
 Using TLM for Exploring Bus-based SoC Communication

Architectures

Sudeep Pasricha, Nikil Dutt Mohamed Ben-Romdhane

 Center for Embedded Computer Systems Conexant Systems Inc.

 University of California, Irvine, CA Newport Beach, CA

 {sudeep, dutt}@cecs.uci.edu m.benromdhane@conexant.com

Abstract

As billion transistor System-on-chips (SoC) become

commonplace and design complexity continues to increase,

designers are faced with the daunting task of meeting

escalating design requirements in shrinking time-to-market

windows, and have begun using an IP-based SoC design

methodology that permits reuse of key SoC functional

components. Since the communication architectures

connecting components in these SoC designs significantly

impact system performance, it is imperative that designers

explore the communication design space efficiently, quickly

and early in the design flow. Transaction Level Modeling

(TLM) is an emerging abstraction that facilitates early

exploration of SoC architectures. This paper outlines a

typical IP-based SoC design flow, and presents the Cycle

Count Accurate at Transaction Boundaries (CCATB)

modeling abstraction which is a fast, efficient and flexible

approach for exploring bus-based communication

architectures in SoC designs. The CCATB models not only

take less time to model but are also faster to simulate than

existing modeling abstractions for communication

architecture exploration such as pin-accurate BCA (PA-

BCA) and transaction based BCA (T-BCA). Experimental

results on several industrial SoC subsystem case studies

show that CCATB models are faster than PA-BCA by as

much as 120% on average and by 67% on average when

compared to T-BCA, demonstrating the advantages of

CCATB-based TLM abstraction for exploring bus-based SoC

communication architectures.

1. Introduction

System-on-chip (SoC) designers today are faced with

incredible complexity in the light of billion transistor designs

that have already become a reality [1-2] and ever increasing

numbers of components (processors, memories, peripherals,

custom hardware) being integrated on a single chip. The

onslaught of digital convergence has resulted in requirements

for SoC designs which can support more and more

functionality (e.g. cell phones with built in MP3 players,

digital cameras, AM/FM radios, portable gaming support and

PDA functionality) even as the design cycle time keeps

shrinking rapidly due to market pressures. Designers today

thus have to cope with a large design complexity versus

designer productivity gap (Figure 1) which continues to

widen with each passing year [3].

1.1. IP-based Design

In addition to their inherent complexity, SoC designs

today also have to support the added burden of being flexible

and quickly adaptable to meet changing needs of increasingly

fickle customers. To meet these challenges, Intellectual

Property (IP) based design and reuse [4-6] has been proposed

and now widely accepted as an effective way to decrease

time-to-market and improve designer productivity. Designing

parameterized IP cores [7-8] with a well defined interface [4]

allows cores to be quickly customized and integrated into

multiple design projects. The VSIA [9] and OCP-IP [10]

standards have produced specifications which dictate core

interfaces to promote IP reuse and speed up integration. It

should be noted that there is an initial investment involved in

creating reusable components and this inevitably lengthens

the design time for the first project. However, productivity in

subsequent designs can then be enhanced manifold as a

consequence, since the reused cores do not need to be

designed or verified again.

Logic Transistors/Chip

Transistor/Staff Month

58%/Yr. compound

Complexity growth rate

21%/Yr. compound

Productivity growth rate

Source:

SEMATECH

1
9

8
1

1
9

8
3

1
9

8
5

1
9
8

7

1
9
8

9

1
9
9

1

1
9
9

3

1
9
9

5

1
9
9

7

1
9
9

9

2
0
0

3

2
0
0

1

2
0
0

5

2
0

0
7

2
0

0
9

1K

10K

100K

1M

10M

100M

1B

10B

10

100

1K

10K

100K

1M

10M

100M

C
o
m

p
le

x
it

y

L
o

g
ic

T
ra

n
si

st
o

rs
 p

e
r

C
h

ip
 (

K
)

P
ro

d
u

ct
iv

it
y

T
r
a
n

si
st

o
rs

/S
ta

ff
 M

o
n

th

Figure 1. Design complexity versus designer

productivity gap

1.2. Raising the Modeling Abstraction

Another extremely important means of increasing designer

productivity has been to move towards higher levels of

modeling abstractions called the system level [11]. System

level models enable a unified approach for system hardware

and software development. These models, usually written in

high level languages such as C/C++ [12], SystemC [13] or

SpecC [14] give an estimate of the system characteristics

early in the design flow, well before committing to RTL

development. Since these models are faster to develop and

simulate than RTL models, designers can explore and verify

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

the system and make design decisions early in the design

flow, which improves quality and reduces design time.

