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IDAP: A Tool for High-Level Power Estimation of
Custom Array Structures

Mahesh Mamidipaka, Kamal Khouri, Nikil Dutt, and Magdy Abadir

Abstract—While array structures are a significant source of power
dissipation, there is a lack of accurate high-level power estimators that
account for varying array circuit implementation styles. We present a
methodology and a tool, the implementation-dependent array power
(IDAP) estimator, that model power dissipation in SRAM-based arrays
accurately based on a high-level description of the array. The models are
parameterized by the array operations and various technology dependent
parameters. The methodology is generic and the IDAP tool has been vali-
dated on industrial designs across a wide variety of array implementations
in the e5001 processor core. For these industrial designs, IDAP generates
high-level estimates for dynamic power dissipation that are accurate with
an error margin of less than 22.2% of detailed (layout extracted) SPICE
simulations. We apply the tool in three different scenarios: 1) identifying
the subblocks that contribute to power significantly; 2) evaluating the
effect of bitline-voltage swing on array power; and 3) evaluating the effect
of memory bit-cell dimensions on array power.

Index Terms—Estimation, high-level power estimation, implementation-
dependent array power (IDAP), implementation styles.
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I. INTRODUCTION

Many factors have contributed to the increased demand for lowering
power consumption in today’s semiconductor designs. Market demand
for portable electronics has driven the need for low-power devices,
which rely on a battery for operation and, hence, the aim is to increase
the lifetime of the battery between recharges. While performance has
traditionally been the main driver for high-end desktop and network
processors, the need for reducing power consumption has become a
serious issue as these devices operate at maximum tolerance levels.
For desktop computing, lower yields and higher cooling-system costs
increase the overall cost of the system. Similarly, in the network-pro-
cessor domain, heat-removal systems in a switch farm have a fixed ca-
pacity and, hence, a limit is imposed on the number of processors that
can be placed on a single board.

Array structures, such as register files, branch-target buffers, tag ar-
rays, and caches consume up to 70% of the overall power in a SoC [4].
It has also been shown that caches alone consume up to 40% of total
power [9]. In this paper, we focus on the dynamic power estimation in
CMOS-based array structures. Fig. 1 shows the typical design flow for
custom memory structures. To meet the stringent power constraints, it
is important to obtain power estimates at each level of design hierarchy.
As we go down in the design hierarchy, the level of detail in the de-
sign increases, leading to more accurate estimates. Although there has
been a sizable body of work on power estimation in array structures
(Section II summarizes this research), the focus has either been toward
modeling at the microarchitectural level or modeling through charac-
terization after the availability of transistor level design. Models at the
microarchitectural level lack accuracy because of the nonavailability of
design-specific information, such as sense-amplifier type (differential
or inverter based), decoder-style type (static CMOS or dynamic CMOS
based) etc. On the other hand, models at the transistor level, while ac-
curate, are available only in the latter stages of the design cycle. Hence,
there is a need for accurate power models which bridge the gap between
the microarchitecture level models and characterization-based models.
To the best of our knowledge, this is the first attempt which tries to
bridge this gap.

In this paper, we propose a methodology for accurate estimation of
power dissipation in CMOS-based arrays using a high-level descrip-
tion of the design, which contains microarchitecture-level parameters
and subblock circuit-implementation styles of the array structures. The
main contributions of this work are: 1) the ability to represent various
organization and implementations of arrays; 2) the ability to abstract
parameters which define the power consumption in arrays for a given
implementation style; and 3) a methodology to generate accurate power
models based on these parameters at a higher level in the design flow.
This technology provides designers with the ability to perform a wide
variety of tasks, as follows.

• Conduct “what–if” studies on the effects that implementation
changes may have on power, without the need to redesign at the
transistor-level, and hence, avoid time-consuming SPICE simu-
lations.

• Conduct accurate power-dissipation studies for new process tech-
nologies to better understand the impact a new transistor may
have on a design.

