
Evaluating Memory Architectures for Media Applications on
Coarse-Grained Reconfigurable Architectures �

Jong-eun Lee†

jelee@poppy.snu.ac.kr
Kiyoung Choi†

kchoi@azalea.snu.ac.kr
Nikil D. Dutt‡

dutt@cecs.uci.edu
† EECS, Seoul National University, Seoul 151-742 KOREA

‡ Center for Embedded Computer Systems, University of California, Irvine, CA 92697

Abstract

Reconfigurable ALU Array (RAA) architectures—representing a popular class of Coarse-grained
Reconfigurable Architectures—are gaining in popularity especially for media applications due to
their flexibility, regularity, and efficiency. In such architectures, memory is critical not only for
configuration data but also for the heavy data traffic required by the application. Hence, system de-
signers would like to evaluate the effects of different memory architectures and memory traffic early
in the design process. In this paper, we offer a scheme for system designers to quickly estimate
the performance of media applications on RAA architectures. The proposed scheme is based on
the performance-oriented model of RAA architectures, which we develop to model different mem-
ory architectures in a uniform way so as to allow for easy mapping of application loops and early
performance estimation. Our experimental results estimating the performance of multimedia ap-
plications on three memory architectures demonstrate the flexibility of our memory architecture
evaluation scheme as well as the varying effects of the memory architectures on the application
performance, which also signifies the need for memory architecture evaluation early in the design
process.

� �������	�
��

A trend in the architectural platforms for media applications is the adoption of reconfigurable
computing elements for cost, performance, and flexibility issues [1]. Coarse-grained Reconfig-
urable Architectures (CRAs), mostly stressed by reconfigurable computing, are known to be flexi-
ble as well as efficient as demonstrated by recent architectures [2]–[4]. Reconfigurable ALU Array
(RAA) architectures [4]–[8] form the most popular class of CRAs, which are built on a 2D ar-
ray of Processing Elements (PEs) communicating via programmable interconnects. Though each
PE can perform only a limited set of operations such as addition and multiplication, through dy-
namic reconfiguration during runtime the 2D array datapath can be programmed to perform differ-
ent algorithms—typically, critical loops of the application—very efficiently. This regular datapath
structure makes the RAA architectures very well suited to media applications, which are also char-
acterized by structured and regular computations on large data sets [9].

� This research was conducted while the first two authors were visiting UC Irvine, and supported in part by grants
from NSF (CCR-0203813 and CCR-0205712) and Hitachi Ltd. We also thank members of the UCI EXPRESS compiler
team for their assistance.



The acceleration of RAA architectures mainly comes in two areas. First, the arithmetic opera-
tions can be parallelized on the PE array, with the maximum speedup equal to the number of PEs
executing in parallel. Second, the memory operations can be implemented in a much more efficient
way on RAA architectures by utilizing hardware addressing support provided by the architecture.
For example, in MorphoSys [4] the local frame buffer can generate data streams that are sequen-
tially used by the PE array, so that there is no explicit addressing needed for data transfers. Thus,
RAA architectures can accelerate not only the memory access operations (through parallel memory
access) but also the array index manipulation operations if the array is accessed with a scan pattern
supported by the memory architecture.

On the other hand, there is some overhead with RAA execution as well. First, there is reconfig-
uration overhead whenever a new loop is loaded on the RAA. Also, if a loop uses more than one
configuration (because, for example, the loop contains too many operations to be mapped onto the
PE array using only one configuration), it may be needed to switch between multiple configurations
throughout the loop execution, significantly adding to the reconfiguration overhead. Second, the
input data for the PE array may need to be transferred from the main memory to the RAA local data
buffer before or during the loop execution. Likewise, the output results may need to be transferred,
too. Note, however, that some overhead may effectively be removed by optimizations. For exam-
ple, the initial reconfiguration overhead of a loop may be hidden by starting the reconfiguration
long before the loop is reached.

