Copy Elimination for Parallelizing Compilers *

David J. Kolson, Alexandru Nicolau, and Nikil Dutt

Dept. of Information and Computer Science, University of California, Irvine
Irvine, CA 92697, USA

Abstract. Techniques for aggressive optimization and parallelization of
applications can have the side-effect of introducing copy instructions,
register-to-register move instructions, into the generated code. This pre-
serves program correctness while avoiding the need for global search-
and-update of registers. However, copy instructions only transfer data
between registers while requiring the use of system resources (ALUs) and
are essentially overhead operations which can potentially limit perfor-
mance. Conventional copy propagation and copy removal techniques are
not powerful enough to remove these copies as, during loop paralleliza-
tion, the lifetimes of the values copied may span over loop boundaries. In
this paper, we present a technique for copy removal that incrementally
unrolls a loop body and re-allocates registers to values so that no copy
operations are required. We also present a heuristic version that limits
the amount of unrolling and present experimentation that demonstrates
the necessity of copy removal in gaining improved code performance.

1 Introduction

Optimizing compilers can generate many copy instructions, register-to-register
move instructions, both due to the aggressive application of program transfor-
mations as well as the compiler’s internal representation. “Classic” optimizations
such as common sub-expression elimination [1] and induction variable elimina-
tion [1] as well as more sophisticated techniques such as redundant load elimi-
nation [4,20], variable or register renaming [11,22] and variable lifetime splitting
[10], add copy instructions into the code in order to control compiler complexity
as the global search-and-replace of registers within instructions each time that
an optimization is performed is too costly.

Also, compilers which utilize a static single assignment (SSA) [12] internal
form, for instance, must honor the requirement that each variable be assigned
exactly once. This has the effect of breaking a variable’s lifetime into several
(shorter) lifetimes. A consequence of this is that, at join points in program flow,
intermittent values may need to be transferred from one temporary to another
(via the ¢-function), thus potentially generating copy instructions in the final
code.

* This work supported in part by ONR grant N000149311348 and ARPA grant
MDA904-96-C-1472.

S. Chatterjee (Ed.): LCPC’98, LNCS 1656, pp. 275-289, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

276 David J. Kolson et al.

In the generation of sequential code, copy propagation is typically applied as
a post-pass process to reduce/eliminate the number of copy instructions present
and, in some cases, may be implemented within a graph coloring register allo-
cator as the coloring of the source and target temporaries with the same color
allows the copy instruction to be removed. Compilers which seek to expose and to
exploit instruction-level parallelism (ILP) typically employ some of the same op-
timizations. Copy removal is then crucial to an ILP compiler as copy instructions
are essentially overhead instructions which require system resources (ALUs) to
execute!. Thus, the presence of copy instructions in the schedule represents a
negative impact to the attainable performance of parallel code. However, the so-
lutions available to sequential optimizing compilers: standard copy propagation
and node coalescing during graph coloring, are unavailable to an ILP compiler.

During scheduling [14,15,17,21] and software pipelining [2,13,18,24], when
iterations of a loop are overlapped, copy instructions potentially keep values live
over loop boundaries and serve to ‘queue’ values for future use. Thus, these copy
instructions are not amenable to removal via conventional copy propagation as,
in parallel code, multiple values generated by the same instruction (but from
different loop iterations) may be simultaneously live due to copy instructions
and simple copy propagation would lead to incorrect results.

Also, in the context of ILP compilers, where an integrated approach to in-
struction scheduling and register allocation [23,5,3] is necessary as: 1) an in-
struction scheduler requires accurate information on the resources required by
each instruction, and 2) resource re-allocation is necessary to reduce resource
contention, continually applying a graph coloring algorithm to the code is too
costly. Thus, approaches which rely on graph coloring to remove copy instruc-
tions by coalescing the source and target temporaries via coloring the respective
nodes the same color are inappropriate.

