
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$Recommen
$$This wor

0010044-CCR,

preliminary ver
�Correspond

fax: +949824 8

E-mail addr

sunil@cs.purdu
Information Systems 32 (2007) 160–177

www.elsevier.com/locate/infosys
Fast similarity join for multi-dimensional data$,$$

Dmitri V. Kalashnikova,�, Sunil Prabhakarb

aDepartment of Computer Science, University of California, Irvine, 4300 Calit2 Building, Irvine, CA 92697, USA
bDepartment of Computer Sciences, Purdue University, 250 N. University Street, West Lafayette, IN 47907, USA

Received 15 January 2003; received in revised form 20 July 2005; accepted 22 July 2005
Abstract

The efficient processing of multidimensional similarity joins is important for a large class of applications. The

dimensionality of the data for these applications ranges from low to high. Most existing methods have focused on the

execution of high-dimensional joins over large amounts of disk-based data. The increasing sizes of main memory available

on current computers, and the need for efficient processing of spatial joins suggest that spatial joins for a large class of

problems can be processed in main memory. In this paper, we develop two new in-memory spatial join algorithms, the

Grid-join and EGO*-join, and study their performance. Through evaluation, we explore the domain of applicability of

each approach and provide recommendations for the choice of a join algorithm depending upon the dimensionality of the

data as well as the expected selectivity of the join. We show that the two new proposed join techniques substantially

outperform the state-of-the-art join algorithm, the EGO-join.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Similarity join; Grid-based joins
1. Introduction

Similarity (spatial) joins are an important data-
base operation for several applications including
GIS, multimedia databases, data mining, location-
based applications, and time-series analysis. Spatial
joins are natural for geographic information sys-
tems and moving object environments where pairs
of objects located close to each other are to be
e front matter r 2005 Elsevier B.V. All rights reserved

2005.07.002

ded by Y. Ioannidis.

k was supported by NSF Grants IIS-9985019,

9972883, and an Intel Ph.D. Fellowship. A

sion of this work appeared in [1].

ing author. Tel.: +949 824 1396;

831.

esses: dvk@ics.uci.edu (D.V. Kalashnikov),

e.edu (S. Prabhakar).
identified [2,3]. Many algorithms for several basic
data mining operations such as clustering [4], outlier
detection [5], and association rule mining [6] require
the processing of all pairs of points within a certain
distance to each other [7]. Thus, a similarity join
can serve as the first step for many of these
operations [8].

The problem of efficient computation of similar-
ity joins of multidimensional data has been studied
extensively in the literature. Most researchers have
focused their attention on disk-based joins for
high-dimensional data. Current high-end worksta-
tions have enough memory to handle joins even
for large amounts of data. For example, a self-
join of 1 million 32-dimensional data points,
using an algorithm similar to that of [7] (assuming
float data type for coordinate and int for point
.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS
D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 161
identities) requires roughly 132MB of memory (i.e.
ð32� 4þ 4Þ � 106 � 132MB, plus memory for
stack etc.). Furthermore, there are situations when
it is necessary to join intermediate results situated in
main memory or sensor data, which is to be kept in
main memory. With the availability of a large main
memory cache, disk-based algorithms may not
necessarily be the best choice. Moreover, for certain
applications (e.g. moving object environments) near
real-time computation may be critical and require
main memory evaluation.

In this paper, we consider the problem of main
memory processing of similarity joins, also known
as �-joins. Given two datasets A and B of
d-dimensional points and value � 2 R, the goal of
a join operation is to identify all pairs of points, R,
one from each dataset, that are within distance �
from each other, i.e.

R ¼ JðA;B; �Þ

¼ fða; bÞ : ka� bko�; a 2 A; b 2 Bg.

While several research efforts have concentrated on
designing efficient high-dimensional join algo-
rithms, the question which method should be used
when joining low-dimensional (e.g. 2–6 dimensions)
data remains open. This paper addresses this
question and investigates the choice of a join
algorithm for low- and high-dimensional data. We
propose and evaluate two new join algorithms: the
Grid-join and EGO*-join. We compare them with
the state-of-the-art algorithm— EGO-join [7], and
with a method which serves as a benchmark in
many similar publications, the R-tree spatial join
(RSJ) [9].

These techniques are compared empirically using
synthetic and real data. The experimental evalua-
tion shows that the Grid-join approach is the best
method for low-dimensional data. When using the
Grid-join, the join of two datasets A and B is
computed using an index nested loop approach: an
index (i.e. specifically constructed two-dimensional
grid) is built on circles with radius � centered at the
first two coordinates of points from dataset B. The
first two coordinates of points from dataset A are
used as point-queries to the grid-index in order to
compute the join. Although several choices are
available for constructing this index, only the grid is
considered in this paper. The choice of the grid
index is not accidental, it is based upon our earlier
results for main memory evaluation of range
queries. In [10], we have shown that for range
queries over moving objects, using a grid index
results in an order of magnitude better performance
than memory optimized R-tree, CR-tree, R*-tree, or
Quad-tree.

The results for high-dimensional data show that
the EGO*-join is the best join technique, unless � is
very small. The EGO*-join that we propose in this
paper is based upon the EGO-join algorithm. Böhm
et al. in [7] have shown that the epsilon grid order
(EGO) join algorithm outperforms other spatial
join techniques for high-dimensional data. The new
EGO*-join algorithm significantly outperforms
EGO-join for all cases considered. The improve-
ment is especially notable when the number of
dimensions is not very high, or the value of � is not
large.

The RSJ algorithm is significantly less effective
than all other tested algorithms. To join two
datasets using RSJ, two R-tree indexes are built or
maintained on these datasets. But unlike the case of
some approaches, these indexes need not be rebuilt
when the join is recomputed with different �.

Although not often addressed in related research,
the choice of the � parameter for the join is critical
for producing meaningful results. We have discov-
ered that often in similar research the choice of
values of � yields very small selectivity, i.e. almost
no point from one dataset joins with a point from
the other dataset. Section 3.1 discusses how to
choose the appropriate values of � to achieve
meaningful selectivity of the result set.

The contributions of this paper are as follows:
�
 Two join algorithms that achieve better perfor-
mance (by a factor of 2–10) than the state-of-the-
art EGO-join algorithm.

�
 Recommendations for the choice of a join

algorithm based upon data dimensionality d,
and �.

�
 Highlight the importance of the choice of � and

the corresponding selectivity for experimental
evaluation.
The rest of this paper is organized as follows. The
new Grid-join and EGO*-join algorithms are
presented in Section 2. The proposed join algo-
rithms are evaluated in Section 3. Related work is
discussed in Section 4. Finally, Section 5 concludes
the paper. A sketch of the algorithm for selecting
grid size, and cost estimator functions for Grid-join,
are presented in the Appendix.

ARTICLE IN PRESS

Fig. 1. An example of the grid index, IG.

1Note, however, that it is not necessary to generate a new

dataset consisting of these circles. Since each circle has the same

radius (�), the dataset of the points representing the centers of

these circles is sufficient.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177162
2. Similarity join algorithms

In this section, we introduce two new algorithms:
the Grid-join and EGO*-join. The Grid-join is
based upon a uniform grid and builds upon the
approach proposed in [10] for evaluating contin-
uous range queries over moving objects. The EGO*-
join is based upon EGO-join proposed in [7].
In Section 2.1, we first present the Grid-join
algorithm followed by an important optimization
for improving the cache hit-rate. An analysis of the
appropriate grid size as well as cost prediction
functions for the Grid-join is presented in the
Appendix. The EGO*-join method is discussed in
Section 2.2.

2.1. Grid-join

Let us first assume the case of joining two-
dimensional data, the general case of d dimensions
will be discussed shortly. The spatial join of two
datasets, A and B, can be computed using the
standard index nested loop approach as follows. We
treat one of the point datasets as a collection of
circles of radius � centered at each point of one of
the two datasets (say B). This collection of circles is
then indexed using some spatial index structure.
The join is computed by taking each point from the
other dataset (A) and querying the index on the
circles to find those circles that contain the query
point. Each point (from B) corresponding to each
such circle joins with the query point (from A). An
advantage of this approach (as opposed to the
alternative of building an index on the points of one
dataset and processing a circle region query for each
point from the other dataset) is that point-queries
are much simpler than region-queries and thus tend
to be faster. For example, a region-query on a quad-
tree index might need to evaluate several paths while
a point-query is guaranteed to be a single path
query. An important question is the choice of index
structure for the circles.