We target our research at the rapid and quantitative evaluation of RAA architectures for archi-
tecture design and exploration. This early evaluation can be very valuable, as today’s application
mapping is typically done by hand making it virtually impossible to compare and explore various
architectural options. To derive first-order performance estimation with reasonable accuracy, we
need to identify critical parameters of the architecture that have the biggest impact on the perfor-
mance of applications. From this point of view, the memory architecture and memory operations
are very important, not only because memory operations account for a large portion of the exe-
cution cycles for media applications but also because there can be potentially greater diversity in
the memory architecture [10] than in the PE array (assuming a fixed granularity for the RAA).
Hence, in this paper we focus on the memory subsystem of RAA architectures, although our per-
formance estimation scheme covers the other parts as well. Our performance estimation is based
on the performance-oriented view, which we present as an abstract model of RAA architectures for
early performance estimation. The performance-oriented view has a set of array-level operations
defined with it, allowing for a more natural representation of RAA architectures as well as an easier
mapping of application loops for early performance estimation. We demonstrate the efficacy of our
technique through a set of experiments estimating the performance of multimedia applications on
three memory architectures. Our experimental results not only demonstrate the flexibility of our
memory architecture evaluation scheme but also show that the memory architecture can have quite
different effects on the application performance depending on the characteristics of the application,
signifying the need for memory architecture evaluation early in the design process.

The rest of the paper is organized as follows. In Section 2 we review some of the related work.
In Section 3 we briefly describe the target architecture model and present the performance-oriented
view of RAA architectures. In Section 4 we describe our performance estimation flow for media
applications, which is based on the performance-oriented view. In Section 5 we present our experi-
mental results using multimedia application benchmarks, and conclude the paper in Section 6.



� ����� ����

Coarse-grained reconfigurable architecture has become an area of active research recently, with
the increasing interest in reconfigurable computing in image and video applications [1], [11]. Lee
et al. [12] have proposed a generic reconfigurable architecture template called DRAA representing
a wide class of RAA architectures, for which a core mapping algorithm (placement and routing) has
also been developed for loops based on loop pipelining [13]. Weinhardt et al. [14] have proposed
loop pipelining technique to exploit the high degree of parallelism in reconfigurable hardware. In
loop pipelining, loops with loop-carried dependency are difficult to get pipelined and achieve high
throughput. To address this problem, Bondalapati [15] has proposed a technique called data con-
text switching, which can improve the throughput by exploiting local memory elements to store the
contexts. Maestre et al. [16] have provided another level of optimization for RAA architectures,
which considers task scheduling and configuration memory management to reduce the configura-
tion switch overhead.

Media applications have been extensively studied as they form a dominant workload in the com-
puter industry. Ienne et al. [17] have shown a limit study on the performance improvement of
media applications using the MediaBench application benchmark suite [18]. By incrementally re-
laxing the microarchitectural constraints of possible coprocessors (called ad-hoc functional units),
they show significant speedup of up to 6 times is possible. In their study they find that the ability
of ad-hoc functional units to access the data memory is a particularly critical architectural feature.
Another study [9] on media benchmarks also confirms the importance of memory accesses in me-
dia applications. In an attempt to characterize the media applications on the memory activity, they
have found the overall execution time of media applications has a good correlation with the amount
of temporary memory accesses, although the memory access instructions are less than a third of
the overall instruction mix. These studies point to the need as well as the feasibility of evaluating
memory architectures for media applications.

The importance of the memory architecture for media applications have been noted in the context
of CRAs as well. As CRAs increase the computation throughput by deep pipelining, it becomes
more important for the memory interface to provide an increased data rate to keep up with the com-
putation rate. For this, Herz [10] has presented efficient memory interface architectures that support
address generation and data sequencing for CRAs. Although they are very effective compared to
software solutions, there is no quantitative study or technique that allows for the rapid evaluation
of different options in organizing the memory subsystem of CRAs. In this paper, we address this
problem by providing a performance-oriented model of memory architectures and an evaluation
scheme for media applications on RAA architectures.