• Generate highly accurate power models for register transfer level
(RTL) design-space exploration.

The remainder of the paper is organized as follows. Section II sum-
marizes the related work in the area of array-power modeling and es-
timation. Section III provides a brief background in array structures
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Fig. 1. Typical design flow for custom memory structures.

and design styles. Section IV describes our estimation methodology
and presents an illustrative example that demonstrates generation of a
power model using a high-level configuration file. Section V presents
a validation of our models against transistor-level SPICE to measure
the estimation accuracy. Section VI describes some applications of the
tool, implementation-dependent array power (IDAP). Section VII con-
tains concluding remarks and directions for future work.

II. RELATED WORK

While there are tools for estimation of RTL-power dissipation [11],
[12], they are meant for designs based on power-characterized modules
and combinatorial logic and cannot be used for custom SRAM-based
array designs. A study of different approaches used for modeling en-
ergy dissipation in SRAMs is illustrated by Evans et al. in [5]. Related
work on power estimation in arrays can be categorized into characteri-
zation-based power modeling and microarchitecture-level power mod-
eling. In this section, we will first detail the research work related to
characterization-based modeling, followed by research in microarchi-
tecture level power modeling.

Traditionally, power estimation for array structures has been per-
formed at the transistor-level using SPICE. Although highly accurate,
these SPICE-based simulations cannot be performed when applica-
tion-level (simulation vectors in the order of thousands/millions) power
estimates are required because of their impractical runtimes. To address
this issue, an ASIC on-chip memory-characterization tool (PASTEL)
[10] was developed by Ogawa et al.. More recently, Mamidipaka et al.
proposed a more generic methodology to generate analytical models
for power dissipation in arrays for wide variety of array-implementa-
tion styles through transistor-level simulations [8].

For estimation of power in arrays at higher levels in the design
cycle, microarchitecture-level models have been proposed. However,
researchers have focussed on modeling specific array-implementation
styles. For instance, Zyuban and Kogge [21] propose analytical
power-dissipation models for register file implementations. Simplified
energy models for caches as a function of hits and misses are proposed
by Su and Despain [18] and also used in [15] and [17] with minor
enhancements for design-space exploration. Kamble and Ghose [6]

proposed analytical models for estimating energy dissipation in con-
ventional caches and low-power caches. In these models the power
consumed due to control logic, decode logic, and sense amplifiers
is considered negligible. While this assumption may hold for large
conventional caches, it does not hold for high-performance custom
arrays found in microprocessors. Energy models specific to caches
have also been proposed by Li and Henkel [7]. These models are
similar to those proposed by Kamble and Ghose except that the
energy dissipation due to decoder, output drivers, and memory write
is accounted for based on statistical assumptions not described in the
paper. The Cacti [19] tool was enhanced for more accurate power esti-
mation, but is applicable only for specific implementations of caches
at the microarchitectural level. Brooks et al. proposed parameterizable
analytical models to estimate power for different sizes of generic array
structures [4]. These models, referred to as Wattch models, are based
on the capacitance values estimated using the Cacti [19] tool. These
microarchitecture-level models usually have limited absolute accuracy
and are only used for relative comparisons.

Analysis on some industrial array designs show that the Wattch
models can have an error of as much as 94%. This is because in reality,
the power dissipation depends greatly on the subblock implementation
styles which are not captured in the models. The Wattch models assume
typical subblock circuit implementation styles for power estimation
because of lack of such information at the microarchitectural level. For
example, the Wattch models assume inverter sense-amplifier-based
read logic, static CMOS-based decode logic, and precharge-based
write logic for all array structures. This affects the accuracy of the
models for varied implementation styles of the subblocks. In fact,
experiments done on a 64 � 128 size array using SPICE simulations,
show a variation of 29% in power dissipation for just two different
implementations of sense-amplifiers in array read logic (differential
sense-amplifier and static inverter sense-amplifier), whereas Wattch
reports same power for both implementations. Moreover the existing
high level models for arrays typically estimate the power based on
wordline capacitance and bitline capacitances and do not capture any
other nodes which could contribute to power significantly.