In this paper, a generalized technique for copy removal is presented. This
technique removes copy instructions that keep values live over loop iterations by
unrolling the loop code and re-allocating registers to instructions. As a result,
copies which preserve values within an iteration— “traditional” copies—are also
removed. Thus, this technique subsumes conventional copy propagation tech-
niques while providing a method for removing more advanced forms of copy
instruction chains. In the context of ILP compilers, this is particularly useful
as the realization of available ILP can be greatly reduced by copy instruction
occupation of system resources (ALUs).

2 Introductory Example

As an introductory example, consider the code in Figure 1(a) which will serve to
demonstrate how parallelization inserts copy instructions into code. In this exam-
ple, the value written into R0 in node M is used by the instruction R5 = R0 + 10

! Practically, a copy R1 = R2 would be performed by executing some instruction as
Rl =R2+0or Rl =R2<<0.

Copy Elimination for Parallelizing Compilers 277

4 A

RO=R1+R
Mem[Bi] = R6
R8=R3+ R4
R7=R6

RO=R1+R2
Mem[Bi] = R6

RO=R3+ R4
R5 = R0 + 10
R7 = Mem[Bi]

RO=R8
R5=R0+10

3 (b)

Fig. 1. Introducing copy instructions into the code.

in the next node?. During parallelization, the instruction R0 = R3 + R4 from
node N may not be moved into (i.e., executed in parallel with the instructions
of) node M as it redefines R0 and would cause incorrect values to be computed
by the instruction R5 = R0 + 10 in node N. If a free register exists (R8 in this
example), then the destination register of instruction R0 = R3 + R4 is renamed
and the new instruction, R8 = R3 + R4, is moved into node M. To maintain cor-
rectness, a copy instruction R0 = RS is necessary in node N to correctly move
the value from RS8 into R0, thereby compacting the code of (a) to that of (b).

Also, in node M, a value is stored® to the memory location B;. In node
N, this value is loaded from memory by the load instruction R7 = Mem|[B;].
Rather than re-loading the value from memory, the value stored to memory by
instruction Mem[Bi] = R6 can be directly copied. Thus, the load is removed,
resulting in the earlier availability of the value (i.e., the latency of the load is
removed), and the copy instruction R7 = R6 is added to node M.

In the previous example, simple copy propagation may be used to eliminate
the copies as the code is straight-line. However, during software pipelining when
multiple iterations of a loop are overlapped and optimizations are performed, the

2 Note that the value read by the instruction R5 = RO + 10 is that produced by the
instruction R0 = R1 + R2 in node M rather than the instruction R0 = R3 + R4 in
node N as, due to the machine model, all operands are read before any results are
written.

3 For simplicity, loads and stores are shown here symbolically. Typically, the address
is calculated into a register and analysis [4,20] is required to determine equivalency
in memory references.

278 David J. Kolson et al.

Loop Entrance

1:RA=R4* R6
R6 =R1

2: R1=Mem[A]

3: R2=Mem[B]

if (R7 < 100)
N

4: Mem[C] = RZ Loop Exit

5:R4=R6-R4

R6 =R0
RO=R2
6:R7=R7+1

Fig. 2. Loop code with copy instructions.

uses of copied values can span across iteration boundaries. Thus, conventional
copy propagation techniques [1] are not powerful enough to remove many of the
copies introduced during loop parallelization.

As an example, in Figure 2, several optimizations were applied during the
parallelization of a loop. As a result, several copy instructions are found in
this code*. Conventional copy propagation cannot remove any of these copy
instructions as those copies serve to keep values live over multiple iterations
of the loop. For instance, the copy R6 = R1 in node M cannot be removed
as it preserves a value loaded by R1 = Mem[A] from the previous iteration
(the previous execution of node M) and propagating R1 in place of R6 into
the following node (into the instruction R4 = R6 — R4) would result in the use
of an incorrect value (the newly loaded value from instruction #2 would be
incorrectly used rather than the previously loaded value). Thus, conventional
copy propagation is not adequate to remove these copies.

