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SUMMARY Energy consumption has become one of the most critical
constraints in the design of portable multimedia systems. For media ap-
plications, address buses between processor and data memory consume a
considerable amount of energy due to their large capacitance and frequent
accesses. This paper studies impacts of memory data organization on the
address bus energy. Our experiments show that the address bus activity is
significantly reduced by 50% through exploring memory data organization
and encoding address buses.
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1. Introduction

Energy consumption is one of the most critical constraints
in the design of portable embedded systems. System-level
buses such as off-chip buses or long on-chip buses between
IP blocks are often major sources of energy consumption
due to their large load capacitance. An effective approach to
bus energy minimization is to reduce their switching activi-
ties by encoding the buses, and a number of techniques for
bus encoding have been developed so far.

Bus Invert Coding is one of well-known coding tech-
niques [1]. The Bus Invert code is suited to data buses where
consecutive two data values are less correlated with each
other, but it is not so efficient for buses with a strong cor-
relation. To solve this problem, several refinements were
proposed, for example in [2]. In processor-based systems,
accesses to instruction memory have a specific regularity,
i.e., most accesses are sequential with a fixed stride value,
and this regularity has been utilized by many encoding tech-
niques. In [3], Gray Coding is adopted for address buses.
With the Gray code, only one bit changes when memory ac-
cesses are in sequence. T0 is a redundant coding technique
with which no bit changes for in-sequence accesses [4], [5].
Afterward, several refinements based on T0 were proposed
such as Inc-Xor [6] and T0-C [7], and their experimental
results demonstrate these T0-based refinements outperform
the Gray code and the original T0 code.

The Gray and T0-based codes are considered to be well
suited to address buses of instruction memory. However, it
is obvious that they are also effective for data memory ad-
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dress buses if many data accesses are sequential. In many
media and DSP applications, a small number of kernel loops
dealing with data arrays account for a significant portion of
the total execution time, and such DSP kernels usually have
a regularity in their data accesses. Of course, the regular-
ity does not always mean sequential accesses. However, as
we see later in this paper, the data accesses in many DSP
kernels can be serialized to some extent by optimizing data
organization in memory. Thus, the T0-based codes work
efficiently.

This paper studies low-energy data organization in
code generation of media and DSP applications. In this pa-
per, we do not propose a new technique for data organiza-
tion or bus encoding. The contribution of this paper is to
demonstrate that data organization in memory has large im-
pacts on energy consumption of buses between processor
and data memory, and the bus energy can significantly be
reduced by exploring memory data organization. This pa-
per also demonstrates the effectiveness of T0-based encod-
ing techniques, which were originally targeted towards (or
considered to be effective for) instruction memory address
buses, for data memory address buses.

This paper is organized as follows. Section 2 reviews
some state-of-the-art address bus encoding techniques. In
Sect. 3, data organization techniques for low-energy address
buses are presented. In Sect. 4, our experimental results are
reported. Finally, Section5 concludes this paper with a sum-
mary and future directions.

2. Address Bus Encoding Techniques

This section briefly reviews three state-of-the-art techniques
which are effective for encoding address buses between pro-
cessor and instruction memory, namely, T0 Coding, TO-C
Coding and Inc-Xor Coding. All of these encoding tech-
niques exploit the sequential access nature of instruction
memory.

First, we introduce some notations used in the rest of
this paper.

b(t) : Original address value to be sent at time t.
B(t) : Encoded value which is actually transfered on the

bus at time t.
S : Stride value, i.e., the difference between consecutive ad-

dresses.