As can be noted, prior research focus has either been on power mod-
eling based on simulations at the transistor level or at a level higher
in the design hierarchy, where there are limited details about the array
design. In practice, there are a variety of implementations for each sub-
block in an array, and the implementation choices significantly affect
the power dissipation. In this paper, we present an accurate power-es-
timation methodology and an estimation tool (IDAP) applicable to a
wide variety of array implementations. We evaluate IDAP by com-
paring its power estimates with detailed SPICE simulations.

III. ARRAY STRUCTURES

Array structures contribute to a significant portion of the total system
power dissipation. Caches, tag arrays, register files, branch table pre-
dictors, instruction windows, translation lookaside buffers are common
examples of array structures in micro-processors. As shown in Fig. 2,
array structures are primarily composed of address decoders, wordline
drivers, memory core, read column logic, write column logic, read con-
trol, and write control logic.

For read and write operations, the row decoder selects the appro-
priate wordline corresponding to the input address, thereby activating a
row in the memory array. For a read operation, the precharged bitlines
either retain charge or discharge depending on the data stored in the
cells selected by the wordline. The sense-amplifier detects the changes
in the voltage on the bitlines and the appropriate data is multiplexed to
the data output. For a write operation, the sense-amplifiers are isolated
and the write buffers drive the bitlines in accordance to the data being
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Fig. 2. Typical architecture of array structures.

TABLE I
ARRAY-SUBBLOCK CIRCUIT-IMPLEMENTATION STYLES

written into the memory location corresponding to the write address.
In the case of CAMs, there is an additional operation, match, that com-
pares an input data with the internally stored data. To enable the match
operation in CAMs, each CAM memory cell consists of the compare
logic in addition to static RAM cell [13].

Arrays typically differ from each other in size, row and column or-
ganization, and subblock implementation style at the circuit-level. A
specific circuit implementation style is chosen for optimal power or
performance. Table I lists some examples of the commonly used sub-
block implementations. Note that the functionality of the read control
and write control logic depends on the implementation of the read and
write column logic, respectively. For example, the read control logic
employing an inverter-based sense amplifier is significantly different
from an implementation using a differential sense amplifier.

IV. ESTIMATION METHODOLOGY

In this section, we begin with an overview of the proposed method-
ology, followed by more detailed description of various phases of the
methodology. Currently, the focus of this tool is on dynamic power
dissipation since it is the major contributor to the total power. While
the tool currently generates accurate models for capacitive switching
power, we assume short-circuit power to be 10% of the switching ca-
pacitance power. However, we want to model short-circuit power more
accurately in latter versions of the tool.

A. Overview

Fig. 3 is the flow diagram of our methodology. The inputs to the tool
are the configuration file, technology file, and some optional parame-

ters are shown in light blue/gray colored boxes. The configuration file
is the user-provided information, which constitutes the specification of
the array organization (for example, the number of rows and columns)
and the circuit implementation style for each array subblock. The tech-
nology file for the intended CMOS is another input to the tool through
which technology specific parameters such as unit gate capacitance,
unit drain capacitance, and metal capacitance, are derived by the tool.
Finally, the optional parameters like the input-drive and output-node
capacitances help the tool generate more accurate power models. The
output of the tool is the power model as a function of array primary
inputs and outputs and operation on the array.