1.3. Modern SoC Design Flow

The concepts of IP based design-reuse and raising the

modeling abstraction level, have helped redefine the modern

SoC design flow, which is shown in Figure 2. After the

product specifications are received from the customer (Stage

1), designers select the algorithms and perform optimizations

tailored towards the particular requirements (Stage 2), and

create a functional specification, which is usually an

implementation and timing independent model in C/C++ that

captures system functionality (Stage 3). Designers then

perform hardware-software partitioning and allocate

functionality to software and hardware components (Stage 4),

to create an architectural model (Stage 5). Next, the

communication protocol to be used between components is

selected, communication channels are defined and arbitration

schemes to resolve contention on shared channels selected

(Stage 6) to arrive at the communication model (Stage 7).

Finally, the behavior inside components and in the channels

is scheduled at cycle boundaries (Stage 8) to create a cycle-

accurate implementation model (Stage 9), which is either in

RTL or translated to RTL and then passed to a standard back-

end synthesis flow. It should be noted there are several

variations of this flow that are used today, as some designers

either split or merge different stages in the flow depending on

design complexity, experience and the design cycle time.

When the system architecture is generated from the system

functionality and reaches the implementation stage by

gradual addition of detail to the models shown in Figure 2,

we have a top-down [14] design flow. In contrast, a meet-in-

the-middle [11] design flow maps the system functionality on

a predefined system architecture, instead of generating the

architecture from the functionality. This approach is also

referred to as platform-based design [11][15]. A third design

flow, called bottom-up [6] focuses on wrapper generation

and component reuse.

Specification ModelSpecification Model

Implementation ModelImplementation Model

Communication ModelCommunication Model

Architecture ModelArchitecture Model

allocation

behavior partitioning

scheduling

protocol selection

channel partitioning

arbitration

cycle scheduling

protocol scheduling

algorithm selection

optimization

Product requirements

from customer

Product requirements

from customer

1

3

5

7

9

2

4

6

8

Figure 2. SoC Design Flow

Regardless of the system design flow used, supporting on-

chip communication poses a major challenge for designers

[16] as the number of components integrated on a single chip

increases. This inter-component, on-chip communication is

often in the critical path and a common source of

performance bottlenecks in modern cutting-edge SoC designs

[17-18]. Taking this into consideration, our emphasis in this

paper will be on the fast exploration of the communication

architecture space to quickly detect and eliminate these

performance bottlenecks. We will focus on a section of the

design flow encompassing Stages 5-7 in Figure 2, where

designers generally explore the communication space.

1.4. SoC Communication Architectures

Communication architectures can be broadly classified as

either being bus-based or network-on-chip (NoC) based. Bus

based architectures [19-22] have been well studied and

standard architectures such as AMBA [19], CoreConnect

[20] and STBus [21] are widely used in current SoC designs.

In contrast, NoC-based architectures [23-25] are a more

recent development in the SoC domain and research in the

area has just recently been gaining momentum. NoC based

architectures claim to support larger bandwidths and offer

better scalability, but suffer from larger area overhead,

network contention delays and complex interface design

issues [26]. Because of these drawbacks, the ability of bus

crossbar configurations [27-28] to handle large bandwidths,

and the enormous investment required to reeducate designers

and port existing IPs to a new communication architecture

paradigm, we believe that bus based architectures will remain

the dominant communication architectures for the next few

years. In the future, the transition from bus-based to NoC

architectures could be eased with the use of hybrid bus-NoC

architectures, as proposed in [42].

Exploration and synthesis are the two key components of

bus-based communication architecture design. There is

already a substantial body of work of in the area of bus

architecture synthesis [43-48]. Our focus in this paper will be

on the exploration phase, which involves modeling and

analyzing communication flows in a SoC design to determine

a suitable bus-based communication architecture for the

design. The selection of a communication architecture in a

design flow generally occurs after the designer has performed

hardware-software partitioning and architecture mapping

(Stage 6, Figure 2). The selection is complicated by the

plethora of choices [19-22] available to the designer. Even

after selecting a communication architecture, configuring it

to meet performance requirements presents another

challenge. Bus-based communication architectures such as

AMBA [19] have several parameters which can be

configured to improve performance: bus topology, data bus

width, bus speeds, arbitration protocols, DMA burst lengths

and buffer sizes have significant impact on system

performance and must be considered by designers during

exploration. Therefore it becomes essential for any

meaningful exploration effort to comprehensively capture the

bus architecture and be able to simulate the effects of

changing configurable parameters at a system level [29].