� ����� ��	�
�	��� ����

In this section we first describe the target architecture, the DRAA (Dynamically Reconfigurable
ALU Array). The DRAA represents a broad range of RAA architectures, facilitating compilation
as well as the design space exploration of RAA architectures. Next we present the performance-
oriented view of the DRAA, developed for early performance estimation.

3.1 DRAA: Generic Architecture Template

Figure 1 (a) illustrates the DRAA, a generic architecture template for RAA architectures. The
DRAA [12] serves as an architectural platform which defines, with a set of architectural parameters,



Registers
Context

uration
Cache

Config-

Reconfigurable Plane

Memory Interface

Memory

Main

Processor

Main

C Compilation
DRAA

Mapping
Conventional

Performance #

Partitioning

Application

Cycle Level Simulation

Parameters
Architectural

Binary & Configuration

(a) (b)

Figure 1. (a) DRAA: Generic architecture template for reconfigurable ALU array
(RAA) architectures, (b) simplified compilation and design space exploration flow.

DRAA

Interface

RA/RM

Interface

RM/P

P RARM

Memory

+

Processor

Main

Memory

Local

DRAA

Array

PE

Figure 2. Performance-oriented view of the DRAA architecture.

a class of RAA architectures that are typified by a regular ALU array datapath with a fast memory
interface. The architectural parameters include the following.

� the functionality of a PE, as a set of operation patterns supported with one configuration

� the size of the array (#rows and #columns)

� interconnect architecture, assuming all rows (columns) have the same architecture

� the memory interface for each column, assuming similar interface for all columns

The DRAA also provides a view for mapping upper abstraction layers (e.g., behavioral descrip-
tion of the application) to it, enabling development of mapping algorithms. Figure 1 (b) shows a
compilation flow highlighting the key steps. The partitioning step identifies kernels (critical loops
of the application) that may be mapped to the DRAA. Then the kernels are mapped onto the DRAA
using a DRAA mapping tool while the rest of the application is mapped using a traditional com-
piler. For the DRAA part, the mapping should take into account the architectural parameters, which
can be used for design space exploration. Once the binary code (for the main processor) and con-
figuration data (for the DRAA) are generated, one can verify the functionality and estimate the
performance through cycle-accurate simulation. For design space exploration, the performance
number can be used as a feedback to optimize the architecture and/or the application.



3.2 Performance-Oriented View

While the compilation/simulation flow in Figure 1 (b) can be used to accurately evaluate RAA
architectures for a given set of applications, there are problems with that approach. First, the compi-
lation for DRAAs is far from automated as in the compilation for general purpose processors; rather,
a typical approach to application mapping is based on manual effort and designers’ intuition. The
lack of an automated mapping flow with full optimization is an important difference distinguishing
RAAs from general purpose processors. Second, if the evaluation relies on repeated compilation
and simulation for every change in the architecture or the application, it would be nearly impossible
to explore the huge design space created by the numerous architectural options. Yet, to estimate
the performance we need to map the application to the architecture somehow, without the detailed
compilation.

To obtain early performance estimation without the detailed compilation, we identify performance-
critical parameters of the architecture in a model that can be easily related to applications. This is
well summarized in our performance-oriented view, an abstract model of the DRAA architecture
developed for early performance estimation. The performance-oriented view emphasizes on the
memory subsystem architecture, as RAA architectures often have specialized memory interfaces to
accelerate the large amount of memory operations for media applications. Also, it defines a set of
array-level operations that can be used to map application loops onto it, to generate performance
estimation results. This performance-oriented view can be used to represent a range of detailed
architectures including MorphoSys [4] and KressArray [5] for the purpose of performance estima-
tion.

3.2.1 Performance-Oriented View

The performance-oriented view (Figure 2) essentially provides a simplified view of detailed
memory architectures, identifying the performance-critical information (compare with detailed
memory architectures in Figure 4). This model has two components: the PE array (RA) and the
memory subsystem. The memory subsystem further consists of three components: the DRAA local
memory (RM), the RA/RM interface, and the RM/P interface (P stands for the processor-memory
subsystem).

