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Abstract

The efficient processing of similarity joins is important
for a large class of applications. The dimensionality of the
data for these applications ranges from low to high. Most
existing methods have focussed on the execution of high-
dimensional joins over large amounts of disk-based data.
The increasing sizes of main memory available on current
computers, and the need for efficient processing of spatial
joins suggest that spatial joins for a large class of problems
can be processed in main memory. In this paper we develop
two new spatial join algorithms, the Grid-join and EGO*-
join, and study their performance in comparison to the state
of the art algorithm EGO-join and the RSJ algorithm.

Through evaluation we explore the domain of applicabil-
ity of each algorithm and provide recommendations for the
choice of join algorithm depending upon the dimensional-
ity of the data as well as the critical ε parameter. We also
point out the significance of the choice of this parameter for
ensuring that the selectivity achieved is reasonable.

1 Introduction

Similarity (spatial) joins are an important database op-
eration for several applications including GIS, multimedia
databases, data mining, location-based applications, and
time-series analysis. The problem of efficient computa-
tion of similarity joins has been addressed by many re-
searchers. Most researchers have focussed their attention on
disk-based joins for high-dimensional data. Current high-
end workstations have enough memory to handle joins even
for large amounts of data. For example, the self-join of
1 million 32-dimensional data points, using an algorithm
similar to that of [2] (assuming float data type for coordi-
nate and int for point identities) requires roughly 132MB
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of memory (i.e. (32× 4 + 4)× 106 ≈ 132MB, plus mem-
ory for stack etc.). Furthermore there are situations when
it is necessary to join intermediate results situated in main
memory or sensor data, which is to be kept in main memory.
With the availability of a large main memory cache, disk-
based algorithms may not necessarily be the best choice.
Moreover, for certain applications (e.g. moving object en-
vironments) near real-time computation may be critical and
require main memory evaluation.

In this paper we consider the problem of main memory
processing of similarity joins, also known as ε-joins. Given
two datasets A and B of d-dimensional points and value
ε ∈ �, the goal of a join operation is to identify all pairs of
points, R, one from each set, that are within distance ε from
each other, i.e. R = {(a, b) : ‖a− b‖ < ε; a ∈ A, b ∈ B}.

While several research efforts have concentrated on
designing efficient high-dimensional join algorithms, the
question of which method should be used when joining low-
dimensional (e.g. 2–6 dimensions) data remains open. This
paper addresses this question and investigates the choice of
join algorithm for low- and high-dimensional data. We pro-
pose two new join algorithms: the Grid-join and EGO*-
join, and evaluate their along with the state of the art algo-
rithm EGO-join [2], and a method which serves as a bench-
mark in many similar publications, the RSJ join [3].

Although not often addressed in related research, the
choice of the ε parameter for the join is critical to produc-
ing meaningful results. We have discovered that often in
similar research the choice of values of ε yields very small
selectivity, i.e. almost no point from one dataset joins with
a point from the other dataset. In Section 3.1 we present a
discussion on how to choose appropriate values of ε.

The contributions of this paper are as follows:

• Two join algorithms that give better performance (al-
most an order of magnitude better for low dimensions)
than the state of the art EGO-join algorithm.

• Recommendations for the choice of join algorithm
based upon data dimensionality d, and ε.



• Highlight the importance of the choice of ε and the
corresponding selectivity for experimental evaluation.

• Highlight the importance of the cache miss reduction
techniques: spatial sortings (2.5 times speedup) and
clustering via utilization of dynamic arrays (40% im-
provement).

• For the Grid-join, the choice of grid size is an impor-
tant parameter. In order to choose good values for this
parameter, we develop highly accurate estimator func-
tions for the cost of the Grid-join. These functions are
used to choose an optimal grid size.

The rest of this paper is organized as follows. The new
Grid-join and EGO*-join algorithms are presented in Sec-
tion 2. The proposed join algorithms are evaluated in Sec-
tion 3. Related work is discussed in Section 4. Section 5
concludes the paper.

