subsequent designs can then be enhanced manifold as a 

consequence, since the reused cores do not need to be 

designed or verified again.  
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Figure 1. Design complexity versus designer 

productivity gap

1.2. Raising the Modeling Abstraction 

Another extremely important means of increasing designer 

productivity has been to move towards higher levels of 

modeling abstractions called the system level [11]. System 

level models enable a unified approach for system hardware 

and software development. These models, usually written in 

high level languages such as C/C++ [12], SystemC [13] or 

SpecC [14] give an estimate of the system characteristics 

early in the design flow, well before committing to RTL 

development. Since these models are faster to develop and 

simulate than RTL models, designers can explore and verify 
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the system and make design decisions early in the design 

flow, which improves quality and reduces design time. 

1.3. Modern SoC Design Flow 

The concepts of IP based design-reuse and raising the 

modeling abstraction level, have helped redefine the modern 

SoC design flow, which is shown in Figure 2. After the 

product specifications are received from the customer (Stage 

1), designers select the algorithms and perform optimizations 

tailored towards the particular requirements (Stage 2), and 

create a functional specification, which is usually an 

implementation and timing independent model in C/C++ that 

captures system functionality (Stage 3). Designers then 

perform hardware-software partitioning and allocate 

functionality to software and hardware components (Stage 4), 

to create an architectural model (Stage 5). Next, the 

communication protocol to be used between components is 

selected, communication channels are defined and arbitration 

schemes to resolve contention on shared channels selected 

(Stage 6) to arrive at the communication model (Stage 7). 

Finally, the behavior inside components and in the channels 

is scheduled at cycle boundaries (Stage 8) to create a cycle-

accurate implementation model (Stage 9), which is either in 

RTL or translated to RTL and then passed to a standard back-

end synthesis flow. It should be noted there are several 

variations of this flow that are used today, as some designers 

either split or merge different stages in the flow depending on 

design complexity, experience and the design cycle time. 

When the system architecture is generated from the system 

functionality and reaches the implementation stage by 

gradual addition of detail to the models shown in Figure 2, 

we have a top-down [14] design flow. In contrast, a meet-in-

the-middle [11] design flow maps the system functionality on 

a predefined system architecture, instead of generating the 

architecture from the functionality. This approach is also 

referred to as platform-based design [11][15]. A third design 

flow, called bottom-up [6] focuses on wrapper generation 

and component reuse.  
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Figure 2. SoC Design Flow 

Regardless of the system design flow used, supporting on-

chip communication poses a major challenge for designers 

[16] as the number of components integrated on a single chip 

increases. This inter-component, on-chip communication is 

often in the critical path and a common source of 

performance bottlenecks in modern cutting-edge SoC designs 

[17-18]. Taking this into consideration, our emphasis in this 

paper will be on the fast exploration of the communication 

architecture space to quickly detect and eliminate these 

performance bottlenecks. We will focus on a section of the 

design flow encompassing Stages 5-7 in Figure 2, where 

designers generally explore the communication space.        

1.4. SoC Communication Architectures 

Communication architectures can be broadly classified as 

either being bus-based or network-on-chip (NoC) based. Bus 

based architectures [19-22] have been well studied and 

standard architectures such as AMBA [19], CoreConnect 

[20] and STBus [21] are widely used in current SoC designs. 

In contrast, NoC-based architectures [23-25] are a more 

recent development in the SoC domain and research in the 

area has just recently been gaining momentum. NoC based 

architectures claim to support larger bandwidths and offer 

better scalability, but suffer from larger area overhead, 

network contention delays and complex interface design 

issues [26]. Because of these drawbacks, the ability of bus 

crossbar configurations [27-28] to handle large bandwidths, 

and the enormous investment required to reeducate designers 

and port existing IPs to a new communication architecture 

paradigm, we believe that bus based architectures will remain 

the dominant communication architectures for the next few 

years. In the future, the transition from bus-based to NoC 

architectures could be eased with the use of hybrid bus-NoC 

architectures, as proposed in [42].  