� The RM represents the local data memory often present in the DRAA, which is crucial to re-
duce the memory access cycles (through data caching) for media applications. This memory
has a finite capacity, which will determine the amount of data caching.

� The RA/RM interface represents the memory interface of the PE array, typically with large
bandwidth. The RA/RM and the RM/P interfaces have generic array-level operations associ-
ated with them.

� The RM/P interface, which represents the main memory interface of the RM, often employs
the DMA (Direct Memory Access) capability.

Besides the parallel memory access and data caching (to exploit data locality), the memory sub-
system may offer hardware addressing support to the PE array. For deterministic memory accesses
(especially when dealing with stream data), the memory subsystem may be instructed to provide
data according to the scan pattern of the application, thus eliminating the need for the PE array to
generate addresses and requests to the memory subsystem. This type of addressing support can be
regarded as having AGUs (Address Generation Units) in RA/RM or RM/P interfaces, that support
a set of pre-defined scan patterns. Then the main processor can select a scan pattern in a similar
way to configuring the PE array.



Parameterization
Architecture

DRAA
Architecture

Performance Estimation

Application
Characterization

(Loops)
Application

Figure 3. DRAA performance estimation flow.

3.2.2 Array-Level Operation

Since typically only loops are mapped to the DRAA, the arithmetic operations performed by the
PE array are on arrays (or streams) of data. Similarly, the memory operations requested by the PE
array can also be seen at the array level. The RM/P and RA/RM interfaces define generic operations
at the array level to facilitate the mapping of application loops onto the architecture.

Each of the RM/P and RA/RM interfaces has two generic, array-level operations associated
with it. For instance, the RA/RM interface has two data transfer operations, i.e., from RM to RA
and from RA to RM. Also, each data transfer operation has parameters associated with it such
as the bitwidth and the number of data items to transfer, so that specific architectures can define
a performance estimation model (cycle count estimation rule) for each generic operation. These
generic operations can be used to map the memory access operations in the application, eventually
to generate the early performance estimation results.

� ��������	 ���
���
��

4.1 Estimation Flow

We now describe a performance estimation plan based on the performance-oriented view pre-
sented in the previous section. The estimation flow (Figure 3) has the three main steps listed below.

� Architecture Parameterization: For the given architecture, performance-critical parameters
identified in the performance-oriented view are captured. This includes annotating the performance-
oriented view with (1) its hardware capability such as the set of supported scan patterns and
(2) a cycle count estimation rule for each generic, array-level operation defined in the view.

� Application Characterization: Here, the application is a set of candidate loops, which may
be mapped to the DRAA. The application loops are analyzed into a series of array-level
operations that will be later mapped to operations in the performance-oriented view of the
DRAA.

� Performance Estimation: In this step, it is decided whether each loop can be executed (mapped)
on the DRAA by comparing the architecture-provided features with the application-required
features. If they are compatible, DRAA execution cycles are estimated, simply by matching
the operations of the loop with the operations of the architecture and applying the cycle count
estimation rules of the operations.



4.2 Architecture Parameterization

The given DRAA architecture is parameterized in two areas: the memory subsystem and the PE
array. For the configuration part, we assume that the initial configuration overhead (of a loop) does
not affect the final performance significantly, as it can be easily hidden by initiating the reconfigura-
tion early. However, the reconfiguration overhead due to the configuration switch during execution
of each loop can be significant and is considered in the PE array cycle count estimation. For the
cycle count estimation of the PE array, we use a simple statistical model based on the number of
operations, the number of iterations, and loop-carried dependency.

4.3 Application Characterization

From the application description, we extract the following information.1 We assume that con-
ditional operations (if-else constructs) are converted into data-dependent operations if the DRAA
architecture supports predication in the PE array.

� basic loop information: the repetition count and loop-carried dependency

� computation: the number of operations in the loop body (for the statistical model), whether
there is any special operators, etc.

� memory access: the number of data items (both loop-invariant and per-iteration), the scan
pattern, etc.

