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Abstract

The efficient processing of similarity joins is important for a large class of applications.
The dimensionality of the data for these applications ranges from low to high. Most existing
methods have focussed on the execution of high-dimensional joins over large amounts of disk-
based data. The increasing sizes of main memory available on current computers, and the need
for efficient processing of spatial joins suggest that spatial joins for a large class of problems can
be processed in main memory. In this paper we develop two new spatial join algorithms, the
Grid-join and EGO*-join, and study their performance in comparison to the state of the art
algorithm, EGO-join, and the RSJ algorithm.

Through evaluation we explore the domain of applicability of each algorithm and provide
recommendations for the choice of join algorithm depending upon the dimensionality of the
data as well as the critical ε parameter. We also point out the significance of the choice of this
parameter for ensuring that the selectivity achieved is reasonable. The proposed EGO*-join
algorithm always, often significantly, outperforms the EGO-join. For low-dimensional data the
Grid-join outperform both the EGO- and EGO*- joins.

An analysis of the cost of the Grid-join is presented and highly accurate cost estimator func-
tions are developed. These are used to choose an appropriate grid size for optimal performance
and can also be used by a query optimizer to compute the estimated cost of the Grid-join.

1 INTRODUCTION

Similarity (spatial) joins are an important database operation for several applications including GIS,
multimedia databases, data mining, location-based applications, and time-series analysis. Spatial
joins are natural for geographic information systems and moving object environments where pairs
of objects located close to each other are to be identified [13, 12]. Many algorithms for several basic
data mining operations such as clustering [5], outlier detection [9], and association rule mining [10]
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require the processing of all pairs of points within a certain distance to each other [2]. Thus a
similarity join can serve as the first step for many of these operations [1].

The problem of efficient computation of similarity joins has been addressed by several re-
searchers. Most researchers have focussed their attention on disk-based joins for high-dimensional
data. Current high-end workstations have enough memory to handle joins even for large amounts of
data. For example, the self-join of 1 million 32-dimensional data points, using an algorithm similar
to that of [2] (assuming float data type for coordinate and int for point identities) requires roughly
132MB of memory (i.e. (32×4+4)×106 ≈ 132MB, plus memory for stack etc.). Furthermore there
are situations when it is necessary to join intermediate results situated in main memory or sensor
data, which is to be kept in main memory. With the availability of a large main memory cache,
disk-based algorithms may not necessarily be the best choice. Moreover, for certain applications
(e.g. moving object environments) near real-time computation may be critical and require main
memory evaluation.

In this paper we consider the problem of main memory processing of similarity joins, also known
as ε-joins. Given two datasets A and B of d-dimensional points and value ε ∈ �, the goal of a join
operation is to identify all pairs of points, R, one from each set, that are within distance ε from
each other, i.e.

R = J(A,B, ε) = {(a, b) : ‖a− b‖ < ε; a ∈ A, b ∈ B}.
While several research efforts have concentrated on designing efficient high-dimensional join

algorithms, the question of which method should be used when joining low-dimensional (e.g. 2–6
dimensions) data remains open. This paper addresses this question and investigates the choice
of join algorithm for low- and high-dimensional data. We propose two new join algorithms: the
Grid-join and EGO*-join, and evaluate their along with the state of the art algorithm – EGO-join
[2], and a method which serves as a benchmark in many similar publications, the RSJ join [4].

These techniques are compared through experiments using synthetic and real data. We consid-
ered the total wall-clock time for performing a join without ignoring any costs, such as pre-sorting
data, building/maintaining index etc. The experimental results show that the Grid-join approach
showed the best results for low-dimensional data.

Under the Grid-join approach, the join of two sets A and B is computed using an index nested
loop approach: an index (i.e. specifically constructed 2-dimensional grid) is built on circles with
radius ε centered at the first two coordinates of points from set B. The first two coordinates of
points from set A are used as point-queries to the grid-index in order to compute the join. Although
several choices are available for constructing this index, only the grid is considered in this paper.
The choice is not accidental, it is based upon our earlier results for main memory evaluation of range
queries. In [7] we have shown that for range queries over moving objects, using a grid index results
in an order of magnitude better performance than memory optimized R-tree, CR-tree, R*-tree, or
Quad-tree.
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The results for high-dimensional data show that the EGO*-join is the best choice of join method,
unless ε is very small. The EGO*-join that we propose in this paper is based upon the EGO-join
algorithm. The Epsilon Grid Order (EGO) join [2] algorithm was shown to outperform other
techniques for spatial joins of high-dimensional data. The new algorithm significantly outperforms
EGO-join for all cases considered. The improvement is especially noticeable when the number of
dimensions is not very high, or the value of ε is not large. The RSJ algorithm is significantly poorer
than all other three algorithms in all experiments. In order to join two sets using RSJ, an R-tree
index needs to be built or maintained on both of these sets. But unlike the case of some approaches,
these indexes need not be rebuilt when the join is recomputed with different ε.

Although not often addressed in related research, the choice of the ε parameter for the join
is critical to producing meaningful results. We have discovered that often in similar research the
choice of values of ε yields very small selectivity, i.e. almost no point from one dataset joins with a
point from the other dataset. In Section 3.1 we present a discussion on how to choose appropriate
values of ε.

The contributions of this paper are as follows:

• Two join algorithms that give better performance (almost an order of magnitude better for
low dimensions) than the state of the art EGO-join algorithm.

• Recommendations for the choice of join algorithm based upon data dimensionality d, and ε.

• Highlight the importance of the choice of ε and the corresponding selectivity for experimental
evaluation.

• Highlight the importance of the cache miss reduction techniques: spatial sortings (2.5 times
speedup) and clustering via utilization of dynamic arrays (40% improvement).