2 Similarity join algorithms

In this section we introduce two new algorithms: the
Grid-join and EGO*-join. The Grid-join is based upon a
uniform grid and builds upon the approach proposed in [6].
The EGO*-join is based upon EGO-join proposed in [2].
In Section 2.1 we first present the Grid-join algorithm fol-
lowed by an important optimization for improving the cache
hit-rate. An analysis of the appropriate grid size as well as
cost prediction functions for the Grid-join is presented in
[5]. The EGO*-join is discussed in Section 2.2.

2.1 Grid-join

Assume for now that we are dealing with 2-dimensional
data. The spatial join of two datasets A and B can be com-
puted using a standard Index Nested Loop approach as fol-
lows. One of the datasets, say B, is treated as a collection
of circles of radius ε centered at each point of B. This col-
lection of circles is then indexed using some spatial index
structure. The join is computed by taking each point from
A and querying the index on the circles to find those cir-
cles that contain the query point. Each point (from B) cor-
responding to each such circle joins with the query point
(from A). An advantage of this approach (as opposed to
the alternative of building an index on the points of one set
and processing a circle region query for each point from the
other set) is that point queries are much simpler than region
queries and thus tend to be faster. For example, a region
query on a quad-tree index might need to evaluate several
paths while a point query is guaranteed to be a single path
query. An important question is the choice of index struc-
ture for the circles.
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Figure 1. An example of the Grid Index, IG

In earlier work [6] we have investigated the execution of
large numbers of range queries over point data in the context
of evaluating multiple concurrent continuous range queries
on moving objects. The approach can also be used for
spatial join if we compute the join using the Index Nested
Loops technique mentioned above. The two approaches dif-
fer only in the shape of the queries which are circles for the
spatial join problem and rectangles for the range queries.

In [6] the choice of a good main-memory index was in-
vestigated. Several key index structures including R-tree,
R*-tree, CR-tree [7], quad-tree, and 32-tree [6] were con-
sidered. All trees were optimized for main memory. The
conclusion of the study was that a simple one-level Grid-
index outperformed all other indexes by almost an order of
magnitude for uniform as well as skewed data. Due to its
superior performance, in this study, we use the Grid-index
for indexing the ε-circles.

The Grid Index While many variations exist, we have
designed our own implementation of the Grid-index, which
we denote as IG. IG is built on circles with ε-radius. Notice,
it is not necessary to generate a new dataset consisting of
these circles. Since each circle has the same radius (ε), the
dataset of the points representing the centers of these circles
is sufficient. The similarity join algorithm which utilizes IG

is called the Grid-join, or JG for short.
Case of 2 dimensions For ease of explanation assume

the case of 2-dimensional data. IG is a 2-dimensional array
of cells. Each cell represents a region of space generated by
partitioning the domain using a regular grid.

Figure 1 shows an example of IG. Throughout the pa-
per, we assume that the domain is normalized to the unit
d-dimensional hyper-cube [0, 1]d. In this example, the do-
main is divided into a 10×10 grid of 100 cells, each of size
0.1× 0.1.

Since the grid is uniform, it is easy to calculate cell-
coordinates of an object in O(1) time. Each cell contains
two lists that are identified as full and part, as shown
in Figure 1. Let C(p, r) denote a circle with center at
point p and radius r. The full (part) list of a cell con-
tains pointers to all points bi from B such that C(bi, ε)
fully (partially) cover the cell. That is for cell C in IG
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Input: Datasets A, B, and ε ∈ �
Output: Result set R
1. R← ∅
2. z-sort(A)
3. z-sort(B)
4. Initialize IG

5. for i← 0 to |B| − 1 do
(a) b′i ← (b0i , b

1
i )

(b) Insert {bi, C(b′i, ε)} into IG

6. for i← 0 to |A| − 1 do
(a) a′i ← (a0

i , a
1
i )

(b) Let Ci be the cell in IG corresponding to a′
i

(c) for j ← 0 to |C.part| − 1 do
i. b← Ci.part[j]
ii. if (‖ai − b‖ < ε) then R← R ∪ {(ai, b)}

(d′) for j ← 0 to |Ci.full| − 1 do
i. b← Ci.full[j]
ii. R← R ∪ {(ai, b)}

7. return R

Figure 2. Grid-join procedure, JG

its part and full lists can be represented in set notation as
C.full = {b : C ⊂ C(b, ε); b ∈ B} and C.part = {b :
C �⊂ C(b, ε) ∧ C ∩C(b, ε) �= ∅; b ∈ B}.