Since power dissipation in an array is the additive sum of the power
in each subblock, the IDAP tool generates a model for each subblock
based on information specified in a user-provided configuration file.
The tool starts with analyzing the array configuration file to determine
the organization of the array and its subblock-implementation styles.
Then, the analyzer together with the knowledge base, determines the
essential nodes (nodes within the subblock which contribute to power)
and influential nodes (nodes in the subblock which contribute to power
in other subblocks) based on parameters specified in the configuration
file. More details on the knowledge base, configuration file, influen-
tial, and essential nodes are given in the following sections. The next
phase of the methodology works on these priority nodes along with
the process-technology parameters to estimate the switching capaci-
tances in the subblock for each array operation. The analytical models
required for capacitance calculation are obtained from the knowledge
base as well. The capacitance estimator also has an optional input file
specifying the input drive on the address and data-in bus and capacitive
loads on the data-out bus. The estimator uses these parameters for more
accurate estimation of internal node capacitances. The power models
for the subblocks are then generated as a function of node capacitances
and switching activity in the subblock. The switching activity is either
dependent on the array inputs or independent. For dependent-switching
activity, the model generated is parameterized based on those inputs
(as shown by F (Ti; Ci) in Fig. 3. The independent-switching activity
is determined by the analyzer. For example, in a double-ended bitline-
based read, half the bitlines discharge, regardless of the data. The loop
containing the analyzer, capacitance estimator, and subblock-power
model generator, as shown in the Fig. 3, is repeated for all the array sub-
blocks. The final phase of the methodology stitches the power models
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Fig. 3. Proposed methodology for power estimation in array structures.

of all the subblocks to generate the model for the whole array. The de-
tails of the configuration file, subblock-power model-generation flow,
and the knowledge base are illustrated in the following sections.

B. Configuration File

The configuration file is a high-level design specification of the array
which abstracts out the details of the array that determine power dis-
sipation. The parameters enable the specification of a wide variety of
arrays used in micro-processor designs. To represent more optimized
and complicated arrays the configuration file may be further enhanced
and the knowledge base updated for the corresponding implementation
styles. The specification is divided into three parts: 1) organization of
the array; (2) circuit-level implementation style of each subblock; and
3) design and technology dependent parameters.

Fig. 4 is an example configuration file for a 64� 80 tag array. In this
example, lines1–8specify theorganizationof thearray.Thisarrayhas64
rowsand80columns(lines1and2),memorycellofwidth10�andheight
20� (line 3), a single port for both read andwrite (line 4), a 2:1 readmul-
tiplexer, and a 4:1 write multiplexer (lines 7 and 8). The implementation
stylesfor thevarioussubblocksaredescribedinlines9–11.Thereadlogic
is a double-ended bitline, differential sense amplifier (DE:DSA)-based
implementation (line 9), the write logic is also a double-ended bitline
andprechargetransistor(DE:precharge)-basedimplementation(line10).
The decoder implementation, as indicated in line 11, is as local static
CMOS(predecoded address signals act as array inputs). Lines 12–14 are
design-specific parameters. Since this array is self-timed,we specify the
perRdBlDis parameter (described in Section IV-C) in line 12. Line 13
specifies that the wordline architecture is unified2 and the position of the

2For detailed explanation of unified and divided wordline architectures, refer
to [2].

read sense amplifiers is indicated in line 14 as after read multiplexer. In
high-performancedesigns,thesenseamplifiersaresometimespositioned
before the read multiplexer. Lines 13–15 are technology dependent pa-
rameters specifying the voltage and frequency of operation for the array
(lines 13 and 14) and the path to the process technology file (line 15).
The values for the technology dependent parameters, such as theCgate,
Cmetal, andCdrain, are extracted from the process file.

The configuration file can also represent more complex array orga-
nizations typically found in high-performance microprocessors. Con-
sider an array with a total of 22 columns, a 4:1 write column multiplexer
on the first 16 columns of the array, and no write multiplexer for the re-
maining six columns (the tag array for a LRU-based associative caches
can have multiplexed write inputs for tags and nonmultiplexed inputs
for LRU bits). Fig. 5 shows the configuration file of such an array.

C. Power-Model Generation: An Illustrative Example

We illustrate the subblock-power model-generation process for a
differential sense amplifier-based read logic, with a 2:1 column mul-
tiplexer. Fig. 6 shows the implementation of the subblock under in-
vestigation. While other implementation styles are possible, this is a
commonly used style because of its optimal speed and lower power
dissipation.