The T0 code proposed by Benini et al. in [4], [5] has a
redundant bit line, called INC. If accesses are sequential, the
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sender sets the INC line and keeps the other lines unchanged.
Otherwise, the original address value b(t) is sent on the bus
and INC is de-asserted. In summary, the T0 encoder works
as follows.

if (b(t) == b(t-1) + S) {
B(t) = B(t-1);

INC = 1;

} else {
B(t) = b(t);

INC = 0;

}
The T0-Concise code (or T0-C in short) developed by

Aghaghiri et al. [7] is an irredundant code based on T0. The
T0-C encoder works as follows.

if (b(t) == b(t-1) + S) {
B(t) = B(t-1);

} else if (B(t-1) != b(t)) {
B(t) = b(t);

} else {
B(t) = b(t-1) + S;

}
The last case, i.e., (b(t) != b(t-1) + 1) and

(B(t-1) == b(t)), can be considered as an exceptional
case to the T0 code. In this case, if b(t) is sent on the bus,
the receiver cannot judge whether the access is in-sequence
or not, because B(t) == B(t-1) does hold and no bit line
changes. In the T0-C code, b(t-1) + S is sent instead.
Note that such a case rarely happens in practice. Therefore,
T0-C is more efficient than T0 in terms of bus transitions
due to its irredundancy.

In [6], Ramprasad et al. developed another T0-based
irredundant code, called Inc-Xor†. The encoder works as
follows.

B(t) = b(t) ⊕ (b(t-1) + S) ⊕ B(t-1)
Here, ⊕ denotes the Exclusive-Or (Xor) function. It is

easily observed that no bit changes when the accesses are
sequential.

The experimental results in [7] show that T0, T0-C
and Inc-Xor achieve the average savings of bus activities
by 62.0%, 73.1% and 75.0%, respectively. The experiments
in [6] also demonstrate the effectiveness of Inc-Xor over T0
and Gray for instruction addresses. In [6], T0 and Inc-Xor
were tested for data address streams, too, but the results
were somewhat disappointing. In this paper, we demon-
strate that T0-based codes are also effective for data address
streams if memory data organization is optimized.

Another approach to low-energy address buses is de-
signing an encoder and a decoder for a specific application.
For example, the Working-Zone code [9] and the Beach so-
lution [10] belong to this approach. These techniques are
effective not only for instruction memory address buses but
also for data memory address buses. However, designing

application-specific encoders and decoders is often time-
consuming, expensive, or even impossible.

In the rest of this paper, we assume T0-based coding
techniques because of their efficiency and the simplicity of
their encoder and decoder circuits.

3. Low-Energy Data Organization

In the last decade, memory data organization for low-energy
embedded systems has been studied in the fields of high-
level synthesis and code generation [12]–[14]. In [15],
Panda et al. provided an extensive survey on this topic.

Many of the previous research efforts try to minimize
accesses to energy-consuming memories (i.e., off-chip or
large on-chip memories) by efficiently utilizing small on-
chip memories such as caches or scratch-pad memories.
These techniques are very effective for systems with mem-
ory hierarchy or with various types of memories. On the
other hand, this paper does not assume any specific memory
system architectures.

In the field of high-level synthesis, Panda and Dutt
studied memory data organization strategies for minimizing
switching activity on address buses [16]. Our work is very
similar to theirs, but is different in several ways. The dif-
ferences come from the fact that this paper addresses code
generation while their work is for high-level synthesis. For
example, in [16], they proposed a new data organization
technique based on a tile, which requires a complicated ad-
dress calculation. In hardware synthesis, it is possible to
generate an address calculation unit†† and place it before the
bus encoder. On the other hand, that is impossible in code
generation. Another difference is that this paper studies the
effectiveness of T0-based coding techniques for data mem-
ory address buses. Moreover, we also study the impacts of
data organization techniques for low-energy address buses
on data cache performance†††.

3.1 Data Organization for Low-Energy Address Buses

In this paper, we focus on how to place data arrays in mem-
ory. Scalar variables are assumed to be kept in registers.
Our goal is to find an array organization in memory such
that sequential data accesses are maximized.

