
Yes

No
Decode

Application
Binary Fetch ExecuteDecoded? Update

cache

Instruction
Decoder

Equivalent
source code

C++
Compiler

Application Binary

Executable
on Host

Init. Exec.

Run TimeCompile Time

Reducing Compilation Time Overhead in Compiled Simulators

Mehrdad Reshadi, Nikil Dutt
Center for Embedded Computer Systems, University of California, Irvine

{reshadi, dutt}@cecs.uci.edu

Abstract

Compiled simulation is a well known technique for
improving the performance of instruction set simulators at

the cost of compilation time. However the compilation time

overhead makes such usage of compiler optimizations
impractical especially for large applications. In this paper,

we propose a hybrid compiled simulation approach that is

simple, generates an optimized decoder and has almost no
compilation overhead comparing to static compiled

simulation. Using two contemporary processor models--

ARM7 and Sparc-- we demonstrated that our technique can
reduce the compilation time by 99% on the average, from

several thousands of seconds to only tens of seconds.

1. Introduction

Instruction-set simulators are indispensable tools in the

development of new architectures. An important quality measure

for these tools is simulation performance and it depends on the

overhead of simulating target instructions vs. executing them

natively. Interpretive simulation is the simplest way of doing

this process but has poor performance. In interpretive

simulation, each instruction is fetched, decoded and executed at

run time. Compiled simulation reduces the overhead of

simulation and improves the performance by removing the

decode phase of each instruction from the simulation execution

loop and doing it once for all instructions. It may also generate

optimized code for instructions and hence further improves the

simulation speed. The main core of this technique is the

translation of the input instructions to an executable binary that

can run on the host machine. In dynamic compiled simulation,

such as [4], instruction translation is repeatedly applied to

portions (usually basic blocks) of the input program that are

executed and the results are stored for later reuse (Figure 1).

Figure 1- Dynamic compiled simulation flow

In static compiled simulation, such as [1],[2] the target

program binary is analyzed and compiled into a source code that

is functionally equivalent with the input program. This source

code is then optimized and compiled into the host binary and

executed on the host machine (Figure 2). Since the whole target

program is converted into a source code that must be compiled

and optimized by a compiler, this technique is only applicable if

the compiler can handle the size of the generated source code

and can finish the compilation in an acceptable amount of time.

On the other hand since the entire input program instructions are

decoded irrespective of being executed, the decoded information

may consume a lot of memory at run time. The compilation time

and memory usage depends on: size of input program; size,

structure and complexity of generated source code; the target

language and the used features; and level of details in

simulation. Since in dynamic compiled simulation the whole

program is not compiled in advance, it can handle much larger

input programs than static compiled simulation. However, it is

very difficult to generate optimized code in dynamic compiled

simulation.

Figure 2- Static compiled simulation flow

The previous efforts in compiled simulation either ignored the

compilation overhead and did not address it, or avoided it by

generating non-optimized decoded information at run time.

Among the works that have used compiled simulation technique

for ISA simulation, only [5] has explicitly investigated means of

reducing compilation time. In their approach, the output source

file is partitioned into smaller functions and the effect of the

number of functions on the compilation time is demonstrated.

They use assembly code of the input program rather than the

executable binary.

In this paper we propose a hybrid compiled simulation that

includes a static analysis of the input program followed by a

dynamic analysis at run time. In its static part, the input program

is analyzed to produce the source code of an optimized decoder

for that particular program. In the dynamic part, this decoder

analyzes the input program at run time and generates optimized

code for the instructions as if they were statically compiled and

optimized. This technique significantly reduces the compilation

time and memory usage while utilizing compiler optimizations

for generating optimized decoded instructions at run time. Using

two contemporary processor models--ARM7 and Sparc-- we

demonstrated that our technique can reduce the compilation time

by 99% on the average, from several thousands of seconds to

only tens of seconds. This hybrid approach is a general method

that can be applied to any simulation technique.

2. Hybrid Compiled Simulation

We propose a hybrid technique that combines both static and

dynamic compile simulation. As Figure 3 shows, in this

technique instead of generating a source code that is equivalent

to the input program, we generate the source code of a decoder

that is customized for that input program. In traditional static

compiled simulation, each instruction in the input program has a

corresponding code in the generated source code. However, a

more careful investigation of the instructions of a typical

program shows that the number of instruction types is

significantly less than the number of instances of instructions.