During a write operation or an idle state there is no transition activity
in the subblock and, hence, the dynamic power for this operation/state
is zero. However, in the case of a read operation, the transition activity
on the bitlines (BL0, BL0_b, BL1, BL1_b), the sense amplifier bit-
lines (SenseBL, SenseBL_b), and the data-out nodes (DOUT, DOUT b)
contribute to the subblock power dissipation. These nodes, which con-
tribute significantly to the subblock power dissipation, are defined as
essential nodes. The isolation nodes (ISO0; ISO1), bitline precharge
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Fig. 4. Input configuration file for a 64 � 80 tag array.

Fig. 5. Configuration file for a complicated array organization.

node (PCH), sense bitline-precharge node (SensePch), and sense-
amplifier enable node (SenseEn) do not contribute to the power in this
subblock. However, they affect the power dissipation in another sub-
block (read control logic) and will be accounted for in the power-model
generation for the read control logic. We define the nodes which con-
tribute to the power dissipation in other subblocks as influential nodes.
Although all the nodes in this particular subcircuit example are catego-
rized under influential/essential nodes, in subcircuits such as decoders
and read/write control logic, many nodes have capacitances negligible
compared to others. For instance, in address decoders, the capacitance
on the first level of decoding logic is insignificant compared to ca-
pacitive load seen by the wordline drivers. Such nodes are termed as
nonessential nodes and are not considered in the analysis. Essential and
influential nodes are determined by the knowledge of the various im-
plementation styles. Traditionally designers can gather this information
from experience. Since the circuit-implementation styles across dif-
ferent technologies usually remains the same, prior array designs could
be used to extract this information. Our goal is to build a knowledge

base that contains the implementation specific information. Typically,
there are limited numbers of subblock implementation styles used for
a specific microprocessor family. Therefore, corresponding to each im-
plementation style, the influential and essential nodes are determined
and stored in the knowledge base.

In order to estimate the power dissipation for various operations, the
capacitance on the influential and essential nodes needs to be calcu-
lated. This is performed by a set of analytical models that are a func-
tion of organizational parameters and attributes specified in the config-
uration file. For example, the bitline capacitances (BL0, BL0_b, BL1,
BL1_b) and bitline-precharge capacitance (PCH) are determined by
(1) and (2), respectively

CBL =Nrows:(CmemCell + Cmetal:HmemCell)

+ 3:Cdrain (1)

Cprecharge =3:Wpmos:Cgate (2)

where, Wpmos = f(CBL; Tprecharge);
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Fig. 6. Typical structure of read logic based on differential sense amplifier.

In (1), CmemCell is the capacitive load seen by the bitlines in each
memory cell of the array column. Nrows indicates the number of rows
in the array, Cmetal indicates the metal capacitance per unit micron,
HmemCell indicates the height of the memory cell in microns, Cdrain

indicates the drain capacitance per unit micron. In (2), Cgate is the
gate capacitance per unit micron, and Wpmos indicates the width of
the precharge PMOS transistors. The Wpmos is calculated as a func-
tion of the bitline capacitance (CBL) and precharge time (Tprecharge).
The Tprecharge is derived from the frequency of operation parameter
defined in the configuration file. Also, Cdrain, Cgate, and Cmetal are
process technology dependent parameters and HmemCell and Nrows

are organizational parameters specified in the configuration file (more
details on the configuration file are given in Section IV-B). The ca-
pacitances on all the essential and influential nodes can be calculated
using similar analytical equations. In the case of self-timed logic-based
[1] reads, the bitlines discharge only partially during read operations.
Hence, there is a factor perRdBlDis, which indicates the percentage
of bitline discharge. The dynamic power model for this subblock can
thus be obtained using

Pdyn=

0 for write operation
or idle state

(2:CBL:perRdBlDis

+CSenseBl+CDout):V
2
dd:f for read operation.