In this paper, we first survey popular modeling

abstractions used for exploring communication architectures,

before presenting the Cycle Count Accurate at Transaction

Boundaries (CCATB) modeling abstraction [41] for on-chip

communication space exploration. We position CCATB as a

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

substitute for the communication model in the SoC design

flow shown in Figure 2. Our abstraction level speeds up

simulation performance, while maintaining cycle count

accuracy. To underline the effectiveness of our approach, we

present an exploration case study involving an industrial

strength SoC design in the multimedia application domain.

We also compare simulation performance and modeling

effort for CCATB with the existing PA-BCA and T-BCA

models (discussed in the next section) and analyze the

scalability of these approaches with design complexity.

2. Current Trend in Modeling

Abstractions used for Communication

Architecture Exploration

Communication architecture exploration can be performed

at several different levels of abstraction. Until a few years

ago, designers would often explore designs at the

implementation model (or RTL) level. While this was

possible designs were relatively simple, exploring today’s

complex SoC designs at the RTL level is an intimidating

prospect. Not only is the RTL simulation speed too slow to

allow adequate coverage of the large design space in modern

SoC designs, but making small changes in the design can

require considerable re-engineering effort due to the highly

complex nature of these systems. To overcome these

limitations, system designers have been forced to raise the

level of abstraction of these models. Figure 3 shows the

frequently used modeling abstraction levels for

communication space exploration, usually captured with high

level languages such as C/C++ [12]. These high level

models give an early estimate of the system characteristics

before committing to RTL development. In Cycle Accurate

(CA) models [30-31], system components and the bus

architecture are captured at a cycle and pin accurate level.

While these models are extremely accurate, they are too

time-consuming to model and only provide a moderate

speedup over RTL models. Pin-Accurate Bus Cycle Accurate

(PA-BCA) models [32] capture the system at a higher

abstraction level than CA models. Behavior inside

components need not be scheduled at every cycle boundary,

which allows rapid system prototyping and considerable

simulation speedup over RTL. The component interface and

the bus are still modeled at a cycle and pin accurate level,

which enables accurate communication space exploration.

However, with the increasing role of embedded software and

rising design complexity, even the simulation speedup gained

with PA-BCA models is not enough. More recent research

approaches [33-36] have focused on using concepts found in

the Transaction Level Modeling (TLM) [37] domain to speed

up BCA model simulation with Transaction based BCA (T-

BCA) models. We will first elaborate on TLM models before

describing T-BCA models and these approaches.

Transaction Level Models [37] (Figure 3) are very high

level bit-accurate models of a system with specifics of the

bus protocol replaced by a generic protocol-independent bus

(or channel), and where communication takes place when

components call read() and write() methods provided by the

channel interface. Since detailed timing and signal-accuracy

is omitted in TLM, they are extremely fast to simulate. These

models can be used to gain a very high level estimate of data

traffic between components for a system level

communication exploration effort. Early work with TLM

established SystemC 2.0 [13][37] as the modeling language

of choice for the approach. In [37] we described how TLM

can be used for early system prototyping, functional

verification and embedded software development.

v1 = a + b;

wait(1); //cycle 1

REG = d << v1;

wait(1); //cycle 2

REQ.set(1);

ADDR.set(REG);

WDATA.set(v1);

wait(1); //cycle 3

bus

arb

…

case CTR_WR:

CTR_WR = in;

wait(1); //cycle 1

CTR_WR2 |=0xf;

wait(1); //cycle 2

HRESP.set(1);

HREADY.set(0);
signal

interface

master slave

…

v1 = a + b;

REG = d << v1;

REQ.set(1);

ADDR.set(REG);

WDATA.set(v1);

wait(3); //3 cycles

…

bus

arb

…

case CTR_WR:

CTR_WR = in;

CTR_WR2 |=0xf;

wait(2); //2 cycles

HRESP.set(1);

HREADY.set(0);

…

slavemaster

…

v1 = a + b;

REG = d << v1;

addr = REG;

REQ.set(1);

write(addr,v1);

wait(3); //3 cycles

…

…

case CTR_WR:

CTR_WR = in;

