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RTGEN—An Algorithm for Automatic Generation of
Reservation Tables From Architectural Descriptions

Peter Grun, Ashok Halambi, Nikil Dutt, and Alex Nicolau

Abstract—Reservation Tables (RTs) have long been used to detect con-
flicts between operations that simultaneously access the same architectural
resource. Traditionally, these RTs have been specified explicitly by the de-
signer. However, the increasing complexity of modern processors makes
the manual specification of RTs cumbersome and error prone. Further-
more, manual specification of such conflict information is infeasible for
supporting rapid architectural exploration. In this paper, we present an
algorithm to automatically generate RTs from a high-level processor de-
scription with the goal of avoiding manual specification of RTs, resulting in
more concise architectural specifications and also supporting faster turn-
around time in design space exploration. We demonstrate the utility of our
approach on a set of experiments using the TI C6201 very long instruction
word digital signal processor and DLX processor architectures, and a suite
of multimedia and scientific applications.

I. INTRODUCTION

In most modern processors that exhibit multiple levels of parallelism
and deep pipelines, resource and data hazards can lead to significant
performance degradation or even [for very long instruction words
(VLIWs)] incorrect execution behavior. Thus, detection and avoidance
of such hazards is a crucial task in processor-based system design.
Hazard information may be captured as conflicts between operations
that access the same resources at the same time. Reservation tables
(RTs), which specify (and represent) both the pipeline behavior and
resource usage of operations, are commonly used as part of the
machine model for capturing such conflict information for retargetable
compilers. RTs can be used, for example, by the instruction scheduler
to avoid resource conflicts and pipeline hazards. Complex processors
are increasingly being deployed in high-end embedded applications,
typically as (fixed or parameterized) cores in a system-on-chip (SOC).
Since RTs can be specified at different levels of detail, they can also be
used in an architectural design space exploration (DSE) environment
involving tradeoffs between accuracy and speed of the software tools
for embedded SOCs.

Most current retargetable tools that follow the RT’s approach re-
quire the user to specify the RTs manually on a per-operation basis in
the architecture description language (ADL). Processors that contain
complex pipelines, large amounts of parallelism, and complex storage
sub-systems, typically contain a large number of operations1 and re-
sources (and, hence, RTs). Manual specification of RTs on a per-op-
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1For single-issue machines, the terms operation and instruction are used in-
terchangeably. For multiissue machines (e.g., VLIW and Superscalar), an in-
struction represents a set of operations issued/executed simultaneously.

eration basis thus becomes cumbersome and error prone. Furthermore,
exploration and customization of different architectures drives the need
for rapid evaluation of different architectural (and pipeline) configura-
tions—making it impractical to manually specify RTs on a per-opera-
tion basis for each configuration.

In this paper, we present an RT generation (RTGEN) algorithm,
which automatically generates RTs from a high-level processor
description. This frees the user from the burden of having to man-
ually enumerate the RTs, allowing for conciseness of specification,
reduction of errors in specification, and reduction of time spent in
specification.

Moreover, in the context of VLIW processors, a complete set of RTs
is necessary for correct scheduling of the operations. Incorrect or in-
complete RTs (e.g., containing an optimistic resource usage of opera-
tions or missing an important resource), may lead to incorrect sched-
uling and execution of the program. For instance, in the TI C6x pro-
cessor, missing the resource describing the cross-register file-path con-
nection may lead to scheduling in the same VLIW instruction of mul-
tiple operations, which try to use the same connection at the same time,
resulting in a resource hazard.

Furthermore, in the absence of an RT model (assuming a non-
pipelined version of the compiler) or using coarse grain RTs, such
as optimistic RTs (leading to aggressive compilation), or pessimistic
RTs (leading to conservative compilation), the performance of the
generated code may be significantly impacted.

Our compiler uses Trailblazing percolation scheduling (TiPS) [18]
to schedule the generated RTs in the pipeline. TiPS is a powerful in-
struction-level parallelism technique that parallelizes operations across
basic blocks. Our RTGEN approach is applicable to a diverse set of ar-
chitectures (such as VLIW, Superscalar, and RISC). We described and
successfully generated a retargetable compiler and simulator for the TI
C6201 VLIW digital signal processor (DSP), and the Motorola Pow-
erPC Superscalar. For the Motorola PowerPC, we compared the code
generated by our retargetable compiler using RTs to the native Mo-
torola compiler, obtaining similar results.

