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Abstract—Situational awareness (SA) applications monitor the real world and the entities therein to support tasks such as rapid

decision making, reasoning, and analysis. Raw input about unfolding events may arrive from variety of sources in the form of sensor

data, video streams, human observations, and so on, from which events of interest are extracted. Location is one of the most important

attributes of events, useful for a variety of SA tasks. In this paper, we consider the problem of reaching situation awareness from

textual input. We propose an approach to probabilistically model and represent (potentially uncertain) event locations described by

human reporters in the form of free text. We analyze several types of spatial queries of interest in SA applications. We design

techniques to store and index the uncertain locations, to support the efficient processing of queries. Our extensive experimental

evaluation over real and synthetic data sets demonstrates the effectiveness and efficiency of our approach.

Index Terms—Modeling, retrieval, spatial database, uncertainty indexing, U-grid, probability.
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1 INTRODUCTION

RECENT events (Southeast Asia Tsunamis and Hurricane
Katrina) have illustrated the need for accurate and

timely situational awareness (SA) tools in emergency
response. Developing effective SA systems has the potential
to radically improve decision support in crises by improv-
ing the accuracy and reliability of the information available
to the decision-makers [2], [22], [25], [26], [27]. In this paper,
we study the problem of representing and querying
uncertain location information about real-world events that
are described using free text. As a motivating example,
consider the excerpts from two real reports filed by Port
Authority Police Department (PAPD) Officers who partici-
pated in the events of 11 September 2001:

Example 1.1

1. “... The PAPD Mobile Command Post was located on
West St. north of WTC and there was equipment being
staged there. ...”

2. “... a PAPD Command Truck parked on the west side
of Broadway St. and north of Vesey St. ...”

These two reports refer to the same location of the same

command post—a point-location in the New York, Man-

hattan area. However, the reports neither specify the exact

location of the events, nor do they mention the same street

names. We would like to represent such reports in a way

that it enables efficient evaluation of spatial queries and

analysis. For instance, the representation must enable us to

retrieve events in a given geographical region (e.g., around

World Trade Center). Likewise, it should enable us to

determine similarity between reports based on their spatial

properties; e.g., we should be able to determine that the

above events might refer to the same location.
Our primary motivation in studying the aforementioned

problem comes from designing database solutions to support

applications where the real world is being monitored

(potentially using a variety of sensing technologies) to

support tasks such as situation assessment and decision

making. Such SA applications abound in a variety of domains

including homeland security, emergency response, com-

mand and control, process monitoring/automation, and

business activity monitoring, to name a few. Our particular

interest lies in the domain of emergency response and

security. We already alluded to the usefulness of spatial

reasoning over free text in the example above. Such solutions

are useful in a variety of other application scenarios in

emergency response. For instance, such a system could

support real-time triaging and filtering of relevant commu-

nications and reports among first responders (and the public)

during a crisis. In our project, we are building SA tools to

enable social scientists and disaster researchers to perform

spatial analysis over two such data sets: 1) the transcribed

communication logs and reports filed by the first responders

after the 9/11 disaster and 2) newspaper articles and blog

reports covering the SE Asia Tsunami disaster. We believe

that techniques such as ours can benefit a very broad class of

applications where free text is used to describe events.
Our goal in this paper is to represent and store uncertain

locations specified in reports in the database to allow for

efficient execution of analytical queries. Clearly, merely

storing location in the database as free text is not sufficient

either to answer spatial queries or to disambiguate reports

based on spatial locations. For example, spatial query such

as “retrieve events near WTC,” based on keywords alone,

can only retrieve the first report mentioned earlier.
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To support spatial analyses on free text reports, we need

to project the spatial properties of the event described in the

report onto the domain. In this paper, we model uncertain

event locations as random variables that have certain

probability density functions (pdfs) associated with them.

We develop techniques to map free text onto the corre-

sponding pdf defined over the domain.
Our approach is based on the assumption1 that people

report event locations based on certain landmarks. Let � �
IR2 be a 2D physical space in which the events described in

the reports are immersed. Landmarks correspond to

significant spatial objects such as buildings, streets, inter-

sections, regions, cities, and areas embedded in the space.

Spatial location of events specified in those reports can be

mapped into spatial expressions (s-expressions) that are, in

turn, composed of a set of spatial descriptors (s-descriptors)

(such as near, behind, and infrontof) described

relative to landmarks. Usually, the set of landmarks, the

ontology of spatial descriptors, and the precise interpreta-

tions of both are domain and context dependent. Fig. 1

shows excerpts of free text referring to event locations and

the corresponding spatial expressions. These expressions

use WTC and West St. as landmarks. While the locations of

landmarks are precise, spatial expressions are inherently

uncertain: they usually do not provide enough information

to identify the exact point-locations of the events.
Our approach to representing uncertain locations de-

scribed in free text consists of a two-step process, illustrated

in Fig. 2. First, a location specified as a free text is mapped

into the corresponding s-expression, which in turn is

mapped to its corresponding pdf representation. Given

such a model, we develop techniques to represent, store,

and index pdfs to support spatial analysis and efficient

query execution over the pdf representations.
The primary contributions of this paper are:

. an approach to mapping and modeling uncertain
location information from free text into the corre-
sponding spatial expressions (Section 3);

. identification of the query requirements of SA
applications (Section 4);

. a novel U-grid indexing framework and algorithms
for efficient spatial query processing (Sections 6 and
6.1); and

. extensive empirical evaluation of the indexing
(Section 7) and modeling (electronic appendix)
approaches using both synthetic and real data sets.

2 RELATED WORK

This paper is based on our previously published work on
uncertain spatial information modeling [21], and indexing
[20]. However, this paper has the following major differ-
ences and improvements:

. This paper presents a coherent framework for
managing uncertain spatial information from the
data modeling and the query evaluation perspec-
tives. Such framework is critical for building end-to-
end SA applications.

. Section 6.1 provides detailed algorithmic descrip-
tions of two new index pruning strategies that were
not covered in the past. Due to these two strategies,
the results published in this paper outperform those
covered in [20] and [21] by a significant margin.

. Section 7 presents a real case study to demonstrate
the effectiveness of the proposed modeling ap-
proach. It also discusses some analytical results to
show its advantages.

. Finally, the paper provides an extensive empirical
evaluation to justify our modeling and indexing
strategies.

This paper considers various practical issues for building
an end-to-end approach for spatial awareness from textual
input. Building such a solution requires addressing several
challenges, including

1. modeling spatial uncertainty in text,
2. representation,
3. indexing, and
4. query processing.

In this section, we highlight only the most related research.
Modeling. We will use the probabilistic model for spatial

uncertainty developed in [5], [6], and [7], because it has the
following properties:

. Formality. It builds on the formal probability theory.

. Practicality. It has been implemented in practice.

. Generality. This model is capable of handling
(probabilistic versions of) many different types of
spatial queries, as opposed to retrieval (selection)
queries only.

. Effectiveness. Existing solutions that employ it are
known to be effective and scalable.

In the probabilistic model, an uncertain location ‘ is treated
as a continuous random variable (r.v.) which takes values
ðx; yÞ 2 � and has a certain pdf f‘ðx; yÞ associated with it.
Interpreted this way, for any spatial region R, the
probability that ‘ is inside R is computed as

R
R f‘ðx; yÞdxdy.

In general, spatial uncertainty has been explored both in
the GIS and in database literature. The GIS literature has
traditionally focused on qualitative approaches to repre-
senting uncertain spatial information [11], [12], [19], [30].
Spatial relations are classified as topological relations (e.g.,
disjoint and overlap), direction relations (e.g., North,
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1. We have validated this claim through a careful study of a variety of
crisis-related data sets we have collected in the past. This is also addressed
in [17] and [33].

Fig. 1. Examples of s-expressions.

Fig. 2. Free text location 7! pdf.



