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ABSTRACT

Location information gathered from a variety of sources in
the form of sensor data, video streams, human observations,
and so on, is often imprecise and uncertain and needs to
be represented approximately. To represent such uncertain
location information, the use of a probabilistic model that
captures the imprecise location as a probability density func-
tion (pdf) has been recently proposed. The pdfs can be ar-
bitrarily complex depending on the type of application and
the source of imprecision. Hence, efficiently representing,
storing and querying pdfs is a very challenging task. While
the current state of the art indexing approaches treat the
representation and storage of pdfs as a black box, in this
paper, we take the challenge of representing and storing any
complex pdf in an efficient way. We further develop tech-
niques to index such pdfs to support the efficient processing
of location queries. Our extensive experiments demonstrate
that our indexing techniques significantly outperform the
best existing solutions.
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H.2.8 [Information System]: Database Management—
Spatial databases and GIS

General Terms

Algorithms, Performance
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1. INTRODUCTION
With the emergence of mobile computing and ubiquitous

connectivity, numerous new applications that exploit loca-
tion information have emerged (e.g, location based search,
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location based services, etc.) In such applications, location
information of individuals (or devices) is determined in vari-
ous ways. These include location sensors such as GPS, WiFi
access point triangulation, cell phones, etc. Location in-
formation may also be derived from conversations wherein
people describe their location through speech and/or text.

In all of these cases, location information is often impre-
cise. Devices such as GPS, cell phones, etc. have fundamen-
tal limitation on their localization capabilities. When people
report their locations or describe events, they usually do so
in an imprecise manner – e.g., “an accident happened on
Freeway 405 near McArthur Street”.

Developing location-based systems requires mechanisms
to represent, query and reason with location uncertainty. A
model for representing location uncertainty that has recently
emerged is the probabilistic spatial model [2,3,6]. In such a
model, uncertain location is represented as a probability of
the event/object to have occurred at a given location (i.e., a
probability density function over the spatial domain). Such
a probabilistic model is powerful for a variety of reasons.
First, it can be used to represent not only simple cases of
uncertainty that arise due to device errors, but also fairly
complex types of uncertainties that may arise in interpreting
textual descriptions of location and many other applications
[15]. Another advantage of the probabilistic model is that it
allows for a clear and formal interpretation of spatial queries
and has been demonstrated to be effective in practice.

While probabilistic model provides a powerful framework
for representing uncertain location data, it introduces new
challenges in supporting spatial queries efficiently. In this
paper, we develop an efficient approach to indexing uncer-
tain location information represented using probabilistic dis-
tributions over space. We develop efficient query processing
algorithms that exploit the index structure developed for ef-
ficient retrieval. Specifically, we focus on probabilistic range
query (RQ) and preference range query (PRQ), which are
described later. The main contributions of this paper are:

• A novel indexing framework and algorithms for effi-
cient spatial query processing (Sections 5 and 6).

• Extensive empirical evaluation of the proposed approach
(Section 7).

The rest of the paper is organized as follows. Section 2
covers the related work. Section 3 defines two types of prob-
abilistic retrieval queries. We then discuss ways to represent
uncertain locations in a database in Section 4. Sections 5
and 6 introduce the novel index, U-grid, and query process-
ing algorithms. In Section 7 we empirically evaluate the
proposed approach. Finally, we conclude in Section 8.



2. RELATED WORK
In this section, we review most related work on represent-

ing spatial uncertainty, indexing, and query processing.
Uncertain location data representation. We will use

the probabilistic model for spatial uncertainty developed
in [3, 5–8], because it builds on the formal probability the-
ory and it has been shown to be very effective in practice.
Similar models are also employed in [2,4]. In the probabilis-
tic model, an uncertain location ℓ is treated as a continuous
random variable (r.v.) which takes values (x, y) inside do-
main Ω and has a certain probability density function (pdf)
fℓ(x, y) associated with it. Interpreted this way, for any spa-
tial region R, the probability that ℓ is inside R is computed
as
R

R
fℓ(x, y)dxdy.

Representation. In many applications that deal with
uncertain event locations [8, 11], we need to be able to rep-
resent pdfs of complex shapes in the database. There are
several known methods for such a representation, such as
histograms and modeling pdf as a mixture of Gaussians
or of other distributions. In our approach, we will repre-
sent pdfs as histograms, which are stored in the database as
quad-trees. Using quad-trees allows us to achieve fast query
response time and also to compress those histograms (Sec-
tion 4). It is interesting to note that the existing solutions
that also deal with probabilistic spatial queries [3,6] do not
address the pdf representation issues directly. The reason
is that their empirical evaluation is carried out using only
simple densities such as uniform and Gaussian.

Indexing and query processing. In Sections 5 and 6 we
introduce novel indexing and query processing techniques.
Indexing pdfs to support efficient query processing has been
explored in previous literature as well [3, 6]. A typical ap-
proach is to restrict possible values of an uncertain location
ℓ to be inside an uncertainty region Uℓ such that fℓ(x, y) = 0
if (x, y) 6∈ Uℓ. Figure 1(a) in Section 3 illustrates that con-
cept by showing that locations of events a1, a2, a3, a4 are
restricted to their respective uncertainty regions (shaded).
The uncertain location is indexed using data structures such
as R-tree based on their uncertainty region. This allows
answering certain spatial queries without performing costly
integration operations. For instance, by analyzing the un-
certainty regions in Figure 1(a) it is clear that the location
of a1 is guaranteed to be inside the range R.