In earlier work [10], we have investigated the
execution of large numbers of range queries over
point data in the context of evaluating multiple
concurrent continuous range queries on moving
objects. The approach can also be employed for
spatial join if we compute the join using the index
nested loops technique mentioned above. The two
approaches differ only in the shape of the queries,
which are circles for the spatial join problem and
rectangles for the range queries.
In [10], the choice of a good main-memory index
has been investigated. Several key index structures,
including R-tree, R*-tree, CR-tree [11], quad-tree,
and 32-tree [10], were considered. All trees were
optimized for main memory. The conclusion of the
study was that a simple one-level Grid-index
outperformed all other indexes by almost an order
of magnitude for uniform as well as skewed data.
Due to its superior performance, in this study, we
use the Grid-index for indexing the �-circles.

Grid index: While many variations exist, we have
designed our own implementation of the Grid-
index, which we denote as IG. IG is built on circles
with �-radius.1 The similarity join algorithm which
utilizes IG is called the Grid-join, or JG for short.

Case of two dimensions: Let us now consider
the two-dimensional case more formally. We
will consider the problem of joining two two-
dimensional datasets, A ¼ fa0; a1; . . . ; ajAj�1g and
B ¼ fb0; b1; . . . ; bjBj�1g, using an index nested loop
approach, where the grid index is built on dataset B.

The grid index IG is a two-dimensional array of
cells. Each cell represents a region of space
generated by partitioning the domain using a
regular grid. Fig. 1 illustrates an example of IG.
Throughout the paper, we assume that the domain
is normalized to the unit d-dimensional hyper-cube
½0; 1�d . In this example, the domain is divided into a
10� 10 grid of 100 cells, each of size 0:1� 0:1.

Since the grid is uniform, it is easy to calculate the
cell-coordinates corresponding to a point in Oð1Þ
time. Each cell in the grid contains two lists called
the full and part lists, as illustrated in Fig. 1. Let
circleðp; rÞ denote a circle with center at point p

and radius r. The full list of each cell C in IG

ARTICLE IN PRESS

Fig. 2. Grid-join procedure, JG.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 163
contains pointers to each point bi from B such
that circleðbi; �Þ fully covers the cell: C:full ¼
fbi : C � circleðbi; �Þ; bi 2 Bg. The part list of
each cell C contains pointers to each point bi from B

such that circleðbi; �Þ partially covers the cell:
C:part ¼ fbi : Cgcircleðbi; �Þ and C \ circle

a;; bi 2 Bg.
To find all points within �-distance from a given

point ai 2 A, first the cell corresponding to ai is
retrieved. All points in the full list of that cell are
guaranteed to be within �-distance from ai. The
points bj in the cell’s part list need to be processed
further to check if kai � bjko�.2

Outline of the algorithm: The basic steps of JG to
join two datasets A and B are outlined in Fig. 2. In
Steps 2 and 3, a spatial sort, called z-sort, is applied
to the two datasets. The need for z-sort is explained
later. A grid index IG is initialized in Step 4. In the
loop in Step 5, all points bi 2 B are added to IG one
by one as follows. First bi, a two-dimensional point
constructed from the first two coordinates of bi, is
considered.3 Then pointer to bi is added to the
part lists of each cell C in IG that satisfies
C \ circleðbi; �Þa;.

4 The loop in Step 6 performs
a nested loop join. For each point ai 2 A all points
from B that are within � distance are determined
using IG. To achieve this, point ai is constructed
from the first two coordinates of ai and the cell
corresponding to ai in IG, C, is determined in Steps
6(a) and 6(b). Then, in Step 6(c), the algorithm
iterates through points in the part list of cell C and
finds all points that are within � distance from ai.
Step 6(d0) is analogous to Step 6(c) but for full
lists and valid only for the two-dimensional case.

Case of d dimensions: In the general d-dimensional
case, JG still employs a two-dimensional grid. Only
the first two coordinates of points in A and B are
utilized for all operations, exactly as in two-
2The choice of data structures for the full and part lists is

critical for performance. We implemented these lists as dynamic-

arrays rather than lists, which improves performance by roughly

40% due to the resulting clustering in memory (and thereby

reduced cache misses). A dynamic array is a standard data

structure for arrays whose size adjusts dynamically.
3Note, for two-dimensional case bi is equivalent to bi , the

difference exists only for more than two dimensions, as explained

shortly.
4This step is valid for the general d-dimensional case, where

dX2. However, for better performance in the two-dimensional

case, pointer to bi is added to the full lists of each cell C in IG

that satisfies the condition fC � circleðbi; �Þg and it is added to

the part lists of each cell C in IG that satisfies the condition

fCgcircleðbi ; �Þ and C \ circleðbi ; �Þa;g.
dimensional case, except when processing part
lists, in which case all d coordinates are utilized to
determine if ka� bko�.

While in the two-dimensional case each cell has
two lists, in the d-dimensional case where d42 each
cell has only one list. The reason for having two
separate lists (full and part) per cell for two-
dimensional points is as follows. When processing a
point ai 2 A, points bj in the full list do not need
kai � bjko� checks since those points are guaran-
teed to be within �-distance from ai, whereas points
from the part list do need these checks. For more
than two dimensions, keeping a separate full list
per each cell of a two-dimensional grid is of little
value because now points from the full list do
need kai � bjko� checks as well. Therefore, for the
d-dimensional case each cell has only one list, called
the part list: C:part ¼ fb : C \ circleðb; �Þa;;
b 2 Bg.

Choice of grid size: The performance of JG

depends on the choice of grid size, therefore it must
be selected carefully. Intuitively, the finer the grid,
the faster the processing, but the greater the time
needed to initialize the index and load the data into
it. We now present a sketch of a solution for
selecting appropriate grid size.

The first step is to develop a set of estimator
functions that predict the cost (i.e. the execution
time, in our context) of the join given a grid size.
The cost is composed of three components, the

ARTICLE IN PRESS

Fig. 3. EGO-join procedure, JEGO.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177164
costs of: (a) initializing the empty grid; (b) loading
the dataset B into the index; and (c) processing
each point of dataset A through this index. The
Appendix presents details of how each of these costs
is estimated. These functions are able to achieve
very accurate prediction. With the help of these
functions, it is possible to estimate which grid size is
optimal. Such functions can also be used by a query
optimizer to evaluate if it is more efficient to use JG

for the given parameters or another join approach.
Improving the cache hit-rate: The performance

of main-memory algorithms is greatly affected
by cache hit-rate. In this section, we describe an
important optimization that improves cache hit-rate
and, consequently, the overall performance of JG.

In JG, for each point in A its cell is computed,
and the full and part lists (or just part list) of
this cell are accessed, as illustrated in Fig. 2. The
algorithm simply processes points in sequential
order in the array corresponding to dataset A.
Cache hit-rate can be improved by altering the order
in which points are processed. In particular, points
in the array should be ordered such that points that
are close to each other according to their first two
coordinates in the two-dimensional domain are also
tend to be close to each other in the array. In this
situation, data structures for a given cell (e.g., its
part list) are likely to be reused from the cache
during the processing of subsequent points from the
array. The speedup is achieved because such points
are more likely to be covered by the same circles
than points that are far apart, thus the relevant
information is more likely to be retrieved from the
cache rather than from main memory.

Sorting the points to ensure that points that are
close to each other in two-dimensional domain are
also tend to be close in the array can easily be
achieved by various methods. We choose to use a
sorting based on the Z-order. We sort not only
dataset A but also dataset B, which reduces the time
needed to add circles to IG. In Section 3, we will
show that the gain achieved by z-sort can be quite
significant. For example, approximately 2.5 times
speedup is achieved by utilizing Z-sort in Fig. 13 in
that section.

2.2. EGO*-join

In this section, we present our second algorithm
called EGO*-join, which is based on EGO-join
approach [7]. In [7], Böhm et al. have shown that
EGO-join substantially outperforms other methods
for joining massive, high-dimensional data. We will
use the notation JEGO to denote the EGO-join
approach and JEGO� for the EGO*-join approach.
Before introducing JEGO� , we begin by briefly
describing JEGO as presented in [7].

The epsilon grid order: JEGO is based on the so-
called Epsilon Grid Ordering (EGO) [7]. To impose
an EGO on dataset A, a regular grid with the cell
size of � is laid over the data space. The grid is
imaginary, and never materialized. For each point
in A, its cell-coordinates can be determined in Oð1Þ
time. A lexicographical order is imposed on each
cell by choosing an order for the dimensions. The
EGO of two points is determined by the lexico-
graphical order of the corresponding cells that the
points belong to.