South), ordinal relations (e.g., inside and contain), and
distance relations (e.g., far and near). Geospatial ontologies
have been explored in [1] and [18]. Uncertain spatial
information has been explored in the context of moving
objects in [36]. In [28], authors proposed a probabilistic
spatial data model that captures positional uncertainty
arising due to imprecise data collection (e.g., such as GPS).
In [37], the data model quantifies uncertainty arising from
spatial analysis such as the discretization of thematic
attributes. Another related work is on georeferencing and
spatial retrieval of documents, e.g., [38]. If we view the
spatial domain as a uniform grid of cells, their modeling
task can be formulated as follows: Given a document, for
each cell in the grid, determine the number of times this cell
is covered by the regions mentioned in the document. Our
modeling task is different: Given a description of an event,
for each cell, determine the probability that the event
happened in this cell. Finally, there has been some theoretic
work, e.g., [10], on modeling spatial uncertainty in text
using heuristics and fuzzy logic techniques. However, it is
not clear how to train the fuzzy set models or to answer the
spatial queries effectively in a large and practical setting.

Mapping text into probabilistic model. While we
employ an existing spatial probabilistic model, the process
of mapping textual locations into the corresponding repre-
sentations in a probabilistic model has not been studied
before. Such a mapping is one of the pivotal steps in
developing the end-to-end awareness system, we cover it in
Section 3.

Representation. In our context, we need to be able to
represent pdfs of complex shapes in the database. There are
several known methods for such a representation, such as
histograms and modeling pdf as a mixture of Gaussians or
of other distributions. In our approach, we will represent
pdfs as histograms, which are stored in the database as
quad-trees. Using quad-trees allows us to achieve fast query
response time and also to compress those histograms
(Section 5). It is interesting to note that the existing solutions
that also deal with probabilistic spatial queries [5], [6], [7]
do not address the representation issues directly. The
reason is that their empirical evaluation is carried out using
only simple densities such as uniform and Gaussian.

Indexing and query processing. In Sections 5 and 6.1,
we introduce novel indexing and query processing techni-
ques. Indexing pdfs to support efficient query processing
has been explored in previous literature as well [6], [7]. A
typical approach is to restrict possible values of an
uncertain location ‘ to be inside an uncertainty region U‘
such that f‘ðx; yÞ ¼ 0 if ðx; yÞ 62 U‘. Fig. 5a illustrates that
concept by showing that locations of events a1, a2, a3, and a4

are restricted to their respective uncertainty regions
(shaded). The uncertain location is indexed using data
structures such as R-tree based on their uncertainty region.
This allows answering certain spatial queries without
performing costly integration operations. For instance, by
analyzing the uncertainty regions in Fig. 5a, it is clear that
the location of a1 is guaranteed to be inside the region R.

The x-bounds and U-tree are the current state-of-the-art
techniques studied in [7] and [34] for 1D and n-dimensional
cases. They build on the ideas of indexing uncertainty

regions by also taking into account the pdf part of locations
to improve pruning. Both techniques have been implemen-
ted as variations of R-tree. For 1D case, the idea is to store in
each internal nodeN of an R-tree extra information: left and
right “x-bounds” for several values of x, e.g., x ¼ 0:1 and
x ¼ 0:2. A “left x-bound” ofN is any value lðxÞ 2 IR such that
for any pdf fðzÞ covered byN it follows that

R lðxÞ
�1 fðzÞdz < x.

A “right x-bound” is defined similarly. So, if a probabilistic
threshold query (see Section 4) with range R and threshold
p� overlaps the minimum bounding rectangle (MBR) of N ,
but N stores a left x-bound such that 1) R � ð�1; lðxÞ� and
2) p� > x, thenN is pruned since it cannot contain any object
(pdf) that would satisfy the �-RQ.

The idea of x-bounds generalizes to 2D case, but now, in
addition to left and right x-bounds, top and bottom y-bounds
should be maintained as well. While x-bounds can be used
for general region-based query with arbitrary shape. A
special case can be formed for the axis parallel range query.
In [34], authors formalize the U-PCR, which is a bounding
rectangle (BR) formed based on x-bounds. Given an axis
parallel range query, a new set of pruning and validation
strategies has been introduced. U-PCR can be extended to
handle the region query (RQ). In [35], authors have
proposed to convert an RQ to a range query. So, the
U-PCR bounding strategies can be applied. However, in our
problem domain, RQ can be complex. For example, a first
responder might want to retrieve the events that are in a
particular region and are outdoor events. Such query may
lead to a very irregular shaped query. Converting such
query to a range query might reduce the effectiveness of the
bounding strategies. Keeping x-bounds or multiple U-PCRs
can increase the height of the R-tree due to the extra
information kept in nodes of the R-tree, negatively affecting
performance. In [7] and [34], the authors show that the
gains of x-bounds outweigh their disadvantages. Notice,
unlike traditional methods, the x-bound-based approaches
employ for pruning not only spatial part (i.e., MBR) but also
values of the pdf.

Very recently, in [35], the authors have proposed, among
other things, enhanced versions for some of the heuristics
covered in [7] and [34]. Both this paper and [35] have done a
comparison to R-tree, and the results of our framework
appear to be significantly better than those of [35]. But, since
the data sets that we use (and perhaps some system
parameters) are different, the validity of such an indirect
comparison is questionable. A direct comparison to the
techniques proposed in [35] is an interesting direction of
future work.

General purpose uncertain/probabilistic database.

There are also research efforts on developing Probabilistic
Relational Algebra (PRA) [16]. PRA has been widely viewed
as an extension to the relational algebra. Most of the
extensions [4], [8], [32] assume the multinomial row
distribution model (i.e., possible-worlds model). The goal
is to develop suitable database query semantics under
uncertain environments. Instead of going after general
database solutions, this paper focuses on the spatial
domain, in which continuous probability distributions are
needed. Furthermore, we provide an end-to-end solution to
model and process a general class of spatial queries. Due to
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the complex nature of our modeling tasks, the resulting
probability distributions may not necessarily have para-
metric representations and can be arbitrarily complex.
Therefore, our processing techniques are very different
from the ones proposed for the general uncertain databases.
Although, our technique can be potentially integrated into
that framework, such integration is out of the scope of this
paper. We plan to study its feasibility as our future work.

We have above summarized the existing body of
research on spatial uncertainty most related to this paper.
Other concepts/techniques (e.g., histograms, quad-trees,
and indexing), which are related to our work as well, will be
discussed in this paper when the need arises.

3 MODELING LOCATION UNCERTAINTY

We model uncertain locations as continuous random
variables that have certain pdfs associated with them.
When processing a report about an event, our goal is to
determine fðx; yjreportÞ: the location of the event, given
the information contained in that report. A report might
contain several types of information that can influence
fðx; yjreportÞ. We focus on a frequent case where this
density is context-invariant and in the form fðx; yjs; tÞ.
Here, s is an s-expression and t is the type of the event.
We first consider how to compute fðx; yjsÞ. After that, we
will consider how fðx; yjs; tÞ can be computed.

For instance, in the report “A traffic accident near
World Trade Center”, we have s ¼ nearðWTCÞ and t ¼
‘‘traffic accident:’’ Let us observe that, among all types
of information mentioned in the report, s narrows down
the possible location of the event most significantly.
Then, we can employ the event type, “traffic accident,”
to refine our answer further by observing that an event
of that type is more likely to occur on a road than
somewhere else.

Our approach first extracts s and t from the report
(Section 3.1). S-expression s is a composition of s-descrip-
tors D1; . . . ;Dn. S-descriptors are less complex than s-
expressions and can be mapped into the corresponding

pdfs (Section 3.2). The desired pdf fðx; yjs; tÞ is computed
by combining the pdfs fðx; yjDiÞ and fðx; yjtÞ (Section 3.3).

3.1 Mapping Free Text onto S-Expression

Mapping of free-text locations into s-expressions has been
studied before in the context of spatial ontologies. Even
though spatial ontologies are not a focus of this paper, we
summarize some of the related concepts to explain our
approach.

The basic idea is that each application domain A has, in
general, its own spatial ontology DðAÞ. The ontology
defines what constitutes the landmarks in A. It also defines
the set of basic s-descriptors fD1;D2; . . . ;Dng and ways to
compose them, such that any free-text location from A can
be mapped onto a composition of s-descriptors. The four
major classes of s-descriptors are topological relations (e.g.,
disjoint and inside) [11], cardinal direction relations (e.g.,
north and west) [13], orientation relations (e.g., left of and
right of) [15], and distance relations (e.g., near and around)
[14]. Examples of landmarks and s-descriptors are provided
in Tables 1 and 2. Each s-descriptor is of the form
DiðL1;L2; . . . ;LmÞ: it takes as input m 2 IN landmarks,
where m is determined by the type of s-descriptor. Fig. 1
shows examples of free text referring to event locations and
the corresponding s-expressions. Some descriptors may not
take any parameters, e.g., an ontology may use the concepts
of indoor and outdoor, to mean “in some building” and
“not in any building.”