Since every operation proceeds through a pipeline path and accesses
storage units through some data-transfer paths, the key idea behind the
RTGEN approach is that it is possible to trace the execution of the
operation through the architectures pipeline and data-transfer segments
and, thus, generate accurate RTs.

In Section II, we describe related work on ADL-driven pipeline (and
constraint) specification for tools and compare them with our approach.
In Section III, we motivate the need for automatic RTGEN using the
TI C6201 VLIW DSP. Section IV describes the features necessary in
a high-level processor description to support automatic generation of
RTs. We use EXPRESSION, an ADL designed to support architec-
ture exploration and software tool-kit generation. The RTs generated
from EXPRESSION are used to drive the Trailblazing scheduler in
EXPRESS, a highly optimizing memory-aware instruction-level par-
allelizing (ILP) compiler. Section V presents the algorithm for auto-
matic RTGEN. Section VI presents experiments using an implemen-
tation of the RTGEN algorithm, conducted to demonstrate utility of
this approach, and a brief discussion on the different usage scenarios
of our approach for the purpose of DSE, while Section VII concludes
this paper.

1063-8210/03$17.00 © 2003 IEEE
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II. RELATED WORK

While pipelining was first developed during the late 1950s, most
modern pipelining techniques are direct descendents of work done
during the late 1970s and early 1980s. Reference [15] surveys
pipelining techniques and provides most of the terminology and
concepts in use today. Reference [13] contains a good description
of the various aspects of pipelining (including tackling hazards and
compilation techniques).

The advent of SOC technology, with the ability to explore between
a variety of processor cores, has led to renewed interest in retargetable
software tool kits (e.g., compilers and simulators). Due to increased
parallelism and pipelining in today’s processors, more complex data
and resource hazards may raise conflicts in the architecture, leading to
insertion of stalls in the pipeline, or even incorrect execution of instruc-
tions (for VLIW processors). Thus, it is crucial to detect and avoid such
conflicts either in the software toolkit (e.g., compiler), or in the pro-
cessor itself (in the hardware controller). We present related approaches
to specifying and using such conflict information.

Traditionally, RTs are used to detect conflicts for scheduling [17].
The concept of using RTs to represent the resources used by indi-
vidual operations in each stage of the pipeline was developed in [2]
and [4]. Conflicts between operations are detected by comparing their
RTs. Examples of compilers that adopt this approach include the mul-
tiflow trace scheduling compiler [7] and the Trimaran (Elcor) compiler
[24]. Trimaran uses the MDes [6] ADL, which captures constraints be-
tween operations with explicit RTs on a per-operation basis, using a
hierarchical description for compactness. However, explicit specifica-
tion of RTs introduces redundancy in the processor description. More-
over, during DSE structural changes to the architecture may propagate
through the description, also requiring the user to manually reflect the
changes in the RT section.

Alternatively, state diagrams or finite state automatons (FSAs) have
been used to represent the set of all legal instruction schedules for a
processor. Since the FSAs are derived from RTs, RTs are a prerequisite
in this approach. References [1] and [20] present compiler techniques
that use FSAs. For determining operation conflicts, the RT approach
suffers from the drawback of increased compilation time as compared
to the FSAs. However, [3] and [6] present RT optimization techniques
that can be used to mitigate these drawbacks. Further, RTs are needed
in order to generate FSAs [15]. A disadvantage of the FSA approach is
that it is not amenable to certain advanced scheduling techniques (such
as iterative modulo scheduling [21] and mutation scheduling [19]). In
our compiler, we use mutation scheduling together with TiPS [18] to
better match the application code to the complexities of the architec-
ture.

The LISA [8] and RADL [22] approaches are targeted mainly to gen-
erate high-performance simulators. The conflicts are modeled as sig-
nals that capture at run time the occurrence of conflicts in the pipeline
stages. In the nML ADL [9], the processor’s instruction-set (IS) is de-
scribed as an attributed grammar with the derivations reflecting the set
of legal combinations of operations. Combinations of operations not
recognized by this grammar represent the conflicts. In the instruction
set description language (ISDL) [5], ADL illegal combinations of op-
erations are explicitly enumerated. While these approaches have the
advantage of being able to capture most of the constraints (including
those due to bit-width restrictions), the size of specification tends to
get very large for complex processors. Reference [16] presents a tech-
nique for automatic extraction of the IS, from a structural description,
specified in the MIMOLA ADL.