Exploration and synthesis are the two key components of 

bus-based communication architecture design. There is 

already a substantial body of work of in the area of bus 

architecture synthesis [43-48]. Our focus in this paper will be 

on the exploration phase, which involves modeling and 

analyzing communication flows in a SoC design to determine 

a suitable bus-based communication architecture for the 

design. The selection of a communication architecture in a 

design flow generally occurs after the designer has performed 

hardware-software partitioning and architecture mapping 

(Stage 6, Figure 2). The selection is complicated by the 

plethora of choices [19-22] available to the designer. Even 

after selecting a communication architecture, configuring it 

to meet performance requirements presents another 

challenge. Bus-based communication architectures such as 

AMBA [19] have several parameters which can be 

configured to improve performance: bus topology, data bus 

width, bus speeds, arbitration protocols, DMA burst lengths 

and buffer sizes have significant impact on system 

performance and must be considered by designers during 

exploration. Therefore it becomes essential for any 

meaningful exploration effort to comprehensively capture the 

bus architecture and be able to simulate the effects of 

changing configurable parameters at a system level [29].  

In this paper, we first survey popular modeling 

abstractions used for exploring communication architectures, 

before presenting the Cycle Count Accurate at Transaction 

Boundaries (CCATB) modeling abstraction [41] for on-chip 

communication space exploration.  We position CCATB as a 
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substitute for the communication model in the SoC design 

flow shown in Figure 2. Our abstraction level speeds up 

simulation performance, while maintaining cycle count 

accuracy. To underline the effectiveness of our approach, we 

present an exploration case study involving an industrial 

strength SoC design in the multimedia application domain. 

We also compare simulation performance and modeling 

effort for CCATB with the existing PA-BCA and T-BCA 

models (discussed in the next section) and analyze the 

scalability of these approaches with design complexity.  

2. Current Trend in Modeling 

Abstractions used for Communication 

Architecture Exploration 

Communication architecture exploration can be performed 

at several different levels of abstraction. Until a few years 

ago, designers would often explore designs at the 

implementation model (or RTL) level. While this was 

possible designs were relatively simple, exploring today’s 

complex SoC designs at the RTL level is an intimidating 

prospect. Not only is the RTL simulation speed too slow to 

allow adequate coverage of the large design space in modern 

SoC designs, but making small changes in the design can 

require considerable re-engineering effort due to the highly 

complex nature of these systems. To overcome these 

limitations, system designers have been forced to raise the 

level of abstraction of these models. Figure 3 shows the 

frequently used modeling abstraction levels for 

communication space exploration, usually captured with high 

level languages such as C/C++ [12].  These high level 

models give an early estimate of the system characteristics 

before committing to RTL development. In Cycle Accurate 

(CA) models [30-31], system components and the bus 

architecture are captured at a cycle and pin accurate level. 

While these models are extremely accurate, they are too 

time-consuming to model and only provide a moderate 

speedup over RTL models. Pin-Accurate Bus Cycle Accurate 

(PA-BCA) models [32] capture the system at a higher 

abstraction level than CA models. Behavior inside 

components need not be scheduled at every cycle boundary, 

which allows rapid system prototyping and considerable 

simulation speedup over RTL. The component interface and 

the bus are still modeled at a cycle and pin accurate level, 

which enables accurate communication space exploration. 

However, with the increasing role of embedded software and 

rising design complexity, even the simulation speedup gained 

with PA-BCA models is not enough. More recent research 

approaches [33-36] have focused on using concepts found in 

the Transaction Level Modeling (TLM) [37] domain to speed 

up BCA model simulation with Transaction based BCA (T-

BCA) models. We will first elaborate on TLM models before 

describing T-BCA models and these approaches. 

Transaction Level Models [37] (Figure 3) are very high 

level bit-accurate models of a system with specifics of the 

bus protocol replaced by a generic protocol-independent bus 

(or channel), and where communication takes place when 

components call read() and write() methods provided by the 

channel interface. Since detailed timing and signal-accuracy 

is omitted in TLM, they are extremely fast to simulate. These 

models can be used to gain a very high level estimate of data 

traffic between components for a system level 

communication exploration effort. Early work with TLM 

established SystemC 2.0 [13][37] as the modeling language 

of choice for the approach. In [37] we described how TLM 

can be used for early system prototyping, functional 

verification and embedded software development. 

v1 = a + b;

wait(1); //cycle 1

REG = d << v1;

wait(1); //cycle 2

REQ.set(1);

ADDR.set(REG);

WDATA.set(v1);

wait(1); //cycle 3

bus
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…
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HRESP.set(1);

HREADY.set(0);

…

slavemaster

…

v1 = a + b;

REG = d << v1;
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Figure 3. Modeling Abstractions for Communication 
Architecture Exploration