EGO-sort: To join datasets A and B with a certain
� using JEGO, first the points in these datasets are
sorted in accordance with the EGO for the given �
(Fig. 3). Note, if a subsequent JEGO operation is
needed but with a different �, datasets A and B must
be sorted again since EGO depends on �.

Recursive join: The procedure for joining two
sequences is recursive. Each sequence is further
subdivided into two roughly equal subsequences
and each subsequence is joined recursively with
both its counterparts. The partitioning is carried out
until the length of both subsequences is smaller than
a threshold value, at which point a simple-join is
performed. In order to avoid excessive computa-
tion, the algorithm avoids joining sequences that are
guaranteed not to have any points within distance �
of each other. We refer to such sequences as non-

joinable.
EGO-heuristic: A key element of JEGO is the

heuristic to identify non-joinable sequences.
To understand the heuristic, let us consider a

simple example. In a short EGO-sorted sequence its
first and last points are likely to have the same
values in the first few dimensions of their cell-
coordinates. For example, points with cell-coordi-
nates ð2; 7; 4; 1Þ and ð2; 7; 6; 1Þ have the same
values in the two first dimensions ð2; 7;�;�Þ. The

ARTICLE IN PRESS

Fig. 4. Two sequences with (a) 0 inactive dimensions and (b) 1

inactive dimension. The EGO-heuristic fails in both cases. In

both cases EGO*-heuristic correctly determines the sequences are

non-joinable.

Fig. 5. JEGO� : procedure for obtaining a bounding rectangle of a

sequence.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 165
values in the third dimension are different. The third
dimensions is called the active dimension, the first
two dimensions are called inactive. Because the
sequence is EGO-sorted, in this sequence all points
have ‘2’ and ‘7’ in their first and second dimensions
of their cell-coordinates.

Given two EGO-sorted sequences, the EGO-
heuristic first computes two values: the number of
inactive dimensions for each of the two sequences.
Then it computes another value min, corresponding
to the minimum of the two values. It is easy to prove
[7] that if there is a dimension no greater than min

such that the cell-coordinates of the first points of
the two sequences differ by at least two in that
dimension, then the sequences are non-joinable. This
is based upon the fact that the length of each cell is �.

New EGO*-heuristic: The proposed JEGO�

(EGO*-join) algorithm is JEGO (EGO-join) with
a different heuristic for determining that two
sequences are non-joinable. Section 3 will demon-
strate that the use of the EGO*-heuristic signifi-
cantly improves performance of the join.

We now present our heuristic with the help of an
example for which JEGO is unable to determine that
the sequences are non-joinable.

Fig. 4(a) demonstrates the case when two
sequences are located in two separate slabs, both
of which have the size of at least two in each
dimension. There are no inactive dimensions for this
case thus EGO-heuristic will fail to determine that
they are non-joinable. In Fig. 4(b), assume each
sequence has many points. One sequence starts in
cell (0,1,3) and ends in cell (0,2,2). The second
sequence starts in cell (0,5,6) and ends in (0,6,3).
Both sequences have one inactive dimension
(dimension number zero), and in dimension number
zero they both have the same value of 0. Thus, the
EGO-heuristic will fail again to determine that they
are non-joinable.

The new heuristic being proposed is able to
correctly determine that for the two cases of
Figs. 4(a) and (b) the two sequences are non-

joinable. To do that, the EGO*-heuristic utilizes not
only inactive dimensions as EGO-heuristic, but also
the active dimension.

The EGO*-heuristic uses the notion of a bound-
ing rectangle (BR) for each sequence. Notice, in
general, given only the first and last cells of a
sequence, it is impossible to compute the minimum
bounding rectangle (MBR) for that sequence.
However, it is possible to compute a BR. Fig. 5
sketches an algorithm for computing a BR.

The procedure takes as its input the coordinates
of the first and last cells of an EGO-sorted sequence
and outputs a BR for that sequence. To understand
the getBRðÞ algorithm, note that if the first and
the last points of the sequence have the same
values in the first n dimensions of their cell-
coordinates (e.g. ð1; 2; 3; 4Þ and ð1; 2; 9; 4Þ are equal
in their first two dimensions—ð1; 2;�;�Þ) then all
points in the sequence have the same values in the
first n dimensions (e.g. ð1; 2;�;�Þ for our example).
This means that the first n dimensions of the
sequence can be bounded by those values. Further-
more, the active dimension of the sequence
can be bounded by the values of first and last
points of that sequence in that dimension. Continu-
ing with our example, the lower bound is now
ð1; 2; 3;�Þ and the upper bound is ð1; 2; 9;�Þ. In
general, by observing only the first and the last
points of the sequence, the rest of the dimensions
cannot be bounded precisely, however the lower
bound can always be set to 0 and upper bound to
MAX_CELL.

ARTICLE IN PRESS

Fig. 6. Beginning of JEGO� : EGO*-heuristic.

5There is some evidence that the mistake may happen because

researchers often test a self-join of dataset A, which is simpler

than a join of two distinct datasets A and B. In a self-join, each

point joins at least with itself. Thus, for the result set R of a self-

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177166
Once the BRs for both sequences being joined are
known, it is easy to see that if one BR, expanded by
one in all directions, does not intersect with the
other BR, then no point from the first sequence will
join a point from the second sequence. The basic
steps of the EGO*-heuristic are outlined in Fig. 6.

As we shall see in Section 3, JEGO� significantly
outperforms JEGO in all instances. This improve-
ment is a direct result of the large reduction of the
number of sequences needed to be compared based
upon the above criterion. This result is predictable
since if EGO-heuristic can determine that two
sequences are non-joinable then EGO*-heuristic
will always do the same, but the reverse is not true.
The difference in CPU time needed to compute the
EGO- and EGO*-heuristics, given the same two
sequences, is insignificant. Thus, EGO*-heuristic is
more powerful.

Unlike JG, both JEGO� and JEGO are disk-based
joins, even though in this paper we evaluate them only
in main memory. Since JEGO� is identical to JEGO

except for the heuristic, the performance of a disk-
based implementation of JEGO� is expected to be better
than that of JEGO. JG has been designed for main
memory only and an efficient disk-based implementa-
tion of JG is outside the scope of this paper.

3. Experimental results

In this section, we experimentally study JRSJ

(RSJ), JG, JEGO [7], and JEGO� approaches. In all
our experiments, we have used a 1GHz Pentium III
machine with 2GB of memory. All multidimen-
sional points have been distributed on the unit
d-dimensional box ½0; 1�d . The number of points has
been varied from 68,000 to 10,000,000. We have
considered the following distributions of points:
join, it holds that jRjXjAj. By increasing the dimensionality d the

space needed to store each data point increases. Consequently,
(1)
 Uniform: Points are uniformly distributed.

the space occupied by R (e.g. in bytes) also increases as d

increases, for any fixed positive �, however small. Such an

(2)
increase of the space occupied by R might be mistaken for an

increase of the selectivity of the join.
Skewed: The points are distributed among five
clusters. Within each cluster points are distrib-
uted normally with a standard deviation of 0.05.
(3)
 Real data: We test data from ColorHistogram
and ColorMoments files representing image
features. The files are available at the UC Irvine
repository. ColorMoments stores nine-dimen-
sional data, which we normalized to ½0; 1�9

domain, ColorHistogram—32-dimensional
data. For experiments with low-dimensional real
data, a subset of the leading dimensions from
these datasets is used. Unlike uniform and
skewed cases, for real data a self-join is
performed.
Often, in similar research, the costs of sorting the
data, building or maintaining the index or costs of
other operations needed for a particular implemen-
tation of a join are ignored. No cost is ignored in
our experiments for JG, JEGO, and JEGO� . One could
argue that for JRSJ the two indexes, once built, need
not be rebuilt for different �. While there are many
other situations where the two indexes need to be
built from scratch for JRSJ , we ignore the cost of
building and maintaining indexes for JRSJ , thus
giving it an advantage.
3.1. Correlation between selectivity and �

The choice of the parameter � is critical when
performing an �-join. Little justification for the
choice of this parameter has been presented in
related research. In fact, we present this section
because we have discovered that selected values of �
are often too small in similar research.5

The choice of � has a significant effect on the
selectivity depending upon the dimensionality of
the data. The �-join is a common operation
for similarity matching. Typically, for each multi-
dimensional point from dataset A a few points
(i.e. from 0 to 10, possibly from 0 to 100, but
unlikely more than 100) from dataset B need to be
identified on average. The average number of points
from dataset B that joins with a point from dataset
A is called selectivity.