• For the Grid-join, the choice of grid size is an important parameter. In order to choose good
values for this parameter, we develop highly accurate estimator functions for the cost of the
Grid-join. These functions are used to choose an optimal grid size.

The rest of this paper is organized as follows. Related work is discussed in Section 4. The new
Grid-join and EGO*-join algorithms are presented in Section 2. The proposed join algorithms are
evaluated in Section 3, and Section 5 concludes the paper. A sketch of the algorithm for selecting
grid size and cost estimator functions for Grid-join are presented in Appendix A.

2 SIMILARITY JOIN ALGORITHMS

In this section we introduce two new algorithms: the Grid-join and EGO*-join. The Grid-join is
based upon a uniform grid and builds upon the approach proposed in [7] for evaluating continuous
range queries over moving objects. The EGO*-join is based upon EGO-join proposed in [2]. In
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Section 2.1 we first present the Grid-join algorithm followed by an important optimization for
improving the cache hit-rate. An analysis of the appropriate grid size as well as cost prediction
functions for the Grid-join is presented in the appendix. The EGO*-join method is discussed in
Section 2.2.

2.1 Grid-join

Assume for now that we are dealing with 2-dimensional data. The spatial join of two datasets, A
and B, can be computed using a standard Index Nested Loop approach as follows. We treat one
of the point data sets as a collection of circles of radius ε centered at each point of one of the two
sets (say B). This collection of circles is then indexed using some spatial index structure. The
join is computed by taking each point from the other data set (A) and querying the index on the
circles to find those circles that contain the query point. Each point (from B) corresponding to
each such circle joins with the query point (from A). An advantage of this approach (as opposed
to the alternative of building an index on the points of one set and processing a circle region query
for each point from the other set) is that point queries are much simpler than region queries and
thus tend to be faster. For example, a region query on a quad-tree index might need to evaluate
several paths while a point query is guaranteed to be a single path query. An important question
is the choice of index structure for the circles.

In earlier work [7] we have inves-
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Figure 1: An example of the Grid Index, IG

tigated the execution of large num-
bers of range queries over point data
in the context of evaluating mul-
tiple concurrent continuous range queries
on moving objects. The approach
can also be used for spatial join if
we compute the join using the Index
Nested Loops technique mentioned
above. The two approaches differ
only in the shape of the queries which

are circles for the spatial join problem and rectangles for the range queries.
In [7] the choice of a good main-memory index was investigated. Several key index structures

including R-tree, R*-tree, CR-tree [8], quad-tree, and 32-tree [7] were considered. All trees were
optimized for main memory. The conclusion of the study was that a simple one-level Grid-index
outperformed all other indexes by almost an order of magnitude for uniform as well as skewed data.
Due to its superior performance, in this study, we use the Grid-index for indexing the ε-circles.

The Grid Index While many variations exist, we have designed our own implementation of
the Grid-index, which we denote as IG. IG is built on circles with ε-radius. Note however, that
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it is not necessary to generate a new dataset consisting of these circles. Since each circle has the
same radius (ε), the dataset of the points representing the centers of these circles is sufficient. The
similarity join algorithm which utilizes IG is called the Grid-join, or JG for short.

Case of 2 dimensions For ease of ex-

Input: Datasets A, B, and ε ∈ �
Output: Result set R

1. R← ∅
2. z-sort(A)
3. z-sort(B)
4. Initialize IG

5. for i← 0 to |B| − 1 do
(a) b′i ← (b0i , b

1
i )

(b) Insert {bi, C(b′i, ε)} into IG

6. for i← 0 to |A| − 1 do
(a) a′i ← (a0

i , a
1
i )

(b) Let Ci be the cell in IG corresponding to a′i
(c) for j ← 0 to |C.part| − 1 do

i. b← Ci.part[j]
ii. if (‖ai − b‖ < ε) then R← R ∪ (ai, b)

(d′) for j ← 0 to |Ci.full| − 1 do
i. b← Ci.full[j]
ii. R← R ∪ (ai, b)

7. return R

Figure 2: Grid-join procedure, JG

planation assume the case of 2-dimensional
data. IG is a 2-dimensional array of cells.
Each cell represents a region of space gen-
erated by partitioning the domain using a
regular grid.

Figure 1 shows an example of IG. Through-
out the paper, we assume that the domain
is normalized to the unit d-dimensional hyper-
cube, [0, 1]d. In this example, the domain
is divided into a 10 × 10 grid of 100 cells,
each of size 0.1× 0.1.

Since the grid is uniform, it is easy to
calculate cell-coordinates of an object in
O(1) time. Each cell contains two lists that
are identified as full and part, as shown in
Figure 1. Let C(p, r) denote a circle with
center at point p and radius r The full

(part) list of a cell contains pointers to all
points bi from B such that C(bi, ε) fully
(partially) cover the cell. That is for cell
C in IG its part and full lists can be rep-
resented mathematically as C.full = {b :
C ⊂ C(b, ε); b ∈ B} and C.part = {b :
C �⊂ C(b, ε) ∧ C ∩ C(b, ε) �= ∅; b ∈ B}.

To find all points within ε-distance from a given point a first the cell corresponding to a is
retrieved. All points in full list are guaranteed to be within ε-distance. Points in part list need to
be post-processed.

The choice of data structures for the full and part lists is critical for performance. We im-
plemented these lists as dynamic-arrays1 rather than lists which improves performance by roughly
40% due to the resulting clustering (and thereby reduced cache misses).

Case of d dimensions For the general d-dimensional case, the first 2 coordinates of points
are used for all operations exactly as in 2-dimensional case except for the processing of part lists,

1A dynamic array is a standard data structure for arrays whose size adjusts dynamically.