3 Related Work

Redundant memory instruction elimination [4,7,20] is a technique which min-
imizes the number of memory referencing instructions associated with array

4 Note that four ALUs and two memory units are necessary to execute this parallel
code, while, if copies were removed, only two ALUs and two memory units are
necessary.

Copy Elimination for Parallelizing Compilers 279

accessing. This technique will insert copy instructions into the schedule to elim-
inate a memory reference to a value which is already present in the register
set.

Static renaming [11,22] is a method utilized during scheduling to allocate “on-
the-fly” a currently unused memory location (register) when code optimization
is prohibited due to false (anti- and output-) dependencies. A copy instruction
is inserted to copy the generated value from the newly allocated register into the
original register.

In the context of register allocation by graph coloring, several researchers
[6,8,10,16] have addressed the problem of copy or move coalescing. Chaitin [8,9]
proposes to combine the source and target nodes thereby producing a single
node with the union of the interferences and removing the need for the move
instruction. Since the degree of the new node is now higher, this can complicate
the coloring process of the graph. Briggs et al. [6] have proposed a less aggressive,
heuristic coalescing scheme which improves the colorability of the graph, but
leaves copy instructions in the code. George and Appel [16] have extended Briggs’
heuristic approach to improve coalescing in the SML/NJ compiler.

Chow and Hennessy [10] improve the quality of the spill code produced by
a graph coloring allocator by splitting variable lifetimes at points in the code
where register pressure is high. This allows a higher degree of freedom when
coloring the graph, but requires move instructions when a variable’s lifetime is
not contained within the same register.

Another approach to register allocation for straight-line code is interval graph
coloring. In [19], the interval graph coloring solution is extended to register
allocation for loop graphs. In doing so, variable lifetimes are arbitrarily broken
at loop boundaries and when the lifetime segments cannot be colored with the
same color, copy instructions are necessary to transfer the value from one register
to another.

4 Eliminating Copy Instructions

Copies generated during parallelization do not produce new values but, rather,
preserve already computed values for future uses. In other words, multiple val-
ues produced in various iterations by an instruction are simultaneously live and
transferred from definition to last use by chains of copy instructions. Copies re-
lated to a specific copy chain cannot be removed without affecting the ‘queueing’
of values for use. As depicted in the code of Figure 3, which has been compacted
into one node, by unrolling the loop body sufficiently, the definition of a value
and its last use become explicit thereby eliminating the need for the copy chain
and, thus, enabling copy elimination®. In this example, the solution loop spans
three iterations of the original loop.

5 Once again, recall that, due to the machine model, all operands are read before any
results are written. Therefore, in the first node, for instance, the value “X” used by
A =X + B is that generated by the previous execution of that node.

280 David J. Kolson et al.

Origina Code Unrolled Code Copies Eliminated

Fig. 3. Unrolling loop code to eliminate copies.
4.1 An Algorithm for Copy Elimination

Figure 4 contains an algorithm which performs copy elimination on a loop. As
input, this algorithm takes a loop body or loop graph where each node contains
instructions which are executed in parallel and produces a new loop without copy
instructions which may span multiple iterations of the original (input) loop.

The first step of the algorithm is to compute the register mappings for each
node in the graph. The register mapping for a node represents the contents of the
registers immediately preceding the execution of that node and are derived similar
to program data-flow analysis. (An algorithm for this is presented shortly.)