ARTICLE IN PRESS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 10 14 18 22 26 30
d - num of dimensions

ep
si

lo
n

6

|A|=|B|=100,000
|A|=|B|=1,000,000

Fig. 7. Choosing � for selectivity close to one for 105 (and 106)

points uniformly distributed on ½0; 1�d .

Time to ε-join (A,B)
ε = 0.05; |A| = |B|= 100,000

0

5

10

15

20

25

30

4 12 16 20 24 28

#dimensions

T
im

e
(s

ec
s)

0

0.5

1

1.5

2

2.5

3

3.5

S
el

ec
ti

vi
ty

8

Grid EGO
EGO* Selectivity

Fig. 8. Pitfall of using improper selectivity.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 167
In our experiments, selectivity motivated the
range of values chosen for �. The value of � is
typically lower for smaller number of dimensions
and higher for high-dimensional data. For example,
a 0:1� 0:1 square6 query (� ¼ 0:1) is 1% of a two-
dimensional domain, however it is only 10�6%
of an eight-dimensional domain, leading to small
selectivity.

Let us estimate what values for � should be
considered for joining high-dimensional uniformly
distributed data such that a point from dataset A

will join with a few (close to 1) points from dataset
B. Assume that the cardinality of both datasets is m.
We need to answer the question: what should the
value of � be such that m hyper-squares of side �
completely fill the unit d-dimensional cube? It is
easy to see that the solution is � ¼ 1=m1=d . Fig. 7
plots this function �ðdÞ for two different values of m:
105 and 106. Our experimental results for various
numbers of dimensions corroborate the results
presented in the figure. For example, the figure
predicts that in order to get a selectivity comparable
to one for 32-dimensional data, the value of �
should be close to 0.65, or 0.7. If one chooses values
smaller than say 0.3 instead, this will lead to zero
selectivity (or close to zero) which is of little value.7

This is in close agreement to the experimental
results.

If the domain is not normalized to the unit
square, the values of � should be scaled accordingly.
For example, � of 0.1 for ½�1; 1�d domain
corresponds to � of 0.05 for our ½0; 1�d domain.
Fig. 8 demonstrates the pitfall of using an improper
selectivity. The value of � is set such that the
selectivity plunges sharply as the number of
dimensions d increases: the selectivity is high for
d ¼ 4, it becomes very small for d ¼ 8, and it is zero
when dX10. Fig. 8 presumably shows that JG is
better than JEGO and JEGO� even for high-dimen-
sional cases. However, the contrary is true for
meaningful selectivity as will be demonstrated in
Section 3.3.

Due to the importance of the selectivity, we plot
its values in each experiment on the y-axis at the
right end of each graph. The parameter � is plotted
on the x-axis, and the time taken by each join
method is plotted on the left y-axis in seconds.
6A square query was chosen to demonstrate the idea, ideally

one should consider a circle.
7For self-join selectivity is always at least 1, thus selectivity

2–100 is desirable.
3.2. Low-dimensional data

In this section, we study JRSJ , JEGO, JEGO� , and
JG approaches for low-dimensional data. For the
experiments in this section, the value of � is varied so
as to achieve meaningful selectivity. When the right

y-axis is present in a figure, it plots the selectivity
values for each value of � in the experiments, in
actual number of matching points. As expected, the
selectivity, shown by the line with the ‘�’, increases
as � increases in each graph.

In all figures in this section, the execution time of
all join techniques monotonically increases as the
selectivity increases, except for the low- selectivity
case of JEGO. The reason why JEGO is an exception
is explained in the subsequent subsection.

JRSJ technique: In all experiments, the results of
JRSJ are substantially worse than the results of the
other methods. Consequently, JRSJ is not shown in
most of the figures except for Figs. 9 and 10 which

ARTICLE IN PRESS

Time to ε-join(A,B)

4D, uniform, |A| = |B| = 100,000

0

50

100

150

200

0.01 0.03 0.05 0.07 0.09
ε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

S
el

ec
ti

vi
ty

Grid EGO
EGO* RSJ
Selectivity

Fig. 9. Join four-dimensional uniform data, with JRSJ .

Relative to RSJ performance of ε-join(A,B)

4D, uniform, |A| = |B| = 100,000

0

10

20

30

40

50

0.01 0.03 0.05 0.07 0.09
ε

ti
m

es
 b

et
te

r
th

an
 R

S
J

0

5

10

15

20

25

30

S
el

ec
ti

vi
ty

Grid EGO
EGO* RSJ
Selectivity

Fig. 10. Join four-dimensional uniform data, performance

relative to JRSJ .

Time to ε-join (A,A)

3D, real data (ColorMom), |A| = 68,000

0

5

10

15

20

25

30

0.001 0.004 0.007 0.01
ε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

35

40

S
el

ec
ti

vi
ty

Grid EGO

EGO* Selectivity

Fig. 11. Join three-dimensional real data.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177168
have been included for the purpose of demonstrat-
ing JRSJ ’s poor performance. Figs. 9 and 10 study
the effect of varying � on the efficiency of the join
techniques for four-dimensional uniformly distrib-
uted data where cardinality of both datasets being
joined, A and B, is 100; 000. Fig. 13 is for the same
experiment but with JRSJ removed.

JEGO technique: JEGO achieves 3.5–6.5 times better
results than those of JRSJ . This asserts JEGO is a
good technique for joining low-dimensional data.
However, the two new techniques proposed in this
paper, JG and JEGO� , are even better than JEGO.

JEGO� technique: JEGO� ’s performance is always

better than that of JEGO in all experiments. This
demonstrates the strength of JEGO� . Because of the
selectivity, the values of � are likely to be small for
low-dimensional data and large for high-dimen-
sional data. The EGO-heuristic is not well-suited for
small values of �. The smaller the epsilon, the less
likely a sequence will have an inactive dimension. In
Fig. 10, the performance of JEGO� is 13.5–24 times
better than the performance of JRSJ .

Fig. 14 illustrates another trend: JEGO� can be
better than JG for low-dimensional data when the
selectivity is high. In Fig. 14, JEGO� becomes a
better choice than JG for values of � greater than
approximately 0.07. This choice of � corresponds to
a high selectivity of approximately 43.

JG technique: For low-dimensional data, JG

consistently demonstrates the best results among
all the tested join techniques. The results of JG are
15.5–46 times better than the results of JRSJ . They
are several times better than the results of JEGO� ,
except for high-selectivity cases as in Fig. 14. Recall
that the grid has been established in [10] as the best
choice of index for the index nested loop approach
among the main memory optimized versions of
the grid, R-tree, R*-tree, CR-tree, and quad-tree
indexes. Thus, the good results of JG for low-
dimensional data are not very surprising.

Figs. 11 and 12 studies a self-join of real three-
dimensional data taken from the ColorMoments
file. The cardinality of the dataset is 68,000. Fig. 11
plots the three best schemes, whereas Fig. 12 omits
JEGO scheme due to its much poorer performance.
In these figures, JG is almost two times better than
JEGO� for small values of �. Figs. 13 and 14 study a
case of joining four-dimensional uniform data. The
graph on the left is for datasets of cardinality
100,000, and that on the right is for datasets with
cardinality 200,000. Figs. 15 and 16 demonstrate the
results for four-dimensional skewed and real data.
The trends in these figures are consistent with the
trends exhibited by the join techniques for the
uniform distribution.

ARTICLE IN PRESS

Time to ε-join (A,B)

4D, uniform, |A| = |B| = 100,000

0

5

10

15

20

25

30

35

0.01 0.03 0.05 0.07 0.09
ε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

S
el

ec
ti

vi
ty

Grid
Grid, no Z-sort
EGO
EGO*
Selectivity

Fig. 13. Four-dimensional, uniform, 100,000 points.

Time to ε-join (A,B)

4D, uniform, |A| = |B| = 200,000

0

20

40

60

80

0.01 0.03 0.05 0.07 0.09
ε

T
im

e
(s

ec
s)

0

20

40

60

80

100

120

140

S
el

ec
ti

vi
ty

Grid EGO
EGO* Selectivity

Fig. 14. Four-dimensional, uniform, 200,000 points.

Time to ε-join (A,B)

4D, skewed, |A| = |B| = 100,000

0

5

10

15

20

25

30

0.005 0.01 0.015 0.02
ε

T
im

e
(s

ec
s)

0
2
4
6
8
10
12
14
16
18

S
el

ec
ti

vi
tyGrid EGO

EGO* Selectivity

Fig. 15. Join four-dimensional skewed data.