5



which uses all d coordinates to determine whether ‖a− b‖ < ε.
The reason for two separate lists per cell for 2-dimensional points is that points in the full list

do not need potentially costly checks for relevance since they are guaranteed to be within ε-distance.
Keeping a separate full list is of little value for more than 2 dimensions since now it too needs
post-processing to eliminate false positives similar to the part list. Therefore only one list is kept
for all circles that at least partially intersect the cell in the chosen 2 dimensions. We call this list
part list: C.part = {b : C ∩ C(b′, ε) �= ∅; b ∈ B}.

JG is described in Figure 2. Steps 2 and 3, the z-sort steps, apply a spatial sort to the two
datasets. The need for this step is explained later. IG is initialized in Step 4. In the loop in Step
5, all points bi from set B are added to IG one by one. First b′i, a 2-dimensional point constructed
from the first two coordinates of bi, is considered. Then pointer to bi is added to part lists of each
cell C in IG that satisfies C ∩ C(b′i, ε) �= ∅.

The loop in Step 6 performs a nested loop join. For each point ai in A all points from B that
are within ε distance are determined using IG. To do this, point a′i is constructed from the first
two coordinates of ai and the cell corresponding to a′i in IG, Ci, is determined in Steps 6(a) and
6(b). Then, in Step 6(c), the algorithm iterates though all elements of the part list of cell Ci and
finds all relevant to a points. Step 6(d′) is analogous to Step 6(c) and valid only for 2-dimensional
case.

Choice of grid size The performance of JG depends on the choice of grid size, therefore it
must be selected carefully. Intuitively, the finer the grid the faster the processing but the slower
the time needed to initialize the index and load the data into it. We now present a sketch of a
solution for selecting appropriate grid size.

The first step is to develop a set of estimator functions that predict the cost of the join given a
grid size. The cost is composed of three components, the costs of: (a) initializing the empty grid;
(b) loading the dataset B into the index; and (c) processing each point of dataset A through this
index. The appendix presents details on how each of these costs is estimated. The quality of the
prediction of these functions was found to be extremely high. Using these functions, it is possible to
determine which grid size would be optimal. These functions can also be used by a query optimizer
– for example to evaluate whether it would be efficient to use either JG for the given parameters
or another method of joining data.

Improving the cache hit-rate The performance of main-memory algorithms is greatly af-
fected by cache hit rates. In this section we describe an optimization that improves cache hit rates
and, consequently, the overall performance of JG.

As shown in Figure 2, for each point, its cell is computed, and the full and part lists (or just
part list) of this cell are accessed. The algorithm simply processes points in sequential order in
the array corresponding to set A. Cache-hit rates can be improved by altering the order in which
points are processed. In particular, points in the array should be ordered such that points that are
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close together according to their first two coordinates in the 2D domain are also close together in
the point array. In this situation index data for a given cell is likely to be reused from the cache
during the processing of subsequent points from the array. The speed-up is achieved because such
points are more likely to be covered by the same circles than points that are far apart, thus the
relevant information is more likely to be retrieved from the cache rather than from main memory.

Sorting the points to ensure that points that are close to each other are also close in the array
order can easily be achieved by various methods. We choose to use a sorting based on the Z-order.
We sort not only set A but also set B, which reduces the time needed to add circles to IG. As we
will see in the Experimental Section, ∼2.5× speedup is achieved by utilizing Z-sort, e.g. as shown
in Figure 10a.

2.2 EGO*-join

In this section we present an improvement of the disk-based EGO-join algorithm proposed in [2].
We dub the new algorithm the EGO*-join. We use notation JEGO for the EGO-join procedure and
JEGO∗ for the EGO*-join procedure. According to [2], the state of the art algorithm JEGO was
shown to outperform other methods for joining massive, high-dimensional data.

We begin by briefly describing JEGO as presented in [2] followed by our improvement of JEGO.
The Epsilon Grid Order: JEGO is based on the so called Epsilon Grid Ordering (EGO), see

[2] for details. In order to impose an EGO on dataset A, a regular grid with the cell size of ε is
laid over the data space. The grid is imaginary, and never materialized. For each point in A, its
cell-coordinate can be determined in O(1) time. A lexicographical order is imposed on each cell by
choosing an order for the dimensions. The EGO of two points is determined by the lexicographical
order of the corresponding cells that the points belong to.

EGO-sort: In order to perform JEGO of two sets A

Input: Datasets A, B, and ε ∈ �
Output: Result set R

1. EGO-sort(A, ε)
2. EGO-sort(B, ε)
3. join sequences(A, B)

Figure 3: EGO-join Procedure, JEGO

and B with a certain ε, first the points in these sets are
sorted in accordance with the EGO for the given ε. Notice
that for a subsequent JEGO operation with a different ε

sets A and B need to be sorted again since their EGO
values depend upon the cells.

Recursive join: The procedure for joining two se-
quences is recursive. Each sequence is further subdivided
into two roughly equal subsequences and each subsequence
is joined recursively with both its counterparts. The parti-
tioning is carried out until the length of both subsequences
is smaller than a threshold value, at which point a simple-join is performed. In order to avoid ex-
cessive computation, the algorithm avoids joining sequences that are guaranteed not to have any
points within distance ε of each other. Such sequences can be termed non-joinable.
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EGO-heuristic: A key element of JEGO is the heuristic used to identify non-joinable sequences.
The heuristic is based on the number of inactive dimensions, which will be explained shortly. To
understand the heuristic, let us consider a simple example. For a short sequence its first and last
points are likely to have the same first cell-coordinates. For example, points with corresponding
cell-coordinates (2, 7, 4, 1) and (2, 7, 6, 1) have two common prefix coordinates (2, 7,×,×). Their
third coordinates differ – this corresponds to the active dimension, the first two dimensions are
called inactive. This in turn means that for this sequence all points have 2 and 7 as their first two
cell-coordinates – because both sequences are EGO-sorted before being joined.