At this point, a loop template, or copy of the loop with its register mappings,
is made and used for future reference. During copy elimination, the source regis-
ters of each instruction are looked up in this template to determine the tags for
the values they use in the original loop. As values may be re-allocated to regis-
ters during copy elimination, it may become necessary to update or to change
the source operands of some instructions. For instance, suppose the following is
the register mapping for a node in the loop template:

(RO, 10.1) (R1,9.0) (R2,7.0) (R3,10.0)

and the current instruction from that respective node in the current unrolling is
R2 = RO — R3 with a current register mapping of:

(RO, 9.0) (R1,10.0) (R2,7.0) (R3,10.1)

In the original loop, this instruction uses values 10.1 for the first argument and
10.0 for the second. During copy elimination when considering the instruction

Copy Elimination for Parallelizing Compilers 281

Procedure copy-elimination(L : loop)
Begin
/* compute initial register maps for L */
/* split nodes having multiple defs, recalc register maps */
/* make loop template */
/* add the header of L to the headers_list */
/* add all backedges found in L to backedges_list */
scan_and_reallocate (header_of(L));
While (not empty backedges_list) {
/* unroll along backedge b from backedges_list */
/* add new iteration headers and backedges to respective lists */
scan_and_reallocate (header);
/* match backedges to header nodes */

End copy-elimination

Fig. 4. An algorithm for copy elimination.

R2 = R0 — R3, these values (10.1 and 10.0) are looked up in the current register
mapping to find the registers which contain them. If the registers currently con-
taining those values are different from the source operands, the source operands
are updated as appropriate, as is the case here where the first argument must
be changed to R2 and the second argument becomes R1, thus, R2 = R3 — R1 is
the instruction for the copy eliminated code.

Once the register mappings are calculated and the loop template is made,
the header of the loop is added to a headers_list and all of the backedges of that
loop are added to the backedges_list. The headers_list is used to keep track
of all loop entry points to determine, after unrolling and copy elimination, if a
backedge may be directed to any previous header that has an identical register
mapping. The backedges_list is the list of loop iterative points along which an
iteration of the loop is to be unrolled.

While there are backedges to unroll along, the algorithm iterates over the
following steps: unroll the loop along that backedge; add the new header and
backedges to the respective lists; scan_and_reallocate() (discussed further) and,
finally, once copy elimination has been performed on the current unrolling, the
backedges of this loop iteration are checked against all headers in the headers_list.
Those backedges with register mappings that match the register mappings of an
iteration header are directed to the respective matching header while those with
no match are added to the backedges_list. The algorithm terminates once there
are no more backedges left.

Computing Register Mappings

Figure 5 contains an algorithm patterned after dataflow analysis which com-
putes the register mappings of a loop. To derive the mappings of a node, each
instruction in the node is considered. If the instruction is a copy, then a new
entry is made with the destination register and the value being copied.

282 David J. Kolson et al.

Procedure compute_register-maps (L : loop)
/* initialize all register maps to ¢ */
changes = true
while (changes) {
changes = false
add loop header to [
while (not empty 1) {
remove node, NN, from [
Rmaps = reg_map_of(N)
new_maps = copy(Rmaps)
Foreach operation, op, in N {
if (op is a copy)
(value.age) = lookup srcl_reg_of(op) in Rmaps
Add (dest_reg_of(op), value.age) to new_maps
else
Foreach map in new_maps with same id_of(op)
increment age
Delete all maps from new_maps with dest_reg_of(op)
Add (dest_reg_of(op), op-id_of(op).0) to new_maps
endif
}
For all successors, S, of N {
if (new_maps != reg_map_of(S))
changes = true
reg_map_of(S) = copy(new_maps)
endif
Add S tol

}
}

End compute_register_maps

Fig.5. An algorithm for computing register mappings.

If the instruction is not a copy, it defines a new value. An entry is added to
the register mapping annotated with the destination register of the instruction
and a tag of instruction identifier and 0 (zero signifies the birth of a value). Any
annotation in the mapping with the same instruction identifier will have its age
field incremented, as this value has become “older” by the generation of the new
value. Also, any entry with the destination register is now killed and deleted
from the mapping.

As an example of deriving the register mappings of a loop, the register map-
pings for the example of Figure 2 are derived in Table 1.
Scan-and-Reallocate
Figure 6 contains an algorithm for scanning a loop. This algorithm is similar
to the algorithm for computing register mappings as it is necessary when re-
allocating registers to instructions to keep track of the values in the registers.