An s-expression consists of a set of instantiated
s-descriptors. An s-expression arises when the same
location ‘ is described using n different s-descriptions
fs1; s2; . . . ; sng. As an example, assume a person is asked
“where are you?” to which he replies “I am near building A
and near building B”, which corresponds to the s-expres-
sion: fnearðAÞ; nearðBÞg.

Let us note that representing event location using
s-expression requires first extracting them from text.
Although extracting spatial properties is complex in
general, when ontologies and domains are fixed, the task
becomes relatively simpler.
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3.2 Pdf for a Single S-Descriptor

Merely having locations represented as spatial expressions
is still not sufficient. We also need to be able to project the
meaning of each s-expression onto the domain �. We
achieve this by 1) computing the projection (i.e., the pdf) of
each individual s-descriptor in the s-expression and
2) combining the projections, as illustrated in Fig. 3.

Let us first understand how a basic s-descriptor can be
projected into � in an automated fashion, i.e., not manually.
In Section 3.3, we will demonstrate how to compose those
projections to determine the pdfs for s-expressions. Let us
note that other components of the overall approach for
creating spatial awareness from text are independent of a
particular algorithm for mapping basic s-descriptors into
pdfs. This section presents only one such algorithm, which
can be treated as a guideline for creating customized
density functions suited for a particular domain.

To illustrate the steps of the algorithm more clearly,
consider a simple scenario demonstrated in Fig. 4a. This
figure shows a portion of a university campus with three
buildings A, B, and C. We will illustrate the concepts with
the help of two descriptors: outdoor and nearðAÞ. Notice
that, in general, at run time, the algorithm might need to
compute the pdf for nearðLÞ for any landmark L. If it is
desirable to automate this pdf computation, intuitively, one
should avoid manually predefining a separate pdf per each
known landmark L in the domain in advance, since there
can be many landmarks. Instead, a more preferable
approach is to design a single generic pdf-generating
procedure for all possible landmarks. Given any landmark
L, such a procedure will generate the desired pdf based
only on the relevant properties of the landmark, such as its
type, footprint, and height.

That is, one method for determining the pdf fðx; yjDÞ for
any s-descriptor DðL1;L2; . . . ;LmÞ is to make reasonable
assumptions about the functional form of fðx; yjDÞ based on
the properties of the landmarks it takes as input. Those
assumptions can be refined or rejected later on, e.g., using
Bayesian framework [9].

For instance, we can define the pdf fðx; yjoutdoorÞ for
the s-descriptor outdoor as having the uniform distribu-
tion everywhere inside the domain � except for the
footprints of the buildings that belong to �, as illustrated
in Fig. 4b. That is fðx; yjoutdoorÞ ¼ c for any point
ðx; yÞ 2 � except when ðx; yÞ is inside the footprint of a

building, in which case fðx; yjoutdoorÞ ¼ 0. The real-
valued constant c is determined from the constraintR

� fðx; yjoutdoorÞdxdy ¼ 1.
Another example of an s-descriptor is nearðAÞ, which

means somewhere close to the landmark A (the closer the
better), but not inside A. Let us observe that, unlike the
density for outdoor, the pdf for nearðAÞ is clearly not

uniform. Rather, a more reasonable density can be a
variation of the truncated-Gaussian density, centered at
the center of the landmark, with variance determined by the
spatial properties of the landmark A (its height, the size of
its footprint). Also, since the location cannot be inside A, the
values of that density should be zero for each point inside
the footprint of the landmark, as illustrated in Fig. 4c. Using
the above procedure, we can construct pdfs for arbitrarily
complex s-descriptors in an automated fashion.

3.3 The pdf of a Spatial Expression

Now that we know how to map s-descriptors into the
corresponding pdfs, let us consider how to compute the pdf
for an s-expression. Let us first assume an s-expression s

consists of only two subexpressions: s ¼ fs1; s2g, as in
fnearðAÞ; nearðBÞg. Our goal is to derive fðx; yjs1; s2Þ from
the already known fðx; yjs1Þ, fðx; yjs2Þ, and fðx; yÞ. Here,
fðx; yjs1; s2Þ is the pdf of the event location, given the report
contains s1 and s2. The density fðx; yÞ is the global prior

which tells us where an event is likely to occur in the
absence of any knowledge about the event. To derive
fðx; yjs1; s2Þ, we first apply Bayes formula:

fðx; yjs1; s2Þ ¼
Pðs1; s2jx; yÞfðx; yÞ

Pðs1; s2Þ
;

where Pðs1; s2jx; yÞ is the probability to observe s1 and s2 in
a report, given the location is ðx; yÞ. While the presence of s1

in a report is clearly not independent from the presence of
s2, it is reasonable to assume that they are conditionally

independent given the location. In other words,

Pðs1; s2jx; yÞ ¼ Pðs1jx; yÞPðs2jx; yÞ;

but Pðs1; s2Þ 6¼ Pðs1ÞPðs2Þ. For example, if buildings A and
B are very close to each other, things that are “near A” will
also tend to be “near B” and thus the two are dependent.
However, once we know the location ðx; yÞ, we do not need
to know whether this location is “near A” to decide whether
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it is “near B” and vice versa. Using the assumption of
conditional independence, we have

fðx; yjs1; s2Þ ¼
Pðs1jx; yÞPðs2jx; yÞfðx; yÞ

Pðs1; s2Þ
:

By applying Bayes formula, we compute Pðs1jx; yÞ ¼
fðx;yjs1ÞPðs1Þ

fðx;yÞ and Pðs2jx; yÞ ¼ fðx;yjs2ÞPðs2Þ
fðx;yÞ . Thus,

fðx; yjs1; s2Þ ¼
fðx; yjs1Þfðx; yjs2Þ

fðx; yÞ � Pðs1ÞPðs2Þ
Pðs1; s2Þ

: ð1Þ

We can assume that the global prior fðx; yÞ is uniform, or
make a weaker assumption that it is locally uniform, that is,
it is not uniform in general but looks uniform inside smaller
regions in �. Let us observe that ifU1 is an uncertainty region
for fðx; yjs1Þ and U2 for fðx; yjs2Þ, then an uncertainty region
for fðx; yjs1; s2Þ can be computed as U1^2 ¼ U1 \ U2. For the
global prior that is uniform, or locally uniform in U1^2, (1)
can be written as fðx; yjs1; s2Þ ¼ fðx; yjs1Þfðx; yjs2Þ � c. Here,
c is a real-valued constant that depends on s1 and s2 but does
not depend on x and y. To compute c, observe that by
definition of an uncertainty region, the true event location is
somewhere inside U1^2. Consequently, fðx; yjs1; s2Þ inte-
grates to 1 over U1^2, and thus, the value of c is
1=
R
U1^2

fðx; yjs1Þfðx; yjs2Þdxdy. Let us note that if the integral
in the denominator integrates to zero, this constant is
undefined. The latter corresponds to an inconsistent defini-
tion of a location, such as in “near Los Angeles and London.”
Thus,

fðx; yjs1; s2Þ ¼ fðx; yjs1Þfðx; yjs2Þ � 1
I if I 6¼ 0;

fðx; yjs1; s2Þ is undefined if I ¼ 0;

�

where I ¼
Z
U1^2

fðx; yjs1Þfðx; yjs2Þdxdy:
ð2Þ

Similarly, for a general s-expression s ¼ fs1; � � � ; sng, it
holds that fðx; yjs1; . . . ; snÞ ¼ fðx; yjs1Þ � � � � � fðx; yjsnÞ � c.