CTR_WR2 |=0xf;

wait(2); //2 cycles

bus_resp(OK);

HREADY.set(0);

…

slavemaster

signal,

transaction interface

Pin Accurate Bus Cycle Accurate (PA-BCA)Pin Accurate Bus Cycle Accurate (PA-BCA)

signal

interface

Cycle Accurate (CA)Cycle Accurate (CA)

Transaction based Bus Cycle Accurate (T-BCA)Transaction based Bus Cycle Accurate (T-BCA)

bus

arb

…

v1 = a + b;

REG = d << v1;

addr = REG;

write(addr,v1);

wait();

…

…

case CTR_WR:

CTR_WR = in;

CTR_WR2 |=0xf;

chan_resp(OK);

…

slavemaster

transaction

interface

Transaction level Model (TLM)Transaction level Model (TLM)

bus

arb

In
c
re

a
s
in

g
 s

im
u

la
ti

o
n

 s
p

e
e
d

In
c

re
a
s
in

g
 s

im
u

la
ti

o
n

 a
c
c
u

ra
c

y

Simulation speed:

~10 - 100x RTL

Modeling effort:

/1 - /3 RTL

Simulation speed:

~100 - 500x RTL

Modeling effort:

/5 - /10 RTL

Simulation speed:

~1000x RTL

Modeling effort:

~/10 RTL

Simulation speed:

>>1000x RTL

Modeling effort:

~/20 RTL

Figure 3. Modeling Abstractions for Communication
Architecture Exploration

Recent research efforts [33-36] have focused on adapting

TLM concepts to speed up communication architecture

exploration with Transaction based BCA (T-BCA) models

(Figure 3). These models make use of the read/write function

call interface, optionally with a few signals to maintain bus

cycle accuracy. The simpler interface reduces modeling

effort and the function call semantics result in faster

simulation speeds. In [33], function calls are used instead of

slower signal semantics to describe models of AMBA [19]

and CoreConnect [20] bus architectures at a high abstraction

level. However, the resulting models are not detailed enough

for accurate communication exploration. In [34], a similar

attempt is made to model AMBA [19] using function calls

for reads/writes on the bus, but the use of certain bus signals

and SystemC clocked threads [13] slows down simulation

speed. Similarly, in [35], data transfers in AMBA [19] are

modeled using read/write transactions but low level

handshaking semantics are used in the models which need

not be explicitly modeled to preserve cycle accuracy and end

up degrading simulation performance. Recently, ARM

released the AHB Cycle-Level Interface Specification [36]

which provides the definition and compliance requirements

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

for modeling AHB at a cycle-accurate level in SystemC.

Function calls are used to replace all bus signals at the

interface between components and the bus. Although using

function calls speeds up simulation, there is a lot of

opportunity for improving simulation speed even further by

reducing the number of calls while maintaining cycle

accuracy, as we show later in this paper.

3. Fast Communication Architecture

Exploration

To enable fast exploration of the communication design

space, we introduced a novel modeling abstraction level

which is ‘cycle accurate’ when viewed at ‘transaction

boundaries’. For this reason we call our model Cycle Count

Accurate at Transaction Boundaries (CCATB) [41]. A

transaction, in this context, refers to a read or write operation

issued by a master to a slave, that can either be a single data

word or a multiple data burst transfer. Transactions at the

CCATB level are similar to transactions at the TLM level

[37] except that we additionally pass bus protocol specific

control and timing information. Unlike BCA models, we do

not maintain accuracy at every cycle boundary. Instead, we

raise the modeling abstraction and maintain cycle count

accuracy at transaction boundaries i.e., the number of bus

cycles that elapse at the end of a transaction is the same when

compared to cycles elapsed in a detailed cycle/pin accurate

system model. A similar concept can be found in [38] where

Observable Time Windows were defined and used for

verifying results of high level synthesis. We maintain overall

cycle count accuracy needed to gather statistics for accurate

communication space exploration, while optimizing the

models for faster simulation. Our approach essentially trades

off intra-transaction visibility to gain simulation speedup.