Time to ε-join (A,A)

4D, real data (ColorMom), |A| = 68,000

0

2

4

6

8

10

0.001 0.01 0.02 0.03
ε

T
im

e
(s

ec
s)

0

10

20

30

40

50

60

70

80

S
el

ec
ti

vi
ty

Grid
EGO*
Selectivity

Fig. 16. Join four-dimensional real data.

Time to ε-join (A,A)

3D, real data (ColorMom), |A| = 68,000

0

0.5

1

1.5

2

2.5

3

0.001 0.004 0.007 0.01

ε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

35

40

S
el

ec
ti

vi
ty

Grid
EGO*
Selectivity

Fig. 12. Join three-dimensional real data without JEGO (for

clarity).

8To illustrate this point consider EGO*-heuristic, ½0; 1�2

domain and two points að0:05; 0:05Þ and bð0:55; 0:55Þ. The

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 169
Using spatial sorts: Fig. 13 emphasizes the
importance of performing Z-sort on data being
joined: the performance improvement is approxi-
mately 2.5 times. JG’s performance without Z-sort,
in general, is better than JEGO but worse than that
of JEGO� .

Comparing the number of sequence tests for JEGO�

and JEGO: As discussed in Section 2.2, JEGO� ’s better
performance over JEGO is a direct result of the large
reduction in the number of sequences needed to
be compared. Figs. 17(a) and (b) corroborate this
assertion by showing the number of such compar-
isons (in millions) as a function of �. For both
EGO- and EGO*- heuristics, the number of tests
increase as � increases (starting from � greater than
approximately 0.5). This is because as � increases the
bounds on sequences the two methods produce get
courser. Since the size of each cell is equal to �, the
bounds of the sequences are more likely to be within
� distance from each other.8

ARTICLE IN PRESS

Number of sequence tests

4D, uniform, |A| = |B| = 100,000

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08

M
ill

io
n

s

ε

n
u

m
b

er
 o

f
te

st
s EGO

EGO*

(a)

ε

M
ill

io
n

s
n

u
m

b
er

 o
f

te
st

s

Number of sequence tests
4D, uniform, |A| = |B| = 100,000

0

5

10

15

20

25

0 0.00025 0.0005 0.00075 0.001

EGO
EGO*

(b)

Fig. 17. The number of sequence comparisons by JEGO� and

JEGO: (a) � 2 ð0; 0:09�; (b) � 2 ð0; 0:001�.

join

join

join

join

join

add

join join

0

10

20

30

40

50

60

70

80

0.01 0.05 0.09 0.01 0.05 0.09 0.01 0.05 0.09

ti
m

e
(s

ec
s)

join
add
init
sort

EGO* EGO Grid

Fig. 18. Cost of join phases, four-dimensional, uniform data,

jAj ¼ jBj ¼ 200; 000.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177170
The number of sequence tests performed by JEGO

increases as � approaches zero. This is because
it becomes more and more challenging to find
(footnote continued)

distance dða; bÞ is equal to
ffi
ð0:55� 0:05Þ2 þ ð0:55� 0:05Þ2

q
which

is
ffiffi
1
2

q
or approximately 0.707. Assume sequence Sa consists of

only one point a and sequence Sb consists of only b. If � is 0.2

then the corresponding cells for a and b are Cað0; 0Þ and Cbð2; 2Þ.
Because the cell size is �, Sa is bounded by a rectangle Ra ¼

½0; 0:2� � ½0; 0:2� and Sb by Rb ¼ ½0:4; 0:6� � ½0:4; 0:6�. These

rectangles are not within � distance from each other and thus

the heuristic will successfully return that the sequences are non-

joinable. On the other hand, if � is say 0.5, then the cells are

Cað0; 0Þ and Cbð1; 1Þ, the corresponding rectangles are much

courser (larger): Ra ¼ ½0; 0:5� � ½0; 0:5� and Rb ¼ ½0:5; 1� � ½0:5; 1�.
Now, Ra and Rb are within � distance from each other and thus

the heuristic will fail to correctly determine that Sa and Sb are

non-joinable.
sequences with at least one inactive dimension
(the EGO heuristic utilizes inactive dimensions).
Fig. 17(b) show that as soon as � becomes smaller
than a certain value the curve stabilizes since almost
no sequence with an inactive dimension is found.
The JEGO� does not suffer from this drawback since
it utilizes both inactive and active dimensions.

Separating costs of join phases: The join proce-
dures of JEGO, JEGO� , and JG consist of several
phases. All the methods first sort the points in the
two arrays: JEGO and JEGO� use EGO-sort while JG

uses Z-sort. Thus, we will refer to the first phase of
each algorithm as the sort phase. The next two
phases of JG are the init phase where the grid is
initialized and the add phase where the grid index
is built on top of the �-radius circles. Finally, the
last phase of all methods is the join phase. It is
interesting to study the contribution of each phase
to the overall cost for each method. Figs. 18 and 19
plot the time spent in different phases of the join
procedures for a join of four-dimensional uniform
data and for a self-join of nine-dimensional real
join

join

join

join

join

join

Join

0

20

40

60

80

100

120

140

160

180

0.02 0.06 0.1 0.02 0.06 0.1 0.02 0.06 0.1

ti
m

e
(s

ec
s)

join
add
init
sort

EGO* EGOG rid

Fig. 19. Cost of join phases, nine-dimensional, real data (Color-

Mom), jAj ¼ 68; 000, self-join.

ARTICLE IN PRESS

Time to εεεε -join(A,B)
9D, skewed, |A| = |B| = 100,000

90 12
EGO

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 171
data. The cost of the join phase is dominant in most
of the cases. The contribution of the sort phase is
significant only for the low-dimensional case of
four-dimensional data. Note that if we ignore the
sort cost, the relative stand of the methods will not
change. The cost of the init phase is almost non-
existent. Finally, the cost of the add phase of JG,
while is not negligible, is still dominated by the cost
of the join phase.
0

15

30

45

60

75

0.04 0.05 0.06 0.07
εεεε

T
im

e
(s

ec
s)

0

2

4

6

8

10

S
el

ec
ti

vi
ty

EGO*
Selectivity
3.3. High-dimensional data

We now study the performance of the join
techniques for high-dimensional data. The results
for nine-dimensional uniformly distributed data
are illustrated in Figs. 20 and 21. Fig. 22 studies a
case of joining nine-dimensional skewed data, and
Fig. 23 plots the results for nine-dimensional real
Time to εεεε -join(A,B)
9D, uniform, |A| = |B| = 100,000

0

500

1000

1500

0.10 0.2 0.3 0.4
εεεε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

35

40

S
el

ec
ti

vi
ty

Grid EGO
EGO* RSJ
Selectivity

Fig. 20. Join nine-dimensional uniform data.

Time to εεεε -join(A,B)
9D, uniform, |A| = |B| = 100,000

0

50

100

150

200

250

0.1 0.2 0.3 0.4
εεεε

T
im

e
(s

ec
s)

0

5

10

15

20

25

30

35

40

S
el

ec
ti

vi
ty

EGO EGO* Selectivity

Fig. 21. Best two techniques of Fig. 20.
data. Figs. 24 and 25 show the results for the nine-
and 16-dimensional real data, respectively.

As in the low-dimensional data case, for all tested
cases JRSJ has demonstrated substantially worse
Time to εεεε-join(A,A)
9D, real data (ColorMom), |A| = 68,000

0

25

50

75

100

125

150

0.02 0.04 0.06 0.08 0.1
εεεε

T
im

e
(s

ec
s)

0

10

20

30

40

50

60

S
el

ec
ti

vi
ty

Grid
EGO
EGO*
Selectivity

Fig. 23. Join nine-dimensional real data.

Time to εεεε -join(A,A)
16D, real data (ColorHist), |A| = 68,000

0

15

30

45

60

75

90

0.0005 0.005 0.01 0.015
εεεε

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

14

16

18

S
el

ec
ti

vi
ty

Grid
EGO
EGO*
Selectivity

Fig. 24. Join 16D real data.

Fig. 22. Join nine-dimensional skewed data.

ARTICLE IN PRESS

join(A,B), 8D, uniform, |A|=|B|, � = 0.1

0

5,000

10,000

15,000

20,000

25,000

30,000

0 2,500,000 5,000,000 7,500,000 10,000,000

the number of points in A and B

T
im

e
(s

ec
s)

EGO
EGO*

Fig. 26. Join 8D uniform, large datasets.