The heuristic first determines the number of inactive dimensions for both sequences, and com-
putes min – the minimum of the two numbers. It is easy to prove that if there is a dimension
between 0 and min− 1 such that the cell-coordinates of the first points of the two sequences differ
by at least two in that dimension, then the sequences are non-joinable. This is based upon the fact
that the length of each cell is ε.
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Figure 4: Two sequences with (a) 0 inactive dimensions (b) 1 inactive dimension. Unlike EGO-
heuristic, in both cases EGO*-heuristic is able to tell that the sequences are non-joinable.

New EGO*-heuristic: The proposed JEGO∗ (EGO*-join) algorithm is JEGO (EGO-join) with
an important change to the heuristic for determining that two sequences are non-joinable. The use
of the EGO*-heuristic significantly improves performance of the join, as will be seen in Section 3.

We now present our heuristic with the help of an example for which JEGO is unable to detect
that the sequences are non-joinable.

Two sequences are shown in Figure 4(b). Assume that each sequence has many points. One
sequence starts in cell (0,1,3) and ends in cell (0,2,2). The second sequence starts in cell (0,5,6) and
ends in (0,6,3). Both sequences have one inactive dimension: 0. The EGO-heuristic will conclude
that these two should be joined, allowing recursion to proceed. Figure 4(a) demonstrates the case
when two sequences are located in two separate slabs, both of which have the size of at least two in
each dimension. There are no inactive dimensions for this case and recursion will proceed further

8



Input: The first and last cells
of a sequence: CF andCL

Output: Bounding rectangle BR

1. for i← 0 to d− 1 do
(a) BR.lo[i]← CF .x[i]
(b) BR.hi[i]← CL.x[i]
(c) if (R.lo[i] = R.hi[i]) then continue

(d) for j ← i + 1 to d− 1 do
i. BR.lo[j]← 0
i. BR.hi[j]←MAX CELL

(e) break

2. return BR

Figure 5: JEGO∗: procedure for obtaining a Bounding Rectangle of a sequence

for JEGO.
The new heuristic being proposed is able to correctly determine that for the cases depicted in

Figures 4(a) and 4(b) the two sequences are non-joinable. It should become clear later on that, in
essence, our heuristic utilizes not only inactive dimensions but also the active dimension.

The heuristic uses the notion of a Bounding Rectangle for each sequence. Notice that in general,
given only the first and last cells of a sequence, it is impossible to compute the Minimum Bounding
Rectangle (MBR) for the sequence. However, it is possible to compute a Bounding Rectangle (BR).
Figure 5 describes an algorithm for computing a bounding rectangle.

The procedure takes as input the coordinates for first and last cells of the sequence and produces
the bounding rectangle as output. To understand getBR() algorithm, note that if first and the last
cell have n prefix equal coordinates (e.g. (1, 2, 3, 4) and (1, 2, 9, 4) have two equal first coordinates
– (1, 2,×,×) ) then all cells of the sequences have the same values in the first n coordinates (e.g.
(1, 2,×,×) for our example). This means that the first n coordinates of the sequence can be
bounded by that value. Furthermore, the active dimension can be bounded by the coordinates of
first and last cell in that dimension respectively. Continuing with our example, the lower bound
is now (1, 2, 3,×) and the upper bound is (1, 2, 9,×). In general, we cannot say anything precise
about the rest of the dimensions, however the lower bound can always be set to 0 and upper bound
to MAX CELL.

Once the bounding rectangles for both sequences being joined are known, it is easy to see that
if one BR, expanded by one in all directions, does not intersect with the other BR, than the two
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Input: Two sequences A and B

Output: Result set R

1. BR1 ← getBR(A.first, A.last)
1. BR2 ← getBR(B.first, B.last)
3. Expand BR1 by one in all directions
4. if (BR1 ∩BR2 = ∅) then return ∅
5. ... // continue as in JEGO

Figure 6: Beginning of JEGO∗: EGO*-heuristic

sequences will not join.
As we shall see in Section 3, JEGO∗ significantly outperform JEGO in all instances. This im-

provement is a direct result of the large reduction of the number of sequences needed to be compared
based upon the above criterion. This result is predictable since if EGO-heuristic can recognize two
sequences as non-joinable than EGO*-heuristic will always do the same, but if EGO*-heuristic can
recognize two sequences as non-joinable than, in general, there are many cases when EGO-heuristic
will decide the sequence is joinable. Thus EGO*-heuristic is more powerful. Furthermore, the dif-
ference in CPU time needed to compute the heuristics given the same two sequences is insignificant.

3 EXPERIMENTAL RESULTS

In this section we present the performance results for in-memory joins using JRSJ (RSJ join), JG,
JEGO [2], and JEGO∗. The results report the actual time for the execution of the various algorithms.
First we describe the parameters of the experiments, followed by the results and discussion.

In all our experiments we used a 1GHz Pentium III machine with 2GB of memory. The machine
has 32K of level-1 cache (16K for instructions and 16K for data) and 256K level-2 cache. All
multidimensional points were distributed on the unit d-dimensional box [0, 1]d. The number of
points ranges from 68,000 to 200,000. For distributions of points in the domain we considered the
following cases:

1. Uniform: Points are uniformly distributed.

2. Skewed: The points are distributed among five clusters. Within each cluster points are
distributed normally with a standard deviation of 0.05.