System BUS

ISS + eSW
MEM1 DMA

Arbiter +

Decoder

Reset

Controller

process lcdc()

{

…

if (enable.read() == 1) {

read(port, SDRAM_addr1, token);

wait(wait_period);

size_info = token->data;

}

…

}

channel_status_slave *

read (SDRAM_ADDR_TYPE addr_in,

slave_data_and_control * packet)

{ …

switch (addr_in - m_start_address)

{

case SDRAM_CONTR_MODE:

*(packet->data) = m_mode;

slave_status->status = BUS_OK;

slave_status->wait_cyc = 4;

return slave_status; break;

case SDRAM_CONTR_RESET: …

SDRAM

Controller

LCD

Controller

Figure 4. CCATB Transaction Example

3.1. Component Model Characteristics

We chose SystemC 2.0 [13][37] to capture designs at the

CCATB abstraction level, as it provides a rich set of

primitives for system modeling. Busses in CCATB are

modeled by extending the generic TLM channel [37] to

include bus architecture specific timing and protocol details.

Arbiter and decoder modules are integrated with this channel

model. Computation blocks (masters and slaves) are modeled

at the behavioral abstraction level, just like TLM models in

[37]. Masters are active blocks with (possibly) several

computation threads and ports to interface with busses.

Figure 4 shows the interface used by the master (LCD

Controller) to communicate with a slave (SDRAM). In the

figure, port specifies the port to send the read/write request

on (since a master may be connected to multiple busses).

addr is the address of the slave to send the transaction to.

token is a structure that contains pointers to data and control.

Slaves are passive entities, activated only when triggered by

the arbiter on a request from the master, and have a

register/memory map to handle read/write requests. The

arbiter calls read() and write() functions implemented in the

slave, as shown for the SDRAM controller in the figure. For

more details, refer to [41].

3.2. Maintaining Cycle Count Accuracy

Figures 5 illustrates how CCATB maintains cycle count

accuracy at transaction boundaries for different call

sequences of the AMBA 2.0 [19] protocol. In the figure, after

a master (M1) requests access (HBUSREQ_M1) to the bus

for a write burst of length four, another master (M2) requests

bus access (HBUSREQ_M2) for a write burst. While there is

no delay at the master or the slave end for the first write

burst, there is delay in generating the data at the master end

for master M2, which is indicated by the BUSY status on the

HRESP[1:0] lines. In the CCATB model, the arbiter accounts

for the request (REQ), arbitration (ARB), burst length

(BURST_LEN) and pipeline setup (PPL) delays for the first

transaction and increments simulation time. For the

subsequent transaction by master M2, the request has already

been registered at the arbiter and no arbitration is required, so

there is no REQ or ARB delay. Since transfers are pipelined,

there is also no pipeline startup (PPL) delay like in the case

of master M1. There is however delay which is dependent on

the burst length (BURST_LEN) and the busy cycles (BUSY)

which is accounted for by the arbiter. Thus the total time for

transactions to complete in the CCATB and the CA models is

the same.

3.3. Simulation Speedup using CCATB

The CCATB modeling abstraction essentially trades off

intra-transaction visibility to gain simulation speedup. Since

we are not concerned with maintaining visible cycle accuracy

at each cycle boundary, we can perform certain optimizations

in the model. We handle all delays in the system in a single

module - the bus component. This prevents unnecessary

invocation and activation of simulation component threads

on every cycle. By clustering together the delays in the

system in one module, we can exploit the opportunity for

increasing simulation time in chunks which are larger than a

single cycle, thus drastically speeding up simulation. For an

implementation of the CCATB simulation semantics which

describe in detail how speedup is obtained, refer to [40].

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

T1 T2 T3 T4 T6 T7 T8T5 T9 T10

HBUSREQ_M1

HGRANT_M1

CLK

HTRANS[1:0]

HADDR[31:0]

HREADY

HWDATA

A1 A2 A3 A4

D_A1 D_A2 D_A3

NSEQ SEQ SEQ SEQ

wait (REQ + ARB + BURST_LEN + PPL) = (1 + 1 + 4 + 1) = 7 cycles

arbiter arbiter

HBURST[2:0]

HWRITE

HSIZE[2:0]

HPROT[3:0]

control for burst INCR4

1HMASTER[3:0]

CCATB

delay model

NSEQ BUSY SEQ SEQ

2

B1 B2 B3

D_B1D_A4

T12

B4

SEQ

INCR4

T11

wait (BURST_LEN + BUSY) = (4 + 1) = 5 cycles

D_B2 D_B3 D_B4

HGRANT_M2

HBUSREQ_M2

Figure 5. Reference AMBA2 call sequence

4. Case Study : Multimedia SoC

Subsystem

To demonstrate the effectiveness of exploration with

CCATB, we performed several case studies with industrial

strength SoC subsystems. We will briefly present results

from an exploration case study of a consumer multimedia

SoC subsystem which performs audio and video encoding.