To find all points within ε-distance from a given point
a first the cell corresponding to a is retrieved. All points
in full list are guaranteed to be within ε-distance from a.
Points in part list need to be post-processed.

The choice of data structures for the full and part lists
is critical for performance. We implemented these lists as
dynamic-arrays1 rather than lists which improves perfor-
mance by roughly 40% due to the resulting clustering (and
thereby reduced cache misses).

Case of d dimensions For the general d-dimensional
case, 2-dimensional grid is used. The first 2 coordi-
nates of points are used for all operations exactly as in 2-
dimensional case except for the processing of part lists,
which uses all d coordinates to determine if ‖a− b‖ < ε.

The reason for two separate lists per cell for 2-
dimensional points is that points in the full list do not need
potentially costly checks for relevance since they are guar-
anteed to be within ε-distance. Keeping a separate full list
is of little value for more than 2 dimensions since now, simi-
larly to the part list, it too needs post-processing. Therefore
only one list is kept for all circles that at least partially in-
tersect the cell in the chosen 2 dimensions. We call this list

1A dynamic array is a standard data structure for arrays whose size
adjusts dynamically.

part list: C.part = {b : C ∩ C(b′, ε) �= ∅; b ∈ B, b′ ←
(b0, b1)}.

JG is described in Figure 2. Steps 2 and 3, the z-sort
steps, apply a spatial sort to the two datasets. The need for
this step is explained later. IG is initialized in Step 4. In
the loop in Step 5, all points bi from set B are added to IG

one by one. First a 2-dimensional point b ′i constructed from
the first two coordinates of bi, is considered. Then pointer
to bi is added to part lists of each cell C in IG that satisfies
C ∩C(b′i, ε) �= ∅.

The loop in Step 6 performs a nested loop join. For each
point ai in A all points from B that are within ε distance
are determined using IG. To do this, point a′

i is constructed
from the first two coordinates of ai and the cell correspond-
ing to a′i in IG, Ci, is determined in Steps 6(a) and 6(b).
Then, in Step 6(c), the algorithm iterates though all ele-
ments of the part list of cell Ci and finds all relevant to
a points. Step 6(d′) is analogous to Step 6(c) and valid only
for 2-dimensional case.

Choice of grid size The performance of JG depends on
the choice of grid size, therefore it must be selected care-
fully. Intuitively, the finer the grid the faster the process-
ing but the slower the time needed to initialize the index
and load the data into it. Due to limited space we can only
present a sketch of our solution for selecting appropriate
grid size, please refer to [5] for details.

The first step is to develop a set of estimator functions
that predict the cost of the join given a grid size. The cost is
composed of three components, the costs of: (a) initializing
the empty grid; (b) loading the dataset B into the index; and
(c) processing each point of dataset A through this index.
In [5] we present details on how each of these costs is esti-
mated. The quality of the prediction of these functions was
found to be extremely high. Using these functions, it is pos-
sible to determine which grid size would be optimal. These
functions can also be used by a query optimizer – for exam-
ple to evaluate whether it would be efficient to use either JG

for the given parameters or another method of joining data.
Improving the cache hit-rate The performance of

main-memory algorithms is greatly affected by cache hit
rates. In this section we describe an optimization that im-
proves cache hit rates and, consequently, the overall perfor-
mance of JG.

As shown in Figure 2, for each point, its cell is computed,
and the full and part lists (or just part list) of this cell are
accessed. The algorithm simply processes points in sequen-
tial order in the array corresponding to set A. Cache-hit
rates can be improved by altering the order in which points
are processed. In particular, points in the array should be
ordered such that points that are close together according to
their first two coordinates in the 2D domain are also close
together in the point array. In this situation index data for
a given cell is likely to be reused from the cache during the
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processing of subsequent points from the array. The speed-
up is achieved because such points are more likely to be
covered by the same circles than points that are far apart,
thus the relevant information is more likely to be retrieved
from the cache rather than from main memory.