Assuming that the mapping is based on loop pipelining for high throughput, each loop can be
uniformly represented as having three parts: prolog, steady state, and epilog. The prolog includes
data transfers from the P to the RM and/or from the RM to the RA. This is where loop-invariant
data or look-up tables are also arranged before iterations start. The steady state can include all types
of data-transfers and computation operations for each iteration. Finally, the epilog includes the data
transfers back to the main memory.

4.4 Performance Estimation

The last step estimates the number of execution cycles of each loop on the DRAA and finds the
speedup over the software execution (on the main processor). It first decides whether a loop can be
mapped to the DRAA, by matching the features required by the loop with those supported by the
architecture. Next, if it is possible to map to the DRAA, it estimates the number of execution cycles
for the DRAA execution, by applying the cycle count estimation rules of each operation. The num-
ber of execution cycles for software execution can be estimated using conventional performance
estimation techniques or obtained directly through compilation and cycle-accurate simulation.

� �� �
����

In this section we demonstrate the efficacy of our early performance estimation scheme through
a set of experiments estimating the performance of multimedia applications on different memory
architectures.

1Currently, this step is done manually for each application; however, it is also possible to generate this information
automatically from the program description using compiler technologies.



5.1 Experimental Setup

To evaluate the effects of different memory architectures on the performance of media applica-
tions, we use three benchmarks (each with two modes) from the MediaBench benchmark suite [18]
as listed in Table 1. We compare three memory architectures which are illustrated in Figure 4. The
three architectures, differing only in the memory subsystem, are called A, B1, and B2. The mem-
ory architecture of A is similar to that of KressArray [5]. It features hardware address generation
support through Generic Address Generator (GAG) and Scan Window, which basically can provide
up to seven address sequences supporting a set of scan patterns. The memory architectures of B1
and B2 are similar to that of MorphoSys [4]. The difference of these from the architecture A is
that these architectures have much more efficient memory interface2 between the RA and the RM;
however, this interface requires that the data arrays are put in the frame buffer in the order that
they are used (scan pattern). Therefore, in the architectures B1 and B2, it may take more cycles to
transfer data from the main memory (M) to the RM because the arrays have to be put in order and
some data may be duplicated, resulting in an inefficient use of the memory.3

In B1 and B2, to arrange the data according to the application’s scan patterns may take a sig-
nificant amount of cycles if it is done by the main processor. In the architecture B1, either this is
done by the main processor or the loops exhibiting non-trivial scan patterns are not mapped to the
DRAA. The architecture B2 is an improved version of B1 by adding AGU capability to the DMA
unit that is already present in B1. We assume the set of scan patterns supported by the architecture
B2 is the same as that of the architecture A.

For our experiments, we assume that the three architectures have the same PE array, which
means they are equally capable in terms of performing arithmetic operations. For each architecture,
however, we varied the capability of the PE array as in the following.

� Base: PE array supports just the arithmetic operations.

� Predicate: Predication support is added to the PE array to be able to map conditionals (e.g.,
data-dependent if) within loops. This could be easily implemented by adding muxes in the
PE. The PE array size is still limited.

� Unlimited: There are enough number of PEs, so that the latency of the arithmetic operations
solely depends on the length of the longest chain of dependent operations. Special operators
(e.g., division) are also supported in one cycle.

Thus, in total nine architecture combinations are evaluated for each application. These experiments
not only enable us to see the variance due to the PE array but also demonstrate the capability of the
performance estimation framework to explore different architectural options in the DRAA.

2There are 16 parallel buses (each 8 bits) between the RA and the RM.
3In these experiments, however, the RM is assumed to have enough capacity.