Time to εεεε-join(A,A)
32D, real data (ColorHist), |A| = 68,000

0

20

40

60

80

100

120

140

0.01 0.04 0.07 0.1
εεεε

T
im

e
(s

ec
s)

0
2
4
6
8
10
12
14
16
18

S
el

ec
ti

vi
ty

EGO
EGO*
Selectivity

Fig. 25. Join 32D real data.

9Note that for high-dimensional data � can easily exceed 0.5

rendering this approach into a brute force method.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177172
results. Therefore, the results of JRSJ are omitted
from most of the graphs, except for Fig. 20.

Unlike the case of the low-dimensional data, JEGO

and JEGO� are now better than JG. JG is not a good
choice for the high-dimensional data, hence its
results are often omitted for clarity of comparisons
of the results of JEGO and JEGO� . A consistent trend
in all experiments is that the performance of JEGO�

is always better than the performance of JEGO. The
difference is especially notable for low-selectivity
cases. This is a general trend: JEGO does not work
well for smaller epsilons, because in this case a
sequence is less likely to have an inactive dimension.
JEGO� does not suffer from this limitation. The
behavior of the JEGO curve is different from that of
the low-dimensional case, except for Fig. 24. For the
low-dimensional case the performance of JEGO

would increase first with � increasing and then
decrease, whereas for the high-dimensional case it
typically monotonically decreases. This is because
with the increased dimensionality larger values of �
should be used to get reasonable selectivity. Conse-
quently, the effect where the performance of JEGO

would improve first for small values of �, is no
longer present.

Datasets with large cardinality: Fig. 26 studies the
performance of JEGO and JEGO� for large volumes of
eight-dimensional data uniformly distributed in
½0; 1�8. In this experiment, the cardinality of each
distinct dataset A and B is not fixed as before, but
varied from 100,000 points to 10,000,000 points per
each dataset. The setup of this experiment is similar
to that of Fig. 10(left) in [7], except in [7] the
maximum number of points is 40,000,000. Also, it is
not very clear whether [7] studies a self-join, or a
join of two distinct datasets. In the experiment
illustrated in Fig. 26, JEGO� outperforms JEGO by a
factor of approximately 2.15.

Choosing to-be-indexed dataset: When a join of
two datasets is to be computed using Grid-join, an
index is built on one of the two datasets. Naturally,
the question of which dataset to build the index on
arises. We ran experiments to study this issue. The
results indicate that building the index on the
smaller dataset gives better results.

4. Related work

The problem of the similarity join of two datasets
is to identify pairs of objects, one from each dataset,
such that they satisfy a certain constraint. If both
datasets are the same, this corresponds to a self-
join. The most common join constraint is that of
proximity: i.e. the two objects should be within a
certain distance of each other. This corresponds to
the �-join where � is the threshold distance beyond
which objects are no longer considered close enough
to be joined. Below, we discuss some of the most
prominent solutions for efficient computation of
similarity joins.

Shim et al. [14] propose to use �-KDB-tree for
performing high-dimensional similarity joins of
massive data. The main-memory based �-KDB-tree
and the corresponding algorithm for similarity join
are modified to produce a disk-based solution that
can scale to larger datasets. Whenever the number
of points in a leaf node exceeds a certain threshold,
it is split into b1=�c stripes,9 each of width equal to
or slightly greater than � in the i-th dimension. If the
leaf node is at level i, then the i-th dimension is used

ARTICLE IN PRESS

Table 1

Choosing a join algorithm

Small � Average � Large �

Low-dimensional JG JG JG or JEGO�

High-dimensional JG or JEGO� JEGO� JEGO�

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 173
for splitting. The join is performed by traversing the
index structures for each of the datasets. Each leaf
node can join only with its two adjacent siblings.
The points are first sorted with the first splitting
dimension and stored in an external file.

The RSJ algorithm [9] works with an R-tree index
built on the two datasets being joined. The
algorithm is recursively applied to corresponding
children if their MBRs are within distance � of each
other. Several optimizations of this basic algorithm
have been proposed [15]. A cost model for spatial
joins was introduced in [16]. The Multipage Index
(MuX) was also introduced that optimizes for I/O
and CPU cost at the same time. In [2] a plane
sweeping technique is modified to create a disk-
based similarity join for two-dimensional data. The
new procedure is called the partition-based spatial
merge join, or PBSM-join. A partition-based merge
join is also presented in [3]. Shafer et al. in [17]
present a method of parallelizing high-dimensional
proximity joins. The �-KDB-tree is parallelized and
compared with the approach of space partitioning.
Koudas et al. [18] have proposed a generalization of
the size separation spatial join algorithm, named
multidimensional spatial join (MSJ).

Recently, Böhm et al. [7] proposed the EGO-join.
Both datasets of points being joined are first sorted
in accordance with the EGO. The EGO-join
procedure is recursive. A heuristic is utilized for
determining non-joinable sequences. More details
about EGO-join are covered in Section 2.2. The
EGO-join was shown to outperform other join
methods in [7].

An excellent overview of multidimensional index
structures including grid-like and quad-tree based
structures can be found in [19]. Main-memory
optimization of disk-based index structures has
been explored recently for Bþ-trees [20] and multi-
dimensional indexes [11–13]. Both studies investi-
gate the redesign of the nodes in order to improve
cache performance. Another problem that is
related to the problem of similarity joins is the
problem of similarity searching. This problem has
been well studied by several researchers [21–27].
Many of those solutions utilize nearest-neighbor
queries.

5. Conclusions

This paper develops two novel in-memory meth-
ods for fast similarity join of multidimensional data.
It demonstrates the advantage of the proposed
methods, called Grid-join and EGO*-join, over the
state-of-the-art technique by evaluating them on
low- and high-dimensional data. The novel Grid-
join approach shows the best results for low-
dimensional case, or when the value of � is very
small. The EGO*-join technique shows the best
results for high-dimensional data or when the value
of � is large. The empirical and analytical evaluation
demonstrates that the proposed EGO*-join techni-
que significantly outperforms the state-of-the-art
EGO-join method. Based upon the experimental
results, the recommendations for choosing a join
algorithm are summarized in Table 1.

The paper also studies the effect of the parameter
� on the resulting selectivity of the join and provides
recommendations for choosing � to achieve mean-
ingful selectivity. The paper demonstrates that
improper selectivity can lead to the wrong conclu-
sions.

Finally, the paper develops a cost-estimation
function for Grid-join. Such a function can be
employed for choosing the size of the grid, or by a
query optimizer for selecting a query execution
plan.

As future work, we plan to look into the problem
of similarity join for datasets of very high dimen-
sionality, such as 100 dimensions or more. This is an
interesting challenge since many existing methods
rely on the fact that � is likely to be (much) less than
1 for ½0; 1�d domain. However, for data with very
high dimensionality, one can expect to encounter
the values of � which are greater than (or compar-
able to) 1.
Appendix A. Choice of grid size

In this section, we develop cost estimator func-
tions for Grid-join. These functions can be used to
determine the appropriate choice of grid size for
computing the �-join for a specific problem. The
discussion focuses on the case of two dimensions,
but can be generalized to any number of dimensions
in a straightforward manner.

ARTICLE IN PRESS

Table A.1

Parameters used for �-join

Parameter Meaning

A First dataset for join

B Second dataset (on which the index is built)

k ¼ jAj Cardinality of A

m ¼ jBj Cardinality of B

c Length of side of a cell

n ¼ 1=c Grid size: n� n grid

eps; � Epsilon parameter for the join

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177174
Table A.1 lists parameters needed for our
analysis. All the parameters are known before the
join, except for grid size n, which needs to be
determined. We are interested in finding n such that
the time needed for the join is minimized. Further-
more, if there are several values of n that yield
minimal or close to minimal join cost, then we are
interested in the smallest such n. This is because the
memory requirements for the grid increase with the
number of cells in the grid.

In order to determine the relationship between
the join cost and the various parameters of the
problem, we develop what we call estimator (or
predictor) functions for the various phases of Grid-
join. Once the predictor functions are constructed, a
suitable choice for n can be found by identifying a
minimal value of the cost. For the value of n

selected, the predictor functions are also useful in
providing an estimated cost to the query optimizer
which can use this information to decide whether or
not Grid-join should be used for the problem.

In our analysis, we assume uniform distribu-
tion of points in datasets A and B. The Grid-join
procedure can be divided into three phases:
(1)
 init phase: initialization of the grid pointers and
lists.
(2)
 add phase: loading the data into the grid.