Sorting the points to ensure that points that are close to
each other also tend to be close in the array order can easily
be achieved by various methods. We choose to use a sorting
based on the Z-order. We sort not only set A but also set
B, which reduces the time needed to add circles to IG. As
we will see in Section 3, ∼2.5× speedup is achieved by
utilizing Z-sort, e.g. as shown in Figure 13.

2.2 EGO*-join

In this section we present an improvement of the disk-
based EGO-join algorithm proposed in [2]. We dub the new
algorithm the EGO*-join. We use notation JEGO for the
EGO-join procedure and JEGO∗ for the EGO*-join pro-
cedure. According to [2], the state of the art algorithm
JEGO was shown to outperform other methods for joining
massive, high-dimensional data.

We begin by briefly describing JEGO as presented in [2]
followed by our improvement of JEGO.

The Epsilon Grid Order: JEGO is based on the so
called Epsilon Grid Ordering (EGO), see [2] for details. In
order to impose an EGO on dataset A, a regular grid with
the cell size of ε is laid over the data space. The grid is
imaginary, and never materialized. For each point in A,
its cell-coordinate can be determined in O(1) time. A lex-
icographical order is imposed on each cell by choosing an
order for the dimensions. The EGO of two points is de-
termined by the lexicographical order of the corresponding
cells that the points belong to.

Input: Datasets A, B, and ε ∈ �
Output: Result set R
1. EGO-sort(A, ε)
2. EGO-sort(B, ε)
3. join sequences(A, B)

Figure 3. EGO-join Procedure, JEGO

EGO-sort: In order to perform JEGO of two sets A and
B with a certain ε, first the points in these sets are sorted in
accordance with the EGO for the given ε. Notice that for a
subsequent JEGO operation with a different ε sets A and B
need to be sorted again since their EGO values depend upon
the cells.

Recursive join: The procedure for joining two se-
quences is recursive. Each sequence is further subdivided
into two roughly equal subsequences and each subsequence
is joined recursively with both its counterparts. The parti-
tioning is carried out until the length of both subsequences
is smaller than a threshold value, at which point a simple-
join is performed. In order to avoid excessive computation,
the algorithm avoids joining sequences that are guaranteed
not to have any points within distance ε of each other. Such
sequences can be termed non-joinable.

EGO-heuristic: A key element of JEGO is the heuris-
tic used to identify non-joinable sequences. The heuris-
tic is based on the number of inactive dimensions, which
will be explained shortly. To understand the heuristic, let
us consider a simple example. For a short sequence its
first and last points are likely to have the same first cell-
coordinates. For example, points with corresponding cell-
coordinates (2, 7, 4, 1) and (2, 7, 6, 1) have two common
prefix coordinates (2, 7,×,×). Their third coordinates dif-
fer – this corresponds to the active dimension, the first two
dimensions are called inactive. This in turn means that for
this sequence all points have 2 and 7 as their first two cell-
coordinates – because both sequences are EGO-sorted be-
fore being joined.

The heuristic first determines the number of inactive di-
mensions for both sequences, and computes min – the min-
imum of the two numbers. It is easy to prove that if there
is a dimension between 0 and min − 1 such that the cell-
coordinates of the first points of the two sequences differ by
at least two in that dimension, then the sequences are non-
joinable. This is based upon the fact that the length of each
cell is ε.
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Figure 4. Two sequences with (a) 0 inactive
dimensions (b) 1 inactive dimension. Unlike
EGO-heuristic, in both cases EGO*-heuristic
is able to tell that the sequences are non-
joinable.

New EGO*-heuristic: The proposed JEGO∗ (EGO*-
join) algorithm is JEGO (EGO-join) with an important
change to the heuristic for determining that two sequences
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Input: The first and last cells of a sequence: CF andCL

Output: Bounding rectangle BR
1. for i← 0 to d− 1 do

(a) BR.lo[i]← CF .x[i]
(b) BR.hi[i]← CL.x[i]
(c) if (R.lo[i] = R.hi[i]) then continue
(d) for j ← i + 1 to d− 1 do

i. BR.lo[j]← 0
i. BR.hi[j]←MAX CELL

(e) break
2. return BR

Figure 5. JEGO∗: procedure for obtaining a
Bounding Rectangle of a sequence

are non-joinable. The use of the EGO*-heuristic signifi-
cantly improves performance of the join, as will be seen in
Section 3.

