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Abstract

As embedded systems continue to face increasingly
higher performance requirements, deeply pipelined proces-
sor architectures are being employed to meet desired system
performance. Validation of such processor architectures is
one of the most complex and expensive tasks in the current
Systems-on-Chip design process. A significant bottleneck in
the validation of such systems is the lack of a golden refer-
ence model. This paper presents an Architecture Descrip-
tion Language (ADL) driven methodology for generating
golden reference model. We use EXPRESSION ADL to cap-
ture the structure and behavior of the processor. The synthe-
sizable Register Transfer Language (RTL) description of the
architecture is generated from the ADL specification. The
generated RTL description is used as a golden reference
model for verifying the correctness of the implementation
using equivalence checking. We applied our methodology
on a RISC DLX architecture to demonstrate the usefulness
of our approach.

1 Introduction

Validation of programmable embedded systems is one
of the most complex and expensive tasks in the current
Systems-on-Chip design process. Traditionally, architects
prepare an informal specification of the microprocessor in
the form of an English document. The logic designers
implement the processor using Hardware Description Lan-
guage (HDL). The validation engineers verifies the im-
plementation using combination of simulation techniques
and formal methods. A significant bottleneck in the val-
idation of such systems is the lack of a golden reference
model. Thus, many existing techniques ([14], [24]) em-
ploy a bottom-up approach to processor validation, where
the functionality of an existing pipelined architecture is, in
essence, reverse-engineered from its implementation. Our

validation technique is complementary to these bottom-
up approaches. Our approach leverages the system archi-
tect’s knowledge about the behavior of the pipelined archi-
tecture, through Architecture Description Language (ADL)
constructs, and thus allows a powerful top-down approach
to architecture validation.

Figure 1 shows a traditional language-driven design
space exploration flow. Given a set of application programs,
the goal is to find out the best possible architecture in a
reasonable amount of time. The programmable embedded
system (processor, coprocessor, and memory subsystem) is
captured using an ADL. The ADL specification of the ar-
chitecture is used to generate a software toolkit (including
compiler, simulator, and assembler), and provide feedback
to the designer on the quality of the architecture.
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Figure 1. Language driven Design Space Exploration

An extensive body of recent work addresses ADL driven
software toolkit generation and design space exploration
for processor-based embedded systems, in both academia:
ISDL [11], Valen-C [1], MIMOLA [19], LISA [39], EX-
PRESSION [12], nML [10], and industry: ARC [4], Axys
[5], RADL [31], Target [36], Tensilica [37], MDES [38].

This paper presents an ADL driven methodology for ver-
ifying the correctness of the implementation using equiva-
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lence checking. The architecture is captured in EXPRES-
SION ADL [12]. The synthesizable HDL is generated from
the ADL specification. The generated HDL description is
used as a golden reference model during equivalence check-
ing. We applied our methodology on a RISC DLX architec-
ture to demonstrate the usefulness of our approach.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the equivalence checking technique.
Section 3 presents related work addressing validation of
pipelined processors. Section 4 presents our ADL-driven
equivalence checking framework followed by a case study
in Section 5. Finally, Section 6 concludes the paper.

2 Equivalence Checking

Equivalence Checking is a branch of static verification
that employs formal techniques to prove that two versions
of a design either are, or are not, functionally equivalent.
This technique is primarily used to verify that a hardware
implementation modified due to design transformations is
functionally equivalent to the original implementation. The
original design is assumed to be correct and known as the
reference (golden) design. The modified design that needs
to be verified against the reference design, is known as the
implementation. The equivalence checking flow consists of
four stages: read, match, verification and debug. The match
and verification stages are those most impacted by design
transformations [40].

During the read stage, both versions of the design are
read by the equivalence checking tool and segmented into
manageable sections called logic cones. Logic cones are
groups of logic bordered by registers, ports, or black boxes.
Figure 2(a) shows the cones for a typical design block. The
output border of a logic cone is referred to as the compare
point. For example, OUT1 is the compare point in Cone1 of
Figure 2(a).

