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ABSTRACT

Kalashnikov, Dmitri V. Ph.D., Purdue University, May, 2003. Efficient Querying of
Constantly Evolving Data. Major Professor: Sunil Prabhakar.

This thesis addresses important challenges in the emerging areas of sensor (stream-

ing data) databases and moving objects databases. It focuses on the important class

of applications that are characterized by (a) constant change in the data values; (b)

long-running (continuous) queries that have to be repeatedly evaluated as the data

changes; (c) inherent imprecision in the data; and (d) need for near real-time results.

The thesis addresses the scalability and performance challenges faced by these appli-

cations. The first part of the thesis studies the problem of scalable efficient processing

of continuous range queries on moving objects. We introduce two novel highly scal-

able solutions to the problem: a disk-based technique called Velocity Constrained

Indexing (VCI) and an in-memory technique called grid indexing. VCI is a technique

for maintaining an index on moving objects that allows the index to be useful without

constantly updating it as the data values change. For in-memory settings, we show

the superiority of our grid indexing solution to other methods. The second part of the

thesis covers the problem of similarity joins for low- and high-dimensional data. Two

new similarity join algorithms are introduced: the Grid-join is for low-dimensional

data and the EGO*-join is for high-dimensional data. Both algorithms show sub-

stantial improvement over the state of the art similarity join algorithms for low- and

high-dimensional domains. Finally, the third part of the thesis presents an analysis

and novel solutions of the important problem of handling the uncertainty inherent in

the environments with constantly changing data. Probabilistic queries are introduced

and a classification of queries is developed based on the nature of query result set.
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Algorithms are provided for solving typical probabilistic queries from each class. We

show that, unlike standard queries, probabilistic queries have a notion of quality of

answer. We introduce several metrics for measuring the quality as well as various

update policies for improving it.
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1. INTRODUCTION

The thesis research addresses important challenges in the emerging areas of sensor

(streaming data) and moving objects databases. It focuses on the important class of

applications that are characterized by (a) constant change to the data values; (b) long-

running continuous queries that have to be repeatedly evaluated as the data changes;

(c) need for near real-time results; and (d) inherent imprecision in the data. The thesis

addresses the scalability and performance challenge inherent to such applications: all

solutions have to scale to large problem sizes, such as millions of sources of constantly

changing data and tens of thousands of continuous queries. The contribution of this

thesis is summarized below.

1.1 Scalable algorithms for continuous range queries on moving objects

The combination of personal locator technologies, global positioning systems, and

wireless and cellular telephone technologies enables new location-aware services, in-

cluding location and mobile commerce (L- and M- commerce). Current location-aware

services allow proximity-based queries including map viewing and navigation, driving

directions, searches for hotels and restaurants, and weather and traffic information.

To support many of their services, the majority of such applications must be able

to handle a fundamental type of continuous query – the range query. Moving object

environments are characterized by large numbers of moving objects and numerous

concurrent continuous queries over these objects. Efficient evaluation of these queries

in response to the movement of the objects is critical for supporting acceptable re-

sponse times.
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Chapter 2 presents a novel technique for the efficient and scalable evaluation of

multiple continuous range queries on moving objects called Velocity Constrained In-

dexing (VCI) and compares it to the Query indexing technique. VCI takes advantage

of the maximum possible speed of objects in order to delay the expensive operation

of updating an index to reflect the movement of objects. VCI is an R-tree like index,

maintained on moving objects, with maximum velocity information in every node. In

contrast to an earlier technique that requires exact knowledge about the movement

of the objects, VCI does not rely on such information. We show that Query Index-

ing does not handle the arrival of new queries efficiently while Velocity constrained

indexing, on the other hand, is unaffected by changes in queries. A combination of

Query Indexing and Velocity Constrained Indexing enables the scalable execution of

insertion and deletion of queries in addition to processing ongoing queries. Several

optimizations are presented in Section 2.4.1 and Section 2.5.1. A detailed experi-

mental evaluation is presented in Section 2.6. The experimental results show that

the proposed schemes outperform the traditional approaches by almost two orders of

magnitude.

1.2 In-memory evaluation of continuous range queries on moving objects

It is becoming increasingly clear that the traditional database paradigm of data

being stored completely on disk is not acceptable for many applications in the face

of current and future rates of data generation. A prime example is that of sensor

environments such as network routers that are constantly producing data that cannot

all possibly be stored in a database. Moreover the data needs to be processed as it is

being generated. In addition, market forces are resulting in computer architectures

with abundant amounts of main memory. Sensor database research demonstrates the

shift in mentality where currently all processing is assumed to be carried out in main

memory and disk-based algorithms are avoided.

Chapter 3 presents evaluation of several in-memory algorithms for efficient and

scalable processing of continuous range queries over collections of moving objects.
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Constant updates to the index are avoided by query indexing. One of the most

important aspects of this work is that no constraints are imposed on the speed or path

of moving objects and on the fraction of objects that can move at any time instant

(common restrictions of other related work) making the proposed approach applicable

for more general settings of sensor databases for the case where two dynamic attributes

need to be queried. For the disk-based case, it is well-known that R-trees provide

good index performance. Researchers have investigated main-memory versions of R-

trees. However it was discovered that the use of entirely different index structures can

be more appropriate in the main-memory setting. In particular, Section 3.3 presents

a detailed analysis of a cache-conscious index which shows the best results for both

skewed and uniform data. Experimental evaluation established that indexing queries

using the cache-conscious index yields orders of magnitude better performance than

other index structures such as memory optimized disk-based indexes. A sorting-

based and clustering optimizations were also developed which significantly improved

the cache hit ratio.

1.3 Similarity joins for low- and high-dimensional data

A similarity join operation for two sets containing multidimensional points and

fixed epsilon parameter finds all pairs of points from different sets which are within ep-

silon distance from each other. This operation is used in multimedia databases, data

mining, location-based applications, and time-series analysis. The efficient processing

of similarity joins is important for a large class of applications. The dimensionality

of the data for these applications ranges from low to high. Chapter 4 introduces two

new spatial join algorithms; one aimed for low-dimensional data (2–6 dimensions),

the other for high-dimensional data. Section 4.4 studies their performance in com-

parison to the state of the art algorithm EGO-join, and the RSJ algorithm. Through

evaluation the domain of applicability of each algorithm is explored and recommenda-

tions are provided for the choice of join algorithm depending upon the dimensionality

of the data as well as the critical epsilon parameter. Section 4.4.1 points out the
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significance of the choice of this parameter for ensuring that the selectivity achieved

is reasonable. The proposed join algorithms significantly outperform the state of the

art join algorithm (EGO-join) across various domains of applicability.

1.4 Handling data uncertainty

Many applications employ sensors for monitoring entities such as temperature and

wind speed. A centralized database tracks these entities to enable query processing.

Due to continuous changes in these values and limited resources (e.g., network band-

width and battery power), it is often infeasible to store the exact values at all times.

A similar situation exists for moving object environments that track the constantly

changing locations of objects. In this environment, it is possible for database queries

to produce incorrect or invalid results based upon old data. The impact of imprecision

is data is an important problem for emerging applications. Chapter 5 addressed the

problem of evaluation of certain types of queries in presence of imprecision in data.

It defines various quality metrics for query answers. Query dependent update policies

were developed in order to improve the quality of answers.

1.4.1 Probabilistic queries

Although it is infeasible to store the exact values of all data items at all times, if

the degree of error (or uncertainty) between the actual value and the database value

is controlled, one can place more confidence in the answers to queries. More generally,

query answers can be augmented with probabilistic estimates of the validity of the

answers. The imprecision in answers to the queries is an inherent property of these

applications due to uncertainty in the data, unlike the techniques for approximate

query processing that trade accuracy for performance.

Chapter 5 presents the the evaluation of probabilistic guarantees for a broad class

of database queries including range and nearest-neighbor queries for moving objects,

and several aggregate queries for general sensor databases. A classification of queries

was made based upon the nature of the result set. For each class, algorithms for
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computing probabilistic answers were developed. The algorithms were defined in

terms of a generic model of uncertainty.