We now present our heuristic with the help of an example
for which JEGO is unable to detect that the sequences are
non-joinable.

Two sequences are shown in Figure 4(b). Assume that
each sequence has many points. One sequence starts in cell
(0,1,3) and ends in cell (0,2,2). The second sequence starts
in cell (0,5,6) and ends in (0,6,3). Both sequences have
one inactive dimension: 0. The EGO-heuristic will con-
clude that these two should be joined, allowing recursion
to proceed. Figure 4(a) demonstrates the case when two
sequences are located in two separate slabs, both of which
have the size of at least two in each dimension. There are no
inactive dimensions for this case and recursion will proceed
further for JEGO.

The new heuristic being proposed is able to correctly de-
termine that for the cases depicted in Figures 4(a) and 4(b)
the two sequences are non-joinable. It should become clear
later on that, in essence, our heuristic utilizes not only inac-
tive dimensions but also the active dimension.

The heuristic uses the notion of a Bounding Rectangle
for each sequence. Notice that in general, given only the
first and last cells of a sequence, it is impossible to com-
pute the Minimum Bounding Rectangle (MBR) for the se-
quence. However, it is possible to compute a Bounding
Rectangle (BR). Figure 5 describes an algorithm for com-
puting a bounding rectangle.

The procedure takes as input the coordinates for the first
and last cells of the sequence and produces the bounding
rectangle as output. To understand getBR() algorithm, note
that if the first and last cells have n prefix equal coordinates

(e.g. (1, 2, 3, 4) and (1, 2, 9, 4) have two equal first coor-
dinates – (1, 2,×,×) ) then all cells of the sequences have
the same values in the first n coordinates (e.g. (1, 2,×,×)
for our example). This means that the first n coordinates of
the sequence can be bounded by that value. Furthermore,
the active dimension can be bounded by the coordinates of
first and last cell in that dimension respectively. Continuing
with our example, the lower bound is now (1, 2, 3,×) and
the upper bound is (1, 2, 9,×). In general, we cannot say
anything precise about the rest of the dimensions, however
the lower bound can always be set to 0 and upper bound to
MAX CELL.

Input: Two sequences A and B
Output: Result set R
1. BR1 ← getBR(A.first, A.last)
1. BR2 ← getBR(B.first, B.last)
3. Expand BR1 by one in all directions
4. if (BR1 ∩BR2 = ∅) then return ∅
5. ... // continue as in JEGO

Figure 6. Beginning of JEGO∗: EGO*-heuristic

Once the bounding rectangles for both sequences being
joined are known, it is easy to see that if one BR, expanded
by one in all directions, does not intersect with the other
BR, than the two sequences will not join.

As we shall see in Section 3, JEGO∗ significantly out-
perform JEGO in all instances. This improvement is a di-
rect result of the large reduction of the number of sequences
needed to be compared based upon the above criterion. This
result is predictable since if EGO-heuristic can recognize
two sequences as non-joinable than EGO*-heuristic will al-
ways do the same, but if EGO*-heuristic can recognize two
sequences as non-joinable than, in general, there are many
cases when EGO-heuristic will decide the sequence is join-
able. Thus EGO*-heuristic is more powerful. Furthermore,
the difference in CPU time needed to compute the heuristics
given the same two sequences is insignificant.

3 Experimental results

In this section we present the performance results for in-
memory joins using JRSJ (RSJ join), JG, JEGO [2], and
JEGO∗. The results report the actual time for the execution
of the various algorithms. First we describe the parameters
of the experiments, followed by the results and discussion.