An instruction type is any variation of the instruction set of the

target architecture. For example in a program, there may be

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Input Program
Binary

Generated Decoder
Source Code

C++
Compiler

Decoder
generator

Compile Time

Decode

Yes

No

Update
cache

Fetch ExecuteDecoded?
Input

Program
Binary

Run Time

Input Program Generated Source Code

Add1

…
Addn

Sub1

…
Subn

add1: AddInst
…
addn: AddInst
Sub1: SubInst
…
Subn: SubInst

Equivalent
Program

C++
Compiler

Application
Source code

generator

Input Program

Add1

…
Addn

Sub1

…
Subn

Switch(inst){
case Add: return AddInst;
…
case Sub: return SubInst;
}

Generated Source Code

Optimized
Decoder

C++
Compiler

Decoder
Source code

generator

Input
Program1

Switch(inst){
case Add: return AddInst;
…
case Sub: return SubInst;
}

Generated Source Code

Optimized
Decoder

C++
Compiler

Decoder
Source
code

generatorInput
Programn

. . .

Set of Input Programs

many Add instructions in the form of Add Rx, Ry, Rz and many

others in the form of Add Rx, Ry, #immed. Therefore instead of

repeatedly generating code for instruction instances, we can

generate customized code for each instruction type that exists in

the program. Since number of instruction types is much less than

that of instruction instances, the generated source code is smaller

and requires considerably less time to compile. This code is then

compiled and optimized to generate a decoder that decodes the

input program again at run time, and for each instruction

instance, simply instantiates the corresponding optimized code

(instruction type). In this way, we use the static compiled

simulation approach to utilize the compiler optimizations at

compile time and then use the dynamic compiled simulation

approach to dynamically decode instructions to their

corresponding optimized codes at run time. In the next

subsections, we analyze different possible scenarios that this

hybrid technique can be used and then will compare them in the

result section.

Figure 3- Hybrid compiled simulation flow

2.1 Static decode of one program

This approach is the same as static compiled simulation. As

shown in Figure 4, the whole program is decoded at compile

time and for each instruction instance in that program a

customized code is added to the source code. The generated

source code is a set of functions that create instruction objects at

run time and load them in the instruction memory.

Figure 4- Static decode of one program

For example, if the program contains 1000 similar Add

instructions, there would be 1000 corresponding codes in the

generated source code and 1000 instantiations at run time.

2.2 Dynamic decode of one program.

As shown in Figure 5, in this approach the instructions of the

input program are analyzed and the individual instruction types

are detected. The generated source code is in fact a decoder that

contains a customized code for each instruction type that exists

in the input program. It analyzes the instructions of the program

at run time and decodes them by instantiating the optimized code

of the corresponding instruction type. The size of the generated

source code in this case is significantly smaller than the static

decode and hence the compilation time is considerably less. For

example, if the program contains 1000 similar Add instructions,

only one customized code is added to the decoder for that Add

instruction. At run time, each time the decoder detects such an

Add instruction, this code is instantiated. Therefore there would

be one customized code in the generated source code and 1000

instantiated at run time.

Figure 5- Dynamic decode of one program

2.3 Dynamic decode of multi-programs

It is also possible to analyze a group of input programs and

detect their instruction types and then generate one decoder for

all of them as shown in Figure 6. Our experiments show that a

large number of instruction types are common among different

programs. Therefore the size of the decoder is only slightly

bigger than that of a single program.

Figure 6- Dynamic decode of multiple program

The major benefit of this approach is that it requires one

compilation for all of the programs while in the previous

approaches, for each input program, the generated source code

must be compiled.

2.4 Dynamic decode for all ISA

The instructions of a program are a subset of all the variations

of the instructions in the instruction-set (ISA). Therefore, instead

of analyzing an input program and generating the decoder for

that particular program, it is better to generate all possible

variations of instructions in the instruction set and have a

decoder that can decode any input program on a specific

architecture. However, this approach is only applicable if the

number of these variations is not very large or if the simulator is

used for a fixed architecture and not in a design exploration

loop.

Figure 7- Dynamic decode of all ISA

For example, the Sparc processor has a simple instruction-set

and the number of variations of the instructions is less than

1000. On the other hand, the ARM processor has a very complex

instruction set and the number of variations of instructions is in

the range of several hundred thousand (~500k) instruction types.

Thus, using this approach for ARM processor not only has a

long compilation time, but also consumes a lot of memory for

decoder and hence is not practical at all.

3. Memory usage

Despite of generating optimized code, the decoder in our

hybrid approach is similar to the decoder in any other simulation

technique and can replace it. Therefore, its memory usage and

the decoded information can be handled similarly by well known

Architecture ISA
Description Switch(inst){

case Addimm, flag: return AddInstimm, flag;
case Addreg, flag: return AddInstreg, flag;
case Addimm, no flag: return AddInstimm, no flag;
…
}

Optimized
Decoder

C++
CompilerDecoder

Source
code

generator
Instruction
Variation
Generator

Generated Source Code

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

techniques and data structures such as a software cache. On the

other hand, while the decoder generated in our approach can

generate optimized code, it does not need to implement any

optimization algorithm and simply uses the pre-optimized codes

that the compiler has generated. In this way, if the number of

instruction types in the program is not very large, the size of our

decoder is comparable to (or even less than) the size of a

traditional dynamic compiled simulation decoder that performs

some optimizations during decode at run time. Our experiments

show that usually the number of instruction types is very low

even when multiple programs are processed to generate a single

decoder for all of them.