1.4.2 Quantifying query result quality

This research provides an insight into the important issue of measuring the quality

of the answers to probabilistic queries. Chapter 5 presents an initial study of the issue

of quantifying the quality through metrics such as entropy. A related problem is that

of improving the quality of an answer by selectively reducing the uncertainty of the

underlying data under constrained resources. The initial work has resulted in the

development of heuristics for improving query quality.

The rest of the thesis is organized as follows. Chapter 2 introduces “query index-

ing” and discusses Velocity Constrained Indexing. In Chapter 3 various in-memory

query indexing algorithms are evaluated. Similarity joins are covered in Chapter 4.

Chapter 5 explores methods of dealing with uncertainty in data. Finally, Chapter 6

concludes the thesis.
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2. CONTINUOUS RANGE QUERIES ON MOVING OBJECTS

2.1 Introduction

The combination of personal locator technologies [KH00, WL98], global position-

ing systems [McN, Tru], and wireless [Cor] and cellular telephone technologies enables

new location-aware services, including location and mobile commerce (L- and M-

commerce). Current location-aware services allow proximity-based queries including

map viewing and navigation, driving directions, searches for hotels and restaurants,

and weather and traffic information. They include GPS based systems like Vindigo

and SnapTrack and cell-phone based systems like TruePosition and Cell-Loc.

These technologies are the foundation for pervasive location-aware environments

and services. Such services have the potential to improve the quality of life by adding

location-awareness to virtually all objects of interest such as humans, cars, laptops,

eyeglasses, canes, desktops, pets, wild animals, bicycles, and buildings. Applications

can range from proximity-based queries on non-mobile objects, locating lost or stolen

objects, tracing small children, helping the visually challenged to navigate, locate,

and identify objects around them, and to automatically annotating objects online

in a video or a camera shot. Examples of such services are emerging for locating

persons [KH00] and managing emergency vehicles [Ltd99]. These services correspond

to queries that are executed over an extended period of time (i.e., from the time

they are initiated to the time at which the services are terminated). During this

time period the queries are repeated evaluated in order to provide the correct an-

swers as the locations of objects change. We term these queries Continuous Queries.

A fundamental type of continuous query required to support many of the services
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mentioned above is the range query. The range query R, given d-dimensional hyper-

rectangle Bd = [l1, u1] × . . . × [ld, ud], finds all spatial objects x that intersect with

Bd: R(Bd) = {x : x ∩ Bd �= ∅}. 1

Our work assumes that objects report their current location to stationary servers.

By communicating with these servers, objects can share data with each other and

discover information (including location) about specified and surrounding objects.

Throughout the chapter, the term “object” refers to an object that (a) knows its

own location and (b) can determine the locations of other objects in the environment

through the servers.

This chapter develops a novel technique for the efficient and scalable evaluation

of multiple continuous range queries on moving objects called Velocity Constrained

Indexing (VCI). VCI is compared to another scheme developed by Prabhakar et.al.

[PXK+02], called Query Indexing. Velocity constrained indexing (VCI) enables effi-

cient handling of changes to queries. VCI allows an index to be useful even when it

does not accurately reflect the locations of objects that are indexed. It relies upon

the notion of maximum speeds of objects. Our model of object movement makes

no assumptions for query-indexing. For the case of VCI, we assume only that each

object has a maximum velocity that it will not exceed. If necessary, this value can

be changed over time. We do not assume that objects need to report and maintain

a fixed speed and direction for any period of time as in [SJLL00]. The velocity con-

strained index remains effective for large periods of time without the need for any

updates, independent of the actual movement of objects. Naturally, its effectiveness

drops over time and infrequent updates are necessary to counter this degradation. A

combined approach of these two techniques enables the scalable execution of insertion

and deletion of queries in addition to processing ongoing queries. We also develop

several optimizations for efficient post-processing with VCI through Clustering; and

for efficient updates to VCI – Refresh and Rebuild. A detailed experimental evaluation

1Sometimes, range query is also defined as R(Bd) = {x : x ⊂ Bd}, we use the first definition in
our experiments, using the second definition will lead to the same results (since in our tests objects
are tiny rectangles).
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of our techniques is conducted. The experimental results demonstrate the superior

performance of our indexing methods as well as their robustness to variations in the

model parameters.

Our work distinguishes itself from related work in that it addresses the issues of

scalable execution of concurrent continuous queries (as the numbers of mobile objects

and queries grow).

The material on Query-indexing presented in this chapter is a joint work with

Walid Aref, Susanne Hambrusch, Sunil Prabhakar, and Yuni Xia.

The rest of this chapter proceeds as follows. Related work is discussed in Sec-

tion 2.2. Section 2.3 describes the traditional solution and our assumptions about

the environment. Section 2.4 presents the approach of Query Indexing and related

optimizations. The alternative scheme of Velocity Constrained Indexing is discussed

in Section 2.5. Experimental evaluation of the proposed schemes is presented in

Section 2.6, and Section 2.7 concludes the chapter.

2.2 Related work

The growing importance of moving object environments is reflected in the recent

body of work addressing issues such as indexing, uncertainty management, broadcast-

ing, and models for spatio-temporal data. To the best of our knowledge no existing

work addresses the timely execution of multiple concurrent queries on a collection

of moving objects as proposed in the following sections. We do not make any as-

sumption about the future positions of objects. It is also not necessary for objects

to move according to well behaved patterns as in [SJLL00]. In particular, the only

constraint imposed on objects in our model is that for Velocity Constrained Indexing

(discussed in Section 2.5) each object has a maximum speed at which it can travel

(in any direction).
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Indexing techniques for moving objects are being proposed in the literature, e.g.,

[BGO+96, KTF98] index the histories, or trajectories, of the positions of moving ob-

jects, while [SJLL00] indexes the current and anticipated future positions of the mov-

ing objects. In [KGT99], trajectories are mapped to points in a higher-dimensional

space that are then indexed. In [SJLL00], objects are indexed in their native envi-

ronment with the index structure being parameterized with velocity vectors so that

the index can be viewed at future times. This is achieved by assuming that an object

will remain at the same speed and in the same direction until an update is received

from the object.

Uncertainty in the positions of the objects is dealt with by controlling the update

frequency [PJ99, WSCY99], where objects report their positions and velocity vectors

when their actual positions deviate from what they have previously reported by some

threshold. Tayeb et. al. [TUW98] use quadtrees [Sam90] to index the trajectories

of one-dimensional moving points. Kollios et. al. [KGT99] map moving objects and

their velocities into points and store the points in a kD-tree. Pfoser et. al. [PTJ99,

PJT00] index the past trajectories of moving objects that are presented as connected

line segments. The problem of answering a range query for a collection of moving

objects is addressed in [AAE00] through the use of indexing schemes using external

range trees. [WCD+98, WXCJ98] consider the management of collections of moving

points in the plane by describing the current and expected positions of each point in

the future. They address how often to update the locations of the points to balance the

costs of updates against imprecision in the point positions. Spatio-temporal database

models to support moving objects, spatio-temporal types and supporting operations

have been developed in [FGNS00, GBE+00].

Scalable communication in the mobile environment is an important issue. This

includes location updates from objects to the server and relevant data from the server

to the objects. Communication is not the focus of this thesis. We propose the use

of Safe Regions to minimize communication for location updates from objects. We

assume that the process of dissemination of safe regions is carried out by a separate
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process. In particular, this can be achieved by a periodic broadcast of safe regions.

Efficient broadcast techniques are proposed in [AFZ96, AAFZ95, HLAP01, HLL00,

HLL01, IVB94, ZFAA94]. In particular, the issue of efficient (in terms of battery-

time and latency) broadcast of indexed multi-dimensional data (such as safe regions)

is addressed in [HLAP01]. Issues relating to location dependent database querying

are addressed in [SDK01]. A excellent review of multidimensional index structures

including grid-like and Quad-tree based structures can be found in [TUW98].

In hypertext databases the scope of search might change dynamically, while tradi-

tional indexes cover a statically defined region. Indexing in hypertext databases has

been studied in [CGM90].