3. Real data: We tested data from ColorHistogram and ColorMoments files representing im-
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age features. The files are available at the UC Irvine repository. ColorMoments stores 9-
dimensional data, which we normalized to [0, 1]9 domain, ColorHistogram – 32-dimensional
data. For experiments with low-dimensional real data, a subset of the leading dimensions
from these datasets were used. Unlike uniform and skewed cases, for real data a self-join is
done.

Often, in similar research, the costs of sorting the data, building or maintaining the index or
costs of other operations needed for a particular implementation of join are ignored. No cost is
ignored in our experiments for JG, JEGO, and JEGO∗. One could argue that for JRSJ the two
indexes, once built, need not be rebuilt for different ε. While there are many other situations
where the two indexes need to be built from scratch for JRSJ , we ignore the cost of building and
maintaining indexes for JRSJ , thus giving it an advantage.

3.1 Correlation between selectivity and ε

The choice of the parameter ε is critical when performing an ε-join. Little justification for choice
of this parameter has been presented in related research. In fact, we present this section because
we have discovered that often in similar research selected values of ε are too small. We think that
the mistake happened because too often researchers choose to test self-join of dataset A which is
simpler than join of two different datasetsets A and B. In self-join each point joins at least with
itself. Thus the cardinality of the result set R is no less than the cardinality of A. By increasing
the dimensionality d and fixing ε to relatively small value, the size needed to store each data
point increases, consequently the size needed to store R (e.g. in bytes) increases, even though the
cardinality of R is close to the cardinality of A. The increase of size of R is probably often mistaken
for the increase of cardinality of R.

The choice of ε has a significant effect on the selectivity depending upon the dimensionality of
the data. The ε-join is a common operation for similarity matching. Typically, for each multidi-
mensional point from set A a few points (i.e. from 0 to 10, possibly from 0 to 100, but unlikely
more than 100) from set B need to be identified on the average. The average number of points
from set B that joins with a point from set A on the average is called selectivity.

In our experiments, selectivity motivated the range of values chosen for ε. The value of ε is
typically lower for smaller number of dimensions and higher for high-dimensional data. For example
a 0.1× 0.1 square2 query (ε = 0.1) is 1% of a two-dimensional domain, however it is only 10−6% of
an eight-dimensional domain, leading to small selectivity.

Let us estimate what values for ε should be considered for joining high-dimensional uniformly
distributed data such that a point from set A joins with a few (close to 1) points from set B.
Assume that the cardinality of both sets is m. We need to answer the question: what should the

2A square query was chosen to demonstrate the idea, ideally one should consider a circle.
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value of ε be such that m hyper-squares of side ε completely fill the unit d-dimensional cube? It
is easy to see that the solution is ε = 1

m1/d . Figure 7(a) plots this function ε(d) for two different
values of m. Our experimental results for various number of dimensions corroborate the results
presented in the figure. For example the figure predicts that in order to obtain a selectivity close
to one for 32-dimensional data, the value of ε should be close to 0.65, or 0.7, and furthermore that
values smaller than say 0.3, lead to zero selectivity (or close to zero) which is of little value3. This
is in very close agreement to the experimental results.
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Figure 7: ε-join(A,B) (a) Choosing ε for selectivity close to one for 105 (and 106) points uniformly
distributed on [0, 1]d (b) Pitfall of using improper selectivity.

If the domain is not normalized to the unit square, such as in [11], the values of ε should be
scaled accordingly. For example ε of 0.1 for [−1, 1]d domain correspond to ε of 0.05 for our [0, 1]d

domain. Figure 7(b) demonstrates the pitfall of using an improper selectivity. The parameters of
the experiment (distribution of data, cardinality of sets and ε (scaled)) are set to the values used
in one publication. With this choice of ε the selectivity plunges to zero even for the 10-dimensional
case. In fact, for our case, the figure presumably shows that the Grid-join is better than JEGO and
JEGO∗ even for high-dimensional cases. However, the contrary is true for a meaningful selectivity
as will be shown in Section 3.3.

Due to the importance of the selectivity in addition to the value of ε, we plot the resulting
selectivity in each experiment. The selectivity values are plotted on the y-axis at the right end of
each graph. The parameter ε is on the x-axis, and the time taken by each join method is plotted
on the left y-axis in seconds.

3For self-join selectivity is always at least 1, thus selectivity 2–100 is desirable.
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3.2 Low-dimensional data

We now present the performance of JRSJ , JEGO, JEGO∗ and JG for various settings. The cost of
building indexes for JRSJ is ignored, giving it an advantage.

The x-axis plots the values of ε, which are varied so that meaningful selectivity is achieved.
Clearly, if selectivity is 0, then ε is too small and vice versa if the selectivity is more than 100.

In all but one graph the left y-axis represents the total time in seconds to do the join for the
given settings. The right y-axis plots the selectivity values for each value of ε in the experiments,
in actual number of matching points. As expected, in each graph the selectivity, shown by the line
with the ‘×’, increases as ε increases.

JRSJ is depicted only in Figure 8 because for all tested cases it has shown much worse results
than the other joins, Figure 8a depicts performance of the joins for 4-dimensional uniform data
with cardinality of both sets being 105. Figure 8b shows the performance of the same joins relative
to that of JRSJ .
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Figure 8: Time to do ε-join for 4D uniform data (with JRSJ )

In Figure 8b, JEGO shows 3.5–6.5 times better results than those of JRSJ , which corroborates
the fact that, by itself, JEGO is a quite competitive scheme for low-dimensional data. But it is not
as good as the two new schemes.

Next comes JEGO∗ whose performance is always better than that of JEGO in all experiments.
This shows the strength of JEGO∗. Because of the selectivity, the values of ε are likely to be small for
low-dimensional data and large for high-dimensional data. The EGO-heuristic is not well-suited for
small values of ε. The smaller the epsilon, the less likely that a sequence has an inactive dimension.
In Figure 8b JEGO∗ is seen to give 13.5–24 times better performance than JRSJ .