For this case study, we assume that the choice of bus

architecture has already been made and we explore

different configurations of the bus architecture. For more

exploration case studies involving selection and

comparison of different bus architectures, refer to [41].

AHB System bus

ARM926EJ-S

MEM1
SDRAM

controller

DMA

MEM2

A/V

Encoder

USB 2.0

A
H

B
/A

P
B

B
ri

d
g

e

MEM4MEM3

MEM5

APB peripheral bus

ITC Timer

UART Flash
Interface

GPIO

UART

Figure 6. SoC Multimedia Subsystem

Table 1. Execution cycle count (in millions)

Arbitration Scheme Arch.

RR TDMA1 TDMA2 SP1 SP2

Arch1 27.24 24.65 25.06 25.72 26.49

Arch2 24.98 23.86 23.03 23.52 23.44

Arch3 24.73 23.74 22.96 23.11 23.05

Arch4 22.02 21.79 21.65 21.18 21.26

Figure 6 shows this system, built around the AMBA 2.0

bus architecture [19]. We consider a scenario where the

designer wishes to extend the functionality of the encoder

system to add support for audio/video decoding and an

additional AVLink interface for streaming data. The final

architecture must also meet peak bandwidth constraints for

the USB component (480Mbps) and the AVLink controller

interface (768Mbps). To explore the effects of changing

communication architecture topology and arbitration

protocols on system performance, we modeled the SoC

platform at the CCATB level and simulated a test program

for several interesting combinations of topology and

arbitration strategies.

5. Simulation And Modeling Effort

Comparison

We now present a comparison of the modeling effort and

simulation performance for pin accurate BCA (PA-BCA),

transaction based BCA (T-BCA) and our CCATB models.

For the purpose of this study we chose the SoC platform

shown in Figure 7. This platform is built around the AMBA

2.0 communication architecture and has an ARM926

processor ISS model with a test program running on it

which initializes different components and then regulates

data flow to and from the external interfaces such as USB,

switch, external memory controller (EMC) and the

SDRAM controller.

Switch

AHB System bus 1

ARM926EJ-S

ROM

SDRAM

controller

Arbiter +

Decoder

DMA RAM

A
H

B
/A

P
B

B
ri

d
g

e

APB peripheral bus

ITC Timer

UART EMCUSB

AHB/AHB

BridgeAHB System bus 2

RAM

Traffic

generator1

Arbiter +

Decoder

AHB System bus 3

RAM

Traffic

generator2

Arbiter +

Decoder

Traffic

generator3

Figure 7. SoC platform

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

For the T-BCA model we chose the approach from [36].

Our goal was to compare not only the simulation speeds but

also to ascertain how the speed changed with system

complexity. We first compared speedup for a ‘lightweight’

system comprising of just 2 traffic generator masters along

with peripherals used by these masters, such as the RAM

and the EMC. We gradually increased system complexity

by adding more masters and their slave peripherals. Figure

8 shows the simulation speed comparison with increasing

design complexity.

Note the steep drop in simulation speed when the third

master was added – this is due to the detailed non-native

SystemC model of the ARM926 processor which

considerably slowed down simulation. In contrast, the

simulation speed was not affected as much when the DMA

controller was added as the fourth master. This was because

the DMA controller transferred data in multiple word bursts

which can be handled very efficiently by the transaction

based T-BCA and CCATB models. The CCATB

particularly handles burst mode simulation very effectively

and consequently has the least degradation in performance

out of the three models. Subsequent steps added the USB

switch and another traffic generator which put considerable

communication traffic and computation load on the system,

resulting in a reduction in simulation speed. Overall, the

CCATB abstraction level outperforms the other two

models. Table 3 gives the average speedup of the CCATB

over the PA-BCA and T-BCA models. We note that on

average, CCATB is faster than T-BCA by 67% and even

faster than PA-BCA models by 120%.

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7

masters

K
c
y
c
le

s
/s

e
c

CCATB

PA-BCA

T-BCA

Figure 8. Simulation Speed Comparison

Table 2. Comparison of speed and modeling effort

Model

Abstraction

Average CCATB

speedup (x times)

Modeling

Effort

CCATB 1 ~3 days

T-BCA 1.67 ~4 days

PA-BCA 2.2 ~1.5 wks

Table 2 also shows the time taken to model the

communication architecture at the three different

abstraction levels by a designer familiar with AMBA 2.0.