Current state of the art. The x-bounds and U-tree are
the current state of the art techniques studied in [6,15] for 1-
and n-dimensional cases. Both techniques have been imple-
mented as variations of R-tree. For 1-dimensional case, the
idea is to store in each internal node N of an R-tree extra
information: left and right ‘x-bounds’ for several values of x,
e.g. x = 0.1 and x = 0.2. A ‘left x-bound’ of N is any value
l(x) ∈ R such that for any pdf f(z) covered by N it follows

that
R l(x)

−∞
f(z)dz < x. A ‘right x-bound’ is defined similarly.

So, if a probabilistic threshold query (see Sec. 3) with range
R and threshold pτ overlaps the MBR of N , but N stores a
left x-bound such that (1) R ⊂ (−∞, l(x)]; and (2) pτ > x,
then N is pruned since it cannot contain any object (pdf)
that would satisfy the τ -RQ. The idea of x-bounds general-
izes to 2-dimensional case, but now, in addition to left and
right x-bounds, top and bottom y-bounds should be main-
tained as well. Keeping x-bounds can increase the height
of the R-tree due to the extra information kept in nodes
of the R-tree, negatively affecting performance. Cheng et
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Figure 1: Examples of RQ(R) and PRQ(q).

al. show in [6] that the gains of x-bounds outweigh their
disadvantages in 1-dimensional case. Notice, unlike tradi-
tional methods, the x-bound approach employs for pruning
not only spatial part (i.e. MBR), but also values of the pdf.

3. SPATIAL QUERIES
In this section, we formally define two types of probabilis-

tic retrieval queries studied in this paper. Similar queries
have been considered in [2,3]. The first fundamental type of
query is a range or region query, such as “find all the events,
the location of which can be inside a given region”. Those
queries can be formally defined as:

Definition 1. Given a region (range) R and a set of ob-
jects A = {a1, a2, . . . , an}, a basic region (range) query
(RQ) returns all the elements in A whose probability of be-
ing inside R is greater than zero.

The analytical formula for computing the probability that
a location ℓ ∼ fℓ(x, y) is located inside a region R is given
by P(ℓ ∈ R) =

R
R

fℓ(x, y)dxdy.
Consider the example in Figure 1(a). If we assume the

locations of elements A = {a1, a2, a3, a4} are uniformly dis-
tributed in the specified (shaded) uncertainty regions, then
the probabilities of these elements of being inside R might
be 1.0, 0.7, 0.4, 0.0 respectively. Then the result set for the
corresponding RQ is {a1, a2, a3}.

Having only elements in the result set might not be always
sufficient: it is often necessary to be able to get the actual
values of the probabilities associated with those elements,
which leads us to the next definition:

Definition 2. A probabilistic query is a detached-prob-
ability query if it returns elements without the probabilities
associated with them. A query is an attached-probability
query, denoted as p-, if its result is a set of tuples where
each tuple consists of an element and the probability associ-
ated with this element.

By default, any spatial query is a detached-probability
query. The answer set for the p-RQ counterpart of the above
RQ is {〈a1, p1〉, 〈a2, p2〉, 〈a3, p3〉}. Given that we have as-
sumed p1, p2, p3 have specific values, the answer is {〈a1, 1.0〉,
〈a2, 0.7〉, 〈a3, 0.4〉}.

When analyzing results of an RQ, it is often desirable to
ignore low-probability answers and present only those ele-
ments whose associated probabilities exceed a given proba-
bility threshold pτ , where pτ ∈ R, 0 ≤ pτ ≤ 1. To generalize
this idea, we can define:

Definition 3. Given a threshold pτ , query τ -Q is said to
be query Q with the threshold semantics if on the same
input as Q it returns all the elements from the result set of
Q whose associated probabilities are greater than pτ .



To continue with our running example, if we set pτ = 0.5,
then the corresponding τ -RQ will return {a1, a2} as its result
set, because p1 and p2 are greater than 0.5 whereas p3 and
p4 are not. Similarly, pτ -RQ will return {〈a1, 1.0〉, 〈a2, 0.7〉}.

Notice, we have deliberately defined each τ -RQ as a single
operation, and not as an additional filtering (τ - part) step
applied to RQ operation. This is because τ -RQ, as a single
query, can be optimized better, which is important for quick
query response time.

Finally, observe that a regular region R can be viewed as
a discrete function R(x, y) : Ω → {0, 1}, such that R(x, y) =
1 when (x, y) ∈ R, and R(x, y) = 0 otherwise. The formula
for P(ℓ ∈ R) can be written as

P(ℓ ∈ R) =

Z
Ω

fℓ(x, y)R(x, y)dxdy. (1)

The concept of a regular region generalizes to the concept
of a preference region R(x, y) : Ω → [0, 1], which maps a
point to a preference value between zero and one. Similarly,
the concept a region query generalizes to the concept of a
preference region query (PRQ): everything is the same
as for RQ, except P(ℓ ∈ R) is computed using Equation 1.
PRQs give the flexibility to specify queries where, for exam-
ple, the analyst is primarily interested in objects that are
within a certain area of space, but also cannot ignore object
in a larger area of space. An example of a PRQ with the
preference region R is illustrated in Figure 1(b). There, the
analyst prefers objects in the inner oval (R(x, y) = 1) to
object in the middle ring (R(x, y) = 0.8) to objects in the
outer ring (R(x, y) = 0.1). More complex preference regions
can be defined, e.g. R(x, y) can be a continuous function.