Recent research efforts [33-36] have focused on adapting 

TLM concepts to speed up communication architecture 

exploration with Transaction based BCA (T-BCA) models 

(Figure 3). These models make use of the read/write function 

call interface, optionally with a few signals to maintain bus 

cycle accuracy. The simpler interface reduces modeling 

effort and the function call semantics result in faster 

simulation speeds. In [33], function calls are used instead of 

slower signal semantics to describe models of AMBA [19] 

and CoreConnect [20] bus architectures at a high abstraction 

level. However, the resulting models are not detailed enough 

for accurate communication exploration. In [34], a similar 

attempt is made to model AMBA [19] using function calls 

for reads/writes on the bus, but the use of certain bus signals 

and SystemC clocked threads [13] slows down simulation 

speed. Similarly, in [35], data transfers in AMBA [19] are 

modeled using read/write transactions but low level 

handshaking semantics are used in the models which need 

not be explicitly modeled to preserve cycle accuracy and end 

up degrading simulation performance. Recently, ARM 

released the AHB Cycle-Level Interface Specification [36] 

which provides the definition and compliance requirements 
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for modeling AHB at a cycle-accurate level in SystemC. 

Function calls are used to replace all bus signals at the 

interface between components and the bus. Although using 

function calls speeds up simulation, there is a lot of 

opportunity for improving simulation speed even further by 

reducing the number of calls while maintaining cycle 

accuracy, as we show later in this paper. 

3. Fast Communication Architecture 

Exploration

To enable fast exploration of the communication design 

space, we introduced a novel modeling abstraction level 

which is ‘cycle accurate’ when viewed at ‘transaction 

boundaries’. For this reason we call our model Cycle Count 

Accurate at Transaction Boundaries (CCATB) [41].  A 

transaction, in this context, refers to a read or write operation 

issued by a master to a slave, that can either be a single data 

word or a multiple data burst transfer. Transactions at the 

CCATB level are similar to transactions at the TLM level 

[37] except that we additionally pass bus protocol specific 

control and timing information. Unlike BCA models, we do 

not maintain accuracy at every cycle boundary. Instead, we 

raise the modeling abstraction and maintain cycle count 

accuracy at transaction boundaries i.e., the number of bus 

cycles that elapse at the end of a transaction is the same when 

compared to cycles elapsed in a detailed cycle/pin accurate 

system model. A similar concept can be found in [38] where 

Observable Time Windows were defined and used for 

verifying results of high level synthesis. We maintain overall 

cycle count accuracy needed to gather statistics for accurate 

communication space exploration, while optimizing the 

models for faster simulation. Our approach essentially trades 

off intra-transaction visibility to gain simulation speedup.   

System BUS

ISS + eSW
MEM1 DMA

Arbiter + 

Decoder

Reset

Controller

process lcdc()

{

…

if (enable.read() == 1) {

read(port, SDRAM_addr1, token);

wait(wait_period);

size_info = token->data;

}

…

}

channel_status_slave * 

read (SDRAM_ADDR_TYPE addr_in, 

slave_data_and_control * packet)

{ …

switch (addr_in - m_start_address)

{

case SDRAM_CONTR_MODE:

*(packet->data) = m_mode;

slave_status->status = BUS_OK;

slave_status->wait_cyc = 4;

return slave_status; break;

case SDRAM_CONTR_RESET: …

SDRAM 

Controller

LCD 

Controller

Figure 4. CCATB Transaction Example 

3.1. Component Model Characteristics 

We chose SystemC 2.0 [13][37] to capture designs at the 

CCATB abstraction level, as it provides a rich set of 

primitives for system modeling. Busses in CCATB are 

modeled by extending the generic TLM channel [37] to 

include bus architecture specific timing and protocol details. 

Arbiter and decoder modules are integrated with this channel 

model. Computation blocks (masters and slaves) are modeled 

at the behavioral abstraction level, just like TLM models in 

[37]. Masters are active blocks with (possibly) several 

computation threads and ports to interface with busses. 

Figure 4 shows the interface used by the master (LCD 

Controller) to communicate with a slave (SDRAM). In the 

figure, port specifies the port to send the read/write request 

on (since a master may be connected to multiple busses). 

addr is the address of the slave to send the transaction to. 

token is a structure that contains pointers to data and control. 

Slaves are passive entities, activated only when triggered by 

the arbiter on a request from the master, and have a 

register/memory map to handle read/write requests. The 

arbiter calls read() and write() functions implemented in the 

slave, as shown for the SDRAM controller in the figure. For 

more details, refer to [41]. 