All the previous approaches presented require manual specification
of the conflicts, which is a tedious and error-prone task. We present
an algorithm to automatically generate the set of RTs from a mixed

Fig. 1. Block diagram of the TI C6201 VLIW DSP.PG;PS; PW; andPR
perform instruction fetch.DP andDC perform decode and dispatch.
L;S;M; andD are functional units.

structural/behavioral description of the processor. We thereby free the
user from the burden of having to manually specify the RTs. Moreover,
during DSE, changes to the structure of the processor are reflected au-
tomatically in the RTs, allowing for fast DSE iterations. Also, by auto-
matically generating the conflict information, we avoid redundancy in
the input processor specification. In our approach, the same architec-
tural specification is used to generate both a structural simulator SIM-
PRESS [14], as well as the RTs required by our optimizing compiler
EXPRESS.

Furthermore, using accurate RTs in compilation may significantly
improve the performance of the generated code by better overlapping
the independent operations and better utilizing the pipeline resources.
In particular, for memory operations, which tend to be very time con-
suming (especially for the off-chip dynamic random access memory
(DRAM) accesses), better hiding their latency leads to substantial per-
formance improvements. In [10], we present the usage of the generated
timing and resource (i.e., RTs) information in the context of off-chip
DRAM memories, exhibiting page- and burst-mode accesses. By pro-
viding the compiler with accurate timing and RTs for the memory op-
erations, compared to the traditional approach using optimistic timings
and RTs, we generate an average of 24% performance improvement.
Moreover, in [11], we use the generated timing and RTs for scheduling
the cache hit-and-miss operations. By providing the compiler with ac-
curate timings and RTs for the cache operations, we generate an average
of 61% performance improvement over the traditional approach using
optimistic models.

III. M OTIVATING EXAMPLE

We use Texas Instruments Incorporated’s C6201 VLIW DSP to intu-
itively explain the RTGEN and illustrate the complexity of the problem.
The C62 is a state-of-the-art fixed-point DSP with a high-performance
VLIW architecture, whose block-level diagram is shown in Fig. 1. The
bold blocks represent pipeline and functional units, while the dotted
blocks represent storage components. The interesting features of this
architecture include ILP with up to eight operations being issued in one
cycle, a complex fragmented pipeline and a complex storage subsystem
with two register files (RFA, RFB) with multiple read/write ports and
a main memory with four banks.

For ease of illustration, we have omitted showing the main controller,
pipeline latches, ports, and some connections and storages. However,
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the actual RTGEN assumes a complete specification including, for ex-
ample, the source and destination ports for each functional unit. A de-
tailed description of the TI C6201 architecture can be found in [23].

The TIC6201 processor model we examined has 426 fully qualified
operations,2 requiring the specification of 426 RTs. The operation for-
mats supported are the 1-operand(OPCODE DEST), 2-operand(OP-
CODE DEST SRC1), and 3-operand(OPCODE DEST SRC1 SRC2)
formats.

The large number (426) of operations makes specification of RTs on
a per-operation basis very tedious and error prone. Further, specifying
(or generating) RTs is not a straightforward simple task for most archi-
tectures due to the presence of complex architectural features (e.g., the
C62 has fragmented pipeline paths, multiple register files with cross
paths, and varied operation formats). An automatic RTGEN approach
is essential to free the user from the burden of specifying complex RTs
and reduce the possibility of errors in the RTs. Our approach results in
automatic generation of RTs even for architectures with complex fea-
tures (including multiple pipeline paths, bus-based data transfers, and
different operation formats).

IV. ADL I NFORMATION REQUIRED FORRTGEN

We now describe the essential features required in an ADL to support
automatic generation of RTs. While we use our ADL EXPRESSSION
as a vehicle for demonstrating the automatic generation of RTs from a
machine description, it is important to note that the RTGEN approach
we describe is not specific to EXPRESSION. Indeed, any ADL that
incorporates the (generic) features mentioned below is a candidate for
automatic generation of RTs using our approach.

The primary characteristic of an ADL for automatic RTGEN is in-
tegrated specification of both structure and behavior (i.e., IS) of the
system. Below, we summarize the key features of the structural and
behavioral specification of such an ADL.

ADL STRUCTURAL SPECIFICATION: The structure (of a pro-
cessor system) is defined by itscomponentsand theconnectivitybe-
tween these components. Further, each component is defined by its at-
tributes and the connectivity between components is defined using two
high-level constructs (pipelineanddata transfer), as described below.