4. REPRESENTING PDFS

4.1 Histogram representation of pdfs
In order to represent and manipulate pdfs with complex

shapes, we first quantize the space by viewing the domain Ω
as a fine uniform grid G with cells of size δ×δ. The grid G is
virtual and is never materialized. We use the same notation
Gij for both the cell in i-th row and j-th column of G, i.e.
G = {Gij}, and for the spatial region it occupies. We refer
to cells of the virtual grid G as vcells. A cell is treated as the
finest element of space granularity and each spatial region
can be defined by specifying the set of cells it occupies. A
region R cannot occupy only part of a cell: either it occupies
the whole cell or it does not occupy the cell at all. We will
use vcellsin(R) to denote the number of cells R occupies.

The pdf fℓ(x, y) for any location ℓ is first viewed as a
histogram: for each cell Gij the probability pℓ

ij of ℓ to be

inside this cell is computed as pℓ
ij =

R
Gij

fℓ(x, y)dxdy. For

an event with location ℓ, we are naturally interested in the
set of all the cells in which this event can be located: Uℓ =
{Gij : pℓ

ij 6= 0}. We will call all cells for which pℓ
ij = 0 the

zero-cells (for ℓ). Since fℓ(x, y) is a pdf,
P

Gij∈Uℓ
pℓ

ij = 1.

We will use the notation Uℓ to refer to both the set of cells as
well as the region they occupy. Notice that the latter simply
defines an uncertainty region for ℓ. The uncertainty region
Uℓ along with pℓ

ij for each Gij ∈ Uℓ defines the histogram

Hℓ for fℓ(x, y): Hℓ = {Uℓ, {p
ℓ
ij : Gij ∈ Uℓ}}.

At this point a näıve solution is to represent (and store on
disk) each pdf as a histogram, e.g. by first identifying the
minimum bounding rectangle (MBR) for the histogram and
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Figure 2: Quad-tree representation of pdf.

then treating the cells inside the MBR as a 2-dimensional
array of real values, which can be stored sequentially on disk.

By replacing a pdf fℓ(x, y) with its histogram Hℓ we es-
sentially quantize this pdf: we approximate fℓ(x, y) with a
different pdf fHℓ

(x, y). The new pdf fHℓ
(x, y) has constant

value inside each cell Gij : fHℓ
(x, y) = 1

δ2

R
Gij

fℓ(x, y)dxdy =

pℓ
ij

δ2 for (x, y) ∈ Gij . Also, the histogram Hℓ can be viewed
as the probability mass function (pmf) that corresponds to
fℓ(x, y) given that the domain Ω is viewed not as a contin-
uous space but as a discrete space of finite number of cells.

When we approximate a pdf with a histogram representa-
tion, we lose the information about the precise shape of the
pdf, but, in return, we gain several advantages. The main
advantage is that manipulations with pmfs are less compu-
tationally expensive than the corresponding operations with
pdfs, which involve costly integrations. This is essential,
given that many types of applications require quick query
response time.

It is straightforward to show that all the formulas de-
scribed in the previous section, which involve pdfs and in-
tegration, can now be reformulated in terms of summations
and probabilities pℓ

ij ’s. E.g., in Defn. 1, the formula P(ℓ ∈

R) =
R

R
fℓ(x, y)dxdy becomes P(ℓ ∈ R) =

P
ij:Gij∈R pℓ

ij .

4.2 Quad­tree representation of pdfs
We might be able to improve the histogram representa-

tions of pdfs further by making two observations.
Firstly, a histogram as a representation of pdf, may re-

quire large storage overhead for the pdfs that cover large ar-
eas, especially if G is a very fine grid. To reduce the storage
overhead as well as the number of I/Os required to retrieve
a pdf from disk (thus improving the execution time), the
analyst must be able to specify that any representation of
a given pdf must fit in sτ ∈ N amount of space. E.g., the
analyst might decide that certain types of locations are just
not important, and representing each finest detail of them
is not required. Let us note that the text of all the original
reports is stored in the database as well. Therefore, if the
analyst decides to represent certain location in more detail
at a later time, that can be achieved from the stored reports.

Secondly, keeping certain aggregate information about prob-
abilities in a given histogram, may allow for more efficient
query processing. For instance, consider a τ -RQ with a
threshold pτ and a range R, whose overlap with the MBR
of a given histogram Hℓ for a location ℓ consists of only
n cells. Assume for each histogram we keep the maximum
value pℓ

max among all the pℓ
ij probabilities in the histogram.

Then, we might be able to answer the τ -RQ more efficiently.
Specifically, if npℓ

max < pτ , then since P(ℓ ∈ R) ≤ npℓ
max <

pτ , it immediately follows that ℓ does not belong to the



answer set of the τ -RQ, without performing costly compu-
tations and many disk I/Os. We can generalize the idea of
keeping aggregate information to multiple levels of resolu-
tion, not only at the MBR level.

To address the above observations, we can index each his-
togram Hℓ using a space partitioning index, such as a quad-
tree. First we build a complete quad-tree Tℓ for Hℓ. The
algorithm we use is consistent (and thus omitted) with that
for building quad-tree for images [14], where the goal is to
index the pixels that belong to a particular image. In our
case, a histogram plays the role of an image, and the non-
zero cells the role of the pixels.