Incorporating event type. Let us observe that the event
type t can be viewed as another AND condition in fðx; yjs; tÞ
and we can apply the above deduction to derive that
fðx; yjs; tÞ ¼ fðx; yjsÞfðx; yjtÞ � c. If the event type does not
provide any new information where the event could occur,
then we assume fðx; yjtÞ is (locally) uniform. However,
often fðx; yjtÞ is not uniform and can help us to reduce the
uncertainty further. For example, we know that t ¼
‘‘home robbery’’ implies an event happened at a home and
not in the middle of a street. It is interesting to observe that
fðx; yjtÞ, in essence, serves as a local prior: it tells us where
an event of a given type is likely to occur in the absence of
other knowledge.

The above formulas allow us to derive the exact density
fðx; yjs; tÞ for the types of s-expressions studied in this
section, so that we can answer all types of probabilistic
spatial queries. As an example of a pdf that results from an s-
expression, consider a possible pdf for foutdoor; nearðAÞg
shown in Fig. 4d, in the context of the university campus
scenario from Fig. 4a. Finally, observe that in SA domains
pdfs can be complex and can have highly irregular forms,
which do not lend themselves to simple Gaussian or uniform
approximation. Thus, special methods for representing and
storing pdfs should be devised. The representation of data is

normally determined by the nature of queries that are
executed on top of the data. That is why we first, in Section 4,
take up the types of spatial queries that need to be supported
by SA applications and then, in Section 5, we discuss
methods for representing pdfs.

4 SPATIAL QUERIES

SA applications, in general, should provide support for all
standard types of spatial queries, such as region, NN,
spatial join, and so on. We focus on an RQ, such as “find all
the events, the location of which can be inside a given
region.”

Definition 1. Given a region R and a set of objects
A ¼ fa1; a2; . . . ; ang, a basic RQ returns all the elements in
A whose probability of being inside R is greater than zero.

The analytical formula for computing the probability that
a location ‘ � f‘ðx; yÞ is located inside a region R is given by
Pð‘ 2 RÞ ¼

R
R f‘ðx; yÞdxdy.

Consider the example in Fig. 5a. If we assume the
locations of elements A ¼ fa1; a2; a3; a4g are uniformly
distributed in the specified (shaded) uncertainty regions,
then the probabilities of these elements of being inside R
might be 1.0, 0.7, 0.4, 0.0, respectively. Then, the result set
for the corresponding RQ is fa1; a2; a3g.

Having only elements in the result set might not be
always sufficient: it is often necessary to be able to get the
actual values of the probabilities associated with those
elements, which leads us to the next definition:

Definition 2. A probabilistic query is a detached-probability

query if it returns elements without the probabilities associated
with them. A probabilistic query is an attached-probability

query, denoted as p-, if its result is a set of tuples, where each
tuple consists of an element and the probability associated with
this element.

By default, any spatial query is a detached-probability
query. The answer set for the p-RQ counterpart of the above
RQ is fha1; p1i; ha2; p2i; ha3; p3ig. Given that we have
assumed p1, p2, p3 have specific values, the answer is
fha1; 1:0i; ha2; 0:7i; ha3; 0:4ig.

To reduce the amount of information, it can be desirable
to present only those elements whose associated probabil-
ities exceed a given probability threshold p� , where p� 2 IR,
0 � p� � 1. To generalize this idea, we can define the
following:
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Fig. 5. Examples of RQðRÞ and PRQðqÞ. (a) RQ with range R. (b) PRQ

with preference region R.



Definition 3. Given a threshold p� , query �-Q is said to be query
Q with the threshold semantics if on the same input as Q
it returns all the elements from the result set of Q whose
associated probabilities are greater than p� .

To continue with our running example, if we set p� ¼ 0:5,
then the corresponding �-RQ will return fa1; a2g as its result
set, because p1 and p2 are greater than 0.5, whereas p3 and p4

are not. Similarly, p�-RQ will return fha1; 1:0i; ha2; 0:7ig.
Notice, we have deliberately defined each �-RQ as a

single operation, and not as an additional filtering (�-part)
step applied to RQ operation. This is because �-RQ, as a
single query, can be optimized better, which is important
for quick query response time.

Finally, observe that a regular region R can be viewed as
a function Rðx; yÞ : �! f0; 1g, such that Rðx; yÞ ¼ 1 when
ðx; yÞ 2 R, and Rðx; yÞ ¼ 0 otherwise. The formula for Pð‘ 2
RÞ can be written as

Pð‘ 2 RÞ ¼
Z

�

f‘ðx; yÞRðx; yÞdxdy: ð3Þ

The concept of a regular region generalizes to the concept of
a preference region Rðx; yÞ : �! ½0; 1�, which maps a point to
a preference value between zero and one. Similarly, the
concept of an RQ generalizes to the concept of a preference
RQ (PRQ): everything is the same as for RQ, except Pð‘ 2
RÞ is computed using (3). PRQs give the flexibility to specify
queries, where, for example, the analyst is primarily
interested in objects that are within a certain area of space
but also cannot ignore object in a larger area of space. An
example of a PRQ with the preference region R is illustrated
in Fig. 5b. There, the analyst prefers objects in the inner oval
ðRðx; yÞ ¼ 1Þ to object in the middle ring ðRðx; yÞ ¼ 0:8Þ to
objects in the outer ring ðRðx; yÞ ¼ 0:1Þ. More complex
preference regions can be defined, e.g., Rðx; yÞ can be a
continuous function.

5 EFFICIENT DISK-BASED PDF REPRESENTATIONS

In order to represent and manipulate pdfs with complex
shapes, we first quantize the space by viewing the domain
� as a fine uniform grid G with cells of size � � �. The grid
G is virtual and is never materialized. We use the same
notation Gij for both the cell in ith row and jth column of G,
i.e., G ¼ fGijg, and for the spatial region it occupies. We
refer to cells of the virtual grid G as vcells. A vcell is treated
as the finest element of space granularity and each spatial
region can be defined by specifying the set of cells it
occupies. A region R cannot occupy only part of a cell:
either it occupies the whole cell or it does not occupy the
cell at all.2 We will use vcellsinðRÞ to denote the number of
cells R occupies.

The pdf f‘ðx; yÞ for any location ‘ is first viewed as a
histogram: For each cell Gij, the probability p‘ij of ‘ to be
inside this cell is computed as p‘ij ¼

R
Gij
f‘ðx; yÞdxdy. For an

event with location ‘, we are naturally interested in the set

of all the cells in which this event can be located:
U‘ ¼ fGij : p‘ij 6¼ 0g. We will call all cells for which p‘ij ¼ 0
the zero-cells (for ‘). Since f‘ðx; yÞ is a pdf,

P
Gij2U‘ p

‘
ij ¼ 1. We

will use the notation U‘ to refer to both the set of cells as
well as the region they occupy. Notice that the latter simply
defines an uncertainty region for ‘. The uncertainty region
U‘ along with p‘ij for each Gij 2 U‘ defines the histogram H‘

for f‘ðx; yÞ: H‘ ¼ fU‘; fp‘ij : Gij 2 U‘gg.
At this point, a naive solution is to represent (and store

on disk) each pdf as a histogram, e.g., by first identifying
the MBR for the histogram and then treating the cells inside
the MBR as a 2D array of real values, which can be stored
sequentially on disk.

5.1 Quad-Tree Representation of pdfs

We might be able to improve the histogram representations
of pdfs further by making two observations.

First, a histogram as a representation of pdf may require
large storage overhead for the pdfs that cover large areas,
especially if G is a very fine grid. To reduce the storage
overhead as well as the number of I/Os required to retrieve
a pdf from disk (thus, improving the execution time), the
analyst must be able to specify that any representation of a
given pdf must fit in s� 2 IN amount of space. For instance,
the analyst might decide that certain types of locations are
just not important, and representing each finest detail of
them is not required. Let us note that the text of all the
original reports is stored in the database as well. Therefore,
if the analyst decides to represent certain location in more
detail at a later time, that can be achieved from the stored
reports.

Second, keeping certain aggregate information about
probabilities in a given histogram, may allow for more
efficient query processing. For instance, consider a �-RQ
with a threshold p� and a region R, whose overlap with
the MBR of a given histogram H‘ for a location ‘ consists
of only n cells. Assume, for each histogram, we keep the
maximum value p‘max among all the p‘ij probabilities in the
histogram. Then, we might be able to answer the �-RQ
more efficiently. Specifically, if np‘max < p� , then since
Pð‘ 2 RÞ � np‘max < p� , it immediately follows that ‘ does
not belong to the answer set of the �-RQ, without
performing costly computations and many disk I/Os. We
can generalize the idea of keeping aggregate information
to multiple levels of resolution, not only at the MBR level.