Copy Elimination for Parallelizing Compilers 283

Tteration of Algorithm

Initially — 15¢ 2nd 374 no changes
(RO, 3.1)|(RO, 3.1)|(R0, 3.1)
Maps (R1, 2.0)|(R1, 2.0)|(R1, 2.0)|(R1, 2.0)
At 10) (R2, 3.0)|(R2, 3.0)|(R2, 3.0)|(R2, 3.0)
Point P (R4, 1.0)|(R4, 1.0)|(R4, 1.0)|(R4, 1.0)
(R6, 2.1)|(R6, 2.1)
(RO, 3.0)|(R0, 3.0)|(R0, 3.0)|(R0, 3.0)
Maps (R1, 2.0)|(R1, 2.0)|(R1, 2.0)
At 10) (R4, 5.0)|(R4, 5.0)|(R4, 5.0)|(R4, 5.0)
Point Q (R6, 3.1)|(R6, 3.1)|(R6, 3.1)
(R7, 6.0)|(R7, 6.0)|(R7, 6.0)|(R7, 6.0)
Table 1. Register mappings for the code of Figure 7?7

Procedure Scan_and_Reallocate(L : loop)
/* initialize all register maps to ¢ */
reg-map_of(header) = /* output map of backedge */
add loop header to [
while (not empty 1) {
remove node, N, from [
Rmaps = reg_map_of(N)
new_maps = copy(Rmaps)
Foreach operation, op, in N
if (op is a copy)
Remove op
else
Update_Args(op)
if (dest_reg-of(op) € Rmap and live)
dest_reg_of(op) = get free register
Delete all maps from new_maps with dest_reg_of(op)
Add (dest_reg_of(op), (op-id_of(op), 0)) to new_maps
endif
For all successors, S, of N {
reg_map_of(S) = copy(new_maps)
Add S tol
}

End scan_and_reallocate

Fig. 6. An algorithm for removing copies and updating register usages.

284 David J. Kolson et al.

Initially, the register maps are initialized to ¢ and the entry register mapping
to the loop is the register mapping found at the end of the previous iteration,
or that found along the backedge unrolled upon. As the loop nodes are scanned,
if an instruction is a copy, it is removed from the node. If not, the arguments
to the instruction are updated as registers are re-allocated and the appropriate
values may not still be in the used registers. Updating entails look-up of the
sources in the loop template to determine the referenced values; those values are
then found in the current mapping to obtain the register that currently contains
the appropriate value(s). It might be necessary to re-allocate the destination
of this instruction if that register contains a live value. Finally, values killed
by this instruction are removed and an annotation is added for the processed
instruction.

4.2 Heuristic Copy Elimination

Possibly the most noticeable feature of our copy elimination algorithm is that
the final loop solution spans multiple iterations of the original loop in order to
make value definitions and uses explicit. In some cases, it may not be desirable to
unroll the loop for the necessary number of iterations. In this case, the algorithm
may be parameterized with the maximal number of iterations to unroll. However,
when this threshold value is reached, it is not guaranteed that the backedges for
that unrolling depth will match any of the previous iteration headers. When the
threshold is reached, a simple strategy may be employed to match backedges to
headers so that a minimal number of copy instructions is introduced.

4.3 An Example

As an example, copy elimination is performed on the loop code of Figure 2 with
the initial register mappings from Table 1.

The copy elimination algorithm applies the scan_and_realloc() procedure to
the first iteration of the loop. As node Mj is scanned, the first instruction con-
sidered is R4 = R4 — R6. The procedure update_args() looks up this instruction
in the loop template and determines that argument one is the value (5.0) and
argument two is the value (3.1). These values, (5.0) and (3.1), are looked up
in the current register mapping (the register mapping found at point I in Fig-
ure 7) and are currently found in the registers R4 and R6, respectively. Since
these values are already referenced in the appropriate registers, no changes to
the instruction’s operands are made. Since this is the last use of the value (5.0),
contained in register R4, a new register is not needed for the destination register
of the instruction. Lastly, an entry is made in the current register mapping of
(R4, (1.0)).