Each node N of the quad-tree Tℓ is adjusted to store
certain aggregate information. Assume that the bound-
ing rectangle of N intersects with n vcells, whose pℓ

ij val-
ues are p1, p2, . . . , pn. Observe that some of those vcells
might not belong to Uℓ, and thus some of the pi’s can have
zero values. Then, if N is a leaf node, it stores a positive
real value psum, and it holds that: p1 = p2 = · · · = pn

and psum =
Pn

i=1 pi = np, where p = p1. If N is an
internal node, it stores two values: psum =

Pn

i=1 pi and
pmax = maxi=1,...,n pi, which are used for pruning (in this
case, pi 6= pj in general). Figure 2(a) shows an example of
a (3-level) complete quad-tree built on a 4 × 4 histogram.

Compression. The complete quad-tree pdf representa-
tion does address the issue of maintaining aggregate infor-
mation at different levels of resolution. It still does not ad-
dress the first concern, where the analyst can specify that
any representation of a given pdf should fit into a certain
amount of space sτ ∈ N. The quad-tree (lossy) compression
algorithm resolves this issue. It operates by maintaining the
‘compressible nodes’ in a priority queue. A node is com-
pressible if all of its children are leaf nodes. In Figure 2(a),
the compressible nodes are A, B, C, D. The algorithm ex-
tracts from the priority queue the ‘best’ node to compress
next N and performs a node compression operation on N .
This operation consists of removing all the children of N
and converting N into a leaf node. Semantically, the ef-
fect of this operation corresponds to replacing pℓ

ij ’s of all
the cells, covered by the BR of N , with the same value p,
equal to the average of those pℓ

ij ’s. After each node com-
pression operation, the histogram is replaced with another,
more ‘crude’, histogram of the original pdf. In the resulting
histograms the new pℓ

ij ’s still sum up to 1. A node compres-
sion can make the parent of N to become a compressible
node, in which case it is inserted in the priority queue. The
algorithm keeps compressing nodes until the quad-tree fits
into the specified amount of space sτ .

The key for the priority queue can be chosen in a num-
ber of ways. Recall that for any histogram H there is pdf
fH(x, y) that corresponds to it. Intuitively, we want the
shape of fH(x, y) for the resulting histogram H to resem-
ble/approximate that of the original pdf as closely as possi-
ble. The algorithm above tries to achieve that approxima-
tion goal in a greedy fashion, by repeatedly collapsing ‘best’
compressible nodes. Thus, we need to decide what con-
stitutes the best node to compress next. Graphically, the
effect of compressing a node N with bounding rectangle B
corresponds to ‘flattening’ of the curvature of the histogram
for the cells covered by B. Thus, we want to choose those
nodes to flatten whose corresponding histogram curvature
looks the flattest so that we minimally alter the shape.

Consider a compressible node N with bounding rectan-

gle B which covers n cells. Suppose the probabilities in
those cells are: p1, p2, . . . , pn. By compressing this node,
the probabilities will become p1 = · · · = pn = µ, where µ =
1
n

Pn

i=1 pi. So, one solution is to choose ξ = maxi=1,...,n pi−
mini=1,...,n pi as the priority queue key.

Figure 2(a) shows an example where four nodes are com-
pressible: A, B, C, D, where node A covers cells [0, 1]× [2, 4],
node D covers cells [2, 3]× [0, 1], etc. The cells covered by D
clearly have the least variance, so D is picked for compres-
sion. Figure 2(b) shows the result of compressing D. Notice
the flattening effect in the cells covered by D.

5. INDEXING
Assume the goal is to evaluate a τ -RQ with some thresh-

old. The quad-tree representation of pdfs might help to
evaluate this query over each individual event location ℓ ∼
fℓ(x, y) stored in the database faster. However, if nothing
else is done, answering this query will first require a sequen-
tial scan over all the event locations stored in the database,
which is undesirable both in terms of disk I/O as well as
CPU cost.

To solve this problem we can create a directory index on
top of Uℓ (or, MBR of the histogram) for each location ℓ
in the database, using an index of our choice, such as R*-
tree [1]. This solution is illustrated in Figure 3. When
processing the τ -RQ with region R, we can effectively use
this index to prune away all the Uℓ which do not intersect
with R. Similar techniques have been studied in [3,6]. This
method is known to lead to improvement when compared to
a sequential scan. However, this method essentially utilizes
only the spatial part of a pdf (i.e., Uℓ or the MBR) and dis-
regards the fact that there is another ‘dimension’ that can
be used for pruning as well – the values of the pdf. Let
us note that ‘dimension’ here is used figuratively, as it is
not really a dimension, as defined in the traditional multi-
dimensional indexing. Consequently, there is no straightfor-
ward way of applying the traditional approach of employing
3-dimensional index [6, 15]. Instead, the challenge becomes
to create an indexing solution that is capable of using the
values of pdfs. We next discuss how to solve this challenge.

5.1 U­grid
In this section, we propose a novel U-grid (Uncertain

grid) indexing structure to effectively index uncertain event
data. In addition to storing spatial information in the grid
files [9,10,13], U-grid also stores probability summarizations,
which can be effectively utilized by the query processor.

Unlike the virtual grid G, the directory U-grid I is ma-
terialized. The grid I is much coarser than G and can be
viewed as a small 2-dimensional array of cells I = {Iij}, re-
siding in main memory (but it can also be stored on disk).
As before, we will use Iij to refer to both: the cell and the
region it represents. We will refer to cells in the directory
grid I as dcells. The structure of the grid I is shown in
Figure 4. Each cell Iij in the grid I stores certain aggregate
information about each event location ℓ ∼ fℓ(x, y) whose
uncertainty region Uℓ intersects with Iij . Let us denote the
set of those locations as the ‘set’ Lij .