Main memory optimizations of disk-based index structures have been explored

recently for B+-trees [RR00] and multidimensional indexes [KCK01]. Both studies

investigate the redesign of the nodes in order to improve cache performance. Nei-

ther study addresses the problem of executing continuous queries or the constant

movement of objects (changes to data). The goal of our in-memory algorithm is

to efficiently and continuously re-generate the mapping between moving objects and

queries. Our in-memory algorithm makes no assumptions about the future positions

of objects. It is also not necessary for objects to move according to well-behaved

patterns as in [SJLL00]. The problem of scalable, efficient computation of continuous

range queries over moving objects is ideally suited for main memory evaluation. To

the best of our knowledge no existing work addresses the main memory execution of

multiple concurrent queries on moving objects as proposed in the following sections.

2.3 Moving object environment

2.3.1 Pervasive location-aware computing environments

Figure 2.1 sketches a possible hierarchical architecture of a location-aware comput-

ing environment. Location detection devices (e.g., GPS devices) provide the objects
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with their geographical locations. Objects connect directly to regional servers. Re-

gional servers can communicate with each other, as well as with the repository servers.

Data regarding past locations of objects can be archived at the repository servers. We

assume that (i) the regional servers and objects have low bandwidth and a high cost

per connection, and (ii) repository servers are interconnected by high bandwidth links.

This architecture is similar to that of current cellular phone architectures [SWCD97,

Wol00]. For information sent to the objects, we consider point-to-point communica-

tion as well as broadcasting. Broadcasting allows a server to send data to a large

number of “listening” objects [AFZ96, AAFZ95, HLAP01, HLL00, HLL01, ZFAA94].

Key factors in the design of the system are scalability with respect to large numbers

of objects and the efficient execution of queries.

Mobile
Object

Satellite
Uplink

Mobile Link
(possibly bidirectional)

Server

Regional
Regional

Server

Server Server

Satellite

Data
Broadcast

Down-link

Data 

Repository Repository

Archive Archive

Figure 2.1 Illustrating a location-aware environment

In traditional applications, GPS devices tend to be passive i.e., they do not ex-

change any information with other devices or systems. More recently, GPS devices
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are becoming active entities that transmit and receive information that is used to af-

fect processing. Examples of these new applications include vehicle tracking [Ltd99],

identification of closest emergency vehicles in Chicago [Ltd99], and Personal Locator

Services [KH00]. Each of these examples represents commercial developments that

handle small scale applications. Another example of the importance of location in-

formation is the emerging Enhanced 911 (E911) [ZPBM98] standard. The standard

seeks to provide wireless users the same level of emergency 911 support as wireline

callers. It relies on wireless service providers calculating the approximate location of

the cellular phone user. The availability of location-awareness would further enhance

the ability of emergency services to respond to a call e.g., using medical history of

the caller. Applications such as these, improvements in GPS technology, and reduc-

ing cost, augur the advent of pervasive location-aware environments. The PLACE

(Pervasive Location-Aware Computing Environments) project at Purdue University

is addressing the underlying issues of query processing and data management for the

moving object environments [AHKP]. Connectivity is achieved through wireless links

as well as mobile telephone services.

2.3.2 Continuous query processing

Location-aware environments are characterized by large numbers of moving (and

stationary) objects. These environments will be expected to provide several types of

location centric services to users. Examples of these services include: navigational

services that aid the user in understanding her environment as she travels; subscrip-

tion services wherein a user identifies objects or regions of interest and is continuously

updated with information about them; and group management services that enable

the coordination and tracking of collections of objects or users. To support these

services it is necessary to execute efficiently several types of queries, including range

queries, nearest-neighbor queries, density queries, etc. An important requirement

in location-aware environments is the continuous evaluation of queries. Given the

large numbers of queries and moving objects in such environments, and the need
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for a timely response for continuous queries, efficient and scalable query execution is

paramount.

In this chapter we focus on range queries. The solutions need to be scalable

in terms of the number of total objects, degree of movement of objects, and the

number of concurrent queries. Range queries arise naturally and frequently in spatial

applications such as a query that needs to keep track of, for example, the number of

people that have entered a building. Range queries can also be useful as pre-processing

tools for reducing the amount of data that other queries, such as nearest-neighbor or

density, need to process.

2.3.3 Model

In our model, objects are represented as points, and queries are expressed as

rectangular spatial regions. Therefore, given a collection of moving objects and a

set of queries, the problem is to identify which objects lie within (i.e., are relevant

to) which queries. We assume that objects report their new locations to the server

periodically or when they have moved by a significant distance. Updates from different

objects arrive continuously and asynchronously at the server. The location of each

object is saved in a file on the server. Since all schemes incur the cost of updating this

file and the updating is done in between the evaluation intervals, we do not consider

the cost of updating this file as objects move. Objects are required to report only

their location, not the velocity. There is no constraint on the movement of objects

except that the maximum possible speed of each object is known and not exceeded

(this is required only for Velocity Constrained Indexing). We expect that at any given

time only a small fraction of the objects will move.

Ideally, each query should be re-evaluated as soon as an object moves. However,

this is impractical and may not even be necessary from the user’s point of view. We

therefore assume that the continuous evaluation of queries takes place in a periodic

fashion whereby we determine the set of objects that are relevant to each continuous

query at fixed time intervals. This interval, or time step, is expected to be quite small
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(e.g., in [KGT99] it is taken to be 1 minute) – our experiments are conducted with a

time interval of 50 seconds.

2.3.4 Limitations of traditional indexing

In this section we discuss the traditional approaches to answering range queries

for moving objects and their limitations. Our approaches are presented in Sections

2.4 and 2.5.

A brute force method to determine the answer to each query compares each query

with each object. This approach does not make use of the spatial location of the

objects or the queries. It is not likely to be a scalable solution given the large numbers

of moving objects and queries.

Since we are testing for spatial relationships, a natural alternative is to build a

spatial index on the objects. To determine which objects intersect each query, we

execute the queries on this index. All objects that intersect with a query are relevant

to the query. The use of the spatial index should avoid many unnecessary comparisons

of queries against objects and thereby we expect this approach to outperform the

brute force approach. This is in agreement with conventional wisdom on indexing. In

order to evaluate the answers correctly, it is necessary to keep the index updated with

the latest positions of objects as they move. This represents a significant problem.

Notice that for the purpose of evaluating continuous queries, we are not interested in

preserving the historical data but rather only in maintaining the current snapshot.

The historical record of movement is maintained elsewhere such as at a repository

server (see Figure 2.1).

In Section 2.6 we evaluate these three alternatives for keeping the index updated.

As we will see in Section 2.6, each of these gives very poor performance. The poor

performance of the traditional approach of building an index on the data (i.e., the

objects) can be traced to the following two problems: i) whenever any object moves,

it becomes necessary to re-execute all queries; and ii) the cost of keeping the index
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updated is very high. In the next two sections we develop two novel indexing schemes

that overcome these limitations.

2.4 Query indexing: Queries as data

The traditional approach of using an index on object locations to efficiently process

queries for moving objects suffers from the need for constant updates to the index and

re-evaluation of all queries whenever any object moves. We propose an alternative

that addresses these problems based upon two key ideas:

• treating queries as data and the data as queries, and

• incremental evaluation of continuous queries.

We also develop the notion of safe regions that exploit the relative location of objects

and queries to further improve performance.

In treating the queries as data, we build a spatial index such as an R-tree on the

queries instead of the customary index that is built on the objects (i.e., data). We

call this the Query-Index or Q-index. To evaluate the intersection of objects and

queries, we treat each object as a “query” on the Q-index (i.e., we treat the moving

objects as queries in the traditional sense). Exchanging queries for data results in

a situation where we execute a larger number of queries (one for each object) on

a smaller index (the Q-index), as compared to an index on the objects. This is

not necessarily advantageous by itself. However, since not all objects change their

location at each time step, we can avoid a large number of “queries” on the Q-index

by incrementally maintaining the result of the intersection of objects and queries.

Incremental evaluation is achieved as follows: upon creation of the Q-index, all

objects are processed on the Q-index to determine the initial result. Following this,

we incrementally adjust the query results by considering the movement of objects. At

each evaluation time step, we process only those objects that have moved since the

last time step, and adjust their relevance to queries accordingly. If most objects do not

move during each time step, this can greatly reduce the number of times the Q-index
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is accessed. For objects that move, the Q-index improves the search performance as

compared to a comparison against all queries.