Table 1. Benchmark applications

EPIC GSM MPEG2
Properties Enc Dec Enc Dec Enc Dec
#cycles on SH-3 78M 16M 240M 89M 2,205M 144M
#kernels 7 3 7 4 6 2
Exec time in kernels 87.7% 74.6% 78.9% 89.7% 81.9% 67.7%
Perf. imprv potential 8.1 3.9 4.7 9.7 5.5 3.1



PE

Array

SH-3

Memory)

(Local

RM

GAG

Wind
Scan

MoMbus

bus

C/E

Memory

Main

(a) Architecture A

DMAC/E

PE

Array

RM

(Frame

buffer)

Databus Only

bus

(Frame

buffer)

RM

Databus Only

DMA/
AGU

bus

C/EC/E

PE

Array

(b) Architecture B1 (c) Architecture B2

Figure 4. Three memory architectures, with the common main processor-memory
subsystem shown only in (a). ‘C/E’ and ‘DMA’ represent controllers for configura-
tion and execution, and direct memory access, for the attached hardware, respec-
tively.

The performance estimation procedure is as follows. First, we parameterized the three DRAA
architectures. For a fair comparison, we assumed the main memory access parameters are the same
for all the three cases. Second, we profiled the applications and partitioned the applications based on
the profiling results. Third, we ran the cycle-level simulation to get the number of execution cycles
of each kernel (and those mapped to the main processor) on the SH-3 processor [19]. Table 1
lists statistics after partitioning. Finally, we characterized the candidate loops and estimated the
performance according to the proposed estimation flow.

5.2 Results

Figure 5 summarizes the performance improvement results estimated for the six applications.
For each application, nine architecture combinations were evaluated: the three memory architec-
tures with the three levels of the PE array capability. Among the three levels of PE array capability,
the unlimited (the top of a bar) represents the case when the PE array capability is pushed to the
limit; therefore, this level of PE array capability may not be realistic in some cases. The perfor-
mance improvement estimates in the figure do not necessarily mean that they are the maximum
improvements possible with the DRAA for the application, since there are other factors affecting



EPIC/enc EPIC/dec GSM/enc GSM/dec MPEG2/decMPEG2/enc

Figure 5. Comparing performance improvement with the three architectures. Three
vertical bars plus dots per each application correspond to the three architectures,
A, B1, and B2, from left to right. Each vertical bar and dot represents the perfor-
mance improvement over all-software mapping: the bottom is for the base PE array,
dot for the predicate PE array, and the top for the unlimited PE array.

the performance as well. Partitioning, for example, can make a significant difference in the overall
performance improvements. In our experiments, we focus on the study of the effects of different
architectural options using a fixed partitioning, which generates relatively small number of kernels
for the sake of tractability in conducting the experiments.

From the results, we see that the capability of the PE array may play a big role in the overall
performance, although the cycle count estimates for the PE array may not be precise (being based on
a statistical model). In the figure, the distance between a dot and the bottom of a bar represents the
additional performance improvement due to the predication support in the PE array. In applications
such as GSM/enc, GSM/dec, and MPEG2/dec, we observe that the predication support is important
in boosting the performance with DRAAs. The distance between a dot and the top of a bar, on the
other hand, represents the additional performance improvement due to either the special operator
support or the unlimited size of the PE array. In EPIC/enc and EPIC/dec, it is due to the special
operator support (integer division) whereas in GSM/enc and GSM/dec, it is due to the unlimited
array size.

From the figure, we also note that there are significant variations in performance due to the dif-
ferent memory architectures in many applications. For instance, the performance improvement of
EPIC/enc application can be 1.01 times (almost no improvement with B1) to 2.65 times (with A) to
3.59 times (with B2), for the predicate PE arrays. The performance improvement difference be-
tween B1 and B2 is due to the AGU support added in the memory subsystem. In most applications
this difference is considerable, which points to the significant role of memory architecture capabil-
ity. Furthermore, even with the same AGU support in A and B2, there are significant variations in
performance for such applications as EPIC/enc, GSM/enc, MPEG2/enc, and MPEG2/dec. These
results show the importance of considering the memory architecture early in the design process.

Sometimes memory operations can be the most significant factor determining the performance.
This is most exemplified in such applications as MPEG2/enc and MPEG2/dec, where very little
improvement is observed even with the unlimited number of PEs, showing the dominant importance
of the memory subsystem architecture in those applications.