The most important information in Iij is a pointer to a
disk-resident list, called the ‘list’ Lij . For each event loca-
tion ℓ in the set Lij , there is a list-element eℓ in the list Lij ,
which stores aggregate information {oid, pmax, psum, MBR}
for ℓ, as illustrated in Figure 4. The attribute eℓ.oid points
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to the location of the quad-tree for ℓ, on disk. The MBR of
ℓ is stored in eℓ. MBR. Let n = vcellsin(Uℓ ∩ Iij), and let
p1, p2, . . . , pn be the values of the pℓ

ij probabilities of the n
vcells in Uℓ ∩ Iij . Then, eℓ.pmax and eℓ.psum store the val-
ues: eℓ.pmax = maxi=1,...,n pi and eℓ.psum =

Pn

i=1 pi. The
list is sorted in descending order on either psum or pmax.

Clustering. Observe that we also can retrieve {pmax,
psum, MBR} information directly from the root node of the
quad-tree for ℓ, instead of the list-element eℓ for ℓ, so why do
we store it in eℓ again? The reason is that, when we analyze
elements of the list sequentially, if we access the quad-trees,
we will incur an extra disk I/O per each location stored in
the list. By storing all those attributes we achieve clustering
of locations.

Other aggregate information. The lists in the di-
rectory grid I can store other aggregate information for the
purpose of pruning, not only the information from the root
node of the quad tree {pmax, psum, MBR}. We refer to this
technique as L0Sketch (level-0 sketch).

We can naturally extend this technique, by storing more
levels of the quad-tree. In particular, we shall see that
using L1Sketch produces the best results. L1Sketch re-
quires small additional overhead, compared to L0Sketch,
since children’s Bounding Rectangles (BR) can be derived
from eℓ. MBR, and thus they do not need to be stored. The
pruning power of L1Sketch outweighs that of L0Sketch and
easily compensates for the storage overhead.

One can also consider storing x-bounds here, but that
turned out not to work well in practice.

Other attributes of Iij. In addition to the pointer to
the list Lij , the dcell Iij also has pmax and psum attributes,
which store the maximum over all pmax’s and over all psum’s
in the list Lij respectively. In the next section, we discuss
methods for efficient query processing using the grid.

6. EFFICIENT QUERY PROCESSING
Processing of τ -RQs and τ -PRQs consists of two logical

phases: the index (pruning) phase and the object (post-
processing) phase. The first phase employs the directory-
index to prune the locations that cannot satisfy the query.
Two different factors are important in this process: the
speed and the quality of pruning. The locations that cannot
be pruned using the directory index are inserted in the spe-
cial list Lproc to be post-processed later, on the second phase.
The way in which each individual event location ℓ ∈ Lproc

is post-processed, with respect to a given query, is indepen-
dent from the choice of directory-index. The procedure that
achieves that is rather straightforward. It simply traverses
the quad-tree to compute the desired probability for a given
query. It might stop earlier, without computing the total
probability, e.g. when it becomes clear that the probability
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for given ℓ to satisfy the query either will or will not exceed
the threshold pτ . The details of that procedure are omitted.

6.1 Processing τ­RQs using U­grid
In this section, we present the algorithms for processing of

a τ -RQ with a range R and a threshold pτ using the directory
U-grid index I. The idea of the solution is to avoid the costly
computation of the exact probability for a location ℓ to be in

R, i.e. P(ℓ ∈ R)
def
=
P

ij:Gij∈Uℓ∩R pℓ
ij . We accomplish that

by being able to find a good upper-bound λ for it, such that
P(ℓ ∈ R) ≤ λ. The value λ will be computed based on the
aggregate information stored in the grid I. The pruning will
utilize the fact that, if λ < pτ , then P(ℓ ∈ R) ≤ λ < pτ , and
thus ℓ cannot satisfy the τ -RQ and can be pruned without
computing the exact value of P(ℓ ∈ R).

One-cell scenario. Let us first consider the case where
R is completely inside of only one cell Iij of I, as illustrated
in Figure 5. The pruning phase of the τ -RQ algorithm con-
sists of four levels of pruning:
(1) The grid-level pruning. Given R intersects with only
one dcell Iij , we know that the grid index I is constructed
such that only the locations in Lij can satisfy the τ -RQ.
Thus, the other locations can be pruned.
(2) The dcell-level pruning. Let us set λ = min(m ×
Iij .pmax, psum), where m = vcellsin(R). Observe that if
λ < pτ , then no object ℓ ∈ Lij satisfies the τ -RQ, because
P(ℓ ∈ R) ≤ λ < pτ . Let us note that this pruning is carried
out using only the content of the dcell Iij , without perform-
ing any disk I/Os.
(3) The list-level pruning. If the above condition does not
hold, the algorithm starts to process the disk-resident list Lij

sequentially. In the example shown in Figure 5, the list Lij

will consist of four elements, for the locations ℓ1, ℓ2, ℓ3, ℓ4.
Assume that the elements in Lij are sorted in descending or-
der of psum. Suppose that the algorithm currently observes
a list-element eℓ that corresponds to a location ℓ. Let us
choose λ = eℓ.psum. Observe that if λ < pτ , then neither ℓ
nor the rest of the location in the list will satisfy the τ -RQ,
i.e. all of them can be pruned.
(4) The element-level pruning. If the above pruning is not
successful for the element eℓ, the algorithm might still be
able to prune ℓ alone, but not the whole list. Let us set
λ = n × eℓ.pmax, where n = vcellsin(R ∩ eℓ. MBR). If
λ < pτ , then ℓ is pruned. Else, ℓ is not pruned, and ℓ is
inserted in the list Lproc to be post-processed. After that,
the algorithm extracts the next element eℓ ∈ Lij and goes to
Step 3 to apply the list-level pruning until all the element of
Lij are processed. We can use L1Sketch to further reduce
the upper bound by summing up the estimations from each
quadrant: λ =

P
i=1,4 ni × eℓ.pmax i.