Under the traditional indexing approach, at each time step, we would first need

to update the index on the objects (using one of the alternatives discussed above)

and then evaluate each query on the modified index. This is independent of the

movement of objects. With the “Queries as Data” or the Q-index approach, only

the objects that have moved since the previous time step are evaluated against the

Q-index. Building an index on the queries avoids the high cost of keeping an object

index updated; incremental evaluation exploits the smaller numbers of objects that

move in a single time step to avoid repeating unnecessary comparisons. Upon the

arrival of a new query, it is necessary to compare the query with all the objects in

order to initiate the incremental processing. Deletion of queries is easily handled by

ignoring those queries.

Further improvements in performance can be achieved by taking into account the

relative locations of objects and queries. Next we present optimizations based upon

this approach.

2.4.1 Safe regions: Exploiting query and object locations

Consider an object that is far away from any query. This object has to move a

large distance before its relevance to any query changes. Let SafeDist be the shortest

distance between object O and a query boundary. Clearly, O has to move a distance

of at least SafeDist before its relevance with respect to any query changes. Thus we

need not check the Q-index with O’s new location as long as it has not moved by

SafeDist.

Note that when we talk about SafeDist not as distance but as an optimization, we

mean that each object tracks the distance it traveled, not the shortest straight line dis-

tance from the object current location to the last recorded location, see Section 2.6.2

for more details.

Similarly, we can define two other measures of “safe” movement for each object:
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• SafeSphere – a safe sphere (circle for two dimensions) around the current loca-

tion. The radius of this sphere is equal to the SafeDist discussed above.

• SafeRect – a safe maximal rectangle around the current location. Maximality

can be defined in terms of rectangle area, perimeter, etc.

SafeDist

Q1

Q3

Q6

Q2

Q4

Q5

X

Y

SafeSphere

SafeRect

Q7

Q Query

Moving
Object

SafeRect

Figure 2.2 Examples of Safe Regions

Figure 2.2 shows examples of each type of Safe Region. Note that it is not im-

portant whether an object lies within or outside a query that contributes to its safe

region. Points X and Y are examples of each type of point: X is not contained within

any query, whereas Y is contained in query Q1. The two circles centered at X and Y

are the SafeSphere regions for X and Y respectively, and the radiuses of the two circles

are their corresponding SafeDist values. Two examples of SafeRect are shown for X.

The SafeRect for Y is within Q4. Note that for X, other possibilities for SafeRect are

possible. With each approach, only objects that move out of their safe region need to

be evaluated against the Q-index. These measures identify ranges of movement for

which an object’s matching does not change and thus it need not be checked against

the Q-index. This significantly reduces the number of accesses to Q-index. Note that

for the SafeDist technique, we need to keep track of the total distance traveled since

SafeDist was computed. Once an object has traveled more than SafeDist, it needs to

be evaluated against the Q-index until SafeDist is recomputed. On the other hand,
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for the SafeSphere and SafeRect measures, an object could exit the safe region, and

then re-enter it at a later time. While the object is inside the safe region it need not

be evaluated against Q-index. While it is outside the safe region, it must be evaluated

at each time step.

The safe region optimizations significantly reduce the need to test data points for

relevance to queries if they are far from any query boundaries and move slowly, see

Section 2.6.2 for the experimental results. Recall that each object reports its location

periodically or when it has moved by a significant distance since its last update. This

decision can be based upon safe region information sent to each object. Thus the

object need not report its position when it is within the safe region, thereby reducing

communication and the need for processing at the server. The effectiveness of these

techniques in reducing the number of objects that need to report their movement is

studied in Section 2.6. Even though we do not perform any re-computation of the

safe regions in our experiments, we find that the safe region optimizations are very

effective. It should be noted that multiple safe regions can be combined to produce

even larger safe regions. By definition, there are no query boundaries in a safe region.

Hence there can be no query boundary in the union of the two safe regions.

2.4.2 Computing the safe regions

The Q-index can be used to efficiently compute each of the safe regions. SafeDist

is closely related to a nearest-neighbor query since it is the distance to the nearest

query boundary. A branch-and-bound algorithm similar to that proposed for nearest

neighbor queries in [RKV95] is used. The [RKV95] algorithm prunes the search based

upon the distances to queries and bounding boxes that have already been visited. Our

SafeDist algorithm is different in that the distance between an object and a query is

always the shortest distance from the object to a boundary of the query. In [RKV95]

this distance is zero if the object is contained within the query2. To amortize the

cost of SafeDist computation, we combine it with the evaluation of the object on

2Please note that in [RKV95] the role of objects and queries is not reversed as it is here.
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the Q-index, i.e., we execute a combined range (objects are tiny rectangles) and a

modified nearest-neighbor query. The modification is that the distance between an

object and a query is taken to be the shortest distance to any boundary even if

the object is contained in the query (normally this distance is taken to be zero for

nearest-neighbor queries). The combined search executes both queries in parallel

thereby avoiding repeated retrieval of the same nodes. SafeSphere is simply a circle

centered at the current location of the object with a radius equal to SafeDist.

Given an object and a set of query rectangles, there exist various methods for

determining safe rectangles. The related problem of finding a largest empty rectangle

has been studied extensively and solutions vary from O(n) to O(n log3 n) time, (where

n is the number of query rectangles) depending on restrictions on the regions [AS87,

AW88, Ame94, MOS85]. For our application, finding the “best”, or maximal rectangle

is not important for correctness (any empty rectangle is useful), we use a simple

O(n2) time implementation for computing a safe rectangle. The implementation

allows adaptations leading to approximations for the largest empty rectangle. The

algorithm for finding the SafeRect for object O is as follows:

1. If object O is contained in a query, choose one such query rectangle and deter-

mine the relevant intersecting or contained query rectangles. If object O is not

contained in a query rectangle, we consider all query rectangles as relevant. Let

E be the set of relevant query rectangles.

2. Take object O as the origin and determine which relevant rectangles lie in which

of the four induced quadrants. For each quadrant, sort the corner vertices of

query rectangles that fall into this quadrant. For each quadrant determine the

dominating points [CLR90].

3. The dominating points create a staircase for each quadrant. Use the staircases

to find the empty rectangle with the maximum area (using the property that a

largest empty rectangle touches at least one corner of the four staircases).
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We investigated several variations of this algorithm for safe rectangle generation.

The variations include determining a largest rectangle using only a subset of the query

rectangles, to determine relevant rectangles and limiting the number of combinations

of corner points considered in the staircases. In order to determine a good subset of

query rectangles we use the available SafeDist-value in a dynamic way. The experi-

mental work for safe rectangle computations are based on generating safe rectangles

which consider only query rectangles in a region that is ten times the size of SafeDist.

2.5 Velocity constrained indexing

In this section we present a second algorithm that avoids the two problems of

traditional object indexing (viz. the high cost of keeping an object index updated as

objects move and the need to reevaluate all queries whenever an object moves). The

key idea is to avoid the need for continuous updates to an index on moving objects

by relying on the notion of a maximum speed for each object. Under this model,

an object will never move faster than its maximum speed. We term this approach

Velocity Constrained Indexing or VCI.

empty...

empty...

empty...

empty...

empty...Vmax0 k1 MBR1 MBRk1

Vmax2 k2 MBR1 MBRk2

k3 MBR1 MBRk3

k4 MBR1 MBRk4...

k5 MBR1 MBRk5...Vmax3

Vmax4

Vmax5

Data file

Figure 2.3 Example of Velocity Constrained Index (VCI)

A VCI is a regular R-tree based index on moving objects with an additional field

in each node: vmax. This field stores the maximum allowed speed over all objects
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covered by that node in the index. The vmax entry for an internal node is simply the

maximum of the vmax entries of its children. The vmax entry for a leaf node is the

maximum allowed speed among the objects pointed to by the node. Figure 2.3 shows

an example of a VCI. The vmax entry in each node is maintained in a manner similar

to the MBRs of each entry in the node, except that there is only one vmax entry per

node as compared to an MBR per entry of the node. When a node is split, the vmax

for each of the new nodes is copied from the original node.

Consider a VCI that is constructed at time t0. At this time it accurately reflects the

locations of all objects. At a later time t, the same index does not accurately capture

the correct locations of points since they may have moved arbitrarily. Normally the

index needs to be updated to be useful. However, the vmax fields enable us to use this

old index without updating it. We can safely assert that no point will have moved

by a distance larger than R = vmax(t− t0). If we expand each MBR by this amount

in all directions, the expanded MBRs will correctly enclose all underlying objects.