Another trend that can be observed from the graphs is that JG is better that JEGO∗, except
for high-selectivity cases (Figure 10b). JEGO shows results several times worse than those of JG,
which corroborates the choice of the Grid-index which also was the clear winner in our comparison
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[7] with main memory optimized versions of R-tree, R*-tree, CR-tree, and quad-tree indexes. In
Figure 8b JG showed 15.5–46 times better performance than JRSJ .

Unlike JEGO, JEGO∗ always shows results at least comparable to those of JG. For all the
methods, the difference in relative performance shrinks as ε (and selectivity) increases.
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Figure 9: Time for ε-join for 3 dimensions with real data. (a) With JEGO (b) Without JEGO (for
clarity)

Figure 9 shows the results for the self-join of real 3-dimensional data taken from the ColorMom
file. The cardinality of the set is 68,000. The graph on the left shows the best three schemes, and
the graph on the right omits JEGO scheme due to its much poorer performance. From these two
graphs we can see that JG is almost 2 times better than JEGO∗ for small values of ε.
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Figure 10: Time to do ε-join for 4D, uniform data (a) |A| = |B| = 100, 000 (b) |A| = |B| = 200, 000

Figure 10 shows the results for 4-dimensional uniform data. The graph on the left is for sets of
cardinality 100,000, and that on the right is for sets with cardinality 200,000. Figure 10a emphasizes
the importance of performing Z-sort on data being joined: the performance improvement is ∼ 2.5
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times. JG without Z-sort, in general, while being better than JEGO, shows worse results than that
of JEGO∗.

Figure 10b presents another trend. In this figure JEGO∗ becomes a better choice than JG for
values of ε greater than ∼ 0.07. This choice of epsilon corresponds to a high selectivity of ∼ 43.
Therefore JEGO∗ can be applied for joining high selectivity cases for low-dimensional data.
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Figure 11: Time to do ε-join for 4D (a) Skewed data (b) Real data

Figures 11 (a) and (b) show the results for 4-dimensional skewed and real data. Note that the
values of ε are now varied over a smaller range than that of the uniformly distributed case. This is
so because in these cases points are closer together and smaller values of ε are needed to achieve
the same selectivity as in uniform case. In these graphs JEGO, JEGO∗, and JG exhibit behavior
similar to that in the previous figures with JG being the best scheme.

3.3 High-dimensional data

We now study the performance of the various algorithms for higher dimensions. Figures 12(a) and
(b) show the results for 9-dimensional data for uniformly distributed data. Figure 13 (a) presents
the results for 9-dimensional skewed data, Figure 13 gives the results for real 9-dimensional data.
Figures 14 (a) and (b) show the results with the 9- and 16-dimensional real data respectively.
As with low-dimensional data, for all tested cases, JRSJ had the worst results. Therefore, the
performance of JRSJ is omitted from most graphs – only one representative case is shown in
Figure 12a.

An interesting change in the relative performance of JG is observed for high-dimensional data.
Unlike the case of low-dimensional data, JEGO and JEGO∗ give better results than JG. JG is not
competitive for high-dimensional data, and its results are often omitted for clear presentation of
JEGO and JEGO∗ results. A consistent trend in all graphs is that JEGO∗ results are always better
than those of JEGO . The difference is especially noticeable for the values of ε corresponding to
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Figure 12: Performance of join for 9D uniform data (a) With JRSJ and JG (b) Only best two
schemes

low selectivity. This is a general trend: JEGO does not work well for smaller epsilons, because in
this case a sequences is less likely to have an inactive dimension. JEGO∗ does not suffer from this
limitation.
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Figure 13: Performance of join for 9D data (a) Skewed data (b) Real data

Set Cardinality When the join of two sets is to be computed using Grid-join, an index is built
on one of the two sets. Naturally, the question of which set to build the index on arises. We ran
experiments to study this issue. The results indicate that building the index on the smaller dataset
always gave better results.

16



Time to εεεε-join(A,A)
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Figure 14: Performance of join (a) 16D, Real data (b) 32D, Real data

4 RELATED WORK

The problem of the spatial join of two datasets is to identify pairs of objects, one from each dataset,
such that they satisfy a certain constraint. If both datasets are the same, this corresponds to a
self-join. The most common join constraint is that of proximity: i.e. the two objects should be
within a certain distance of each other. This corresponds to the ε-join where ε is the threshold
distance beyond which objects are no longer considered close enough to be joined. Below we discuss
some of the most prominent solutions for efficient computation of similarity joins.

Shim et. al. [16] propose to use ε-KDB-tree for performing high-dimensional similarity joins of
massive data. The main-memory based ε-KDB-tree and the corresponding algorithm for similarity
join are modified to produce a disk-based solution that can scale to larger datasets. Whenever the
number of points in a leaf node exceed a certain threshold it is split into �1/ε� stripes4 each of
width equal to or slightly greater than ε in the ith dimension. If the leaf node is at level i, then
the ith dimension is used for splitting. The join is performed by traversing the index structures for
each of the data sets. Each leaf node can join only with its two adjacent siblings. The points are
first sorted with the first splitting dimension and stored in an external file.

The R-Tree Spatial Join (RSJ) algorithm [4] works with an R-tree index built on the two datasets
being joined. The algorithm is recursively applied to corresponding children if their minimum
bounding rectangles (MBRs) are within distance ε of each other. Several optimizations of this
basic algorithm have been proposed [6]. A cost model for spatial joins was introduced in [3]. The
Multipage Index (MuX) was also introduced that optimizes for I/O and CPU cost at the same
time.