The next instruction is the copy instruction R6 = R1 and is removed from
the code. The next instruction, R1 = Mem[A], is examined and is found to
contain a live value (i.e., a value that is used beyond this node). Thus, a call to
get_free_register() is necessary to re-allocate a register to the destination of this
instruction. In this case, the function call returns the register R2 as the value

Copy Elimination for Parallelizing Compilers 285

Code Register Mappings
Loop Entrance
(RO, 3.0)
| (R1, 2.0)
(R2, 2.1)
T onx (R4, 5.0)
1:R4=R4* R6 (R6. 3.1)
M, 2: R2 = Mem[A]
3: R6 = Mem([B]
if (R7 < 100) Loop Exit
(RO, 3.1)
(R1, 2.1)
(R2, 2.0)
(R4, 1.0)
4: Mem[C] = R4 (R6, 3.0)
N, 5:R4=R1-R4
6:R7=R7+1
N) (RO, 3.1)
0, (R1, 2.1)
(R2, 2.0)
e onx (R4, 5.0)
1: R4=R4* RO (R6. 3.0)
M, 2: R1=Mem[A]
3: RO=Mem[B]
if (R7 <100) Loop Exit
(RO, 3.0)
(R1, 2.0)
(R2, 2.1)
(R4, 1.0)
4: Mem[C] = R4 (R6, 3.1)
Ny 5:R4=R2-R4
6:R7=R7+1
(RO, 3.0)
K (R1, 2.0)
N (R2, 2.1)
To-e— (R4, 5.0)
Q (R6, 3.1)

Fig. 7. Unrolling loop code to eliminate copies.

286 David J. Kolson et al.

it contains, (2.1) becomes dead in this node®. Thus, R1 = Mem|[A] becomes
R2 = Meml[A].

When node Ny is scanned, the argument to instruction Mem|[C] = R4 is
checked in the loop template. This instruction uses R4 which contains the value
(1.0) at point P. In the current register mapping, R4 contains this value, so
no updating takes place. The next instruction is R4 = R6 — R4 and uses the
values (2.1) and (1.0), as source values, respectively. In the current mapping,
those values are contained in R1 and R4, respectively. As the value (1.0) dies,
the destination register of this instruction does not require updating. The next
two instructions, R6 = RO and R0 = R2, are copies and are removed. Finally,
the last instruction requires no updating, leaving the code found in node Ny of
Figure 7.

This process continues and the derived mapping at @; is found to match that
at the loop top (point I), so the algorithm converges and the new loop spans
two iterations of the original loop, containing no copies.

5 Experiments and Results

We conducted experiments on a suite of benchmarks which consisted of 11 nu-
merical and scientific codes to study the effects of copy elimination on perfor-
mance. Latencies given to our parameterized scheduler are one cycle for copy
operations, two cycles for add/subtract operations, three cycles for multiply op-
erations and three cycles for memory accessing operations. For functional unit
constraints, two add/subtract units, one multiply and a single-ported memory
which can handle only one request at a time, were used.

For each benchmark, three schedules were generated: the first schedule con-
tained copy operations, the second schedule utilized our copy elimination al-
gorithm and the third used a heuristic version with the maximum number of
iterations, three. From these schedules performance measures were made. These
performance improvement measures are with respect to sequential execution of
the code and are measured as:
cyclesseq

SU =

cyclespar

Thus, in our tables, columns labeled with “copies” refers to the speed-up of
parallelized code which contains copy operations; “no copies” refers to the speed-
up of parallelized code with copy elimination; and “heur” refers to the speed-up
of parallelized code with the heuristic version of copy elimination. Percentage
improvement (% Improvement) is the percentage improvement of the schedules

® When the instruction R1 = Mem|[A] generates a new value, it will cause all other
values in the register mapping with the same identifier to become “older” (i.e., the
age value increases). Thus, the value in R1, (2.0), will become (2.1) and the value in
R2, (2.1), will become (2.2). As the value (2.2) is never used, the register containing
that value is free for re-allocation in this node.