In match phase, the tool attempts to match, or map, com-
pare points from the reference (golden) design to their cor-
responding compare point within the implementation de-
sign [3]. Two types of matching techniques are used: non-
function (name-based) and function-based (signature anal-
ysis). Figure 2(b) shows compare point matching for a typi-
cal reference design and implementation. For better perfor-
mance, the majority of the matching should be completed
by more efficient name-based methods. Design transfor-
mations can result in fewer cones being matched by the
name-based techniques, slowing match performance. Creat-
ing compare rules assist name-based techniques, but deter-
mination and creation of the rules themselves can be time
consuming. If the implementation is drastically different
than the reference design, design rules cannot be written
and compare points will have to be manually matched for
better performance or matched using more costly function-

based techniques. This becomes impractical for design with
many unmatched points.
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b) Compare Point Matching

a) Logic Cones in a Design Block
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Figure 2. Matching of Compare Points between Designs

During the verification stage, each matched compare
point is proven either functionally equivalent or non-
equivalent ([9], [21]). Design transformations can impact
the structure of a logic cone within the implementation de-
sign. When logic cones are very dissimilar, performance
suffers. In some cases, such as during retiming, the logic
cones can change so significantly that additional setup is re-
quired to successfully verify the designs.

The debug phase begins when the tool has returned a non-
equivalent result. Design transformations that have not been
accounted for can lead to a false negative result, and valu-
able time could be spent debugging designs that are, in real-
ity, equivalent. The solution would be to perform additional
setup so that the tool is guided for the given designs.

3 Related Work

Several approaches for formal or semi-formal verifica-
tion of processors have been developed in the past. The-
orem proving techniques, for example, have been success-
fully adapted to verify pipelined processors ([8], [29], [30],
[33]). However, these approaches require a great deal of
user intervention, especially for verifying control intensive
designs. Hosabettu [15] proposed an approach to decom-
pose and incrementally build the proof of correctness of
pipelined microprocessors by constructing the abstraction
function using completion functions.

Burch and Dill presented a technique for formally veri-
fying pipelined processor control circuitry [6]. Their tech-
nique verifies the correctness of the implementation model
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of a pipelined processor against its Instruction-Set Architec-
ture (ISA) model based on quantifier-free logic of equality
with uninterpreted functions. The technique has been ex-
tended to handle more complex pipelined architectures by
several researchers [32, 41, 42]. The approach of Velev and
Bryant [41] focuses on efficiently checking the commuta-
tive condition for complex microarchitectures by reducing
the problem to checking equivalence of two terms in a logic
with equality, and uninterpreted function symbols.

Huggins and Campenhout verified the ARM2 pipelined
processor using Abstract State Machine [16]. In [20], Levitt
and Olukotun presented a verification technique, called un-
pipelining, which repeatedly merges last two pipeline stages
into one single stage, resulting in a sequential version of
the processor. A framework for microprocessor correctness
statements about safety that is independent of implementa-
tion representation and verification approach is presented in
[2].

Ho et al. [24] extract controlled token nets from a
logic design to perform efficient model checking. Jacobi
[17] used a methodology to verify out-of-order pipelines
by combining model checking for the verification of the
pipeline control, and theorem proving for the verification of
the pipeline functionality. Compositional model checking
is used to verify a processor microarchitecture containing
most of the features of a modern microprocessor [18].

The existing techniques attempt to formally verify the im-
plementation of processors by comparing the pipelined im-
plementation with its sequential (ISA) specification model,
or by deriving the sequential model from the implementa-
tion. Our validation technique is complementary to these
approaches. We generate synthesizable RTL from the ADL
specification and use it as a golden reference model for ver-
ifying the correctness of the implementation using equiva-
lence checking.

The industrial strength equivalence checkers (Formality
[34], FormalPro [22], eCheck [28], Affirma [7], Conformal
[43]) are traditionally used to check equivalence between
RTL and gate level designs. It assumes that the original
RTL design is golden and verifies the modified design (e.g.,
modified RTL or gate level design). Our technique is com-
plementary to this methodology. Our technique ensures that
the original RTL design is golden.