To address the above observations, we can index each
histogram H‘ using a space partitioning index, such as a
quad-tree. First, we build a complete quad-tree T ‘ for H‘.
The algorithm we use is consistent with that for building
quad-tree for images [31], where the goal is to index the
pixels that belong to a particular image. In our case, a
histogram plays the role of an image, and the nonzero cells
the role of the pixels. The algorithm recursively partitions
each node N of the quad-tree. The process stops either
when N covers a single vcell or when all vcells N covers
have the same probability values. In other words, it stops
when the curvature under N is flat.

Each node N of the quad-tree T ‘ is adjusted to store
certain aggregate information. Assume that the BR of N
consists of n vcells, whose p‘ij values are p1; p2; . . . ; pn. Then,
if N is a leaf node, then by construction p1 ¼ p2 ¼ � � � ¼ pn.
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2. We do not consider the requirement that R is aligned to vcells to be a
serious limitation. First, G can be a very fine grid. Second, a nonaligned
query can be expanded to an aligned query that fully covers it. Querying
with the expanded query would result in extra objects that need to be
pruned, but we do not anticipate any major performance decrease due that.



In that case, N stores a positive real value psum computed as

psum ¼
Pn

i¼1 pi ¼ np, where p ¼ p1. If N is an internal node,

it stores two values: psum ¼
Pn

i¼1 pi and pmax ¼ maxi¼1;...;n pi,

which are used for pruning. Fig. 6a shows an example of a

(three-level) complete quad-tree built on a 4 � 4 histogram.
The complete quad-tree pdf representation does ad-

dress the issue of maintaining aggregate information at
different levels of resolution. It still does not address the
storage concern. We have designed a greedy compression
algorithm to limit the amount of space utilized by a quad-
tree. Our lossy compression technique compresses the
nodes in a quad-tree recursively (bottom-up), each time
compressing less costly node, until the quad-tree fits into
the allotted space. The compression algorithm is covered
in Section 4 in the electronic appendix, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2008.49.

6 INDEXING

Assume the goal is to evaluate a �-RQ with some threshold.

The quad-tree representation of pdfs might help to

efficiently evaluate this query over each individual event

location ‘ � f‘ðx; yÞ stored in the database. However, if

nothing else is done, answering this query will first require

a sequential scan over all the event locations stored in the

database, which is undesirable both in terms of disk I/O as

well as CPU cost.
To solve this problem, we can create a directory index on

top of U‘ (or, MBR of the histogram) for each location ‘ in

the database, using an index of our choice, such as R	-tree

[3]. When processing the �-RQ with region R, we can

effectively use R	-tree index to prune away all the U‘ which

do not intersect with R. Similar techniques have been

studied in [6] and [7]. This method is known to lead to

improvement when compared to a sequential scan. How-

ever, this method essentially utilizes only the spatial part of

a pdf (i.e., U‘ or the MBR) and disregards the fact that there

is another “dimension” that can be used for pruning as

well—the values of the pdf.3 The challenge becomes to

create an indexing solution that is capable of using the

values of pdfs. We next discuss how to solve this challenge.

6.1 U-Grid

In this section, we propose a novel Uncertain grid (U-grid)
indexing structure to effectively index uncertain event data.
In addition to storing spatial information in the grid files
[23], [24], [29], U-grid also stores probability summariza-
tions, which can be effectively utilized by the query
processor.

Unlike the virtual grid G, the directory U-grid I is
materialized. The grid I is much coarser than G and can be
viewed as a small 2D array of cells I ¼ fIijg, residing in
main memory (but it can also be stored on disk). As before,
we will use Iij to refer to both: the cell and the region it
represents. We will refer to cells in the directory grid I as
dcells. The structure of the grid I is shown in Fig. 7. Each cell
Iij in the grid I stores certain aggregate information about
each event location ‘ � f‘ðx; yÞ whose uncertainty region U‘
intersects with Iij. Let us denote the set of those locations as
the “set” Lij.

The most important information in Iij is a pointer to a
disk-resident list, called the “list” Lij. For each event
location ‘ in the set Lij, there is a list-element e‘ in the list Lij,
which stores aggregate information foid; pmax; psum;MBRg
for ‘, as illustrated in Fig. 7. The attribute e‘:oid points to the
location of the quad-tree for ‘, on disk. The MBR of ‘ is
stored in e‘:MBR. Let n ¼ vcellsinðU‘ \ IijÞ, and let
p1; p2; . . . ; pn be the values of the p‘ij probabilities of the n
vcells in U‘ \ Iij. Then, e‘:pmax and e‘:psum store the values:
e‘:pmax ¼ maxi¼1;...;n pi and e‘:psum ¼

Pn
i¼1 pi. The list is

sorted in descending order on either psum or pmax.
Clustering. Observe that we also can retrieve

fpmax; psum;MBRg information directly from the root node
of the quad-tree for ‘, instead of the list-element e‘ for ‘, so
why do we store it in e‘ again? The reason is that, when we
analyze elements of the list sequentially, if we access the
quad-trees, we will incur an extra disk I/O per each location
stored in the list. By storing all those attributes, we achieve
clustering of locations. Since each e‘ stores information from
the root (level zero) node of the quad-tree, we call that
summarization technique L0Sketch.

Other aggregate information. In addition to storing
L0Sketch, list elements can also store other aggregate
information for the purpose of pruning. For instance, we
can naturally extend the L0Sketch technique by storing
fpmax; psumg information from more levels of the quad-tree.
In particular, we shall see that using L1Sketch produces the
best results. L1Sketch requires small additional overhead,
compared to L0Sketch, since level-1 BRs can be derived
from e‘:MBR, and thus, they do not need to be stored. The
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3. Let us note that “dimension” here is used figuratively, as it is not
really a dimension, as defined in the traditional multidimensional indexing.
Consequently, there is no straightforward way of applying the traditional
approach of employing 3D index [7], [34].

Fig. 6. Quad-tree representation of pdf. (a) Before compression.

(b) After compression.

Fig. 7. Grid.



pruning power of L1Sketch outweighs that of L0Sketch and

easily compensates for the storage overhead.
One can also consider storing x-bounds in e‘ as well, but

that turned out not to work well in practice. The main
reason is that the storage overhead caused by the multiple

x-bounds.
Other attributes of Iij. In addition to the pointer to the

list Lij, the dcell Iij also has pmax and psum attributes, which

store the maximum over all pmaxs and over all psums in the

list Lij, respectively.
Secondary grid lists for Iij. Section 6.3 introduces

another pruning technique. Besides keeping the primary
list Lij in Iij, the new technique also keeps several

secondary lists for better pruning.
In the next section, we discuss methods for efficient

query processing using the grid.

Processing of �-RQs and �-PRQs consists of two logical

phases: the index (pruning) phase and the object (post-

processing) phase. The first phase employs the directory-

index to prune the locations that cannot satisfy the query.

Two different factors are important in this process: the

speed and the quality of pruning. The locations that cannot

be pruned using the directory index are inserted in the

special list Lproc to be postprocessed later, on the second

phase. The way in which each individual event location

‘ 2 Lproc is postprocessed, with respect to a given query, is

independent from the choice of directory-index. The

procedure that achieves that is rather straightforward. It

simply traverses the quad-tree to compute the desired

probability for a given query. It might stop earlier, without

computing the total probability, e.g., when it becomes clear

that the probability for given ‘ to satisfy the query either

will or will not exceed the threshold p� . The details of that

procedure are omitted.