Therefore, in order to process a query at time t, we can use the VCI created at time

t0 without being updated, by simply comparing the query with expanded version of

the MBRs saved in VCI. At the leaf level, each point object is replaced by a square

region of side 2R for comparison with the query rectangle3.

An example of the use of the VCI is shown in Figure 2.4(a) which shows how each

of the MBRs in the same index node are expanded and compared with the query.

The expanded MBR captures the worst-case possibility that an object that was at

the boundary of the MBR at t0 has moved out of the MBR region by the largest

possible distance. Since we are storing a single vmax value for all entries in the node,

we expand each MBR by the same distance, R = vmax(t− t0). If the expanded MBR

intersects with the query, the corresponding child is searched. Thus to process a

node we need to expand all the MBRs stored in the node (except those that intersect

without expansion, e.g. MBR3 in Figure 2.4). Alternatively, we could perform a

single expansion of the query by R and compare it with the unexpanded MBRs.

3Note that it should actually be replaced by a circle, but the rectangle is easier to handle.
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An MBR will intersect with the expanded query if and only if the same MBR after

expansion intersects with the original query. This is because range queries and MBRs

are always iso-oriented, and therefore the sides are always parallel to the coordinate

axes. Figure 2.4 (b) shows the earlier example with query expansion. Expanding the

query once per node saves some unnecessary computation.
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R R
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Query

MBR2

Query

R R

R

R
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R
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Figure 2.4 Query Processing with Velocity Constrained Index (VCI)

The set of objects found to be in the range of the query based upon an old VCI

is a superset, S ′ of the exact set of objects that currently are in the query’s range.

Clearly, there can be no false dismissals in this approach. In order to eliminate the

false positives, it is necessary to determine the current positions of all objects in S ′.

This can be achieved through a post-processing step. The current location of the

object is retrieved and compared with the query to determine the current matching.

Note that it is not always necessary to determine the current location of each

object that falls within the expanded query. From the position recorded in the leaf

entry for an object, it can move by at most R. Thus its current location may be

anywhere within a circle of radius R centered at the position recorded in the leaf.

If this circle is entirely contained within the unexpanded query, there is no need to

post-process this object for that query. Object X in Figure 2.4(b) is an example of

such a point.
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It should be noted that although the expansion of MBRs in VCI and the time-

evolving MBRs proposed in [SJLL00] are similar techniques, the two are quite different

in terms of indexing of moving objects. A key difference between the two is the

model of object movement. Saltenis et al. [SJLL00] assume that objects report

their movement in terms of velocities (i.e., an object will move with fixed speed in

a fixed direction for a period of time). In our model the only assumption is that

an object cannot travel faster than a certain known velocity. In fact, for our model

the actual movement of objects is unimportant (as long as the maximum velocity

is not exceeded). The time varying MBRs [SJLL00] exactly enclose the points as

they move, whereas VCI pessimistically enlarges the MBRs to guarantee enclosure of

the underlying points. Thus VCI requires no updates to the index as objects move,

but post-processing is necessary to take into account actual object movement. The

actual movement of objects has no impact on VCI or the cost of post-processing. Of

course, as time passes, the amount of expansion increases and more post-processing

is required.

2.5.1 Optimizations of VCI

To avoid performing an I/O operation for each object that matches each expanded

query, it is important to handle the post-processing carefully.

Optimization1 We can begin by first pre-processing all the queries on the index

to identify the set of objects that need to be retrieved for any query. These objects

are then retrieved only once and checked against all queries. This eliminates the need

to retrieve the same object more than once.

Optimization2 We could still retrieve the same page containing several objects

multiple times. To avoid multiple retrievals of a page, the objects to be retrieved are

sorted on page number.

Optimization3 We can build a clustered index. Clustering may reduce the total

number of pages to be retrieved. When clustering is used the order of objects in the

file storing their locations is organized according to the order of entries in the leaves
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of the VCI. Clustering can be achieved efficiently following creation of the index. A

depth first traversal of the index is made and each object is copied from the original

location file to a new file in the sequential order and the index pointer is appropriately

adjusted to point to the newly created file. By default the index is not clustered. As

is seen in Section 2.6, clustering the index improves the performance by roughly a

factor of 3.

Refresh and Rebuild The amount of expansion needed during query evaluation

depends upon two factors: the maximum speed vmax of the node, and the time that

has elapsed since the index was created, (t−t0). Thus over time the MBRs get larger,

encompassing more and more dead space, and may not be minimal. Consequently, as

the index gets older its quality gets poorer. Therefore, it is necessary to periodically

rebuild the index. This essentially resets the creation time, and generates an index

reflecting the changed positions of the objects. Rebuilding is an expensive operation

and cannot be performed too often. A cheaper alternative to rebuilding the index is

to refresh it. Refreshing simply updates the locations of objects to the current values

and adjusts the MBRs so that they are minimal. Following refresh, the index can be

treated as though it has been rebuilt.

Refreshing can be achieved efficiently by performing a depth first traversal of the

index. For each entry in a leaf node the latest location of the object is retrieved

(sequential I/O if the index is clustered). The new location is recorded in the leaf

page entry. When all the entries in a leaf node are updated, we compute the MBR

for the node and record it in the parent node. For directory nodes when all MBRs of

its children have been adjusted, we compute the overall MBR for the node and record

it in the parent. This is very efficient with the depth first traversal. Although refresh

is more efficient than a rebuild, it suffers from not altering the structure of the index

– it retains the earlier structure. If points have moved significantly, they may better

fit under other nodes in the index. Thus there is a trade-off between the speed of

refresh and the quality of the index. An effective solution is to apply several refreshes
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followed by a less frequent rebuild. Experimentally, we found that refreshing works

very well.

2.6 Experimental evaluation

In this section we present the performance of the new indexing techniques and com-

pare them to existing techniques. The experiments reported are for two-dimensional

data, however, the techniques are not limited to two dimensions. The various index-

ing techniques were implemented as R∗-trees [BKSS90] and tested on synthetic data.

The dataset used consists of 100,000 objects composed of a collection of 5 normal

distributions each with 20,000 objects. The mean values for the normal distribution

are uniformly distributed, and the standard deviation is 0.05 (the points are all in the

unit square). The centers of queries are also assumed to follow the same distribution

but with a standard deviation of 0.1 or 1.0. The total number of queries is varied

between 1 and 10,000 in our experimentation. Each query is a square of side 0.01.

Other experiments with different query sizes were also conducted but since the results

are found to be insensitive to the query size, they are not presented. More important

than query size is the total number of objects that are covered by the queries and the

number of queries.

The maximum velocities of objects follow a Zipf distribution with an overall max-

imum value of Vmax. For most experiments Vmax was set to 0.00007 – if we assume

that the data space represents a square of size 1000 miles (as in [KGT99]), this corre-

sponds to an overall maximum velocity of 250 miles an hour. In each experiment, we

fix the fraction of objects, m, that move at each time step. This parameter was varied

between 1000 and 10,000. The time step is taken to be 50 seconds. At each time

step, we randomly select m objects and for each object, we move it with a velocity

between 0 and the maximum velocity of the object in a random direction. The page

size was set to 2048 bytes for each experiment. As is customary, we use the number

of I/O requests as a metric for performance. The top two levels of each index were
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assumed to be in memory and are not counted towards the I/O cost. The various

parameters used are summarized in Table 2.1.

Table 2.1 Parameters used in the experiments

Parameter Meaning Values

N Number of Objects 100,000

m Num. of objects that move at each time step 1000 – 10,000

q Number of queries 1 – 10,000

Vmax Overall maximum speed for any object 50, 125, 250, 500mph

2.6.1 Traditional schemes

We begin with an evaluation of Brute Force and traditional indexing. Updating

the index to reflect the movement of objects can be achieved using several techniques:

1. Insert/Delete: each object that moves is first deleted and then re-inserted into

the index with its new location.

2. Reconstruct: the entire index structure can be recomputed at each time step.

3. Modify: the positions of the objects that move during each time step are updated

in the index.