Component Specification: Every component in the architecture
may be modeled as aunit (e.g., ALU), astorage(e.g., register file), a
port or aconnection(e.g., bus). Each component is further described
in terms of itsOPCODES(operations supported by the component),
TIMING (for multicycle or pipelined components), andLABEL (a tag
associated with port/connection components, which, together with the
OPCODES construct, ties the behavioral description to the structural
description of components).

Connectivity Specification: The PIPELINE and DATA TRANS-
FERSconstructs provide a natural and concise way to specify the
net list at a high level. PIPELINE is used to specify the ordering of
units that comprise the architecture’s pipeline stages.Pipeline paths
represent the sequence (through time) of execution for the pipeline
units. DATA TRANSFERS are used to specify the valid unit-to-storage
or storage-to-unit data transfers.Data-transfer pathstypically occur
between functional units (e.g., ALUs) and memory elements (e.g.,
register files).

ADL BEHAVIORAL SPECIFICATION: The behavior of a pro-
cessor is defined by its IS. Each operation in the IS is defined in terms
of its OPCODE(the opcode mnemonic associated with the operation),
OPERANDS(the list of arguments—e.g., src, dst—associated with the
operation), andFORMAT(the operation format used to indicate the rel-
ative ordering of the various operation fields).

2A fully qualified operationhas all of its fields bound to architectural com-
ponents such as functional and storage units.

Fig. 2. Overview of the RTGEN algorithm.

Fig. 3. Trace in the TI C6201 architecture.

The information captured in the ADL allows us to generate resource
conflicts for multiissue processors (e.g., VLIW, Superscalar), with
fragmented pipeline paths, heterogeneous functional units, and
variable latency operations (e.g., an ADD and a MAC operation on
the same functional unit may have different latencies and, similarly,
an ADD operation on different functional units may have different
latencies).

These ADL features are used to drive the automatic generation of
RTs as described in Section V.

V. RTGEN: AN ALGORITHM FOR AUTOMATIC

GENERATION OFRTS

Fig. 2 presents the flow of RTGEN. RTGEN starts from a description
of the processor, specified in an ADL such as EXPRESSION, and gen-
erates the RT for a given operation. RTGEN proceeds in two phases. In
the first phase, the pipeline paths and data transfer segments are com-
bined to generate a cross-product called traces. Traces do not incorpo-
rate IS information, but instead capture the behavior of the pipeline as
a set of possible execution footprints in the netlist. A trace in our ex-
ample, the TI C6201, is shown in Fig. 3 with the bold lines traversing
the PG, PS, PW, PR, DP, DC, M1_E1, and M1_E2 units, and accessing
RFA and RFB. This trace could be activated by an MPY operation, but
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Fig. 4. RTGEN algorithm. (a) Phase-I-generate-traces. (b) Phase-II-bind-
operations-to-traces.

since the mapping of traces to specific operation is performed only in
the second phase, this trace is not linked to any operation yet.

In the second phase, given an operation, we use the traces, operation
format, and opcode-to-unit mapping to generate the corresponding RT.
Each RT represents the architectural resources used in each pipeline
stage by a particular operation. In this phase, we can use different strate-
gies (with varying computation time and memory requirements) to gen-
erate the RTs, as explained in Section VI.

We use traces as an intermediate output of our algorithm because
the number of traces in a typical processor is small compared to the
number of fully qualified operations and, consequently, the number of
RTs. Fig. 4 details the two phases of RTGEN.

Phase I:First, since EXPRESSION contains a hierarchical descrip-
tion of the pipeline, we flatten out the hierarchy into a set of distinct
pipeline paths. For instance, one flattened pipeline path in the TI C6201
is PG, PS, PW, PR, DP, DC, M1_E1, and M1_E2 (Fig. 3). Also, since
the data transfers are described as individual segments, we compose
them into complete RF-to-FU and FU-to-RF transfers.3 These two
steps are necessary to transform the pipeline and data transfers descrip-
tion from the hierarchical EXPRESSION format to the format required
by our algorithm. The rest of the RTGEN algorithm is independent of
EXPRESSION and can be used with any processor ADL containing
the features described in Section IV.

3RF stands for register files (e.g., RFA) and FU for functional units (e.g.,
M1_E1).

Fig. 5. Resources used in each stage by the trace highlighted in Fig. 3.

Next, procedureDecorate_pipeline_paths()annotates the units in
each pipeline path with the ports corresponding to each data transfer
involving that unit. For example, the M1_E1 unit from Fig. 3 is deco-
rated with the ports M1_E1_S1 (for the SRC1 operand) and M1_E1_S2
(for the SRC2 operand), allowing transfer of data from RFA and RFB to
M1_E1 (for conciseness, we did not represent these ports in the figure).