6.2 Processing �-RQs Using U-Grid

In this section, we present the algorithms for processing of a

�-RQ with a region R and a threshold p� using the directory

U-grid I. The idea of the solution is to avoid the costly

computation of the exact probability for an event location ‘

to be in R, that is, Pð‘ 2 RÞ ¼def P
ij:Gij2U‘\R p

‘
ij. We accomplish

that by being able to find a good upper-bound � for it, such

that Pð‘ 2 RÞ � �. The value � will be computed based on

the aggregate information stored in the grid I. The pruning

will utilize the fact that, if � < p� , then Pð‘ 2 RÞ � � < p� ,

and thus, ‘ cannot satisfy the �-RQ and can be pruned

without computing the exact value of Pð‘ 2 RÞ.
For clarity of conveying the pruning ideas, we present

the discussion in the context of the scenario where R is

completely inside a single dcell Iij, as illustrated in Fig. 8.

This is a likely scenario when I is a coarse grid. The scenario

where R intersects with multiple cells is sketched out in
Section 1 in the electronic appendix, which can be found on

the Computer Society Digital Library at http://doi.ieee-

computersociety.org/10.1109/TKDE.2008.49. When R is

inside Iij, the pruning phase of the �-RQ algorithm consists

of four levels of pruning:

1. The grid-level pruning. Given R intersects with only
one dcell Iij, we know that the grid index I is
constructed such that only the locations in Lij can
satisfy the �-RQ. The other locations need not be
considered, and thus, they are pruned.

2. The dcell-level pruning. Let us set

� ¼ minðm� Iij:pmax; Iij:psumÞ;

where m ¼ vcellsinðRÞ. Observe that if � < p� , then

no object ‘ 2 Lij satisfies the �-RQ, because

Pð‘ 2 RÞ � � < p� . Let us note that this pruning is

carried out using only the content of the dcell Iij,

without performing any disk I/Os.
3. The list-level pruning. If the above condition does not

hold, the algorithm starts to process the disk-

resident list Lij sequentially. In the example shown

in Fig. 8, the list Lij will consist of four elements, for

the locations ‘1, ‘2, ‘3, and ‘4. Assume that the

elements in Lij are sorted in descending order of

psum. Suppose that the algorithm currently observes

a list-element e‘ that corresponds to a location ‘. Let

us choose � ¼ e‘:psum. Observe that if � < p� , then

neither ‘ nor the rest of the location in the list will

satisfy the �-RQ, i.e., all of them can be pruned.
4. The element-level pruning. If the above pruning is

not successful for the element e‘, the algorithm

might still be able to prune ‘ alone, but not the

whole list. Let us set � ¼ n � e‘:pmax, where

n ¼ vcellsinðR \ e‘:MBRÞ. If the L1Sketch strategy

is employed, a possibly better upper-bound � is

computed by summing up the estimations from

each quadrant: � ¼
P4

i¼1 ni � e‘:pmax;i. If � < p� , then

‘ is pruned. Else, ‘ is not pruned, and ‘ is inserted

in the list Lproc to be postprocessed. After that, the

algorithm extracts the next element e‘ 2 Lij and

goes to step 3 to apply the list-level pruning until

all the element of Lij are processed.

6.3 Processing �-RQs Using Multiple Lists
Per Grid Cell

In this section, we describe another powerful pruning

strategy which is based on the notion of a BR �-BR:

Definition 4. For location ‘ and threshold p� , a bounding

region (denoted �-BR) is any range S such that

Pð‘ 2 SÞ 
 p� .
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Fig. 8. �-RQ in Iij.



Observe that

This is because the chance that ‘ is outside S is less than
1� pS , and thus, for any region R that does not intersect S,
it follows that Pð‘ 2 RÞ < 1� pS � pR.

6.3.1 Multiple Lists Per Grid Cell

Given the above observation, we design a pruning

strategy that, like the x-bound technique, trades the

required amount of storage to gain efficiency. Initially,

n threshold values �1; �2; . . . ; �n are predefined and fixed

for grid I. For instance, for n ¼ 4, the values might be

�1 ¼ 1, �2 ¼ 0:75, �3 ¼ 0:5, and �4 ¼ 0:25. Instead of having

one list Lij per cell Iij, the new grid I stores n such lists

per Iij: L
ð1Þ
ij ; L

ð2Þ
ij ; . . . ; L

ðnÞ
ij . Each list L

ðkÞ
ij is associated with

threshold �k. Each element e‘ 2 LðkÞij , in addition to the

information stored in the original e‘ 2 Lij, also compactly

stores information about one, or several, �-BRs for ‘ with

threshold �k.

6.3.2 Processing of �-RQs Using Multiple Lists

The idea of the processing of a �-RQ with region R and

threshold pR using the new grid is as follows: When the

original algorithm would need to process Lij, the new

algorithm first chooses the right list L
ðkÞ
ij out of n possible

lists. Observe that any list L
ðkÞ
ij such that �k þ pR 
 1 can be

chosen for processing. The algorithm specifically chooses

the L
ðkÞ
ij that corresponds to the minimum �k for which �k þ

pR 
 1 holds. The choice of the minimum should become

apparent from the subsequent discussion. Since each e‘ 2
L
ðkÞ
ij stores the same information as e‘ in the original list Lij,

all of the pruning strategies described in Section 6.2 still

apply. However, since e‘ 2 LðkÞij also stores information on

�-BRs with threshold �k, additional pruning is achieved by

checking that each of those �-BRs must intersect with R,

otherwise ‘ can be pruned away.

6.3.3 Choosing and Representing �-BRs

for Multiple Lists

Since there can be multiple �-BRs with threshold �k for each
location ‘, there should be a strategy to select them to be
included in e‘. We choose �-BRs by taking into account the
multiple criteria summarized next:

. Maximizing pruning power of �-BRs. Ultimately,
�-BRs should be chosen such that the pruning power
in processing �-RQs is maximized.

– The number of �-BRs per e‘. We need to choose
the number of �-BRs to store in each e‘ 2 LðkÞij .
Intuitively, the more �-BRs are stored in an e‘,
the higher the likelihood that one of them will

not intersect with the query region R, and ‘ can
be pruned. However, the I/O cost needed to
scan L

ðkÞ
ij will also increase since more informa-

tion needs to be stored in each e‘.
– Minimizing size of �-BRs. It is desirable that

each of the �-BRs has small and compact region
S, so that S has a greater chance not to intersect
with the query region R.

– Separation of �-BRs for e‘. It is desirable that
the �-BRs stored in the same e‘ are far apart
from each other spatially and have as little
intersection as possible. That is, that they have
good separation. So, if one �-BR intersects with R,
this would increase the chance of another �-BR
not intersecting with the query region R.

. Compact representation for �-BRs. �-BRs for ‘
should be chosen such that they can be compactly
encoded in e‘, since the increase of e‘ leads to the
increase of the number of the I/Os required to scan
L
ðkÞ
ij .

. Fast computation of �-BRs. To allow for fast storage
and indexing of new locations that arrive in the
system, it is desirable that �-BRs are chosen such
that they can be computed quickly.

Given the above criteria, we construct list L
ð1Þ
ij by

observing that the MBR of ‘ is also its �-BR for threshold

�1 ¼ 1, and such chosen �-BR meets the above criteria

well. Since the original Lij already stores desired �-BRs,

we simply choose L
ð1Þ
ij ¼ Lij without any modifications.

Since we can utilize L
ð1Þ
ij alone to answer all queries, we

will refer to it as the primary list, while referring to the

rest of the lists as secondary. Secondary lists, while not

crucial for processing a query, are needed to do the

processing more efficiently.

For secondary lists L
ðkÞ
ij , where k ¼ 2; 3; . . . ; n, we intro-

duce a heuristic to keep four �-BRs per each e‘ 2 LðkÞij , which

are placed at the four corners of the MBR of location ‘.

Fig. 10 demonstrates an example histogram for ‘. Fig. 11

shows the chosen four �-BRs for �k ¼ 0:1 for that histogram.
To satisfy the fast computation and compactness criteria,

the algorithm extracts the four �-BRs for ‘ from the quad-

tree node for ‘, see Section 5. For instance, the first �-BR is

chosen as the smallest top- and left-most quadrant such that

its psum is greater or equal to �k. The other three �-BRs are

chosen similarly. Since these four �-BRs are located at the

corners, they have good separations. Also, because they are

chosen from the deepest level of the quad-tree, their spatial

footprints are small.
The above scheme allows for compact representation.