3.2. Maintaining Cycle Count Accuracy 

Figures 5 illustrates how CCATB maintains cycle count 

accuracy at transaction boundaries for different call 

sequences of the AMBA 2.0 [19] protocol. In the figure, after 

a master (M1) requests access (HBUSREQ_M1) to the bus 

for a write burst of length four, another master (M2) requests 

bus access (HBUSREQ_M2) for a write burst. While there is 

no delay at the master or the slave end for the first write 

burst, there is delay in generating the data at the master end 

for master M2, which is indicated by the BUSY status on the 

HRESP[1:0] lines. In the CCATB model, the arbiter accounts 

for the request (REQ), arbitration (ARB), burst length 

(BURST_LEN) and pipeline setup (PPL) delays for the first 

transaction and increments simulation time. For the 

subsequent transaction by master M2, the request has already 

been registered at the arbiter and no arbitration is required, so 

there is no REQ or ARB delay. Since transfers are pipelined, 

there is also no pipeline startup (PPL) delay like in the case 

of master M1. There is however delay which is dependent on 

the burst length (BURST_LEN) and the busy cycles (BUSY) 

which is accounted for by the arbiter. Thus the total time for 

transactions to complete in the CCATB and the CA models is 

the same. 

3.3. Simulation Speedup using CCATB 

The CCATB modeling abstraction essentially trades off 

intra-transaction visibility to gain simulation speedup. Since 

we are not concerned with maintaining visible cycle accuracy 

at each cycle boundary, we can perform certain optimizations 

in the model. We handle all delays in the system in a single 

module - the bus component. This prevents unnecessary 

invocation and activation of simulation component threads 

on every cycle. By clustering together the delays in the 

system in one module, we can exploit the opportunity for 

increasing simulation time in chunks which are larger than a 

single cycle, thus drastically speeding up simulation. For an 

implementation of the CCATB simulation semantics which 

describe in detail how speedup is obtained, refer to [40].  
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T1 T2 T3 T4 T6 T7 T8T5 T9 T10

HBUSREQ_M1

HGRANT_M1

CLK

HTRANS[1:0]

HADDR[31:0]

HREADY

HWDATA

A1 A2 A3 A4

D_A1 D_A2 D_A3

NSEQ SEQ SEQ SEQ

wait (REQ + ARB + BURST_LEN + PPL) = (1 + 1 + 4 + 1) = 7 cycles

arbiter arbiter

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

control for burst INCR4

# 1HMASTER[3:0]

CCATB

delay model

NSEQ BUSY SEQ SEQ

# 2

B1 B2 B3

D_B1D_A4

T12

B4

SEQ

INCR4

T11

wait (BURST_LEN + BUSY) = (4 + 1) = 5 cycles

D_B2 D_B3 D_B4

HGRANT_M2

HBUSREQ_M2

Figure 5. Reference AMBA2 call sequence 

4. Case Study : Multimedia SoC 

Subsystem 

To demonstrate the effectiveness of exploration with 

CCATB, we performed several case studies with industrial 

strength SoC subsystems. We will briefly present results 

from an exploration case study of a consumer multimedia 

SoC subsystem which performs audio and video encoding. 

For this case study, we assume that the choice of bus 

architecture has already been made and we explore 

different configurations of the bus architecture. For more 

exploration case studies involving selection and 

comparison of different bus architectures, refer to [41].  
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controller
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MEM2
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Figure 6. SoC Multimedia Subsystem 

Table 1. Execution cycle count (in millions)

Arbitration Scheme Arch. 

RR TDMA1 TDMA2 SP1 SP2 

Arch1 27.24 24.65 25.06 25.72 26.49 

Arch2 24.98 23.86 23.03 23.52 23.44 

Arch3 24.73 23.74 22.96 23.11 23.05 

Arch4 22.02 21.79 21.65 21.18 21.26 

Figure 6 shows this system, built around the AMBA 2.0 

bus architecture [19]. We consider a scenario  where the 

designer wishes to extend the functionality of the encoder 

system to add support for audio/video decoding and an 

additional AVLink interface for streaming data. The final 

architecture must also meet peak bandwidth constraints for 

the USB component (480Mbps) and the AVLink controller 

interface (768Mbps). To explore the effects of changing 

communication architecture topology and arbitration 

protocols on system performance, we modeled the SoC 

platform at the CCATB level and simulated a test program 

for several interesting combinations of topology and 

arbitration strategies.  

5. Simulation And Modeling Effort 

Comparison 

We now present a comparison of the modeling effort and 

simulation performance for pin accurate BCA (PA-BCA), 

transaction based BCA (T-BCA) and our CCATB models. 