(3)

Note that the parameters perRdBlDis, Vdd, and f in (3) are ob-
tained in the configuration file. A similar analysis is performed on the
remaining subblocks to generate a model for the entire array.

D. Knowledge Base

The knowledge base consists of two main components corre-
sponding to each subblock implementation style: 1) the influential and

essential nodes in the subblock and 2) parameterized analytical equa-
tions which enable calculating the capacitance on the essential and
influential nodes (similar to (1) and (2) in Section IV-C). The essential
and influential nodes can be determined based on simulation and
characterization of prior designs and the designer’s experience. The
parameterized equations for these priority nodes can then be derived
for the given subblock implementation and stored in the knowledge
base. The parameterized analytical equations, however, need to be
independent of technology. For a given subblock, the knowledge base
may initially contain the obvious nodes which contribute to power.
Then, based on simulations of prior designs and its power analysis,
the knowledge base may be enhanced by capturing more priority
nodes which contribute to power. This process can be iterated until the
required accuracy is achieved. A tool such as the one described in [8]
can be used for the purpose of characterizing arrays and extracting the
necessary information to build the knowledge base. Note that once the
knowledge base is developed, it may be used earlier in the design cycle
for the next generation of processor design and process technology.

V. MODEL EVALUATION

The IDAP tool was developed using C++, and the knowledge base
was populated with an analysis of the arrays and SPICE-level simula-
tions. The time taken for developing the knowledge base for almost all
subblock implementation styles in arrays from the Motorola family of
micro-processors that are PowerPC Book E compliant took 4–5 weeks.
Because of the highly repetitive structure of the arrays, the number of
distinct priority (influential and essential) nodes for any subblock im-
plementation was observed to be less than 10. In this section, we show
the results of the evaluation of the IDAP-based power estimates with
those based on fully-extracted SPICE simulations. Since the IDAP tool
consists of mostly analytical equations, the time taken to run the tool
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TABLE II
COMPARISON OF THE POWER MODELS WITH SPICE

for a given array configuration and stimuli was on the order of 1–2 s, in
contrast with SPICE simulations that took on the order of tens of hours
(depending on the size of the array).

Table II shows the comparison across different arrays used in an
industrial e500 processor core design. The actual power numbers
and the names of the array are not shown because they are Motorola
proprietary data and cannot be published. Instead, we show the
percentage error between the model estimates and SPICE. Column 2
indicates the size of the array in terms of the number of bit cells,
Columns 3 and 4 indicate the percentage error in the model estimates
for read and write operations respectively. The percentage error is
calculated as (model value� actual value)=actual value, where,
the actual value is the value obtained from SPICE. The SPICE
simulations are done on a transistor-level netlist with RC back anno-
tation obtained from layout. The power values are calculated as the
average power for a large number of input stimulus. This stimulus was
obtained from the benchmarks: dhrystone, goke_fft, and six Motorola
internal benchmarks. The designs are based on 0.13-�m bulk CMOS
technology operating at a frequency of 850 MHz. These arrays differ
from each other in size, row/column organization, number of memory
bit-cell ports (single read/write, multiple read/write, and dedicated
read/write), memory bit-cell dimensions, read logic styles, write logic
styles, and self-timed read-logic styles.

Some of the main features of the arrays used in the experiments are
illustrated below. Arrays 1 and 2 have separate read and write ports for
simultaneous read and write accesses. While the write operation was
implemented using single ended bitline and static inverter-based write
logic, the read operation was implemented using double ended bit-
line and inverter-based sense-amplifier. Array 3 has multiple read/write
ports (5 read and 2 write), each implemented using single ended bitline-
based logic. Array 4 has configuration similar to the example illustrated
in Fig. 5 with write multiplexer only on a section of columns. Arrays
5–7 have similar subblock implementation styles with single read/write
port (double ended bitlines, differential sense-amplifier-based read and
precharge-based write), but differ mainly in the size and row/column
organization. From Table II the error margin varies from �20.6% to
+22.2%. The reasons for variation include:

• differences in the node capacitances estimated versus the actual
node capacitances from layout. For example, in differential sense-
amplifier-based read logic, illustrated in Section IV-C, the cal-
culated precharge node capacitance (Cprecharge, (2)) and the ac-
tual node capacitance can differ for a number of reasons: margin
of error in determination of the width of the PMOS transistor,
margin of error induced due to lack of accountability of capaci-
tances associated with vias and coupling capacitances in analyt-
ical models.