Each �-BR can be stored in m bits, where m is a fixed

predefined parameter for grid I. Since MBR of ‘ is stored in

e‘, to represent a �-BR the algorithm only needs to store the

level of the quad-tree at which the quadrant for the �-BR is

chosen. If that level exceeds 2m � 1, it is chosen to be 2m � 1

in order to fit into m bits. For instance, when m ¼ 8 (1 byte),

levels from 0 to 255 can be encoded. Therefore, with m ¼ 8,

the algorithm can effectively represent the four �-BRs in one
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integer, leading to small additional overhead to store them
in e‘.

Fig. 12 demonstrates another way to choose four �-BRs.
There, the left �-BR for ‘ is the rectangle formed by
considering the area of the MBR for ‘ that is to the left of the
‘’s x-bound, where x ¼ � . The right, top, and bottom �-BRs
are constructed in a similar fashion. This specific way of
storing �-BRs is interesting because it is straightforward to
prove that 1) all four �-BRs require the same amount of
space to store in index as one �PCR4 and 2) the pruning
power of the PCR containment heuristic from [34] is
equivalent to the pruning power of using these four
�-BRs. The �-BRs heuristic has several advantages, com-
pared to the PCR containment strategy. First, the technique
applies to a wider class of region queries, whereas the PCR
heuristic from [34] does not apply to regions of arbitrary
shapes, as it has been designed for range queries. Second,
the �-BR technique naturally extends to using more than
four �-BRs to potentially increase the pruning power
further. The PCR technique does not extend that way, since
it utilizes a PCR, and an object has only PCR.

6.4 Index Slicing for Processing �-RQs

We can observe that many of the techniques described in
Sections 6.2 and 6.3.3 also can be implemented for R-tree
family of indexes by modifying leaf-level nodes of R-tree.
We will describe various modifications in Section 7. We
have also designed a modification of R-tree which works at
the level of internal nodes of R-tree. This modification
applies to R-trees that stores x-bounds. Storing multiple
x-bounds increases the pruning power but, at the same time,
it increases the height of R-tree since more information
needs to be stored in each node. The latter, however, is not
necessary if the new technique we call index slicing is
employed.

Advanced indexes are often created by enlarging an
existing index, such as R-tree, by storing extra informa-

tion in nodes of the index. However, in certain

situations, an alternative solution might be to create

multiple indexes instead of one, each intended for a

separate piece of information. For instance, x-bound

index stores all k x-bounds in a node per each threshold

level �1; �2; . . . ; �k. Instead, the idea is to create k R-trees,

one per each threshold level. The ith R-tree would store

only x-bounds for �i. To process an RQ Q with region R

and threshold p� , the x-bound algorithm will decide

which x-bound (for which �k) to use in each node for p� .

In the new algorithm, the task is simply to pick the right

R-tree (the one that is associated with the same �k) for p�
at the beginning of processing Q. This technique keeps

the pruning power of x-bounds without having the

downside of increasing the height of the R-tree.

6.5 Processing �-PRQs Using U-Grid

Assume a �-PRQ has a threshold p� and a preference region

Rðx; yÞ. Let us denote the average value of Rðx; yÞ in the cell

Gij as

rij : rij ¼
1

�2
R
Gij

Rðx; yÞdxdy:

Then, preference region Rðx; yÞ can be viewed as the set

of tuples: fðGij; rijÞ : rij 6¼ 0g and (3) transforms into

Pð‘ 2 RÞ ¼def P
ij:Gij2R\U‘ p

‘
ijrij. The goal is to avoid the

costly computation of the exact probability Pð‘ 2 RÞ by

being able to find a good upper-bound � for it, such that

Pð‘ 2 RÞ � �. The value of � will be derived from the

aggregate information stored in the directory grid I. The

pruning will be based on the observation that, if � < p� ,

then we can prune ‘ since it cannot be in the answer set

of the �-PRQ.
We study only the scenario illustrated in Fig. 9, where

R intersects with a single dcell Iks. The technique

generalizes to any number of cells. First, observe that

any preference region Rðx; yÞ induces a regular region

R0ðx; yÞ ¼ fðx; yÞ : Rðx; yÞ 6¼ 0g. That regular region can be
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4. The 1) follows because if you know these four �-BRs, then you can
derive the �PCR and vice versa. See [34] for the definition of a PCR.

Fig. 9. PRQ in Iks.

Fig. 10. Example: Histogram of ‘.

Fig. 11. The chosen �-BRs.

Fig. 12. Another �-BRs.



obtained by treating all nonzero rijs of the preference
region as 1s. Observe that

Pð‘ 2 RÞ ¼
X

ij:Gij2R\U‘
p‘ij � rij �

X
ij:Gij2R\U‘

p‘ij � 1 ¼ Pð‘ 2 R0Þ:

Thus, the bounding methods in the RQ pruning algorithm
can be easily applied. The upper-bound for Pð‘ 2 R0Þ is
also an upper-bound for Pð‘ 2 RÞ as well, because
Pð‘ 2 RÞ � Pð‘ 2 R0Þ � � < p� .

We also employ Cauchy-Shwarz (CS) inequality:

x1y1 þ x2y2 þ � � � þ xnyn
� ðx2

1 þ x2
2 þ � � � þ x2

nÞ
1
2ðy2

1 þ y2
2 þ � � � þ y2

nÞ
1
2;

to improve on the above approach by computing a better

bound �. Using CS inequality, we have: Pð‘ 2 RÞ ¼def

P
. . . � ð

P
ij:Gij2Iksðp

‘
ijÞ

2Þ
1
2 � ð

P
ij:Gij2IksðrijÞ

2Þ
1
2 ¼ S‘SR, where

S‘ and SR are the two ð�Þ
1
2 terms. The value SR 2 IR is

computed once per query R and cell Iks. The value S‘ 2 IR is

a priori stored in each element e‘ of the list Lks along with

other aggregate information. So, when processing a list-

element e‘ 2 Lij, we can compute � ¼ SR � e‘:S‘ as one of

the upper-bounds for Pð‘ 2 RÞ.

7 EXPERIMENTAL EVALUATION

In this paper, we experimentally evaluate the effectiveness
and efficiency of the proposed indexing approach (this
section) and modeling approach (electronic appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2008.49). We ran all the experiments on a P4-2 GHz
PC with 1-Gbyte RAM. All our implementations are in C++.
For computing and storing pdf values, we use the
numerical integration functions and histogram data struc-
ture from GNU Science Library (gsl).

We have conducted two sets of modeling experiments. In
the first set of experiments, we focus on the spatial events
(event centric). In the second set of experiments, we focus on
the spatial queries (query centric). The data set used in the
event centric experiments is derived from 164 reports filed
by NYPD Officers after the events of 11 September 2001. We
demonstrate the advantages of our spatial modeling
approach by comparing with several popular alternatives
including an IR approach. For the query centric experi-
ments, we isolate the most frequently used s-expressions
into four different types. We generate one typical
s-expression model for each type. We evaluate all the
reasonable queries on the fixed s-expression models, and
analytically compare the retrieval performance for different
modeling approaches. The results indicate that our model-
ing approach has significant advantages over the baseline
approaches. Due to the page limit, these results are covered
in the electronic appendix, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TKDE.2008.49.

In the remainder of this section, we focus on the
efficiency of the proposed indexing approach. The results
will demonstrate the significant speedup achieved by the

proposed solution, compared to the current state-of-the-art
methods.

7.1 Experimental Setup

Indexing methods. Table 3 summarizes the basic prob-
ability summarization techniques that can be used by an
indexing structure. The existing techniques are 1 and 2, see
[34]. The new ones, proposed in this paper, are 3, 4, 5, 6, and
7. While the new techniques have been described in the
context of U-grid, one can notice that some of them are also
applicable to R	-tree and vice versa. Thus, to have a
complete study, we also incorporate our techniques in
R	-tree and evaluate their results as well.

Table 3 illustrated to which part of various indexing
structures (R	-tree and U-grid) a given summarization
technique is applicable. For instance, it shows that
L1 technique can be applied to the element level of U-grid
and leaf level of R	-tree. Max-Sum (MS) refers to using
ðpmax; psumÞ summary to prune objects. It can be applied to
R	-tree and U-grid at all levels. CS is the Cauchy-Shwarz
technique employed by PRQ queries. Therefore, we have
many individual index variations and we will only test the
most prominent solutions.