Two-cell scenario. Let us now consider the situation
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shown in Figure 6, where R can intersect with more than
one dcell. We study only two-cell scenario for illustration
purposes; the technique generalizes to any number of dcells.
(1) The grid-level pruning. Assume that R intersects with
only two dcells: Ii1 and Ii2. We know that the index grid
I is constructed such that only the locations in Li1 and Li2

can satisfy the τ -RQ, the rest of the locations are pruned.
(2) The dcell-level pruning. Let m1 = vcellsin(R ∩ Ii1),
m2 = vcellsin(R∩Ii2), and λ = min(m1×Ii1.pmax, Ii1.psum)+
min(m2 × Ii2.pmax, Ii2.psum). Then, if λ < pτ , then no ob-
jects in Lij satisfies the τ -RQ, hence all of them are pruned.
(3) The list-level pruning. Otherwise, the algorithm scans
two lists Li1 and Li2 at the same time in a sequential man-
ner, as illustrated in Figure 7. Assume that the elements in
those lists are sorted in descending order of psum. Suppose
that the algorithm currently observes elements e1 ∈ Li1 and
e2 ∈ Li2, which correspond to locations ℓ1 and ℓ2. Let us
note that ℓ1 and ℓ2 can be the same object. All the pre-
viously observed but not-yet-pruned elements from Li1 and
Li2 are kept in two sets H1 and H2, respectively.

We need to upper-bound the probability P(ℓ ∈ R) for each
location ℓ stored in the rest of the lists Li1 and Li2, such that
ℓ is not yet marked for post-processing (i.e., ℓ 6∈ H1, H2).
This probability is upper-bounded by λ = e1.psum+e2.psum.
Thus, if λ < pτ , we do not need to load the rest of the lists
from disk, and all the locations stored there can be pruned.
(4) The element-level pruning. Otherwise, we will not be
able to prune all the locations, but we shall try to prune
ℓ1 and ℓ2 individually. Let us consider how to prune ℓ1,
the case for ℓ2 is similar. First, we compute two values:
λ1 and λ2 to bound P(ℓ ∈ R ∩ Ii1) and P(ℓ ∈ R ∩ Ii2)
respectively, so that P(ℓ ∈ R) ≤ λ1 + λ2. We compute
λ1 = min(n1 × e1.pmax, e1.psum), where n1 = vcellsin(R ∩
Ii1 ∩ e1. MBR). The value of λ2 depends on whether or not
we have already observed ℓ1 on the previous steps. Namely,
if there is already an element eℓ1 in H2 for ℓ1, then λ2 =
min(n2 × eℓ1 .pmax, eℓ1 .psum), where n2 = vcellsin(R ∩ Ii2 ∩
eℓ1 . MBR). Else λ2 = e2.psum. Now we can compute λ =
λ1 + λ2 and if λ < pτ , then we can prune ℓ1. In the latter
case, ℓ1 is removed from H2 and Lproc – if it is already there.
If the above methods cannot prune ℓ1, then ℓ1 is inserted
into Lproc and e1 into H1.

After ℓ2 is processed in a similar manner, the algorithm
extracts the next two elements e1 and e2 from Li1 and Li1

and repeats the pruning procedure from step 3, until all the
elements in the lists are processed. Similar to the one-cell
scenario, L1Sketch can be used to further reduce the upper
bound. We skip the details due to page limit.

6.2 Processing τ­PRQs using U­grid
Assume a τ -PRQ has a threshold pτ and a preference

region R(x, y). Let us denote the average value of R(x, y)
in the cell Gij as rij : rij = 1

δ2

R
Gij

R(x, y)dxdy. Then,

Strategies Novel R*-tree U-grid
internal leaf dcell list element

(1) Spatial-bound Y Y Y Y Y
(2) x-bound Y Y Y
(3) Max-Sum (MS) Y Y Y Y Y Y
(4) L1 Sketch (L1) Y Y Y
(5) CS Y Y Y Y Y

Table 1: Pruning Strategies

preference region R(x, y) can be viewed as the set of tuples:
{(Gij , rij) : rij 6= 0} and Equation 1 transforms into P(ℓ ∈

R)
def
=
P

ij:Gij∈R∩Uℓ
pℓ

ijrij . The goal is, to avoid the costly

computation of the exact probability P(ℓ ∈ R) by being
able to find a good upper-bound λ for it, such that P(ℓ ∈
R) ≤ λ. The value of λ will be derived from the aggregate
information stored in the directory grid I. The pruning will
be based on the observation that, if λ < pτ , then we can
prune ℓ since it cannot be in the answer set of the τ -PRQ.

Due to the page limit, we study only the scenario illus-
trated in Figure 8, where R intersects with only one dcell
Iks. The technique generalizes to any number of cells. First
observe that any preference region R(x, y) induces a reg-
ular region R′(x, y) = {(x, y) : R(x, y) 6= 0}. That reg-
ular region can be obtained by treating all non-zero rij ’s
of the preference region as 1’s. Observe that P(ℓ ∈ R) =P

ij:Gij∈R∩Uℓ
pℓ

ij × rij ≤
P

ij:Gij∈R∩Uℓ
pℓ

ij × 1 = P(ℓ ∈ R′).