In [13] Patel et. al a plane sweeping technique is modified to create a disk-based similarity
join for 2-dimensional data. The new procedure is called the Partition Based Spatial Merge join,

4Note that for high-dimensional data ε can easily exceed 0.5 rendering this approach into a brute force method.
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or PBSM-join. A partition based merge join is also presented in [12]. Shafer et al in [15] present
a method of parallelizing high-dimensional proximity joins. The ε-KDB-tree is parallelized and
compared with the approach of space partitioning. Koudas et al [11] have proposed a generalization
of the Size Separation Spatial Join Algorithm, named Multidimensional Spatial Join (MSJ).

Recently, Böhm et al [2] proposed the EGO-join. Both sets of points being joined are first sorted
in accordance with the so called Epsilon Grid Order (EGO). The EGO-join procedure is recursive.
A heuristic is utilized for determining non-joinable sequences. More details about EGO-join will
be covered in Section 2.2. The EGO-join was shown to outperform other join methods in [2].

A excellent review of multidimensional index structures including grid-like and Quad-tree based
structures can be found in [17]. Main-memory optimization of disk-based index structures has been
explored recently for B+-trees [14] and multidimensional indexes [8]. Both studies investigate the
redesign of the nodes in order to improve cache performance.

5 CONCLUSIONS

Small ε Average ε Large ε

Low Dimensionality JG JG JG or JEGO∗
High Dimensionality JG or JEGO∗ JEGO∗ JEGO∗

Table 1: Choice of Join Algorithm

In this paper we considered the problem of similarity join in main memory for low- and high-
dimensional data. We propose two new algorithms: Grid-join and EGO*-join that were shown to
give superior performance than the state-of-the-art technique (EGO-join) and RSJ.

The significance of the choice of ε and recommendations for a good choice for testing and
comparing algorithms with meaningful selectivity were discussed. We demonstrated an example
with values of ε too small for the given dimensionality where one methods showed the best results
over the others whereas with more meaningful settings it would show the worst results.

While recent research has concentrated on joining high-dimensional data, little attention was
been given to the choice of technique for low-dimensional data. In our experiments, the proposed
Grid-join approach showed the best results for low-dimensional case or when values of ε are very
small. The EGO*-join has demonstrated substantial improvement over EGO-join for all the cases
considered and is the best choice for high-dimensional data or when values of ε are large. The
results of the experiments with RSJ proves the strength of Grid-join and EGO*-join.

An analytical study has been presented for selecting the grid size. As a side effect of the study
the cost-estimating function for the Grid-join has been developed. This function can be used by a
query optimizer for selecting the best execution plan.
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Based upon the experimental results, the recommendation for choice of join algorithm is sum-
marized in Table 1.
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Appendix A: CHOICE OF GRID SIZE

In this section we develop cost estimator functions for Grid-join. These functions can be used
to determine the appropriate choice of grid size for computing the ε-join for a specific problem.
The discussion focuses on the case of two dimensions, but can be generalized to any number of
dimensions in a straight-forward manner.

Table 2 lists parameters needed for our analysis. All the parameters are known before the join,
except for grid size n, which needs to be determined. We are interested in finding n such that
the time needed for the join is minimized. Furthermore, if there are several values of n that yield
minimal or close to minimal join cost, then we are interested in the smallest such n. This is because
the memory requirements for the grid increase with the number of cells in the grid.

In order to determine the relationship between the join cost and the various parameters of
the problem, we develop what we call estimator (or predictor) functions for the various phases of
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Table 2: Parameters used for ε-join
Parameter Meaning

A first dataset for join
B second dataset, (on which the index is built)

k = |A| cardinality of A
m = |B| cardinality of B

c length of side of a cell
n = 1/c grid size: n× n grid
eps, ε epsilon parameter for the join

grid-join. Once the predictor functions are constructed, a suitable choice for n can be found by
identifying a minimal value of the cost. For the value of n selected, the predictor functions are
also useful in providing an estimated cost to the query optimizer which can use this information to
decide whether or not Grid-join should be used for the problem.

In our analysis we assume uniform distribution of points in set A and B. The grid-join procedure
can be divided into three phases:

1. init phase: initialization of the grid pointers and lists

2. add phase: loading the data into the grid

3. proc phase: processing the point queries using the grid.

Init and add phases collectively are called the build index phase. There is a tradeoff between the
build and proc phases with respect to the grid size, n. With fewer cells, each circle is likely to
intersect fewer cells and thus be added to fewer full and part lists. On the other hand, with fewer
cells the length of the part lists is likely to be longer and each query may take longer to process. In
other words, the coarser (i.e. smaller n) the grid the faster the build phase, but the slower the proc
phase. Due to this fact, the total time needed for join is likely to be a concave downwards function
of n. This has been the case in all our experiments.

Upper Bound While the general trend is that a finer grid would imply shorter query processing
time (since the part lists would be shorter or empty), beyond a certain point, a finer grid may not
noticeably improve performance. For our implementation, the difference in time needed to process
a cell when its part list is empty vs. when its part list has size one is very small. It is enough to
choose grid size such that the size of part list is one and further partitioning does not noticeably
improve query processing time. Thus we can estimate an upper bound for n and search only for
number of cells in the interval [1, nupper].

For example, for 2-dimensional square data, it can be shown that the upper bound is given by

21



[7]:

n =




4qm if q > 1
2
√

m
;

1
1√
m
−q

otherwise.

In this formula q is the size of each square. Since for ε-join we are adding circles, the formulas is
reused by approximating the circle by a square with the same area (⇒ q ≈ ε

√
π). The corresponding

formula for n is therefore:

n =



�4√πεm� if ε > 1

2
√

πm
;

� 1
1√
m
−ε

√
π
� otherwise.