To evaluate these techniques effectively, we group them
under two schemes: R	-tree and U-grid. We use R	-tree
with spatial-bound pruning as our comparison baseline, to
evaluate the following existing and novel techniques:

. Existing: 1) Our implementation of R	-tree with
x-bounds, also known as U-PCR [34], 2) our im-
plementation of R	-tree with compressed x-bounds,
also known as U-tree [34], and 3) naive grid.

. Novel:

1. U-grid-MS with MS pruning,
2. U-grid with x-bounds (U-grid-x) and with

compressed x-bounds (U-grid-xþ),
3. U-grid-MSL1 for MS pruning and L1Sketch,
4. RTree-MS,
5. RTree-MSL1,
6. Multiple lists for U-grid cell (U-grid-ML), and
7. Index slicing for RTree (RTree-Slicing).

Naive grid is a standard grid, which does not use
probabilities for pruning. Note that to reduce the indexing
overhead, x-bounds can also be compressed using linear
approximation method [34]. U-grid-x and U-PCR store nine
x-bounds for values from 0.1 to 0.9 at the interval of 0.1; the
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compressed versions—U-grid-xþ and U-tree—are built on
top of these nine x-bounds.

Domain. We propose U-grid as the best solution for city-
level domains. We use a larger spatial domain than the
modeling experiments; a 400 � 400 virtual grid is overlaid
on top of the Manhattan Area of New York.

Uncertain location data for testing the efficiency. The
number of the spatial expression models used in the
modeling experiments is too small for the scalability tests.
Hence, we have generated several larger (10,000-100,000)
synthetic data sets, based on these real models, as follows:
We first partition the real events into three uncertainty
categories, based on the size of their spatial uncertainty
regions: the low (the pdf covers less than 10 � 10 vcells),
medium (less than 20 � 20 vcells), and high (less than 100 �
100 vcells). To generate a synthetic location, we randomly
choose a real uncertain location, and generate a new one with
a similar pdf on top of a landmark (building, street
intersection) in the domain. When storing the new pdf as a
quad-tree and paginating it to the disk, an average-sized pdf
occupies 5 to 10 disk pages. Using the lossy compression
techniques, we constrain the size of any pdf to 100 pages
maximum.

We can now control the data uncertainty level of a
synthetic data set, by mixing objects with different un-

certainty levels. In our experiments, a data set with the
medium data uncertainty level has object uncertainty
mixture ratio of ðlow90 percent : med5 percent : high5 percentÞ, the
low and high levels are defined as:

low ¼ ð98 percent : 1 percent : 1 percentÞ;

and high ¼ ð50 percent : 30 percent : 20 percentÞ. The med-
ium data uncertainty has roughly the same mixture ratio as
the 2,359 real events.

Queries. Similar to the concept of object uncertainty
levels, spatial queries have the low, medium, and high
coverage levels to characterize query size: 10 � 10, 20 � 20,
and 100 � 100 vcells. They also have query uncertainty levels
to characterize mixes of queries of various coverage levels:
low=med=high are the same as data uncertainty levels. All
queries were aligned to vcells.

Table 4 summarizes the default experimental settings.
We vary those settings to analyze the performance of the
different indexing strategies. For each setting, we execute a
large number of spatial queries and then report the average
disk I/O per one query.

7.2 Experiments

Table 5 studies the impact of different database sizes and
query thresholds on the I/O cost of �-RQs for the different
indexing techniques. All tested techniques are several
orders of magnitude better than linear scan (not shown).
In terms of the overall execution time, linear scan takes
more than 2 minutes to complete even for 10,000 of data. All
the techniques, except for linear scan, have two phases as
discussed in the beginning of Section 6.1: the indexing
(phase I) and postprocessing (phase II).

Overall performance. Table 5 shows the phase I and
total I/O costs separately. U-grid-MS has the best phase
I costs, and U-grid-MSL1 has the best overall costs. In all
experiments, Rtree-MS has better performance than R-tree
(baseline). This proves MS pruning is effective in R-tree
index. However, the existing techniques based on the
x-bounds (U-PCR and U-tree) do not perform well. This
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shows that the x-bound idea does not work well in 2D case; the
overhead in storing the x-bounds and compressed x-bounds
clearly outweighs the gains from probability pruning. For a
U-PCR indexing node, it needs to store additional 36 real
numbers (i.e., representing various bounds) than an R-tree
node. This reduces fan out by more than eight times. Even
with the compression techniques, to store the parameters
used in the linear approximations, U-tree still needs to
reduce the fan out by more than four times. The U-tree’s
performance is only slightly better than that of the baseline,
and U-PCR has the worst overall performance.

Data size. Fig. 13 shows the improvement ratio (speedup) of
various indexing techniques, compared to the baseline (R-
tree). The best technique from Grid group is U-grid-MSL1-
ML. It shows over four times speedup than the baseline, and
also over four times improvement over the best existing
solution, U-tree. The best technique from R-tree group is
Rtree-Slice-L1-ML. It shows more than three times better
than the baseline, but it is still worse than the U-grid-MSL1-
ML. The main reason for this difference is that for U-grid, the
regions that correspond to lists are dcells, hence they cannot
overlap; but, for RTree-List, the regions can (and do) overlap.
Hence, the probabilistic pruning techniques become less
effective. The experimental results confirm thatL1Sketch is a
very effective technique for both, R-tree and U-grid. The
results also show the advantages of building secondary
index for both the u-grid and the Rtree-based solutions.

Query threshold. Table 5 also shows similar behavior
when the query threshold p� for �-RQs is varied. As we can
observe from Fig. 14, the gain ratio for U-grid-MSL1-ML
gets even better (up to the factor of 10) when the threshold
increases. It shows the combined pruning strategy ðMSþ
L1þMLÞ can dismiss most of the false-positive objects
instead of pushing them to phase II.

Misc. performance. In Figs. 15 and 16, we vary the data
and query uncertainty levels. As data and query become
more uncertain, pruning in phase I becomes very important
since there are more objects intersecting with the query

region. The results show that our combined pruning
strategy ðMSþ L1þMLÞ works very well for U-grid, but
less effectively for R-tree, since the overlapping MBRs in
R-tree degrade its performance.

U-grid size. Fig. 17 plots the impact of the grid size on
the performance of �-RQs for the U-grid-MSL1 technique.
When the U-grid has only small number of cells, e.g., 1 � 1
or 2 � 2 cells, the overall I/O cost is high, since many
objects are pushed to phase II for postprocessing. As the
number of cells increases, the I/O cost stabilizes: having
finer than 16 � 16 grid does not lead to significant
improvement. Therefore, keeping the directory grid I in
main memory, except for its disk-resident Lij lists, is
feasible.

PRQs. Fig. 18 studies the effect of the data size on the
performance of �-PRQs. The new technique, U-grid-MSL1-
CS, achieves five times speedup over the baseline, and four
times speedup over the best existing solution, U-tree.

Index overhead. The basic R-tree and Grid implementa-
tions have the smallest index sizes in their respective
categories. Index slicing for an R-tree essentially builds
multiple R-trees. Therefore, its size is in the order of the
basic R-tree size multiplied by the number of slices. The
index insertion/update time is also multiplied by the
number of slices. Depending on the level of caching (L1
or L2), the size of U-grid can be twice to three times larger
than that of the basic Grid index. The use of multiple grid
lists multiplies the size of the index by the number of lists.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented our approach for building
spatial awareness from textual input. We considered
practical aspects of building such an end-to-end system
such as modeling, representation, indexing, and query
design and processing. We have conducted an extensive set
of experiments to demonstrate the effectiveness of our
solution.
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Fig. 13. Data size.

Fig. 14. Threshold.

Fig. 15. Data uncertainty.

Fig. 16. Query unc.



There are several future research directions we would
like to pursue. First, we would like to examine whether the
existing framework can be applied to handle temporal
uncertainties in addition to spatial uncertainty. Second, we
intend to significantly enhance index slicing solution
further, by modifying the index structure and exploring
more advanced query processing algorithms. Third, we
plan to examine other approaches for mapping text into
probabilistic representation. Specifically, we plan to analyze
the feasibility of a likelihood-based approach.
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