! "��	���
��

In this paper, we presented an early performance estimation scheme that is based on the performance-
oriented view of the DRAA architecture. The performance-oriented view, which can represent var-
ious memory architectures for performance estimation, provides a simplified view of the memory
subsystem of DRAA architectures. Since typically loops are mapped to the DRAA architecture,
the array-level operations, defined with the performance-oriented view, allow for an easy mapping
and performance estimation of application loops on the DRAA architecture. Although the perfor-
mance model needs to be calibrated against reference architectures for more accurate estimation,
our initial experiments using multimedia benchmarks comparing three memory architectures show
many interesting results and also demonstrate the flexibility of our memory architecture evaluation
scheme. An interesting result from our experiments is that the memory architecture can have quite
different effects on the application performance depending on the characteristics of the application,
which also highlights the need for memory architecture evaluation early in the design process.

����	�

[1] A. Bindra. Reconfigurable architectures chart a new course for DSPs. Electronic Design, August 5 2002.

[2] R. Hartenstein. A decade of reconfigurable computing: A visionary retrospective. In Proc. DATE, 2001.
[3] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia acceleration. In Proc. ISCA ’99, Atlanta,

pages 28–39, 1999.

[4] H. Singh et al. MorphoSys: An integrated reconfigurable system for data-parallel and computation-intensive appli-
cations. IEEE Trans. Computers, 49(5):465–481, May 2000.

[5] R. Hartenstein et al. Using the KressArray for configurable computing. In Proc. SPIE Vol. 3526, Configurable
Computing: Technology and Applications, pages 150–161, 1998.

[6] T. Miyamori and K. Olukotun. REMARC: Reconfigurable multimedia array coprocessor. In Proc. ACM/SIGDA
FPGA, page 261, 1998.

[7] V. Baumgarte et al. PACT XPP — A self-reconfigurable data processing architecture. In Proc. Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2001.

[8] P. Mannion and R. Wilson. Processor array alters approach to 3G basestations. EETimes, December 2 2002.
http://www.eetimes.com/story/OEG20021202S0059, last accessed Jan/30/2003.

[9] B. Lee and L. John. Implications of programmable general purpose processors for compression/encryption appli-
cations. In Proc. Application-Specific Systems, Architectures, and Processors (ASAP), 2002.

[10] M. Herz. High performance memory communication architectures for coarse-grained reconfigurable computing
systems. PhD thesis, Kaiserslautern University, Germany, 2001.

[11] Elixent gets cash to bring ALU array to market. Electronicstalk.com news, July 31 2001. http://www.electronicstalk.
com/news/exi/exi100.html, last accessed Jan/30/2003.

[12] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained reconfigurable architectures. IEEE D&T,
20:26–33, January/February 2003.

[13] J. Lee, K. Choi, and N. Dutt. An algorithm for mapping loops onto coarse-grained reconfigurable architectures.
Proc. ACM SIGPLAN Languages, Compilers, and Tools for Embedded Systems (LCTES), June 2003.

[14] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Trans. CAD, 20:234–248, February 2001.
[15] K. Bondalapati. Parallelizing DSP nested loops on reconfigurable architectures using data context switching. In

Proc. DAC, pages 273–276, 2001.

[16] R. Maestre et al. A framework for reconfigurable computing: Task scheduling and context management. IEEE
Trans. VLSI Systems, 9(6):858–873, 2001.

[17] P. Ienne et al. On the limits of processor specialisation by mapping dataflow sections on ad-hoc functional units.
Technical Report 01/376, Swiss Federal Institute of Technology Lausanne (EPFL), 2001.

[18] C. Lee et al. MediaBench: A tool for evaluating and synthesizing multimedia and communications systems. In
Proc. MICRO-30, pages 330–335, 1997.

[19] Hitachi, Ltd., http://www.hitachi-eu.com/hel/ecg/products/micro/pdf/sh7700p.pdf. SH-3/SH-3E/SH3-DSP Pro-
gramming Manual, 2000.