For the purpose of this study we chose the SoC platform 

shown in Figure 7. This platform is built around the AMBA 

2.0 communication architecture and has an ARM926 

processor ISS model with a test program running on it 

which initializes different components and then regulates 

data flow to and from the external interfaces such as USB, 

switch, external memory controller (EMC) and the 

SDRAM controller.  
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Figure 7. SoC platform 
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For the T-BCA model we chose the approach from [36]. 

Our goal was to compare not only the simulation speeds but 

also to ascertain how the speed changed with system 

complexity. We first compared speedup for a ‘lightweight’ 

system comprising of just 2 traffic generator masters along 

with peripherals used by these masters, such as the RAM 

and the EMC. We gradually increased system complexity 

by adding more masters and their slave peripherals. Figure 

8 shows the simulation speed comparison with increasing 

design complexity.  

Note the steep drop in simulation speed when the third 

master was added – this is due to the detailed non-native 

SystemC model of the ARM926 processor which 

considerably slowed down simulation. In contrast, the 

simulation speed was not affected as much when the DMA 

controller was added as the fourth master. This was because 

the DMA controller transferred data in multiple word bursts 

which can be handled very efficiently by the transaction 

based T-BCA and CCATB models. The CCATB 

particularly handles burst mode simulation very effectively 

and consequently has the least degradation in performance 

out of the three models. Subsequent steps added the USB 

switch and another traffic generator which put considerable 

communication traffic and computation load on the system, 

resulting in a reduction in simulation speed. Overall, the 

CCATB abstraction level outperforms the other two 

models. Table 3 gives the average speedup of the CCATB 

over the PA-BCA and T-BCA models. We note that on 

average, CCATB is faster than T-BCA by 67% and even 

faster than PA-BCA models by 120%.  
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Figure 8. Simulation Speed Comparison 

Table 2. Comparison of speed and modeling effort

Model 

Abstraction 

Average CCATB 

speedup (x times) 

Modeling 

Effort 

CCATB 1 ~3 days 

T-BCA 1.67 ~4 days 

PA-BCA 2.2 ~1.5 wks 

Table 2 also shows the time taken to model the 

communication architecture at the three different 

abstraction levels by a designer familiar with AMBA 2.0. 

While the time taken to capture the communication 

architecture and model the interfaces took just 3 days for 

the CCATB model, it took a day more for the transaction 

based BCA, primarily due to the additional modeling effort 

to maintain accuracy at cycle boundaries for the bus 

system. It took almost 1.5 weeks to capture the PA-BCA 

model. Synchronizing and handling the numerous signals 

and design verification were the major contributors for the 

additional design effort in these models. In summary, we 

found that CCATB models were faster to simulate and 

needed less modeling effort compared to T-BCA and PA-

BCA models.    

6. Conclusion and Future Work 

The demanding requirements of modern SoC designs are 

forcing fundamental changes in the way SoC systems are 

designed. The only way to design billion transistor chips 

when faced with shrinking design cycle times is to allow 

design teams to reuse pre-designed components, and to 

raise the level of modeling abstraction to the system level. 

Since the communication architecture which connects the 

components in a SoC design significantly impacts system 

performance, it becomes essential to explore the 

communication architecture space early in the design flow 

(e.g., at the transaction level) so that bottlenecks can be 

avoided and performance constraints met. In this paper we 

presented the Cycle Count Accurate at Transaction 

Boundaries (CCATB) modeling abstraction which is a fast, 

efficient and flexible approach for exploring the vast 

communication space for shared-bus architectures in SoC 

designs. Our model enables plug-and-play exploration of 

various facets of the communication space, allowing 

master, slave and bus IPs to be easily replaced with their 

architecture variants, and quickly estimating the impact on 

system performance. We have successfully applied our 

approach for exploring several industrial strength SoC 

subsystems. One such case study from the multimedia 

domains is briefly presented in this paper. We also showed 

that the CCATB models not only take less time to model, 

but are also faster to simulate than pin-accurate BCA (PA-

BCA) models by as much as 120% on average and 

transaction based BCA (T-BCA) models by 67% on 

average. We have already made use of the fast CCATB 

models in the automated synthesis of communication 

architectures in [48]. Our ongoing work is focusing on 

automatic refinement of CCATB models from high level 

architectural (TLM) models; and interface refinement from 

CCATB down to the CA implementation models and 

subsequent RTL generation. Our future work will focus on 

understanding and exploring hybrid bus-NoC architectures 

[42] in detail. 
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