The ports annotating each pipeline path are chosen based on the op-
eration formats. In order for a pipeline path to support an operation
format, all the operands referenced in the operation format have to
be implemented by a (unique) port decorating that pipeline path. For
example, for the formatOPCODE FU SRC1 SRC2 DSTand for the
pipeline path PG, PS, PW, PR, DP, DC, M1_E1 and M1_E2, SRC1
is covered by the port M1_E1_S1, SRC2 by M1_E1_S2, and DST by
M1_E2_D. Thus, for each pipeline path, we try to satisfy each opera-
tion format by generating all possible decorations so that each operand
in the format is covered by exactly one port. If for a pipeline path there
are multiple formats supported, or multiple ways to decorate it, we du-
plicate the pipeline path, and use a different combination of ports to
decorate each copy.

Finally, Append_data_transfers_to_pipeline_pathsgenerates the
traces by attaching a data transfer to each port decorating the pipeline
paths. For a given port there may be multiple data transfers, which
can be attached. For example, M1_E1_S1 can be used to transfer data
between the RFA and M1_E1, or between the RFB and M1_E1, by
following a different set of connections. For each port, we consider
all the possible data transfers by duplicating the decorated pipeline
paths and choosing a combination of data transfers to attach. The
result of this step is called traces. One such trace in our example
architecture is shown in Fig. 5. It contains the units PG, PS, PW, PR,
DP, DC, M1_E1 and M1_E2 and the data transfers RFB to M1_E1,
RFA to M1_E1, and M1_E2 to RFA. The unit M1_E1 reads one
operand from RFB through the cross connection RFB_CROSSPATH
and the port M1_E1_S1, and another one from RFA through the
connection RFA_M1_E1_S1_CONNECT, and the port M1_E1_S1.
The unit M1_E2 writes the result to RFA through the connection
RFA_M1_E2_D_CONNECT, and the port M1_E2_D.

Phase II: In the second phase, we traverse the traces in order to
find the trace corresponding to the input operation. We first narrow
down the choice of traces to the ones corresponding to that operation’s
format and unit. For example, for the operationMPYM1_E1 RFB0
RFA0 RFA0, we choose only the traces that contain the M1_E1 unit
and support the formatOPCODE FU SRC1 SRC2 DST.

We then verify that all the units in the trace support the operation’s
opcode. In this way, we account for cases when different opcodes sup-
ported by one FU require different sets of resources. For example,
the D1_E1 unit supports both LD and ADD operations, but LD addi-
tionally requires the MEM_CONTROLLER unit, whereas ADD does
not. As the MEM_CONTROLLER does not support the ADD opcode,
the traces containing the memory controller are excluded while deter-
mining RTs for the ADD operation.

Next, we choose the traces that satisfy the order in the operation’s
format. For example, for the operationOPCODE FU SRC1 SRC2 DST,
SRC1 and SRC2 are read before DST is written.

At this point, the choice of traces corresponding to that operation
has been narrowed down to one or more traces. A fully qualified op-
eration corresponds to exactly one trace (which represents the RT for
that operation) and is returned as the result of the RTGEN algorithm.
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TABLE I
RT GENERATION

For example, given the fully qualified operationMPY M1_E1 RFB0
RFA0 RFA0, the trace returned as the RT by RTGEN is the one shown
in Fig. 5.

During compilation, the operations are qualified incrementally.
Starting from a generic (nonqualified) operation, the fields are bound
one by one (depending on the phase ordering of that particular
compiler) until the operation is fully qualified. In the case of partially
qualified operations (e.g., the opcode and FU fields have been bound,
but the argument fields have not been bound to the RFs yet), RTGEN
computes a list of RTs corresponding to all the possible bindings of
the not-yet-qualified fields of that operation (e.g., the RTs for the
operations having the given opcode and FU, and all the possible RF
choices for the source and destination operands). RTGEN can also
provide an approximate RT, computed as the intersection (optimistic)
or the union (conservative) of the list of possible RTs, thus providing
conflict information even in the absence of complete information, at
any level during the compilation process, making RTGEN independent
of the phase ordering in the compiler.