The modify approach is similar to the technique for handling movement of points

proposed by Saltenis et. al. [SJLL00] wherein the bounding boxes of the nodes

are expanded to accommodate the past, current, and possibly future positions of

objects. The modify approach differs from these because it does not save past or

future positions in the index which is acceptable since the purpose of this index is

primarily to answer continuous queries based upon the current locations of the objects.

The approach of [SJLL00] assumes that objects move in a straight line with a fixed

speed most of the time. Whenever the object’s speed or velocity changes, an update
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is sent. The index is built using this speed information. Their experimental results

are based upon objects moving between cities which are assumed to be connected by

straight roads and the objects moves with a very regular behavior – for the first sixth

of a route they accelerate at a constant rate to one of three maximum velocities which

they maintain until the last sixth of the route at which point they decelerate. Our

model for object movement is more general and does not require that object maintain

a given velocity for any point in time. Under this model, the approach of [SJLL00] is

not applicable.

Table 2.2 shows the relative performance of these schemes in terms of number

of I/O operations performed. The performance of these approaches does not vary

over time, hence we simply report a single value for each combination of m and

q. We assume that the top two levels of the index are memory resident. For these

experiments that roughly corresponds to about 21 pages in memory. The I/O numbers

for Brute Force are evaluated assuming efficient use of 21 buffers: 20 buffers are

assumed to hold blocks of queries.

Table 2.2 Performance of traditional techniques.

Parameters Number of I/O Operations

m q Reconstruct Insert/Delete Modify Brute Force

1,000 1,000 211,817 5,865 3,806 1,010

1,000 10,000 228,308 22,356 20,298 5,100

10,000 1,000 211,817 43,413 22,581 1,010

10,000 10,000 228,308 59,904 39,072 5,100

From the table it is clear that the Brute Force approach gives the best performance

in all cases. This is largely due to the fact that this approach does not need to maintain

any structures as objects move. We assume that there are enough buffers to hold only

the first two levels of the other indexes when computing brute force. The Reconstruct
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approach is clearly the poorest since it is too expensive to build the index at each

time step. The Insert/Delete scheme incurs roughly double the I/O cost that Modify

incurs to update the index while their query cost is the same.

We point out that while the Brute Force approach has the lowest I/O cost, it may

not be the best choice. The reason is that unlike the other schemes which employ

an index on the objects to significantly reduce the number of comparisons needed,

Brute Force must compare each object with each query. Thus it is typically going to

incur almost three orders of magnitude more comparisons than the others! An earlier

experiment to measure the total time required for Modify and Brute Force showed

that their performance is very comparable despite the low I/O cost of Brute Force

[AHP00]. Except for this special case, the I/O cost is a good measure of performance.

2.6.2 Safe region optimizations

Since the Query-indexing is a joint work with several people, here you can find

only a summary of the performance of the query indexing approach. Please refer to

[PXK+02] for figures and details on the Query-indexing.

We now study the performance of the safe region optimizations among themselves.

For each scheme we study the Reduction Rate: the fraction of moved objects that are

within their safe region. These objects do not need to report their location. We study

the effectiveness of each measure as time passes. We evaluated various combinations

of m and q. For example, we investigated the reduction rates for 10% objects moving

at each time step, and 1000 queries. Each of the safe regions is computed at time 0.

As long as the object is within its safe region it does not report its new location. As

expected, the fraction of objects that remain within their safe regions drops as time

passes. For example after 100 seconds 95% of the objects are still within their SafeRect

and need not report their positions, whereas 83% of the objects are within their

SafeDist. Thus SafeRect is more effective in reducing the need for objects reporting

their locations. An important point to note is that even though we do not re-compute

the safe regions in our experiments, we find that the safe region optimizations remain
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very effective for large durations. This is important since the cost of computing these

measures is high. The cost of computing SafeDist and SafeSphere is on the order of

13 I/O operations per object for the case of 10,000 queries. The cost of computing

SafeRect is significantly higher – around 52 I/Os per object. These high costs do

not adversely affect the gains from these optimizations since the re-computations are

done infrequently.

A common trend is that the SafeRect measure is most effective. SafeSphere is

never worse in performance than SafeDist. This is not surprising since SafeSphere

augments SafeDist with the center information to provide a safe region as opposed

to an absolute measure of movement. Thus under SafeSphere an object can re-enter

the safe region whereas an object that has moved by SafeDist must always be tested

against Q-index until SafeDist is re-computed. To see why SafeRect outperforms

SafeSphere, consider that the SafeSphere pessimistically limits the region of safety

in all directions by the shortest distance from the object to a query boundary. On

the other hand, SafeRect selects four distances, one in each direction, to the nearest

query boundary. Thus it is likely to extend further than the SafeSphere 4. This is

especially the case when the number of queries gets very large. The optimizations

remain effective even when the number of moving objects is increased ten-fold to

10,000.

2.6.3 Incremental evaluation and the Q-index approach

We compared the performance of the Q-index approach with the traditional ap-

proaches. Let us first assume that there is enough memory available to keep the

Q-index entirely memory resident. This assumption can be done because the number

of queries typically is much smaller than the number of moving objects and corre-

spondingly an index on queries can fit in main memory. Under this assumption at

each time step, we simply need to read in the positions of only those objects that

4It should be noted that SafeRect can be more constraining than SafeSphere in one or more
directions.
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have moved since the previous evaluation. A separate file containing only these points

can be easily generated on the server during the period between evaluations. Thus

the I/O cost of the Q-index approach is simply given by the number of pages that

make up this file. The safe region optimizations further reduce the need for I/O by

effectively reducing the number of objects that report their updates. We investigated

the performance of the various schemes.
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Figure 2.5 Performance of the Q-index technique with 10% moving and 1% queries

In Figure 2.5 the results with 1000 queries and 10,000 objects moving at each

time step are shown. The Q-index approach requires 110 pages of I/O at each time

step to retrieve the new locations of the moved objects and process them against the

memory-resident Q-index. It should be pointed out that this is actually sequential

I/O. This is a significant reduction from the I/O cost of the traditional approaches

as shown in Table 2.2 representing more than an order of magnitude improvement.

The optimizations further reduce the I/O cost by almost another order of magnitude.

Of course, this reduction reduces over time but not significantly even for as many as

1000 seconds.
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For smaller numbers of moving objects, the Q-index needs to perform proportion-

ately smaller numbers of I/O operations. If only 1% of objects is moving than only

20 I/Os are needed at each time step for Q-index. As the number of objects that

move at each time step is increased, the Q-index approach needs to perform increased

I/O until eventually a sequential scan of the entire data file is required when virtu-

ally every object moves in each time step. Thus the approach scales well with the

movement of objects, gracefully degrading to a sequential scan.

The above experiments were conducted with 1000 concurrent queries. If the num-

ber of queries is smaller, Q-index fits in memory and the I/O costs are largely un-

changed. However, for larger numbers of queries it is possible that the entire index

does not fit in main memory, possibly resulting in page I/O for each object that is

queried. If the number of objects that need to be queried against the Q-index is large,

this may significantly increase the amount of I/O. We investigated the performance

of 10,000 queries with 10,000 objects moving at each time step under the assumption

that only top two levels of Q-index are in memory. In comparison to the case when

index fit in memory, index I/O exacts a high price. It should be pointed out however,

that even with this very large increase in I/O, the Q-index approach is still superior

to the traditional approaches. For example, the I/O cost of Modify with the two

settings of m = 1, 000 and q = 10, 000 is 20, 298; and that of Brute Force is 5, 100.

If we consider only I/O for Brute Force, an incremental version can outperform

the Q-index based approach if the Q-index does not fit in memory. Consider the

above case with 10,000 queries and 1000 objects moving at each time step. This

corresponds to 100 pages for queries and 10 pages for objects that move at each time.

If we assume that B +1 buffers are available, then brute force can evaluate all queries

with �100
B
�(B + 10) I/O operations. With as few as 21 buffers, this requires only 150

I/Os as compared to over 1800 for Q-index! However, as pointed out earlier, the

Brute Force approach pays a high computation price that offsets the reduced I/O. To

validate this claim, we conducted an experiment where we measured the total time

taken (in seconds) by Brute Force and the other proposed approaches. The results
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are shown in Table 2.3 for two sets of values of m and q. We see that although

Brute Force would have only a fraction of the I/O operations required by the others,

it is actually slower overall. We again point out that this anomaly of I/O time not

translating to overall performing happens only for Brute Force due to its inordinately

large numbers of comparisons.