Thus, we can use the techniques from Section 6.1 to upper-
bound P(ℓ ∈ R′) and that would upper-bound P(ℓ ∈ R) as
well, because P(ℓ ∈ R) ≤ P(ℓ ∈ R′) ≤ λ < pτ .

Cauchy-Shwarz inequality. The most effective tech-
nique employed for pruning for τ -PRQ is based on Cauchy-

Shwarz inequality:
Pn

i=1 xiyi ≤ (
Pn

i=1 x2
i )

1
2 (
Pn

i=1 y2
i )

1
2 . Us-

ing it, we have: P(ℓ ∈ R)
def
=
P

. . . ≤ (
P

ij:Gij∈Iks
(pℓ

ij)
2)

1
2 ×

(
P

ij:Gij∈Iks
(rij)

2)
1
2 = SℓSR, where Sℓ and SR are the two

(·)
1
2 terms. The value SR ∈ R is computed once per query

R and cell Iks. The value Sℓ ∈ R is apriori stored in each
element eℓ of the list Lks along with other aggregate infor-
mation. Now, when processing list-element eℓ ∈ Lij , we can
use λ = SR×eℓ.Sℓ as one of the upper-bounds for P(ℓ ∈ R).

7. EXPERIMENTAL EVALUATION
In this section, we experimentally study the efficiency of

the proposed approach. We ran all our experiments on a
P4-2GHz PC with 1GB RAM. The results will demonstrate
the significant speedup achieved by the proposed solution,
compared to the current state of the art methods.

7.1 Experimental Setup
Indexing methods. Table 1 summarizes the basic prob-

ability summarization techniques that can be used by an
indexing structure. The existing techniques are 1 and 2,
see [15]. The new ones, proposed in this paper, are 3, 4,
and 5. While the new techniques have been described in the
context of U-grid, one can notice that some of them are also
applicable to R*-tree and vice versa. Thus, to have a com-
plete study, we also incorporate our techniques in R*-tree
and evaluate their results as well.

Table 1 illustrated to which part of various indexing struc-
tures (R*-tree and U-grid) a given summarization technique
is applicable. For instance, it shows that L1 technique can
be applied to the element level of U-grid and leaf level of



R*-tree. Max-Sum (MS) refers to using (pmax, psum) sum-
mary to prune objects. It can apply to R*-tree and U-grid
at all levels. CS is the Cauchy-Shwarz technique employed
by PRQ queries. Therefore, we have many individual index
variations and we will only test most prominent solutions.

To evaluate these techniques effectively, we group them
under two schemes: R*-tree and U-grid. We use R*-tree
with Spatial-bound pruning as our comparison baseline, to
evaluate the following existing and novel techniques:
• Existing: (1) R*-tree with x-bounds, also known as U-

PCR [15], (2) R*-tree with compressed x-bounds, the cur-
rent state of the art technique also known as U-tree [15] (3)
Näıve Grid;
• Novel: (1) U-grid-MS with MS pruning, (2) U-grid

with x-bounds (U-grid-x) and with compressed x-bounds
(U-grid-x+), (3) U-grid-MSL1 for MS pruning and
L1Sketch, (4) RTree-MS, (5) RTree-MSL1.

Näıve Grid is a standard grid, which does not use proba-
bilities for pruning. Note that to reduce the indexing over-
head, x-bounds can also be compressed using linear approx-
imation method [15]. U-grid-x and U-PCR store nine x-
bounds for values from 0.1 to 0.9 at the interval of 0.1; the
compressed versions – U-grid-x+ and U-tree – are built on
top of these nine x-bounds.

Domain. We propose U-grid as the best solution for city-
level domains. In this paper, we use Manhattan Area of New
York with a 400 × 400 virtual grid is overlaid on top of it.

Uncertain location data for testing the Efficiency
is derived from reports filed by NYPD Officers. From these
reports, 2359 uncertain locations are extracted and mapped
into the probabilistic representation, using the framework
from [8]. The number of the locations might not be suf-
ficient for testing the scalability. Hence, we have gener-
ated several larger (10K–100K) synthetic datasets, based
on this real dataset, as follows. We first partition the real
events into three uncertainty categories, based on the size of
their spatial uncertainty regions: the low (the pdf covers less
than 10× 10 vcells), medium (less than 20× 20 vcells), and
high (less than 100 × 100 vcells). To generate a synthetic
location, we randomly choose a real uncertain location, and
generate a new one with a similar pdf on top of a landmark
(building, street intersection) in the domain. When storing
the new pdf as a quad-tree and paginating it to the disk,
an average-sized pdf occupies 5 to 10 disk pages. Using the
lossy compression techniques, we constrain the size of any
pdf to 100 pages maximum.

We can now control the data uncertainty level of a syn-
thetic dataset, by mixing objects with different uncertainty
levels. In our experiments, a dataset with the medium data
uncertainty level has object uncertainty mixture ratio of
(low90% : med5% : high5%), the low and high levels are
defined as: low = (98% : 1% : 1%), and high = (50% :
30% : 20%). The medium data uncertainty has roughly the
same mixture ratio as the 2359 real events.

Queries. Similar to the concept of object uncertainty
levels, spatial queries have the low, medium and high cover-
age levels to characterize query size: 10 × 10, 20 × 20, and
100 × 100 vcells. They also have query uncertainty levels
to characterize mixes of queries of various coverage levels:
low / med / high are the same as data uncertainty levels.