The worst case complexity of Phase I of RTGEN isO(x � z � (yw)),
wherex is the number of pipeline paths,y is the number of data trans-
fers,z is the number of distinct operation formats for that processor, and
w is the maximum number of operands in an operation. Typically, most
architectures have a maximum number of operands from 3 to 4, and the
number of formats is under ten. Moreover, very few of the choices in
(yw) are considered. For example, while considering the choices of a
data transfer for a particular operand, only those corresponding to the
operand type (e.g., SRC1) and to the FU assigned to that operation
are chosen. The worst case complexity of phase II of the algorithm is
O(m � n), wherem is the number of traces in the architecture, andn

is the number of fully qualified operations. Since this is the more time
consuming part of the algorithm, we present in Section VI a discus-
sion exploring different strategies to tradeoff computation-time against
memory.

VI. EXPERIMENTS

We now present a set of experiments conducted on various processor
descriptions and the generated RTs to drive pipelined scheduling of a
set of multimedia and scientific benchmarks.

Table I presents the results of the RTGEN on the TI C62 processor
and a multiissue version of the DLX processor. In the context of ar-
chitectural DSE, we also present variants of each architecture to show
how modifying features of the architecture (such as the register file ar-
chitecture) impacts the number of traces and RTs.

The C62 processor is a VLIW DSP, allowing eight operations to be
issued per cycle. The multiissue DLX architecture allows four opera-
tions per cycle and has a pipeline with up to 11 stages and multicy-
cled units. The first column in Table I describes the architectures for
which the RTs were generated automatically. We experimented with a
single-register file (C62_1RF, DLX_1RF) version and a two-register
file (C62_2RF, DLX_2RF) of the architectures. In C62_2RF (the ac-
tual C6201 architecture, also shown in Fig. 1), the two-register files
are partitioned, with limited connectivity between FUs and RFs. The
DLX_2RF contains two-register files that are connected to all the func-
tional units.

TABLE II
RTGEN STRATEGIES FORDLX AND TI C6201

The second column shows the number of EXPRESSION lines speci-
fying the complete architecture (including structure and ISA). The third
column shows the number of pipeline paths, while the fourth column
shows the number of data-transfer paths in the processors. The fifth and
sixth columns show the number of traces and RTs generated, while the
last two columns present the computation time needed to automatically
generate the traces and RTs.

It is important to note that, in order to compile accurately for an
architecture, all resource constraints (in our case, RTs) have to be ei-
ther specified or generated. Especially in the case of orthogonal ar-
chitectures, as each RT corresponds to a fully qualified operation, the
number of RTs may be very large (e.g., 952 for DLX_2RF). Manu-
ally specifying RTs on a per-operation basis is very tedious and may
lead to increased errors in specification. Furthermore, simple changes
during architectural DSE may affect many RTs, requiring the re-speci-
fication of some or all RTs; in our approach, we only need to re-specify
the architecture as the modified RTs are generated automatically. The
importance of RTGEN is that it can handle real-life processors, in-
cluding VLIW and Superscalar architectures, avoiding manual spec-
ification and updating of this large number of RTs.

In C62_1RF and DLX_1RF, the number of RTs is 168 and 155. On
the other hand, for the two register file versions, it increases to 426
and 952. This is due to the fact that in the 2RF versions, the operations
may read their operands from two possible locations, leading to a larger
number of fully qualified operations. The significant difference in RTs
between DLX_2RF and C62_2RF is due to the different RF architec-
ture. For the DLX, the operands of any operation can belong to any of
the 2RFs, while for the C62_2RF, the restricted connectivity between
the FUs and RFs precludes many operand combinations.

To deal with the large number of RTs, in the following, we explore
different strategies trading off computation time and memory require-
ment. Recall that we generate the RTs in two phases: first, we extract a
set of traces, modeling the execution patterns of the operations; second,
we bind these execution traces to individual operations, in order to gen-
erate RTs on a per-operation basis. This separation of concerns allows
us to make some interesting tradeoffs between time and memory re-
quirements during RTGEN.

Phase I of RTGEN—extraction of traces—can be performed rather
quickly (the seventh column in Table I). As can be seen, it is in the order
of seconds, even for a relatively complex architecture like the C62.
Phase II of RTGEN—binding of RTs to operations—is the more time-
consuming step. We present three strategies, which have varying time
and memory requirements. The first, calledon-the-fly (O-T-F), binds
RTs as and when required by tools. The second, calledprecompute
database, binds RTs for all operations before hand and stores them in a
database. The third, calledcached, is a modified O-T-F approach with
RTs generated on demand, but stored in a database for future access.