Table 2.3 Impact of CPU cost

m q Brute Force Q-index SafeSphere SafeRect

1000 10,000 3.6s 1.7s 0.9s 0.5s

10,000 10,000 37s 3.1s 1.3s 1.1s

Impact of Velocity. From the above experiments we find that the incremental Q-

index approach and optimizations scale well with variations in the number of moving

objects and queries. To studied the impact of the degree of movement of the objects,

we conducted experiments where we altered the speed distributions. The results

with a Vmax corresponding to 500 miles per hour (not shown) are very similar to

that of 250mph except that the optimizations are a little less effective. The relative

performance of the newly proposed schemes is unaffected by these changes in the

allowable speeds of objects. We see only a slight change in the effectiveness of the

optimizations.

Denser Object Locations. We investigated the effect of a much denser set of

objects and queries corresponding to a smaller region such as a city. In our experiment

the range of the space is reduced from 1000 miles by 1000 miles to a 10 mile by 10

mile region. The number of objects is maintained at 100,000 with 1000 moving at

each time step. The number of queries is 10,000. Since a city is likely to have a more

uniform distribution, we increased the standard deviation to 0.8. Also the maximum

speed is reduced from 250 miles per hour to 50 miles per hour. In comparison with

the wider area setting we can see that the performance is poorer by about a factor of
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10. This reduction in performance is not surprising since the safe region optimizations

are less effective. This is directly related to the rate at which objects exit their safe

regions. The important point however, is that the Q-index approaches are still an

order of magnitude better than the traditional approaches.

2.6.4 Velocity constrained indexing

Next we discuss the performance of the Velocity Constrained Indexing (VCI)

algorithm. There are two components of the cost for VCI: i) pre-processing to evaluate

the expanded queries on VCI; and ii) post-processing to eliminate false positives.

Since the VCI approach is unaffected by the actual number of objects that move at

each time step (i.e., m), all objects were moved at each time step. Figure 2.6(a) shows

the performance of VCI for 100,000 objects moving at each time instant, and 100

queries. The pre-processing cost increases with time since the queries get larger due

to greater expansion resulting in more parallel path searches on the VCI. Similarly,

post-processing cost increases with time since more and more false positives are likely

to be found with increased query expansions. The graph shows the post-processing

cost and the total cost as time since creation of VCI. The cost of a sequential scan of

the entire object file is also shown.
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The total cost approaches that of a sequential scan after about 150 seconds, at

which point the VCI is not effective – it would be more efficient to scan the file instead

of using the index. Figure 2.6(b) shows the improvement due to clustering. There is

a very significant improvement in post-processing cost resulting in about 400 fewer

I/O operation at each time step. Thus clustering extends the utility of the VCI from

about 150 seconds to over 400 seconds.

Refresh and Rebuild. Figure 2.7 shows the impact of applying a refresh to

the VCI. The refresh helps reduce both the pre- and post-processing costs. The pre-

processing cost is reduced since the MBRs better fit the underlying data and the

clock for query expansion is reset. This improves the quality of the index resulting

in faster query processing. The post-processing cost is reduced since there will be

fewer false positives as a result of a “tighter” index. The overall cost is reduced by

almost 600 I/O operations immediately following the refresh. Over time it again

degrades and another refresh is applied, etc. The refresh period can be adjusted as

necessary. In this experiment, the refresh was performed to keep the total cost below

that of a sequential scan. The application of a rebuild has a very similar effect to that

of a refresh. The difference would show up only for very large time intervals when

objects have moved so much that the old VCI organization is inefficient. The effect

of rebuilding would be very similar to that of running the test again from second 0,

hence we do not consider it here.

Sensitivity to Parameters. The VCI approach is not affected by the actual

movement of objects (other than through the maximum speeds). Thus the costs

would not change even if all the objects were moving at each time instant! On the

other hand, the VCI approach is very sensitive to the number of queries. The above

graphs are for only 100 queries. If the number of queries is increased to 1000, we find

that the pre-processing cost increases proportionately, as does the post-processing

cost. Very soon after creation of the VCI its performance degrades to worse than

a sequential scan forcing frequent refreshing. This impacts the performance and

renders the scheme unusable. Thus VCI is a reasonable approach when the queries
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Figure 2.7 Impact of Refresh on Velocity Constrained Indexing

cover a small number of objects. With 10 queries, we find that the graph scales

down roughly linearly too, e.g. for a single query the post-processing and total costs

are 6, and 17 I/Os, respectively. To study the impact of denser distributions of

queries, we repeated the above tests for the VCI approach with a query set having

one-tenth the standard deviation of the other tests (viz. 0.1). The results are shown

in Figure 2.8. The relative performance of the graphs is very similar to that seen with

a broader distribution, except that the degradation towards a sequential scan occurs

much faster. This is expected since each query now covers more objects on average.

The maximum speed of objects is clearly an important parameter for the VCI

approach. To study the impact of Vmax (the overall maximum speed of any object)

on performance we conducted several experiments with different values of Vmax. The

results resemble very closely those obtained earlier for VCI. The major impact of

changes in maximum speed is that the time scale get stretched (contracted) if Vmax is

reduced (increased). The stretching is linearly related to the changes in speed. Other

than this difference, the graphs are very similar. This is not surprising because the

important factor in determining the performance of VCI is the amount of expansion

that a query experiences: R = vmax(t − t0) (vmax is the maximum velocity field
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Figure 2.8 Performance of Velocity Constrained Indexing with query std = 0.1

stored in the node being examined). With double the speed, we need half the time

difference to achieve the same expansion. Therefore if the max speed in increased by

a large factor, such as with the experiment on the 10 miles by 10 miles range (this

is effectively increasing the speed of the objects) VCI becomes ineffective. With 10

queries, a sequential scan would be better after only 45 seconds.

Figures 2.9 and 2.10 demonstrate the I/O cost of the brute force approach and

VCI approach when the cost of the refresh procedure itself is included. The time step

in both experiments is assumed to be 25 seconds, which is a very large time step.

Large time step gives advantage to the brute force method, since with smaller step

the cost of refresh procedure is better amortized. Even with such a large time step

the VCI technique with the refresh approach significantly outperforms the brute force

method. If data do not preserve locality, it is expected that after substantial amount

of time the cost of the VCI with the refresh will degrade and the index will need to

be rebuilt.

The problem that is yet to be addressed is the question of how to pick appropriate

period between two successive refreshes to maximize performance. The refreshes

cannot be carried out out too often because of the cost of the refresh procedure,
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and they cannot be carried out infrequently because the performance will eventually

degrade significantly. That is why there is the optimal inter-refresh period, which

need to be found. We plan to address this as future work.

Comparison to Q-index. Our experimental work indicates that the Q-index

approach outperforms the VCI approach. For even a hundred queries, VCI incurs

between 280 and 880 I/O operations (Figure 2.6). For larger numbers of queries, it

will certainly not incur any less since each extra query will add to the query processing

cost as well as potentially generate new objects that need to be post-processed. In

contrast, for 1000 queries, Q-index needs 110 I/Os without safe region optimizations,

and only about 20 I/Os with the SafeRect optimization. A positive aspect of VCI

is that it is insensitive to variations in the number of moving objects, m. Even if

all the objects move, the Q-index approach5 will incur a sequential scan. Thus it is

possible that for very few queries and very large numbers of objects moving at each

time instant, VCI could outperform Q-index, however this is not very practical.

5Assuming there is enough memory to hold the queries – which is also assumed by the VCI
approach since it only handles small numbers of queries.
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The key advantage of (and also the motivation for developing) Velocity Con-

strained Indexing is its ability to handle arbitrary changes to the set of continuous

queries. The Q-index approach is forced to make a sequential scan of the entire set

of objects for each newly arriving query (although queries that arrive within a single

time step can be handled with a single scan).