In all our experiments we used a 1GHz Pentium III ma-
chine with 2GB of memory. All multidimensional points
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were distributed on the unit d-dimensional box [0, 1]d. The
number of points ranges from 68,000 to 200,000. For distri-
butions of points in the domain we considered the following
cases:
1. Uniform: Points are uniformly distributed.
2. Skewed: The points are distributed among five clusters.
Within each cluster points are distributed normally with a
standard deviation of 0.05.
3. Real data: We tested data from ColorHistogram and
ColorMoments files representing image features. The files
are available at the UC Irvine repository. ColorMoments
stores 9-dimensional data, which we normalized to [0, 1]9

domain, ColorHistogram – 32-dimensional data. For ex-
periments with low-dimensional real data, a subset of the
leading dimensions from these datasets were used. Unlike
uniform and skewed cases, for real data a self-join is done.

Often, in similar research, the costs of sorting the data,
building or maintaining the index or costs of other opera-
tions needed for a particular implementation of join are ig-
nored. No cost is ignored in our experiments for JG, JEGO ,
and JEGO∗. One could argue that for JRSJ the two indexes,
once built, need not be rebuilt for different ε. While there
are many other situations where the two indexes need to be
built from scratch for JRSJ , we ignore the cost of building
and maintaining indexes for JRSJ , giving it an advantage.

3.1 Correlation between selectivity and ε

The choice of the parameter ε is critical when performing
an ε-join. Little justification for choice of this parameter has
been presented in related research. In fact, we present this
section because often in similar research selected values of
ε are too small.

The choice of ε has a significant effect on the selectivity
depending upon the dimensionality of the data. The ε-join
is a common operation for similarity matching. Typically,
for each multidimensional point from set A a few points
(i.e. from 0 to 10, possibly from 0 to 100, but unlikely more
than 100) from set B need to be identified on the average.
The average number of points from set B that joins with a
point from set A on the average is called selectivity.

In our experiments, selectivity motivated the range of
values chosen for ε. The value of ε is typically lower
for smaller number of dimensions and higher for high-
dimensional data. For example a 0.1 × 0.1 square2 query
(ε = 0.1) is 1% of a 2-dimensional domain, however
ε8 = 0.18 is only 10−6% of an eight-dimensional domain,
leading to small selectivity.

Let us estimate what values for ε should be considered
for joining d-dimensional uniformly distributed data such
that a point from set A joins with a few (close to 1) points

2A square query was chosen to demonstrate the idea, ideally one should
consider a circle.

from set B. Assume that the cardinality of both sets is m.
We need to answer the question: what should the value of
ε be such that m hyper-cubes of side ε completely fill the
unit d-dimensional cube? It is easy to see that the solution
is ε = 1

m1/d . Figure 7 plots this function ε(d) for two dif-
ferent values of m. Our experimental results for various
number of dimensions corroborate the results presented in
the figure. For example the figure predicts that in order to
obtain a selectivity close to one for 32-dimensional data, the
value of ε should be close to 0.65, or 0.7, and furthermore
that values smaller than say 0.3, lead to zero selectivity (or
close to zero) which is of little value3. This is in very close
agreement to the experimental results.
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If the domain is not normalized to the unit square, such
as in [8], the values of ε should be scaled accordingly. For
example ε of 0.1 for [−1, 1]d domain correspond to ε of
0.05 for our [0, 1]d domain. Figure 8 demonstrates the pit-
fall of using an improper selectivity. The parameters of the

3For self-join selectivity is always at least 1, thus selectivity 2–100 is
desirable.
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experiment (distribution of data, cardinality of sets and ε
(scaled)) are set to the values used in one publication. With
this choice of ε the selectivity plunges to zero even for the
10-dimensional case. In fact, for our case, the figure pre-
sumably shows that the Grid-join is better than JEGO and
JEGO∗ even for high-dimensional cases. However, the con-
trary is true for a meaningful selectivity as will be shown in
Section 3.3.

3.2 Low-dimensional data

We now present the performance of JRSJ , JEGO ,
JEGO∗ and JG for various settings.

The x-axis plots the values of ε, which are varied so that
meaningful selectivity is achieved. In all but one graph the
left y-axis represents the total time in seconds to do the join
for the given settings. Due to the importance of the selectiv-
ity in addition to the value of ε, we plot the resulting selec-
tivity in each experiment. The selectivity values are plotted
on the y-axis at the right end of each graph, in actual num-
ber of matching points. Clearly, if selectivity is 0, then ε is
too small and vice versa if the selectivity is more than 100.
As expected, in each graph the selectivity, shown by the line
with the ‘×’, increases as ε increases.