4 ADL-driven Validation Framework

Figure 3 shows our ADL driven validation framework.
System architects develop the architecture specification
document. Logic designers implement the modules to gen-
erate RTL Design. The first step is to specify the architec-
ture in EXPRESSION ADL [12]. It is necessary to validate
the ADL specification to ensure that the architecture is well-
formed ([23], [26]). The synthesizable hardware model of

the architecture is generated from the ADL specification.
The hardware model is used as a golden reference model to
verify the hand-written RTL Design. We use Formality [34]
to check the equivalence between the hand-written RTL De-
sign and the generated hardware model.
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Figure 3. ADL driven Validation Framework

First, we briefly describe the EXPRESSION ADL fol-
lowed by a description of the ADL-driven synthesizable
HDL generation technique. Finally, we present a case study
to validate DLX architecture using the generated reference
model.

4.1 The EXPRESSION ADL

The EXPRESSION ADL allows automatic software
toolkit generation and design space exploration of a wide
range (DSP, VLIW, EPIC, Superscalar) of processors and
memory subsystems. We briefly describe the key aspects
of the ADL in this section. The complete reference of the
language is provided in [12].

The EXPRESSION ADL captures the structure, behav-
ior, and mapping (between structure and behavior) of the
programmable architecture as shown in Figure 4.

The structure of a processor can be viewed as a graph
with the components as nodes and the connectivity as the
edges of the graph. It considers four types of compo-
nents: units (e.g., ALUs), storages (e.g., register files),
ports, and connections (e.g., buses). There are two types of
edges: pipeline edges and data transfer edges. The pipeline
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edges specify instruction transfer between units via pipeline
latches, whereas the data transfer edges specify data trans-
fer between components, typically between units and stor-
ages or between two storages. Each component has a list of
attributes. For example, a functional unit has information
regarding latches, ports, connections, opcodes, timing and
capacity.

Operations Specification

Operation Mappings Memory Subsystem

Pipeline/Data-transfer Paths

Architecture Components

Instruction Specification

Behavior Specification Structure Specification

EXPRESSION

Figure 4. The EXPRESSION ADL

The behavior is organized into operation groups, with
each group containing a set of operations having some com-
mon characteristics. Each operation is then described in
terms of it’s opcode, operands, behavior, and instruction for-
mat.

The mapping functions map components in the structure
to operations in the behavior. It defines, for each functional
unit, the set of operations supported by that unit (and vice
versa). For example, the operation add is mapped to ALU
unit.

4.2 Synthesizable HDL Generation

The functional abstraction technique was first introduced
by Mishra et al. [25] for generating simulation models for a
wide variety of architectures. In this paper we have used the
functional abstraction technique to automatically generate
synthesizable VHDL models from the ADL specification.
In fact, there is a direct relationship between generating a
simulator and a hardware model: the synthesizable VHDL
model is itself a simulator.

The generated HDL description consists of three ma-
jor parts: instruction decoder, data-path, and control logic.
We have implemented all the generic functions and sub-
functions using VHDL. In this section we briefly describe
how to generate three major components using the generic
VHDL models. The detailed description is available in [27].

Instruction Decoder

We have implemented a generic instruction decoder that
uses information regarding individual instruction format
and opcode mapping for each functional unit to decode
a given instruction. The instruction format information
is available in operations section of the EXPRESSION

ADL. The decoder extracts information regarding opcode,
operands etc. from input instruction using the instruction
format. The mapping section of the ADL captures the infor-
mation regarding the mapping of opcodes to the functional
units. The decoder uses this information to perform/initiate
necessary functions (e.g., operand read) and decide where
(pipeline latch) to send the instruction.