In Table II, we present the tradeoffs in terms of computation time and
memory requirement for the generation of RTs using the three strate-
gies. We ran our algorithm on five sets of benchmarks containing 1,
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2, 4, 8, and 16 applications from a suite of multimedia and scientific
applications, containing filters (e.g., wavelet), image processing (e.g.,
Laplace edge enhancement), and numeric code (e.g., linear recurrence
equation solvers, successive over-relaxation, red–black Gauss–Seidel
relaxation). For details, please refer to [12].

In Table II, column 2 shows the application domain and the number
of applications in each benchmark set. Column 3 shows the total time
required to generate the RTson-the-fly for a parallelizing compiler.
Columns 4 and 5 show the total time (this includes the time required
to precompute the RTs, but not the time to retrieve them from the data-
base) and database size (number of RTs) needed in theprecompute DB
approach, while columns 6 and 7 show the total time and maximum
database size for thecachedapproach.

As expected, the time required to generate RTs using the naive O-T-F
approach is very large. However, it requires minimal memory, as it does
not store any RTs. The database approach works best when compiling
many applications since the one-time DB computation is better amor-
tized. However, the memory penalty is large when compared to the
other approaches. The cached version results in significant time im-
provement (as compared to O-T-F) and memory reduction (as com-
pared to database). For example, for DLX, the cached approach per-
forms well for small sets of benchmarks (1, 2, 4), while the database
approach performs better for large sets (16).

Possible improvements to the overall approach may address opti-
mizing the RT representation for compactness and speeding-up the con-
flict detection process. While the RTs generated are accurate, and lead
to an efficient schedule and good pipeline resource utilization, they are
not optimized from the point of view of compilation time. These issues
are orthogonal to RTGEN and can be coupled with RTGEN. Reference
[6] present a hierarchical description of RTs to optimize the description
size. Tables of conflicts, containing the illegal combinations of opera-
tions, as well as state diagrams [1] capturing the state of the current
schedule can be generated from RTs. They speed up the conflict detec-
tion by replacing the comparison of RTs with a table lookup, or a tran-
sition in the FSA. However, RTs are required for generation of both the
lookup tables and FSAs.

Moreover, by removing the redundancy from the RTs, such as re-
sources that do not generate scheduling conflicts, or resources that gen-
erate redundant conflicts (conflicts that have been already exposed by
previous resources), it is possible to reduce the size of the RTs and in-
crease the speed of the compilation. It is possible to arrive to a set of
“minimal” RTs, which contain the minimal amount of resources that
are enough to allow accurate scheduling.

The two-tiered approach to automatic RTGEN allows the system de-
signer to experiment with these various approaches depending on the
objectives during DSE. The combined benefits of automatic RTGEN
and the flexible approach to generation/usage of these RTs allows the
system designer to significantly reduce the time spent in RT (re-speci-
fication) specification during architectural DSE.

VII. SUMMARY

RTs are needed to detect conflicts between operations (e.g., two op-
erations trying to use the same unit at the same time). RTs have been
used for a long time to drive scheduling in the compiler and to generate
state diagrams driving dynamic scheduling in the hardware controller.
In this paper, we have presented RTGEN, an algorithm to automatically
generate RTs from an architecture description of the processor.

Our approach bridges the gap between the structural representation
of processors, typically used by processor designers, and the higher
level information needed by the compilers. Traditionally, detailed RTs
were specified by hand. Due to the increasing complexity of today’s
processors, containing hundreds of operations, extensive parallelism

(e.g., TIC6X), and deep pipelines, specifying RTs by hand is a very
laborious and error-prone task. Moreover, during architectural explo-
ration, in order to keep the compiler up-to-date with the processor, the
designer needs to reflect the changes to the architecture in the RT spec-
ification. This is a very tedious task. By automatically generating RTs,
we avoid the need for explicit specification, and we support fast ar-
chitectural exploration, by automatically reflecting the changes to the
architecture in the compiler.

We have presented a set of experiments on the TI C6201 VLIW DSP,
as well as on the DLX architecture. Our prototype tool starts from an
EXPRESSION description, and generates RTs for the EXPRESS com-
piler. We have presented three RTGEN strategies with varying time
and memory requirements. The experiments show the results on a set
of multimedia and scientific kernels. Future work will investigate other
RTGEN strategies and will also apply these techniques to a wider class
of architectures.
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Design of a Cycle-Efficient 64-b/32-b Integer Divisor
Using a Table-Sharing Algorithm

Chua-Chin Wang, Po-Ming Lee, Jun-Jie Wang, and Chenn-Jung Huang

Abstract—In new generations of microprocessors, the superscalar archi-
tecture is widely adopted to increase the number of instructions executed
in one cycle. The division instruction among all of the instructions needs
more cycles than the rest, e.g., addition and multiplication. It then makes
division instruction an important cycles-per-instruction figure for modern
microprocessors. In this paper, a radix-16/8/4/2 divisor is proposed, which
uses a variety of techniques, including operand scaling, table partitioning,
and, particularly, table sharing, to increase performance without the cost
of increasing complexity. A physical chip using the proposed method is im-
plemented by 0.35- m single poly four metal (1P4M) CMOS technology.
The testing measurement shows that the chip can execute signed 64-b/32-b
integer division between 3–13 cycles with a 80-MHz operating clock.