A finer grid than that specified by the above formula will give very minor performance improvement
while incurring a large memory penalty. Thus the formula establishes the upper bound for grid
size domain. However, if the value returned by the formula is too large, the grid might not fit in
memory. In that case n is further limited by memory space availability.

In our experiments the optimal value for grid size tended to be closer to 1 rather than to nupper,
as in Figure 17.

Analysis For each of the phases of the Grid-join, the analysis is conducted as follows. 1) First
the parameters on which a phase depends are determined. 2) Then the nature of dependence on
each parameter separately is predicted based on the algorithm and implementation of the grid.
Since the Grid is a simple data structure, dependence on a parameter, as a rule, is not complicated.
3) Next the dependence on the combination of the parameters is predicted based on the dependence
for each parameter. 4) Finally, an explanation is given on how the calibration of predictor functions
can be achieved for a specific machine.
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Figure 15: Time to initialize index (a) n ∈ [10, 100] (b) n ∈ [100, 1000]

Estimating init Phase: The time to initialize the index depends only on the grid size n. The
process of index initialization can be described in O(1) operation followed by the initialization of n2

cells. Thus the index initialization time is expected to be a polynomial of degree two over n such as:
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Pinit(n) = an2 + bn+ c, for some coefficients a, b, and c. This value of the coefficients depend upon
the particular machine on which the initialization is performed. They can be determined through a
calibration step. To validate the correctness of this estimator, we calibrated it for a given machine.
The corresponding estimator function was then used to predict the performance for other values
of n not used for the calibration. The result is shown in Figure 15 (a = 8.26 × 10−7, b = 0, and
c = 0). The two graphs shown are for different ranges of n: on the left n varies from 10 to 100,
on the right n varies from 100 to 1000. The graphs show the actual times measured for different
values of n as well as the time predicted by the estimator function. As can be seen, the estimator
gives very good approximation of the actual initialization times. This is especially true for larger
values of n.

Figure 15 shows that the time needed for index initialization phase can be approximated well
with a simple polynomial. Any numerical method can be used for calibrating the coefficients a, b,
and c for a particular machine.

Estimating add Phase: This phase is more
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Figure 16: Estimation with polynomial for add
phase

complicated then the init phase because it de-
pends on three parameters: n – grid size , m

– cardinality of indexed set B, and ε. By ana-
lyzing the dependence on each parameter sepa-
rately, we estimate that the overall function can
be represented as a polynomial Padd(n,m, ε) =
a17n

2ε2m+ · · ·+ a1m+ a0 with degrees of n and
ε no greater than two and degree of m no greater
than one. The next step is to calibrate the coeffi-
cients ai’s. This can be done by solving a system
of 18 linear equations. These equations can be
obtained by choosing three different values of n,
three values of ε, and two values of m (3× 3× 2 = 18).

The combinations of the following calibration points have been examined in order to get the
coefficients: n0 = 10, n1 = 100, n2 = 200; ε0 = 0.001, ε1 = 0.01, ε2 = 0.02; m0 = 50, and
m1 = 100. The choice of values implies we assume that typically n ∈ [10, 200], ε ∈ [0.001, 0.02], and
m ∈ [50, 100]. The linear system was solved using the Gaussian elimination with pivoting method.
Figure 16 demonstrates time needed for add phase for various values of ε when n = 150 and m = 75
and another curve is our interpolation polynomial. Again we observe that the estimator function
is highly accurate. In fact we never encountered more than a 3% relative error in our experiments.

Estimating proc Phase: The processing phase depends on all parameters: n – grid size,
k = |A|, m = |B|, and ε. Thankfully, dependence on k is linear since each point is processed
independent of other points. Once the solution for some fixed k0 is known, it is easy to compute
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for an arbitrary k. However, there is a small complication: the average lengths of the full and part

lists are given by different formulae depending upon whether cell size c is greater than
√
πε or not

(see [7], in our case query side size q is replaced by
√
πε).

Consequently the proc phase cost can be estimated by two polynomials (depending on whether√
πε ≥ c or not): Pproc,

√
πε≥c(c, ε,m, k0) and Pproc,

√
πε<c(c, ε,m, k0) each of type P (c, ε,m, k0) ≡

a17c
2ε2m+ · · ·+ a1m+ a0 with degrees of c and ε no greater than two and degree of m no greater

than one. Once again the calibration can be done by solving a system of 18 linear equations for
each of the two cases.

Estimating Total Time: The estimated total time needed for Grid-join is the sum of esti-
mated time needed for each phase. Figure 17 demonstrates estimation of time needed for Grid-join
when ε = 0.001, m = 20, 000, k = 10, 000 as a function of grid size n. The estimator functions of
each phase were calibrated using different values than those shown in the graph.
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Figure 17: Estimation of total time needed for ε-join (a) n ∈ [10, 190] (b) n ∈ [70, 80]

A simple bisection method for finding the optimal value of n was used. This method assumes
that it is given a concave downwards function, defined on [a, b]. The function has been concave
downwards in all our experiments, however in future work we plan to prove that the estimator func-
tion is always concave downwards for various combinations of parameters. The bisection method
in this context works as follows. The goal is to find the leftmost minimum on the interval [a, b].
Compute c = (a+ b)/2. If f(c− 1) ≤ f(c+ 1) then make new b be equal c and repeat the process,
otherwise make new a be equal c and repeat the process. The process is repeated until (b− a) < 2.

The bisection method for the example in Figure 17 gives an estimated optimal value for n as
74. Experimentally, we found that the actual optimal value for n was 73. The difference between
time needed for the grid-join with 73 × 73 grid and 74 × 74 grid is just two milliseconds for the
given settings. These numbers show the high accuracy of the estimator functions. Notice that the
results of interpolation look even better if they are rounded to the closest millisecond values.
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