(3)
 proc phase: processing the point-queries using

the grid.
Init and add phases collectively are called the build

index phase. There is a tradeoff between the build

and proc phases with respect to the grid size n. With
fewer cells, each circle is likely to intersect fewer
cells and thus be added to fewer full and part
lists. On the other hand, with fewer cells the average
length of the part lists is likely to be larger and
each query may take longer to process. In other
words, the coarser the grid (i.e. the smaller the value
of n), the faster the build phase, but the slower the
proc phase. Due to this fact, the total time needed
for join is likely to be a concave downwards
function of n. This has been the case in all our
experiments.

Upper bound: While the general trend is that a
finer grid would imply shorter query processing time
(since the part lists would be shorter or empty),
beyond a certain point, a finer grid may not
noticeably improve performance. For our imple-
mentation, the difference in time needed to process
a cell when its part list is empty, versus when its
part list has size one, is very small. It is enough to
choose grid size such that the size of part list is one
and further partitioning does not noticeably im-
prove query processing time. Thus, we can estimate
an upper-bound nupper for the optimal value of n,
and search for the optimal value of n only among
the values in the interval ½1; nupper�.

For the two-dimensional case, if the grid is built
on squares instead of circles, it can be shown that an
upper bound is given by [10]:

nupper ¼

d4qme if q4
1

2
ffiffiffiffi
m
p ;

1

1ffiffiffiffi
m
p � q

2
66666

3
77777

otherwise:

8>>>>>>><
>>>>>>>:

In this formula, q is the size of a side of each square.
Since for �-join the index is built on circles, the
formula is reused by approximating the circle by a
square with the same area, that is q � �

ffiffiffi
p
p

. The
corresponding formula for nupper is therefore

nupper ¼

d4
ffiffiffi
p
p

�me if �4
1

2
ffiffiffiffiffiffiffi
pm
p ;

1

1ffiffiffiffi
m
p � �

ffiffiffi
p
p

2
66666

3
77777

otherwise:

8>>>>>>><
>>>>>>>:

A finer grid than that specified by the above formula
will give very minor performance improvement
while incurring a large memory penalty. Thus, the
formula establishes the upper bound for the grid
size. However, if the value returned by the formula
is too large, the grid might not fit in memory. In that
case, n is further limited by the memory space
availability.

In our experiments, the optimal value for grid size
tended to be closer to 1 rather than to nupper, as will

ARTICLE IN PRESS

Time to create index

0

0.002

0.004

0.006

0.008

0.01

10 20 30 40 50 60 70 80 90 100
n - grid size

T
im

e
(s

ec
s)

0

0.002

0.004

0.006

0.008

0.01

Estimated values

Experemental Data

Fig. A.1. Time to initialize index n 2 ½10; 100�.

Time to create index

0

0.2

0.4

0.6

0.8

100 200 300 400 500 600 700 800 900 1000

n - grid size

T
im

e
(s

ec
s)

0

0.2

0.4

0.6

0.8
Experemental Data
Estimated values

Fig. A.2. Time to initialize index n 2 ½100; 1000�.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 175
be demonstrated later in this section in Figs. A.4
and A.5.

Analysis: For each of the phases of the Grid-join,
the analysis is conducted as follows. (1) First, the
parameters on which a phase depends on are
determined. (2) Then, the nature of the dependence
on each distinct parameter is predicted based on the
algorithm and implementation of the grid. Since
the grid is a simple data structure, the nature of
the dependence on a parameter, as a rule, is not
complicated. (3) Next, the dependence on the
combination of the parameters is predicted, based
on the dependence on each parameter. (4) Finally,
an explanation is given on how to calibrate the
predictor functions for a specific machine.

Estimating the init phase: The time to initialize the
index depends only on the grid size n. The process of
index initialization can be viewed as Oð1Þ opera-
tions, followed by the initialization of n2 cells. Thus,
the index initialization time is expected to be
a polynomial such that the degree of n is 2:
PinitðnÞ ¼ an2 þ bnþ c, for some coefficients a, b,
and c. The values of the coefficients depend upon
the particular machine on which the initialization is
performed. They can be determined through a
calibration step. To validate the correctness of this
estimator, we calibrated it for a given machine. The
corresponding estimator function was then used to
predict the performance for other values of n not
used for the calibration. The result is illustrated in
Figs. A.1 and A.2 (a ¼ 8:26� 10�7, b ¼ 0, and
c ¼ 0). These two figures are for different ranges of
n, that is, n varies from 10 to 100 in Fig. A.1 and it
varies from 100 to 1000 in Fig. A.2. The figures plot
the actual grid initialization time, measured for
different values of n, and the initialization time
predicted by the estimator function. Let us observe
that the estimator function computes very accurate
approximations of the actual values, especially for
larger values of n.

Figs. A.1 and A.2 show that the time needed for
index initialization phase can be approximated well
with a simple polynomial. Any numerical method
can be used for calibrating the coefficients a, b, and
c for a particular machine.

Estimating the add phase: This phase is more
complicated than the init phase because it depends
on three parameters: n—the grid size, m—the
cardinality of the indexed dataset B, and �. By
analyzing the dependence on each parameter
separately, we estimate that the overall function
can be represented as a polynomial Paddðn;m; �Þ ¼
a17n2�2mþ � � � þ a1mþ a0 such that the degree of n

and � is 2 and the degree of m is 1. The next step is to
calibrate the coefficients ai’s. This can be done by
solving a system of 18 linear equations. These
equations can be obtained by choosing three
different values of n, three values of �, and two
values of m ð3� 3� 2 ¼ 18Þ.

The combinations of the following calibration
points have been examined in order to get the
coefficients: n0 ¼ 10, n1 ¼ 100, n2 ¼ 200; �0 ¼ 0:001,
�1 ¼ 0:01, �2 ¼ 0:02; m0 ¼ 50 and m1 ¼ 100. The
choice of values implies we assume that typically
n 2 ½10; 200�, � 2 ½0:001; 0:02�, and m 2 ½50; 100�.
The linear system was solved using the Gaussian
elimination with pivoting method. Fig. A.3 demon-
strates the time needed for the add phase for
various values of � when n ¼ 150 and m ¼ 75 and
the other curve represents our interpolation poly-
nomial. Again, we observe that the estimator
function is highly accurate. In fact, we never

ARTICLE IN PRESS

Time to add circles
150x150grid, m=|B|=75,000, Calibration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.001 0.005 0.009 0.013 0.017
εε

T
im

e
(s

ec
s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Interpolated values

Experimental results

Fig. A.3. Estimation with polynomial for add phase.

Total time
εεεε=0.001, k=|A|=10,000, m=|B|=20,000

0

0.1

0.2

0.3

0.4

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

n - grid size

T
im

e
(s

ec
s)

0

0.1

0.2

0.3

0.4

Experimental results
Estimated values

Fig. A.4. Estimation of total join time, n 2 ½10; 190�.

Total time
εεεε=0.001, k=|A|=10,000, m=|B|=20,000

0.042

0.043

0.044

0.045

0.046

70 71 72 73 74 75 76 77 78 79 80
n - grid size

T
im

e
(s

ec
s)

0.042

0.043

0.044

0.045

0.046

Experimental results
Estimated values

Fig. A.5. Estimation of total join time, n 2 ½70; 80�.

D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177176
encountered more than a 3% relative error in our
experiments.

Estimating the proc phase: The processing phase
depends on all parameters: n—grid size, k ¼ jAj,
m ¼ jBj, and �. Thankfully, the dependence on k is
linear since each point is processed independently of
other points. Thus, once the solution for some fixed k0

is known, the solution for an arbitrary k can be
computed by scaling. However, there is a small
complication: the average lengths of the full and
part lists are given by different formulae depending
upon whether cell size c is greater than

ffiffiffi
p
p

� or not (see
[10], in our case query side size q is replaced by

ffiffiffi
p
p

�).
Consequently, the proc phase cost can be

estimated by two polynomials (depending on
whether

ffiffiffi
p
p

�Xc or not), which we denote as
Pproc;

ffiffi
p
p

�Xcðc; �;m; k0Þ and Pproc;
ffiffi
p
p

�ocðc; �;m; k0Þ.
Each of them has the type Pðc; �;m; k0Þ 	

a17c2�2mþ � � � þ a1mþ a0 such that the degree of c

and � is 2 and the degree of m is 1. Once again, the
calibration can be done by solving a system of 18
linear equations for each of the two cases.