JRSJ is ommitted from most of the Figures for clarity
since it showed much worse results than the other joins.
Figure 9 depicts performance of the joins for 4-dimensional
uniform data with cardinality of both sets being 105. Fig-
ure 10 shows the performance of the same joins relative to
that of JRSJ .
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Figure 9.

In Figure 10, JEGO shows 3.5–6.5 times better re-
sults than those of JRSJ , which corroborates the fact that,
by itself, JEGO is a quite competitive scheme for low-
dimensional data. But it is not as good as the two new
schemes.

Next comes JEGO∗ whose performance is always bet-
ter than that of JEGO in all experiments. This shows the
strength of JEGO∗. Because of the selectivity, the values of

Relative to RSJ performance of εεεε-join(A,B)
4D, uniform, |A| = |B| = 100,000
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Figure 10.

ε are likely to be small for low-dimensional data and large
for high-dimensional data. The EGO-heuristic is not well-
suited for small values of ε. The smaller the epsilon, the
less likely that a sequence has an inactive dimension. In
Figure 10 JEGO∗ is seen to give 13.5–24 times better per-
formance than JRSJ .

Another trend that can be observed from the graphs is
that JG is better that JEGO∗, except for high-selectivity
cases (Figure 14). JEGO shows results several times worse
than those of JG, which corroborates the choice of the Grid-
index which also was the clear winner in our comparison [6]
with main memory optimized versions of R-tree, R*-tree,
CR-tree, and quad-tree indexes. In Figure 10 JG showed
15.5–46 times better performance than JRSJ .

Unlike JEGO , JEGO∗ always shows results at least com-
parable to those of JG. For all the methods, the difference in
relative performance shrinks as ε (and selectivity) increases.

Time to εεεε-join(A,A)
3D, real data (ColorMom), |A| = 68,000
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Figure 11. Join 3D real data

Figures 11 and 12 show the results for the self-join of
real 3-dimensional data taken from the ColorMom file. The
cardinality of the set is 68,000. The graph on the left shows
the best three schemes, and the graph on the right omits
JEGO scheme due to its much poorer performance. From
these two graphs we can see that JG is almost 2 times better
than JEGO∗ for small values of ε.

7



Time to εεεε-join(A,A)
3D, real data (ColorMom), |A| = 68,000

0

0.5

1

1.5

2

2.5

3

0.001 0.004 0.007 0.01εεεε

T
im

e 
(s

ec
s )

0

5

10

15

20

25

30

35

40

S
el

ec
ti

vi
ty

Grid

EGO*

Selectivity

Figure 12. 3D real data, no JEGO for clarity
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Figure 13. 4D uniform data |A| = |B| = 100, 000
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Figure 14. 4D uniform data |A| = |B| = 200, 000

Figures 13 and 14 show the results for 4-dimensional
uniform data. The graph on the left is for sets of cardinal-
ity 100,000, and that on the right is for sets with cardinality
200,000. Figure 13 emphasizes the importance of perform-
ing Z-sort on data being joined: the performance improve-
ment is ∼ 2.5 times. JG without Z-sort, in general, while
being better than JEGO, shows worse results than that of
JEGO∗.

Figure 14 presents another trend. This figure shows an

example where JEGO∗ becomes a better choice than JG for
values of ε greater than∼ 0.07 which corresponds to a high
selectivity of ∼ 43.

Time to εεεε-join(A,B)
4D, skewed, |A| = |B| = 100,000
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Figure 15. Join 4D skewed data
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Figure 16. Join 4D real data

Figures 15 and 16 show the results for 4-dimensional
skewed and real data. Note that the values of ε are now
varied over a smaller range than that of the uniformly dis-
tributed case. This is so because in these cases points are
closer together and smaller values of ε are needed to achieve
the same selectivity as in uniform case. In these graphs
JEGO, JEGO∗, and JG exhibit behavior similar to that in
the previous figures with JG being the best scheme.