• various custom design optimizations for speed which are not ac-
counted for in the model. For example, gate skewing [16] in de-
signs leads to reduced node capacitances.

• a margin of error, due to short circuit currents. This is because the
short circuit power is assumed to be a constant percentage of ca-
pacitive power and accounted in the model using a scaling factor.
However, in the actual estimates, the contributions of short cir-
cuit currents may vary depending on the internal signal transition
time.

It can be noted that because of the reasons illustrated above, the
models yield to an overestimate of power in some array designs and
an under-estimate in some arrays depending on its implementation.
Hence, a variation between �20.6% to +22.2% in error is seen be-
tween the model estimates and the actual power based on SPICE sim-
ulations. Although the experiments were conducted on arrays from a
specific technology, we think a similar power estimation accuracy will
hold for arrays from a different technology because of the technology
independent methodology used in the tool.

VI. APPLICATIONS

More general applications of the tool were illustrated in the intro-
duction section. Some of the specific usages of the IDAP tool are listed
below: 1) for estimating power values for system designs at the RTL
(assuming that the organizational and implementation details of array
subblocks are known at RT level); 2) for power-performance tradeoff
analysis of various RT and system-level optimizations; 3) to study the
effect of different organizational parameters on array power dissipation
during early phases of the design; and 4) since the proposed method-
ology yields power models for each subblock the array designers may
analyze subblock power hungry subblocks for optimization for overall
array power dissipation. While there are a multitude of places in which
IDAP can be deployed, we show some of the possible applications of
the tool in the following subsections.

A. Subblock Contributions to Total Array Dynamic Power Dissipation

In this section, using IDAP, we show the percentage contributions
of array subblocks to the total dynamic-power dissipation for read and
write operations. We considered typical implementation styles for the
array subblocks and the contributions are analyzed for varying array
sizes, in terms of rows and columns. We think this analysis will help de-
termine the subblocks on which low-power techniques can be focussed.

Figs. 7 and 8 show the percentage-power contributions of the array
subblocks for read and write operations, respectively. During a read op-
eration, the read column logic consumes as much as 72% of the total
dynamic power. Further analysis showed that the bitlines contribute to
the majority of power dissipation in read column logic. The row-de-
coder contributes to less than 2% of the total dynamic power. The read
control logic, which drives control signals to precharge, sense amplifier,
and isolation logic, contributes to as much as 30% of the total dynamic
power. The contributions of write control and write column logic are
not shown because these subblocks do not contribute to any dynamic
power during a read operation. Interestingly, it can be noted that these
percentage contributions remain the same for arrays which have the
same number of rows (independent of the number of columns). This
is because the power dissipation in all subblocks increases in propor-
tion to the number of columns. However, when the number of rows in-
creases, because of the increasing bitline lengths, the fraction increase
read column logic power is more than that of the other subblocks. So,
the percentage contribution of read column logic increases with the in-
creasing number of rows. Similar observations can be made in Fig. 8,
showing the percentage subblock power contributions for a write op-
eration. The write column logic dominates the subblock power contri-
butions. It can be observed that the percentage-power contributions of
the array subblocks are independent of the array size.
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Fig. 7. Subblock-power contributions for read operation.

Fig. 8. Subblock-power contributions for write operation.