While the time taken to capture the communication

architecture and model the interfaces took just 3 days for

the CCATB model, it took a day more for the transaction

based BCA, primarily due to the additional modeling effort

to maintain accuracy at cycle boundaries for the bus

system. It took almost 1.5 weeks to capture the PA-BCA

model. Synchronizing and handling the numerous signals

and design verification were the major contributors for the

additional design effort in these models. In summary, we

found that CCATB models were faster to simulate and

needed less modeling effort compared to T-BCA and PA-

BCA models.

6. Conclusion and Future Work

The demanding requirements of modern SoC designs are

forcing fundamental changes in the way SoC systems are

designed. The only way to design billion transistor chips

when faced with shrinking design cycle times is to allow

design teams to reuse pre-designed components, and to

raise the level of modeling abstraction to the system level.

Since the communication architecture which connects the

components in a SoC design significantly impacts system

performance, it becomes essential to explore the

communication architecture space early in the design flow

(e.g., at the transaction level) so that bottlenecks can be

avoided and performance constraints met. In this paper we

presented the Cycle Count Accurate at Transaction

Boundaries (CCATB) modeling abstraction which is a fast,

efficient and flexible approach for exploring the vast

communication space for shared-bus architectures in SoC

designs. Our model enables plug-and-play exploration of

various facets of the communication space, allowing

master, slave and bus IPs to be easily replaced with their

architecture variants, and quickly estimating the impact on

system performance. We have successfully applied our

approach for exploring several industrial strength SoC

subsystems. One such case study from the multimedia

domains is briefly presented in this paper. We also showed

that the CCATB models not only take less time to model,

but are also faster to simulate than pin-accurate BCA (PA-

BCA) models by as much as 120% on average and

transaction based BCA (T-BCA) models by 67% on

average. We have already made use of the fast CCATB

models in the automated synthesis of communication

architectures in [48]. Our ongoing work is focusing on

automatic refinement of CCATB models from high level

architectural (TLM) models; and interface refinement from

CCATB down to the CA implementation models and

subsequent RTL generation. Our future work will focus on

understanding and exploring hybrid bus-NoC architectures

[42] in detail.

7. Acknowledgements

This research was partially supported by grants from

Conexant Systems Inc., UC Micro (03-029) and NSF grants

CCR 0203813 and CCR 0205712.

References

[1] S. Naffziger, T. Grutkowski, B. Stackhouse, “The

Implementation of a 2-core Multi-Threaded Itanium® Family
Processor”, In Proc of ISSCC, 2005

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

[2] D. Burger, J. R. Goodman, “Billion-Transistor Architectures:
There and Back Again”, In IEEE Computer, March 2004

[3] The International Technology Roadmap for Semiconductors,

SIA, 1999

[4] J. Rowson, A. L. Sangiovanni-Vincentelli, “Interface-based
Design”, In Proc of DAC, 1997

[5] R. Bergamaschi, W. R. Lee, “Designing Systems-on-Chip

Using Cores“, In Proc of DAC, 2000

[6] W. Cesário et al, “Component-Based Design Approach for
Multicore SoCs,” In Proc. of DAC, 2002.

[7] T. Givargis, F. Vahid, “Parameterized System Design”, In

Proc of CODES, 2000

[8] Mohamed Ben-Romdhane et al. “Quick-Turnaround ASIC
Design in VHDL: Core-Based Behavioral Synthesis” Kluwer

Academic Publishers, 1996

[9] Virtual Socket Interface Alliance Component Interface
Standard (OCB 2 1.0), VSI Alliance, 2000

[10] Open Core Protocol International Partnership (OCP-IP). OCP

datasheet, http://www.ocpip.org

[11] K. Keutzer et al. “System-level design: Orthogonalization of
concerns and platform-based design,” In IEEE Transactions

on Computer-Aided Design of Integrated Circuits and
Systems, Dec. 2000

[12] “System-on-Chip Specification and Modeling Using C++:

Challenges and Opportunities”, In IEEE D&T May/ June
2001

[13] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design

with SystemC”. Kluwer Academic Publishers, 2002

[14] D. Gajski et al., “SpecC: Specification Language and
Methodology”, Kluwer Academic Publishers, 2000

[15] L. P. Carloni et al. “The Art and Science of Integrated

Systems Design”, In Proc of the 28th European Solid-State
Circuits Conference, 2002