4. Results

We conducted our case studies with two contemporary

processor models: ARM7 and Sparc. We used the Instruction-

Set Compiled Simulation (IS-CS) technique [3] to implement

the optimized decoder in our simulator. In this section we show

the results using four application programs: adpcm, jpeg, 099.go

and 129.compress. The results were obtained on a 2.4 GHz

Pentium 4 with 512 MB of RAM. In all experiments, each

source file contained up to 100 functions and each function

contained up to 100 instruction decoding.

46879 47590

7292
39522106964 152805105991201433

12612512483
504490444434

1

10

100

1000

10000

100000

1000000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARC

#
o

f
in

s
tr

u
c
ti

o
n

s

(l
o

g
a
ri

th
m

ic
) static

hybrid

Figure 8- Source file size in different techniques

Figure 8 shows the number of instructions that are generated

in the output source file in each technique for both processor

models. For each benchmark, the first bar shows the total

number of instruction instances in the input program binary (and

hence the output of static compiled simulation) and the second

bar shows the number of distinct instruction types that exists in

that benchmark (and hence the output of hybrid compiled

simulation). The last pair of bars shows these numbers for all 3

benchmarks together. Interestingly, compared to the number of

instruction instances, the number of instruction types change

slightly between benchmarks and have a lot of commonality.

8824 8956

1100
4200

10700

592

19844

340340340320
588548 556

1

10

100

1000

10000

100000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARC

K
B

 (
lo

g
a
ri

th
m

ic
)

static

hybrid

Figure 9- Executable file size in different techniques

Similarly, Figure 9 shows the size of the executable binary

file after compilation. Note that in the static compiled

simulation, all of the instructions are decoded even if they are

not executed at all. In our experience, we got very similar

performance results from both static and our hybrid compiled

simulation. However, se believe that in the hybrid approach, the

instructions must be decoded again at run time, but the smaller

executable size improves the cache behaviour of the hybrid

simulator compared to that of the static compiled simulator and

therefore compensates the extra run time decoding overhead.

4184 4902
10080

289

1315
3616

41 41 47 48
13 15 16 16

1

10

100

1000

10000

100000

adpcm compress go All 3 adpcm compress go All 3

ARM SPARCT
im

e
 (

s
e
c
)

(l
o

g
a
ri

th
m

ic
)

static

hybrid

Figure 10- Compilation time in different techniques

Figure 10 shows the comparison of the compilation time of

hybrid and compiled simulation. In our experiments, the average

compilation time was about 4100 seconds for static compiled

simulation and about 30 seconds for our hybrid compiled

simulation. This shows an almost 99% reduction in average

compilation time, while still benefiting from all the advantages

of static compiled simulation. The hybrid complied simulationis

described in more detail in [6].

5. Summary

In this paper we proposed a hybrid compiled simulation

technique that utilizes the advantages of both static and dynamic

compiled simulation and avoids their disadvantages. In this

approach, the input program is first analyzed and an optimized

decoder is generated for that program using a conventional (C,

C++, etc.) compiler. The decoder is then used by the simulation

engine to decode the simulated instructions to optimized

decoded information at run time. While the technique is

applicable to any execution model, we used our Instruction-Set

Compiled Simulation (IS-CS) technique to show the advantages

of the hybrid compiled simulation technique. The results showed

a 99% reduction in compilation time without any performance

loss.

6. Acknowledgments

This work was partially supported by NSF grants CCR-

0203813 and CCR-0205712.

7. References

[1] G. Braun et al. Using Static Scheduling Techniques for the

Retargeting of High Speed, Compiled Simulators for Embedded

Processors from an Abstract Machine Description. ISSS, 2001.

[2] J. Zhu et al. A Retargetable, Ultra-fast Instruction Set Simulator.

DATE, 1999.

[3] M. Reshadi et al, Instruction-Set Compiled Simulation: A

technique for fast and flexible instruction set simulation, DAC,

2003.

[4] R.F. Cmelik, et al. Shade: A fast instruction set simulator for

execution profiling. Proceedings of 1994 ACM SIGMETTRICS

Conference on Measurment and Modeling of computer systems,

Philadelphia, 1994.

[5] R. Amicel et al. Mastering startup costs in assembler-based

compiled instruction-set simulation. Proceedings of Workshop

on interaction between Compilers and Computer Architectures

(INTERACT’02), 2002.

[6] M. Reshadi, N. Dutt. Hybrid Compiled Simulation. ICS

Technical Report#03-23, University of California, Irvine, 2003.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