Table 2 summarizes the default experimental settings. We
vary those settings to analyze the performance of the differ-
ent indexing strategies. For each setting, we execute a large

Parameter Value

Data Size 30,000
pτ 0.8
Grid Size 16× 16

Parameter Value

Data Uncertainty Medium
Query Uncertainty Medium
Page Size 1024

Table 2: Default System Settings
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number of spatial queries and then report the average disk
I/O per one query.

7.2 Experiments
Table 3 studies the impact of different database sizes and

query thresholds on the I/O cost of τ -RQs for the different
indexing techniques. All tested techniques are several orders
of magnitude better than linear scan (not shown). In terms
of the overall execution time, linear scan takes more than
2 minutes to complete even for 10K of data. All the tech-
niques, except for linear scan, have two phases as discussed
in the beginning of Section 6: the indexing (phase I) and
post-processing (phase II).

Data size. Table 3 shows the phase I and total I/O costs
separately. U-grid-MS has the best phase I costs, and U-
grid-MSL1 has the best overall costs. In all experiments,
Rtree-MS has better performance than R-tree (baseline).
This proves MS pruning is effective in R-tree index. How-
ever, the existing techniques based on the x-bounds (U-PCR
and U-tree) do not perform well. This shows that the x-
bound idea does not work well in 2-d case; the overhead in
storing the x-bounds and compressed x-bounds clearly out-
weighs the gains from probability pruning. For a U-PCR
indexing node, it needs to store additional 36 real numbers
than a R-tree node. This reduces fan out by more than 8
times. Even with the compression techniques, to store the
parameters used in the linear approximations, U-tree still
needs to reduce the fan out by more than 4 times. The U-
tree’s performance is only slightly better than that of the
baseline, and U-PCR has the worst overall performance.

Figure 9 shows the improvement ratio (speedup) of various
indexing techniques, compared to the baseline (R-tree). The
best technique from Grid group is U-grid-MSL1. It shows
4 times speedup over the baseline, and also almost 4 times
improvement over the best existing solution, U-tree.

The best technique from R-tree group is Rtree-MSL1, but
it is only about 2 times better than the baseline. The main
reason for this difference is that for U-grid, the regions that
correspond to lists are dcells, hence they cannot overlap;
but, for RTree-List, the regions can (and do) overlap. Hence,
the probabilistic pruning techniques become less effective.
The experimental results also show that L1Sketch is a very
effective technique for both, R-tree and U-grid.

Query Threshold. Table 3 also shows similar behavior
when the query threshold pτ for τ -RQs is varied. As we can
observe from Figure 10, the gain ratio for U-grid-MSL1 gets



Overall I/O Cost PhaseI I/O Cost
Methods Novel Size τ Size-I τ-I

10k 50k 100k 0.1 0.5 0.8 10k 50k 100k 0.1 0.5 0.8

R*-tree 88 385 740 437 259 235 24 65 98 44 44 44
U-PCR 109 457 853 553 306 238 60 209 359 160 136 136
U-tree 83 351 677 475 241 219 34 104 183 82 72 72
Rtree-MS Y 60 250 467 432 207 154 22 60 95 40 39 37
U-tree-MS Y 68 279 520 474 221 180 34 102 168 87 76 76
Rtree-MSL1 Y 51 194 349 414 178 121 36 116 194 73 68 60
Näıve Grid 152 746 1489 650 472 449 6 23 43 14 14 14
U-grid-MS Y 32 152 300 384 157 91 5* 16* 29* 14* 12* 10*

U-grid-x+-MS Y 37 174 343 407 162 104 11 43 83 38 31 27
U-grid-MSL1 Y 22* 100* 195* 315* 116* 60* 10 39 74 34 27 25

Table 3: Disk I/O for Various Index Strategies
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even better (up to the factor of 8) when the threshold in-
creases. It shows the combined pruning strategy (MS+L1)
can dismiss most of the false positive objects instead of push-
ing them to phase-II.

Misc. performance. In Figures 11 and 12 we vary the
data and query uncertainty levels. As data and query be-
come more uncertain, pruning in phase I becomes very im-
portant since there is more objects intersecting with the
query region. The results show that our combined prun-
ing strategy (MS+L1) works very well for U-grid, but less
effective for R-tree, since the overlapping MBRs in R-tree
degrade its performance.

U-grid size. Figure 14 plots the impact of the grid
size on the performance of τ -RQs for the U-grid-MSL1 tech-
nique. When the U-grid has only small number of cells, e.g.
1 × 1 or 2 × 2 cells, the overall I/O cost is high, since many
objects are pushed to phase-II for post-processing. As the
number of cells increases, the I/O cost stabilizes: having
finer than 16× 16 grid does not lead to significant improve-
ment. Therefore, keeping the directory grid I in main mem-
ory, except for its disk-resident Lij lists, is feasible.

PRQs. Figure 13 studies the effect of the data size on the
performance of τ -PRQs. The new technique, U-grid-MSL1-
CS, achieves 5 time speedup over the baseline, and 4 time
speedup over the best existing solution, U-tree.

8. CONCLUSION
This paper presents a solution for indexing and fast re-

trieval of uncertain spatial point data, reflected as pdfs. The
proposed approach will benefit a variety of applications that
require fast query processing over uncertain (spatial) data.
The proposed grid-based index, U-grid, achieves its effec-
tiveness by using values of pdfs as another indexing ‘dimen-
sion’, namely by employing high-level summaries/sketches
of the underlying pdfs. The paper also demonstrates that
(regardless of the actual underlying representation of pdfs)
there can be a merit of building an individual index (e.g.,
Quad-tree) on top of each pdf, to summarize it, and further
increase query processing speed.
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