[16] M. Sgroi et. al, “Addressing the System-on-Chip

Interconnect woes through Communication-Based Design,”
In Proc. of DAC, June 2001

[17] J. A Davis, J. D Meindl, “Is interconnect the weak link?” In

Circuit and Device Magazine. pp. 30-36, March 1998

[18] R. Otten, P. Stravers, “Challenges in physical chip design”,
In Proc of ICCAD, pp. 84-91, Nov. 2000

[19] ARM Specification Rev 2.0, ARM Ltd., 1999

[20] IBM CoreConnect.

http://www.chips.ibm.com/products/powerpc/cores

[21] STMicroelectrinics STBus Specification,
http://mcu.st.com/inchtml-pages-STBus_intro.html

[22] Sonics uNetworks Technical Overview, A21-1, Sonics Inc,
2000

[23] W. J. Dally, B. Towles, “Route packets, not wires: On-chip

interconnection networks”, In Proc of DAC, 2001

[24] L. Benini, G. D. Micheli, “Network on-chips”, In IEEE
Computer vol. 1 pp 70-78, Jan 2002

[25] A.Jantsch, H.Tenhunen, “Networks on Chip”, Kluwer

Academic Publishers, 2003.

[26] P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip
Packet-Switched Interconnections”, In Proc of DATE 2000

[27] B. Mathewson, J. Morris , “Matrix holds key to on-chip

Interconnect”, In EEdesign, available at
http://www.eedesign.com/article/showArticle.jhtml?articleId

=16503702, October 2001

[28] S. Murali, G. De Micheli, “An Application-Specific Design
Methodology for STbus Crossbar Generation”, In Proc of

DATE, 2005

[29] M. Loghi et al. “Analyzing On-Chip Communication in a
MPSoC Environment”, In Proc of DATE, 2004

[30] Joon-Seo Yim et al. “A C-Based RTL Design Verification

Methodology for Complex Microprocessor”, In Proc of DAC,

1997

[31] H. Jang et al., “High-Level System Modeling and
Architecture Exploration with SystemC on a Network SoC:

S3C2510 Case Study”, In Proc of DATE, 2004

[32] Luc Séméria, Abhijit Ghosh, "Methodology for Hardware/
Software Co-verification in C/C++", In Proc of ASP-DAC,

2000

[33] X. Zhu , S. Malik, “A hierarchical modeling framework for
on-chip communication architectures”, In Proc of ICCAD,

2002

[34] M. Caldari et al“Transaction-Level Models for AMBA Bus
Architecture Using SystemC 2.0”, In Proc of DATE, 2003

[35] O. Ogawa et al. “A Practical Approach for Bus Architecture

Optimization at Transaction Level”, In Proc of DATE 2003

[36] AHB CLI Specification http://www.arm.com/armtech/ahbcli

[37] S. Pasricha, “Transaction Level Modeling of SoC with

SystemC 2.0”, In Synopsys User Group Conference (SNUG),

2002

[38] R. A. Bergamaschi, S. Raje, “Observable Time Windows:
Verifying the Results of High-Level Synthesis”, In Proc. of

DATE, 1996

[39] AMBA AXI Specification www.arm.com/armtech/AXI

[40] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Fast Exploration

of Bus-based On-chip Communication Architectures", In

Proc of CODES+ISSS, 2004

[41] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Extending the
Transaction Level Modeling Approach for Fast

Communication Architecture Exploration", In Proc of DAC,
2004

[42] T. Dumitras, S. Kerner, R. Marculescu, “Enabling On-Chip

Diversity Through Architectural Communication Design”, In
Proc. of ASP-DAC, 2004

[43] S. Narayan and D. Gajski, “Synthesis of system level bus

interfaces”, In Proc. of DATE, 1994

[44] M. Gasteier, M. Glesner “Bus-based communication
synthesis on system level”, In ACM TODAES, January 1999

[45] M. Drinic et al. “Latency-guided on-chip bus network

design”, In Proc. of ICCAD 2000

[46] A. Pinto et al “Constraint-driven communication synthesis”,
In Proc. of DAC 2002

[47] K. K. Ryu, V. J. Mooney III “Automated Bus Generation for

Multiprocessor SoC Design”, In Proc. of DATE 2003

[48] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Automated
Throughput-driven Synthesis of Bus-based Communication

Architectures", In Proc of ASP-DAC, 2005

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