Copy Elimination for Parallelizing Compilers 287

with copies eliminated versus the schedules that contain copies and is measured

as:
SUnocopies - SUcopies

SUcopies

Impr = x 100

Our observed performance results on the benchmark suite are contained in
Table 2 for codes with no copy elimination and codes where copies were removed.
In all cases, copy elimination increased the performance of the parallelized code
with percentage improvements ranging from 11% to 72%.

Table 2. Observed speed-up on benchmark suite.

Benchmark copies|no copies|% Impr
2D-Hydro exerpt 1.27 | 1.99 57%
Cholesky Conj. Grad.|| 1.47 1.81 23%
Tri-diagonal Elim. 1.38 | 2.20 59%
GLR 1.61 1.79 11%
State Equations 1.11 1.91 72%
Partial Diff. Solver 1.48 1.99 34%
Integrator Pred. 1.05 1.56 49%
Difference Pred. 1.20 1.98 65%
Partial sum (scan) 1.80 | 2.25 25%
Difference sum 1.50 1.93 29%
2D Particle 1.70 1.90 12%

Table 3 contains the observed performance results on the benchmark suite
for code with copy elimination and codes with heuristic copy elimination with
an unrolling bound of three iterations. Also noted in the table is the number of
iterations spanned by the optimal (i.e., no bounds on unrolling) copy elimination
codes. In some cases, the heuristic version was able to derive the same solution
as the optimal and in other cases derived solutions with results which are close
to the optimal. It should be noted that, even though the optimal solutions span
more iterations, the number of iterations spanned is not prohibitive.

6 Conclusion

Aggressive code motion and program optimization techniques, necessary for ex-
ploiting the parallelism inherent in application code, can have the side-effect of
introducing many copy instructions—register-to-register move instructions, into
the parallel code. These copies are necessary overhead for reducing compiler
complexity, but their presence in the final code represents a hindrance to high
performance as they consume functional resources, but perform no significant
computation. In order to improve the attainable performance, copy elimination
is necessary. This paper presents a technique which eliminates all copy instruc-
tions from parallel code by unrolling and remapping registers to values. As the

288

David J. Kolson et al.

Table 3. Speed-up of copy elimination and heuristic.

Benchmark no copies|heur|# Iters
2D-Hydro exerpt 1.99 [1.89| 4
Cholesky Conj. Grad. 1.81 |1.81 3
Tri-diagonal Elim. 2.20 |1.92 5
GLR 1.79 |1.70| 4
State Equations 1.91 [1.91 3
Partial Diff. Solver 1.99 |1.88 5
Integrator Pred. 1.56 |1.56 3
Difference Pred. 1.98]1.98 3
Partial sum (scan) 225 |1.99| 4
Difference sum 1.93 |1.80 4
2D Particle 1.90 |1.83 4

increase in code size may be a consideration, a heuristic version is presented
which bounds the amount of loop unrolling performed. Experimentation with
a suite of benchmarks demonstrates that significant performance improvements

are

possible by eliminating copy instructions.

References

1.

2.