Estimating the total time: The estimated total time
needed for Grid-join is the sum of estimated time
needed for each phase. Figs. A.4 and A.5 demon-
strate estimation of time needed for Grid-join when
� ¼ 0:001, m ¼ 20; 000, k ¼ 10; 000 as a function of
grid size n. The estimator functions of each phase
were calibrated using different values than those
shown in the graph.

A simple bisection method was employed to get
the estimated optimal value of n, as computed by
the estimator function f estðnÞ for the total execution
time. This method assumes that it is given a concave
downwards function f estðnÞ, defined on ½a; b�. The
function f estðnÞ has been concave downwards in all
our experiments, however in future work we plan to
prove that the estimator function is always concave
downwards for various combinations of para-
meters. The objective of the bisection method is to
find the leftmost minimum of f estðnÞ on the interval
½a; b�. The method first computes c ¼ ðaþ bÞ=2. If
f ðc� 1Þpf ðcþ 1Þ, then it makes the new b equal c

and repeats the procedure, otherwise it makes the
new a equal c and repeat the procedure. The process
is repeated until ðb� aÞo2.

The bisection method for the example in Figs. A.4
and A.5 returns ‘74’ as an estimated optimal value
for n. Experimentally, we found that the actual
optimal value for n was 73. The difference in
execution time for the Grid-join with 73� 73 grid
and with 74� 74 grid is just 2ms for the given
settings. This illustrates the high accuracy of the
estimator functions. Let us observe that the results
of interpolation look even better if they are rounded
to the closest millisecond values.

ARTICLE IN PRESS
D.V. Kalashnikov, S. Prabhakar / Information Systems 32 (2007) 160–177 177
References

[1] D.V. Kalashnikov, S. Prabhakar, Similarity join for low-

and high-dimensional data, in: Proceedings of the Eighth

International Conference on Database Systems for Ad-

vanced Applications (DASFAA 2003), IEEE Computer

Society Press, Kyoto, Japan, 2003.

[2] J.M. Patel, D.J. DeWitt, Partition based spatial-merge join, in:

Proceedings of the 1996 ACM SIGMOD International

Conference onManagement of Data, Montreal, Que., Canada,

June 4–6, 1996, ACM Press, New York, 1996, pp. 259–270.

[3] M.-L. Lo, C.V. Ravishankar, Spatial hash-joins, in: Pro-

ceedings of the 1996 ACM SIGMOD International Con-

ference on Management of Data, Montreal, Quebec,

Canada, June 4–6, 1996, ACM Press, New York, 1996, pp.

247–258.

[4] S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering

algorithm for large databases, in: Proceedings of the ACM

SIGMOD International Conference on Management of

Data, 1998.

[5] E.M. Knorr, R.T. Ng, Algorithms for mining distance-based

outliers in large datasets, in: Proceedings of the International

Conference on Very Large Data Bases, 1998.

[6] K. Koperski, J. Han, Discovery of spatial association rules

in geographic information databases, in: International

Symposium on Large Spatial Databases, 1995.

[7] C. Böhm, B. Braunmüller, F. Krebs, H.-P. Kriegel,

Epsilon grid order: an algorithm for the similarity join

on massive high-dimensional data, in: Proceedings of the

2001 ACM SIGMOD International Conference on

Management of Data, ACM Press, New York, 2001, pp.

379–388.

[8] C. Böhm, B. Braunmüller, M. Breunig, H.-P. Kriegel, Fast

clustering based on high-dimensional similarity joins, in:

International Conference on Information and Knowledge

Management, 2000.

[9] T. Brinkhoff, H.-P. Kriegel, B. Seeger, Efficient processing

of spatial joins using R-trees, in: Proceedings of the ACM

SIGMOD International Conference on Management of

Data, 1993.

[10] D.V. Kalashnikov, S. Prabhakar, S. Hambrusch, W. Aref,

Efficient evaluation of continuous range queries on moving

objects, in: Proceedings of the 13th International Conference

on Database and Expert Systems Applications (DEXA

2002), Aix en Provence, France, 2002.

[11] K. Kim, S. Cha, K. Kwon, Optimizing mutidimensional

index trees for main memory access, in: Proceedings of ACM

SIGMOD Conference, Santa Barbara, CA, 2001.

[12] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref,

S. Hambrusch, Query indexing and velocity constrained

indexing: scalable techniques for continuous queries on

moving objects, IEEE Trans. Comput. 51 (10) (2002)

1124–1140.

[13] D.V. Kalashnikov, S. Prabhakar, S. Hambrusch, Main

memory evaluation of monitoring queries over moving

objects, Distributed Parallel Databases, Int. J. (DAPD) 15

(2) (2004) 117–135.

[14] K. Shim, R. Srikant, R. Agrawal, High-dimensional

similarity joins, in: Proceedings of the 13th International

Conference on Data Engineering, April 7–11, 1997,
Birmingham, UK, IEEE Computer Society, Silver Spring,

MD, 1997, pp. 301–311.

[15] Y.-W. Huang, N. Jing, E.A. Rundensteiner, Spatial joins

using r-trees: breadth-first traversal with global optimiza-

tions, in: M. Jarke, M.J. Carey, K.R. Dittrich, F.H.

Lochovsky, P. Loucopoulos, M.A. Jeusfeld (Eds.),

VLDB’97, Proceedings of 23rd International Conference

on Very Large Data Bases, August 25–29, 1997, Athens,

Greece, Morgan Kaufmann, Los Altos, CA, 1997, pp.

396–405.

[16] C. Böhm, H.-P. Kriegel, A cost model and index architecture

for the similarity join, in: Proceedings of the International

Conference on Data Engineering, 2001.

[17] J.C. Shafer, R. Agrawal, Parallel algorithms for high-

dimensional similarity joins for data mining applications,

in: VLDB’97, Proceedings of 23rd International Conference

on Very Large Data Bases, August 25–29, 1997, Athens,

Greece, Morgan Kaufmann, Los Altos, CA, 1997, pp.

176–185.

[18] N. Koudas, K.C. Sevcik, High-dimensional similarity joins:

algorithms and performance evaluation, in: Proceedings of

the 14th International Conference on Data Engineering,

IEEE Computer Society, Silver Spring, MD, 1998, pp.

466–475.

[19] J. Tayeb, Ö. Ulusoy, O. Wolfson, A quadtree-based dynamic

attribute indexing method, Comput. J. 41(3).

[20] J. Rao, K.A. Ross, Making Bþ-trees cache conscious in

main memory, in: Proceedings of ACM SIGMOD Con-

ference, Dallas, TX, 2000.

[21] W. Niblack, R. Barber, W. Equitz, M. Flickner,

E. Glasman, D. Petkovic, P. Yanker, The QBIC project:

querying images by content using color, texture and shape,

in: Proceedings of the SPIE Conference on 1908 on Storage

and Retrieval for Image and Video Databases, vol. 1908,

1993, pp. 173–187.

[22] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel,

Z. Protopapas, Fast nearest neighbor search in medical

image databases, in: Proceedings of the International

Conference on Very Large Data Bases, Mumbai, India,

1996, pp. 215–226.

[23] S. Mehrotra, Y. Rui, M. Ortega, T.S. Huang, Supporting

content-based queries over images in mars, in: Proceedings

of the Fourth IEEE International Conference on Multi-

media Computing and Systems, Ottawa, Ont., Canada,

1997, pp. 632–633.

[24] S. Mehrotra, et al., MARS project, UC Irvine, ohttp://

www-db.ics.uci.edu/pages/research/mars.shtml4.

[25] A. Gionis, P. Indyk, R. Motwani, Similarity search in

high dimensions via hashing, in: Proceedings of the

International Conference on Very Large Data Bases

(VLDB), 1999.

[26] H.-P. Kriegel, S. Brecheisen, P. Kroger, M. Pfeifle,

M. Schubert, Using sets of feature vectors for similarity

search on voxelized cad objects, in: Proceedings of ACM

SIGMOD International Conference on Management of

Data, 2003, pp. 587–598.

[27] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity

search in sequence databases, in: Proceedings of the Fourth

International Conference on Foundations of Data Organi-

zation and Algorithms (FODO), 1993.

http://www-db.ics.uci.edu/pages/research/mars.shtml
http://www-db.ics.uci.edu/pages/research/mars.shtml

	Fast similarity join for multi-dimensional data
	Introduction
	Similarity join algorithms
	Grid-join
	EGO*-join

	Experimental results
	Correlation between selectivity and
	Low-dimensional data
	High-dimensional data

	Related work
	Conclusions
	Choice of grid size
	References