3.3 High-dimensional data

We now study the performance of the various algo-
rithms for higher dimensions. Figures 17 and 18 show
the results for 9-dimensional uniformly distributed data.
Figure 19 presents the results for 9-dimensional skewed
data, Figure 20 gives the results for real 9-dimensional
data. Figures 21 and 22 show the results with the 9-
and 16-dimensional real data respectively. As with low-
dimensional data, for all tested cases, JRSJ had the worst
results. Therefore, the performance of JRSJ is omitted from
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Figure 17. Join 9D uniform data
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Figure 18. Join 9D uniform data, the best two
techniques
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Figure 19. Join 9D skewed data

most graphs – only one representative case is shown in Fig-
ure 17.

An interesting change in the relative performance of JG

is observed for high-dimensional data. Unlike the case of
low-dimensional data, JEGO and JEGO∗ give better results
than JG. JG is not competitive for high-dimensional data,
and its results are often omitted for clear presentation of
JEGO and JEGO∗ results. A consistent trend in all graphs
is that JEGO∗ results are always better than those of JEGO .

Time to εεεε-join(A,A)
9D, real data (ColorMom), |A| = 68,000
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Figure 20. Join 9D real data
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Figure 21. Join 16D real data
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Figure 22. Join 32D real data

The difference is especially noticeable for the values of ε
corresponding to low selectivity. This is a general trend:
JEGO does not work well for smaller epsilons, because in
this case a sequences is less likely to have an inactive di-
mension. JEGO∗ does not suffer from this limitation.

Set Cardinality When the join of two sets is to be com-
puted using Grid-join, an index is built on one of the two
sets. Naturally, the question of which set to build the index
on arises. We ran experiments to study this issue. The re-
sults indicate that building the index on the smaller dataset
always gave better results.
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4 Related work

Below we discuss some of the most prominent solutions
for efficient computation of similarity joins. This section
was reduced, see [5] for details. Shim et. al. [13] propose
to use ε-KDB-tree for performing high-dimensional simi-
larity joins of massive data. The R-Tree Spatial Join (RSJ)
algorithm [3] works with an R-tree index built on the two
datasets being joined. Several optimizations of this basic
algorithm have been proposed [4]. In [10] Patel et. al a
plane sweeping technique is modified to create a disk-based
similarity join for 2-dimensional data. The new procedure
is called the Partition Based Spatial Merge join, or PBSM-
join. A partition based merge join is also presented in [9].
Shafer et al in [12] present a method of parallelizing high-
dimensional proximity joins. Koudas et al [8] have pro-
posed a generalization of the Size Separation Spatial Join
Algorithm, named Multidimensional Spatial Join (MSJ).
Recently, Böhm et al [2] proposed the EGO-join. More de-
tails about EGO-join are in Section 2.2. The EGO-join was
shown to outperform other join methods in [2]. Grid-join is
based on [6, 11, 1].

5 Conclusions

Small ε Avg ε Large ε

Low Dim JG JG JG or JEGO∗
High Dim JG or JEGO∗ JEGO∗ JEGO∗

Table 1. Choice of Join Algorithm

In this paper we considered the problem of similarity join
in main memory for low- and high-dimensional data. We
propose two new algorithms: Grid-join and EGO*-join that
were shown to give superior performance than the state-of-
the-art technique (EGO-join) and RSJ.

The significance of the choice of ε and recommendations
for a good choice for testing and comparing algorithms with
meaningful selectivity were discussed. We demonstrated an
example with values of ε too small for the given dimen-
sionality where one methods showed the best results over
the others whereas with more meaningful settings it would
show the worst results.

While recent research has concentrated on joining high-
dimensional data, little attention was been given to the
choice of technique for low-dimensional data. In our exper-
iments, the proposed Grid-join approach showed the best
results for low-dimensional case or when values of ε are
very small. The EGO*-join has demonstrated substantial
improvement over EGO-join for all the cases considered
and is the best choice for high-dimensional data or when

values of ε are large. The results of the experiments with
RSJ proves the strength of Grid-join and EGO*-join.

Based upon the experimental results, the recommenda-
tion for choice of join algorithm is summarized in Table 1.
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