A. H. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley,Reading, Massachusetts, 1986. 275, 275, 278

A. Aiken and A. Nicolau. Perfect Pipelining: A New Loop Parallelization Tech-
nique. Proc. of the 1988 European Symp. on Programming, March 1988. 276

D. A. Berson, P.Chang, R. Gupta, and M. L. Soffa. Integrating Program Optimiza-
tions and Transformations with the Scheduling of Instruction Level Parallelism.
Proceedings of the International Workshop on Languages and Compilers for Par-
allel Computing, pages 207-221, August 1996. San Jose, California. 276

R. Bodik and R. Gupta. Array Data Flow Analysis for Load-Store Optimizations
in Superscalar Architectures. Proceedings of the International Workshop on Lan-
guages and Compilers for Parallel Computing, August 1995. 275, 277, 278

D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating Register Allocation and
Instruction Scheduling for RISCs. Proceedings of SIGPLAN Architectural Support
for Programming Languages and Operating Systems, 26(4), April 1991. 276

P. Briggs, K. D. Cooper, and L. Torczon. Improvements to Graph Coloring Register
Allocation. ACM Transactions on Programming Languages and Systems, 16(3),
May 1994. 279, 279

D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Improving Bal-
ance for Pipelined Architectures. Proceedings of the International Conference on
Parallel Processing, 1987. 278

G. Chaitin. Register Allocation and Spilling Via Graph Coloring. Proc. of SIG-
PLAN Symp. on Comp. Const., 176, June 1982. 279, 279

G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein.
Register Allocation Via Coloring. Computer Languages, 6:47-57, January 1981.
279

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Copy Elimination for Parallelizing Compilers 289

F. Chow and J. Hennessy. The Priority-Based Coloring Approach to Register Al-
location. ACM Transactions on Programming Languages and Systems, 12(4):501—
536, October 1990. 275, 279, 279

R. Cytron and J. Ferrante. What’s in a name? The value of renaming for parallelism
detection and storage allocation. Proceedings of the Internation al Conference on
Parallel Processing, August 1987. 275, 279

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Transactions on Programming Languages and Systems, 13(4):451-490, Oc-
tober 1991. 275

K. Ebcioglu. Compilation Technique for Software Pipelining of Loops with Condi-
tional Jumps. 20th Annual Workshop on Microprogramming, 1987. 276

J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale Univer-
sity, 1985. 276

J. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE
Trans. on Comp., C-30(7), July 1981. 276

L. George and A. W. Appel. Iterated Register Coalescing. ACM Transactions on
Programming Languages and Systems, 18(3):300-324, May 1996. 279, 279

J. R. Goodman and W.-C. Hsu. Code Scheduling and Register Allocation in Large
Basic Blocks. International Conference on Supercomputing, 1988. 276

T. Gross and M. S. Lam. Compilation for High-Performance Systolic Array. Pro-
ceedings of the Symposium on Compiler Construction, 1986. 276

L. J. Hendren, G. R. Gao, E. Altman, and C. Mukerji. A Register Allocation
Framework Based on Heirarchical Cyclic Interval Graphs. International Conference
on Compiler Construction, pages 176-191, April 1992. Paderborn, Germany. 279
D. J. Kolson, A. Nicolau, and N. Dutt. Elimination of Redundant Memory Traffic
in High-Level Synthesis. IEEE Transactions on the Computer Aided Design of
Integrated Circuits and Systems, pages 1354-1364, November 1996. 275, 277, 278
A. Nicolau. Uniform Parallelism Exploitation in Ordinary Programs. Proceedings
of ICPP, August 1985. 276

A. Nicolau, R. Potasman, and H. Wang. Register Allocation, Renaming and Their
Impact on Fine-Grain Parallelism. jth Int. Wksp on Lang. and Comp. for Par.
Comp., 1991. 275, 279

S. S. Pinter. Register Allocation with Instruction Scheduling : A New Approach.
SIGPLAN PLDI, 1993. 276

B. R. Rau and C. D. Glaeser. Some Scheduling Techniques and An Easily Schedula-
ble Horizontal Architecture for High Performance Scientific Computing. Micro-14,
June 1981. 276

	Introduction
	Introductory Example
	Related Work
	Eliminating Copy Instructions
	An Algorithm for Copy Elimination
	Heuristic Copy Elimination
	An Example

	Experiments and Results
	Conclusion