B. Effect of Bitline-Voltage Swing on Read Power

As described in Section VI-A, bitlines consume a significant portion
of the total array power. To reduce the power dissipation during a read
operation, optimizations based on self-timed read control logic (such
as phased clock, delayed clock [1]) are typically used in contemporary
array designs. These techniques achieve reduction in power dissipation
by reducing the voltage swing on the bitlines during a read operation.
The plot in Fig. 9 shows the effect of this percentage bitline-voltage
swing on the read array power dissipation. The read power is estimated
for arrays of sizes 64 � 128, 128 � 128, and 256 � 128 with typical
subblock implementation styles.

In contemporary array designs, the bitlines discharge by just 15%
of the supply voltage [3], [20] during a read operation. This means
that the optimization results in as much as 63% reduction in array read
power dissipation for an 256 � 128 sized array. Also, it can be noted
that with an increasing number of array columns, the percentage-power
reduction increases because of increasing contribution of bitlines to the
total array read power.

C. Effect of Memory-Cell Dimensions on Power

The dimensions of the memory cell have a significant impact on the
power dissipated in the array. While a memory cell requires a specific
amount of area, there is flexibility in choosing its width and height. In
this experiment, we vary these dimensions (width and height) within

Fig. 9. Effect of bitline-voltage swing on array read power.

an acceptable margin in which the memory cell can be laid out, while
keeping the area constant. For example, if a memory cell requires an
area of 50 �m2, the dimensions of the memory cell are varied as (5�
10 �m), (6 � 8:33 �m), and (8� 6:25 �m).

Fig. 10 shows the effect of varying cell-size dimensions on the array
power for read and write operations. The array used for our experiment
is a 64 row and 96 column array, with differential sense-amplifier-based
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Fig. 10. Plot showing effect of memory-cell dimensions on array power.

read and precharge-based write. As can be seen the dimensions of the
cell has a significant effect on the total power dissipation in the array.
As much as 21% variation in reads and 28% in writes can be seen in
this example. IDAP was used to conduct similar experiments on three
other arrays and a similar trend was observed The power dissipation in
the array decreases with increasing the width or decreasing the height
of the memory cell (since area is constant, height / 1/width). This is
because the bitline power is linearly proportional to the height of the bit
cells and has significant contribution to the overall power. So, although
the wordline power increases, because of the increasing bit cell width,
the overall power dissipation decreases with decreasing bit cell height.
It can be observed that the reduction in power for a write operation is
more than that of a read operation. This is because the read operation in
the array is based on self-timed logic [1] and hence bitlines discharge
by only a fraction of the total precharge voltage. However, in the case
of write operations, the columns corresponding to the write discharge
completely and, hence the effect of reduced bitline lengths on power is
more prominent for a write operation than for a read operation.

Note that changing the dimensions of the memory cell can affect
the performance of the array. Since the delay on wordlines increases
with increasing width and delay on bitlines decreases with decreasing
height, the overall delay for a read and write access may not be affected
significantly. However, the aspect ratio of the array layout also changes,
which might affect the floorplan.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a methodology and a tool IDAP, that
can be used for accurate power estimation of arrays early in the de-
sign cycle. The tool takes the array subblock-circuit implementation
styles and its configuration parameters as input and generates a power
model for the various operations supported by the array. The generated
models were evaluated by comparing against detailed SPICE simula-
tions on leading industrial designs. The error margin is seen to be less
than 22.2%. We used the tool to analyze the contributions of the array
subblocks to the total power dissipation and also studied the effects of
memory cell dimensions and bitline-voltage swing on the array power.

This work can be expanded in a number of ways. The contribution of
leakage currents to the total power is becoming increasingly significant
in newer technologies. We are currently enhancing the tool to estimate
leakage power as a function of the operation on an array. Also, we want
to analyze and model the parameters related to short-circuit current
for more accurate estimation of dynamic power dissipation. The tool
can currently handle only a single bank of memory. However, in larger
arrays there are multiple banks and the power dissipation depends on

the memory-bank organization. We also plan to enhance the tool to
capture the power for multibank configurations.
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