Index Terms—Integer division, mixed radixes, on-the-fly conversion,
operand scaling, table folding, table sharing.

I. INTRODUCTION

Integer division is a critical operation in CPU design since the
number of clock cycles to complete an integer division is probably
very long and unpredictable. The role of division is becoming more
and more critical owing to the requirement of signed computer
arithmetics, the modulus computation, the calculation of encryption
keys, and so on. Division algorithms can be roughly classified into two
categories, namely, digit-recurrence methods [1] and functional itera-
tion techniques [1], while the former is commonly used. Regarding the
digit-recurrence method, traditionally there are two types of division
schemes, i.e., restoring and nonrestoring schemes. However, they both
require multiple operation steps to derive a quotient bit. Not only is the
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efficiency drastically poor, but also a long adder/subtracter is needed
to execute the remainder bit adjustment.

In this paper, we employ a modified high-radix, i.e., radix-16/8/4/2,
digit-recurrence division method and on-the-fly conversion method to
reduce the required cycles for the 64-b/32-b signed integer division,
while keeping the hardware complexity in control.

II. HIGH-RADIX 64-b/32-b SIGNED INTEGERDIVISOR

A. Digit-Recurrence Theory

Assumex, d, q, andrem to be the dividend, divider, quotient, and
remainder in the division operation. We also denote the radix of the
division as beingr. The division is then defined asx = q � d + rem.
In the digit-recurrence division algorithm [2], 1–b bits of quotient digit
can be obtained every iteration in a radix-2b digit-recurrence division.
In other words,b bits of quotient can be obtained every iteration. In [3],
the digit-recurrence algorithm is defined as

w[j + 1] = r � w[j]� d � qj+1 (1)

wherew[j + 1] is the residual of the(j + 1)th iteration,r is the
radix, andqj+1 is the quotient digit generated in the(j + 1)th iter-
ation. In a radix-r, r = 2b, division, the quotient digit set is defined as
qj 2 Da = f�a; . . . ;�1; 0; 1; . . . ; ag. SincekDak > r, it uses more
thanr numbers to present the quotient digits, which make this quotient
representation form to be a redundant form. Besides, the restriction of
a is a � dr=2e. In (1), the quotient digits are generated in every it-
eration. Hence, we can define the quotient-digit selection function as
qj+1 = SEL(w[j]; d), where theSEL() function can be simplified as
a table lookup function.

Although the digit-recurrence algorithm has been well written in [2],
there are many unsolved difficulties when it comes to hardwaredly re-
alizing such a divisor, including the following.

1) A long adder is needed at the adjustment of the remainder.
2) Extra adjustment actions are required when the last cycle of the

division contains nonmultiple digits of the radix. (For instance,
the radix is 16, but there is only 1 b left in the dividend to be
processed.)

3) The adjustment of the remainder is missing when the signed di-
vision is executed.

4) A data flow control unit is required, which provides correct
timing control such that the results of the division can be
correctly placed on the output ports.

5) The size of the quotient selection table will grow exponentially
with the radix. Besides, it is likely that one radix needs one table.
These two factors lead to a huge chip area consumption if the
divisor is implemented on silicon.

In short, the above problems will occur during the realization of a
long signed divisor. If these problems are not resolved efficiently, the
hardware divisor will be large and slow.

B. Mixed Radix-16/8/4/2 64-b/32-b Integer Divisor

In [4], a mixed radix-8/4/2 integer divisor was proposed, of which
performance is better than that of a normal radix-4/2 integer divisor [5].
However, it paid the price of increasing the complexity of hardware,
and then nearly doubled the total area of the divisor owing to the sizes of
tables. In this study, despite that the radix will be raised up to 16 to retire
more bits of the quotient per cycle, the complexity of the hardware
will be retained to a similar degree by using several methods, including
operand prescaling, table partitioning, [6], and table folding.
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