Data Path

The implementation of datapath consists of two parts.
First, compose each component in the structure. Second,
instantiate components (e.g., fetch, decode, ALU, LdSt,
writeback, branch, caches, register files, memories etc.) and
establish connectivity using appropriate number of pipeline
latches, ports, and connections using the structural informa-
tion available in the ADL. To compose each component in
the structure we use the information available in the ADL
regarding the functionality of the component and its pa-
rameters. For example, to compose an execution unit, it is
necessary to instantiate all the opcode functionalities (e.g,
ADD, SUB etc. for an ALU) supported by that execution
unit. Also, if the execution unit is supposed to read the
operands then appropriate number of operand read function-
alities need to be instantiated unless the same read function-
ality can be shared using multiplexors. Similarly, if this ex-
ecution unit is supposed to write the data back to register
file, the functionality for writing the result needs to be in-
stantiated. The actual implementation of an execution unit
might contain many more functionalities e.g., read latch,
write latch, and insert/delete/modify reservation station (if
applicable).

Control Logic

The controller is implemented in two parts. First, it
generates a centralized controller (using generic controller
function with appropriate parameters) that maintains the
information regarding each functional unit, such as busy,
stalled etc. It also computes hazard information based on
the list of instructions currently in the pipeline. Based
on these bits and the information available in the ADL it
stalls/flushes necessary units in the pipeline. Second, a lo-
cal controller is maintained at each functional unit in the
pipeline. This local controller generates certain control sig-
nals and sets necessary bits based on input instruction. For
example, the local controller in an execution unit will acti-
vate the add operation if the opcode is add, or it will set the
busy bit in case of a multi-cycle operation.

5 A Case Study

In a case study we successfully applied the proposed
methodology on the DLX [13] processor. We have chosen
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DLX processor since it has been well studied in academia,
and there are HDL implementations available that can be
used in our validation framework. We have used the synthe-
sizable 32-bit RISC DLX implementation from University
of Stuttgart [35].

The EXPRESSION ADL captures the structure and be-
havior of the DLX architecture. The ADL specification
is validated to ensure that the architecture is well-formed
([23], [26]). Synthesizable HDL models are generated from
this specification. The generated HDL description is used
as a reference model. The RISC DLX from University of
Stuttgart [35] is used as an implementation. We have used
Synopsys Formality equivalence checker [34] to verify the
implementation against the generated golden RTL.

The basic idea is simple. Irrespective of the implementa-
tion style, the equivalence checker will be able to verify the
design based on the correct behavior in the reference model.
For example, our HDL generation framework generates 32-
bit adder module that uses carry-look-ahead principle. The
equivalence checker [34] will return success for the correct
32-bit adder implementation that uses ripple-carry adder
principle. The equivalence checking process took four sec-
onds for this adder example on a 296 MHz Sun Ultra-250
with 1024M RAM.

Similarly, we generated structural model of a 32x32
register-file and used it as a reference model to verify the
behavioral register-file implementation of the RISC DLX
[35]. The equivalence checking process took 432 seconds
for this example on a 296 MHz Sun Ultra-250 with 1024M
RAM. The majority of this time (347 seconds) is spent in
the elaboration (linking) phase of the behavioral implemen-
tation.

Our framework generated synthesizable RTL for 32-bit
RISC DLX that supports signed operations. We guided
the RTL generation process to have similar structure as in
the implementation [35]. The equivalence checking process
took 397 seconds on a 296 MHz Sun Ultra-250 with 1024M
RAM.

6 Summary

We have presented an architecture description language
driven validation framework for microprocessors. The EX-
PRESSION ADL captures the structure and the behavior of
the architecture. The synthesizable HDL description is gen-
erated from the ADL specification using the functional ab-
straction technique. The generated HDL description is used
as a golden reference model to verify the correctness of the
implementation using equivalence checking. We applied
our methodology on a RISC DLX architecture to demon-
strate the usefulness of our approach.

Currently, we are able to verify designs where the ref-
erence model has similar structure as the implementation.

Our future work will focus on improving this methodology
for verifying designs without prior knowledge of the imple-
mentation style.
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