Let us use a simple example code shown in Fig. 1(a)
where two two-dimensional arrays exist. There are typically
two forms for placing a multi-dimensional array in memory,
i.e., row-major (row-by-row) and column-major (column-
by-column) [11], and most of existing C compilers employ
the row-major form, regardless of how the array is accessed.
For multiple arrays, most compilers place them in the same
order as their declaration. As a result, arrays a and b in
Fig. 1(a) are organized in memory as shown in Fig. 1(b). In

†In [8], the Inc-Xor coding is referred as T0-Xor.
††The organization of the address calculation unit depends on

the sizes of tiles.
†††It should be noted again that cache is not necessary in our

work. However, we study cache performance in case it exists.
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Fig. 1 A simple example code with two two-dimensional arrays.

this case, no memory access is sequential.
When we focus on array a alone, we can see that el-

ements in a column are sequentially accessed at the inner
loop. This brings the idea of placing array a in a column-
major form. Still, no memory access is sequential because
arrays a and b are alternately accessed. Several ways can
be considered in order to serialize the accesses. One way is
to patially unroll the loop and access more than one array
element at each iteration. However, loop unrolling gener-
ally leads to an increase in code size, which is often unac-
ceptable in embedded system design. Another way which
is more efficient is to place the two arrays in an interleaved
manner [16]†. Figure 1(c) shows the optimal data organi-
zation where array a is of a column-major form, b is of a
row-major form, and a and b are interleaved. With this data
organization, all the memory accesses except the very first
one become sequential.

3.2 Integrated Memory Access Scheduling

Next, we show that optimizing data organization alone has
a very limited effect on the switching activity on address
buses but combining it with memory access scheduling sig-
nificantly reduces the switching activity.

Let us consider the SOR (Successive Over-Relaxation)
algorithm shown in Fig. 2(a). The access pattern in the inner
loop is illustrated in Fig. 2(b). Here, no access is sequen-
tial even if the arrays are placed in an interleaved manner.
However, if we reorder the memory accesses as shown in
Fig. 2(c) and organize arrays a, b, c, d, e, and f in an inter-
leaved form, eight accesses out of twelve become sequen-
tial. It should be noted that applying scheduling alone is not
effective enough. Thus, the example in Fig. 2 indicates the

Fig. 2 An example of memory access scheduling. Broken edges indicate
non-sequential accesses while solid edges are sequential ones.

importance of applying both data organization optimization
and scheduling.

4. Experiments

To demonstrate the effectiveness of data organization op-
timization, we conducted a set of experiments. The Sim-
pleScalar simulator and GNU C Compiler 2.7.2.3 were used
as a platform of our experiments. Seven DSP kernels from
[19], which are often used in image processing applications,
were used as benchmark programs. Table 1 summarizes
characteristics of the programs. For each program, the table
shows the number and dimensions of data arrays, the type
of the array elements, the depth of loop nests, the number of
data memory accesses in the innermost loop, the total num-
ber of data memory accesses, and the code size in terms of
the number of instructions††. Through the experiments, we
also tested the effectiveness of three T0-based bus encoding
techniques, i.e., the original T0, T0-C, and Inc-Xor.

Figure 3 shows the experimental results where the
number of transitions on the address bus is presented for
each combination of the benchmark programs and the bus
encoding techniques. For each program, the results are nor-
malized where the baseline is the combination of unopti-

†In [17], the interleaved placement is used for cache conflict
minimization.
††Instructions for initialization and termination of the program

are included.
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Table 1 DSP kernels used as benchmark programs.

Array Data accesses Code
Description Arrays Dimen- element Loop in the inner- Total data size

sions type nests most loop accesses (inst.)
compress Image compression 1 2 int 2 5 53,685 2,880
gsr Gauss-seidal relaxation 2 2 double 3 6 118,938 2,918
laplace Laplace edge enhancement algorithm 2 2 int 2 10 103,687 2,900
linear Linear recurrence solver 3 1 double 2 4 1,215,690 2,892
lowpass Lowpass filter 1 2 float 2 9 133,711 2,920
sor Successive over relaxation 7 2 float 2 12 62,490 2,934
wavelet Debaucles 4-coefficient wavelet filter 2 1 float 1 6 3,945 2,940

Fig. 3 The number of transitions on the address bus. Gray bars denote unoptimized data organization,
while black bars denote optimized one.

mized data organization and no bus encoding. Gray bars
show the cases data organization is not optimized. Even
in these cases, conventional compiler optimizations were
performed by giving the ‘‘-O2’’ option when running the
compiler. This option sometimes reorders memory accesses
but note that the objective is not energy optimization of
course. Black bars in Fig. 3 show the cases both data orga-
nization optimization and memory access scheduling were
performed. For each program, we explored all the pos-
sible data organizations, and then performed memory ac-
cess scheduling for each data organization. An exhaustive
search algorithm was used for memory access scheduling.
Then, we selected the best combination of data organiza-
tion and schedule in terms of the number of sequential ac-
cesses. Loop unrolling was not applied. The data organiza-
tion exploration process was done by hand, and its efficient
automation is remained as one of our future work.

In our experiments, T0-C was the best encoding tech-
nique. Without data organization exploration, the switching
activity on the address bus was reduced by 24% on an av-
erage with the T0-C code. When data organization was op-
timized, the bus activity was further reduced. The average
saving was 50%. Inc-Xor also achieves a high reduction in

Table 2 Percentages of sequential accesses.

unoptimized optimized

compress 43.2% 43.2%
gsr 59.2% 59.2%
laplace 3.1% 41.6%
linear 50.1% 91.6%
lowpass 32.3% 39.8%
sor 12.9% 67.8%
wavelet 84.4% 84.7%
average 40.7% 61.1%

bus activity, but slightly worse than T0-C.
Table 2 shows the percentages of sequential accesses

with and without data organization optimization. Since the
size of array elements in gsr and linearwas double words,
about a half of memory accesses were sequential without
optimization. Data organization optimization significantly
increases sequenatial accesses for laplace, linear and
sor, thus reduces bus transitions. For compress, gsr and
wavelet, many memory accesses were sequenatial even
without data organization optimization, and there was no
opportunity for further serialization.

An interesting observation is that even if the bus was
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Fig. 4 Effects of individual techniques on address bus transitions. T0-C is used for bus encoding.

Fig. 5 The number of data cache misses. 1K byte, direct mapped cache is used.

not encoded, its activity was reduced by up to 53% (18% on
an average). This demonstrates that the bus energy can be
save without introducing encoder and decoder circuits, thus
no hardware overhead is necessary.

Next, we investigated the impacts of data organization
optimization and memory access scheduling individually.
The results are presented in Fig. 4. In the graph, DO, S,
and DO+S mean data organization optimization, scheduling,
and combination of both, respectively. These results demon-
strate the importance of applying both of data organization

optimization and scheduling.
If the memory system has caches, changing mem-

ory data organization or reordering memory accesses may
change the performance of the cache. The objective of data
organization and memory access scheduling is to serialize
data accesses, and the serialization can be considered as
a specific type of spatial localization. Therefore, it is ex-
pected that by applying data organization optimization and
scheduling the cache performance is not degraded (hope-
fully improved). In order to confirm this, we ran cache sim-
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ulation and counted the number of cache misses. The re-
sults are shown in Fig. 5. The number of cache misses was
slightly decreased for three programs out of seven, but was
slightly increased for a program. In conclusion, no remark-
able change was seen in the cache performance.

5. Conclusion

This paper addressed low-energy code generation for media
and DSP applications. We demonstrated that data organiza-
tion in memory has large impacts on the energy consump-
tion of address buses. The experimental results showed that
the bus activity was reduced by 50% through data organiza-
tion exploration and T0-based bus encoding.

In future, we will develop an efficient algorithm for
data organization optimization. Then, we will apply it to
real-world media applications.
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