2.6.5 Combined indexing scheme

The results show that query indexing and safe region optimizations significantly

outperform the traditional indexing approaches and also the VCI approach. These

improvements in performance are achieved by eliminating the need to evaluate all

objects at each time step through incremental evaluation. Thus they perform well

when there is little change in the queries being evaluated. The deletion of queries

can be easily handled simply by ignoring the deletion until the query can be removed

from the Q-index. The deleted query may be unnecessarily reducing the safe region

for some objects, but this does not lead to incorrect processing and the correct safe
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regions can be recomputed in a lazy manner without a significant impact on the

overall costs.

The arrival of new queries, however, is expensive under the query indexing ap-

proach as each new query must initially be compared to every object. Therefore a

sequential scan of the entire object file is needed at each time step that a new query

is received. Furthermore, a new query potentially invalidates the safe regions ren-

dering the optimizations ineffective until the safe regions are recomputed. The VCI

approach, on the other hand, is unaffected by the arrival of new queries (only the

total number of queries being processed through VCI is important). Therefore to

achieve scalability under the insertion and deletion of queries we propose a combined

scheme. Under this scheme, both a Q-index and a Velocity Constrained Index are

maintained. Continuous queries are evaluated incrementally using the Q-index and

the SafeRect optimization. The Velocity Constrained Index is periodically refreshed,

and less periodically rebuilt (e.g., when the refresh is ineffective in reducing the cost).

New queries are processed using the VCI. At an appropriate time (e.g., when the

number of queries being handled by VCI becomes large) all the queries being pro-

cessed through VCI are transferred to the Query Index in a single step. As long as

not too many new queries arrive at a given time (e.g., less than 10 in each time step),

this solution offers scalable performance that is orders of magnitude better than the

traditional approaches.

We now present the performance of the combined scheme. The experiment is

conducted with 100,000 objects with 1% moving. The experiment begins with 10,000

queries and new queries arrive at the rate of 10 queries every three minutes (actually

one query every 18 seconds). Newly arriving queries are handled by the VCI index

while the ongoing queries are processed using the Q-index. When the number of

queries handled by the VCI index reaches a threshold (100 in this experiment), we

ingest the 100 queries into the Q-index in a single step. This ingestion requires

changes to the index structure and also potentially changes the safe regions for the

objects. We consider two approaches for correcting the safe regions: recomputing
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Figure 2.11 Performance of VCI and Q-index With Dynamic Queries

all the safe regions, and modifying the safe regions by comparing them against the

ingested queries. Figure 2.11 shows the combined cost of the two indexes over time

as objects arrive. Only the SafeRect region is considered. As can be seen from the

graph, the combined cost remains very small until the point at which the queries

are ingested. At this time, a large penalty is paid for computing the new SafeRect

regions. The recompute approach is very expensive, however the modify approach

does not incur a very large overhead. The effect of three refreshes on the VCI is

clearly visible.

It should be noted that since the newly arriving queries are incorporated into

the Q-index periodically, it is not necessary that all incoming queries need to be

immediately handled by VCI. In fact, only urgent queries need to be handled by VCI,

others can begin their evaluation only after the next time that queries are ingested

into Q-index. From the results we observe that with this combined approach the

overall performance is still much better than the traditional approaches.
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2.7 Conclusion

Moving object environments are characterized by large numbers of moving objects

and concurrent active queries over these objects. Efficient continuous evaluation of

these queries in response to the movement of the objects is critical for supporting

acceptable response times. We showed that the traditional approach of building an

index on the objects (data) can result in poor performance. In fact, a brute force,

no index strategy gives better performance in many cases. Neither the traditional

approach, nor the brute force strategy achieve reasonable performance.

We presented a novel indexing technique for scalable execution called Velocity

Constrained Indexing (VCI) and compared it to the Query Indexing approach. We

showed that the VCI approach gives good performance for hundreds of concurrent

queries, and, unlike the query indexing approach, it is unaffected by changes in queries

and actual object movement. We showed that the VCI and Query-indexing techniques

complement each other enabling a combined solution that efficiently handles not

only ongoing queries but also dynamically inserted queries. The experiments also

demonstrated the robustness of the new techniques to variations in the parameters.

The combined schemes therefore achieve superior performance to existing solutions

for the efficient and scalable evaluation of continuous queries over moving objects.
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3. IN-MEMORY QUERY INDEXING

3.1 Introduction

Current efforts at evaluating queries over moving objects have focused on the

development of disk-based indexes. The problem of scalable, real-time execution of

continuous queries may not be well suited for disk-based indexing for the following

reasons: (i) the need to update the index as objects move; (ii) the need to re-evaluate

all queries when any object moves; and (iii) achieving very short execution times for

large numbers of moving objects and queries. These factors, combined with the dras-

tically dropping main memory costs makes main memory evaluation highly attractive.

The growing importance of main memory based algorithms has been underscored by

the Asilomar report [Ber98], which projects that within 10 years main memory sizes

will be in the range of terabytes.

The location of a moving object can be represented in memory as a 2-dimensional

point while its other attributes can be stored on disk. One local server is likely to

be responsible for handling a limited number of moving objects (e.g., 1,000,000).

For such settings, for even large problem sizes, all the necessary data and auxiliary

structures, can be easily kept in the main memory of a high-end workstation.

In order for the solution to be effective it is necessary to efficiently compute the

matching between large numbers of objects and queries. While multidimensional in-

dexes tailored for main memory, as proposed in [KCK01], would perform better than

disk-oriented structures, the use of an index on the moving objects suffers from the

need for constant updating as the objects move – resulting in degraded performance.

To avoid this need for constant updating of the index structure and to improve the pro-

cessing of continuous queries, we propose a very different approach: Query Indexing.

In contrast to the traditional approach of building an index on the moving objects,
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we propose to build an index on the queries. This approach is especially suited for

evaluating continuous queries over moving objects, since the queries remain active for

long periods of time, and objects are constantly moving.

In this chapter we investigate several in-memory index structures for efficient and

scalable processing of continuous queries. Towards the goal of wider applicability of

our algorithms, we make no assumptions neither about the speed and nature of the

movement of objects nor about the fraction of objects that can move at any time

instant. That is at any moment in time all objects can move with arbitrary speeds

in arbitrary directions. We evaluate not only indexes designed to be used in main

memory, but also disk-based indexes adapted and optimized for main memory. Our

results show that using a grid-like structure gives the best performance, even when

the data is skewed. We also propose an effective technique for improving the caching

performance. The proposed solutions are extremely efficient. For example, 100,000

(25,000) continuous queries over 100,000 (1,000,000) objects can be evaluated in as

little as 0.288 (0.762) seconds! The use of query indexing is critical for achieving such

efficient processing. We also present an analytical evaluation for the optimal grid size.

The analysis matches well with the experimental results. A technique for improving

the cache hit-rate is developed that achieves a speed up of 100%.

The remainder of this chapter is organized as follows. Section 3.2 describes the

problem of continuous query processing, Query Indexing, and the index structures

considered. We also present an effective technique for improving the cache hit-rate.

Section 3.3 presents the experimental results. Section 3.4 concludes the chapter.

3.2 Continuous query evaluation

3.2.1 Model of object movement

The model of object movement is similar to that of Section 2.3.3, but with a few

specifics for main memory. The issue of obtaining the updated locations of objects is

independent of the algorithm used for evaluating the queries. Since the focus of this
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research is on the efficient evaluation of queries, we assume that updated location

information is available at the server, without considering how exactly it is made

available. Below we briefly discuss the common assumptions made in order to reduce

communication that was not discussed in Section 2.3.3.

The most common assumption is that each object moves on a straight line path

with a constant speed, and updates the server with its direction of movement and

speed when they change. A similar assumption is that objects are moving with

constant speed on a known road. A mutual feature of these assumptions is that

for each moving object the server can determine its location based upon a formula.

In our experiments new locations of objects are generated at the beginning of each

cycle. While some index structures for moving objects rely upon restricted models

of movement (e.g., [SWCD97]), Query Indexing allows objects to move arbitrarily.

Therefore, the objects can move anywhere in the domain, but the overall object

distribution chosen for the experiment is maintained (uniform, skewed, etc.).

3.2.2 Query indexing

This chapter builds on the idea of Query Indexing proposed in Section 2.4. Instead

of building an index on the moving objects (which would require frequent updating),

create an index on the more stable queries. Any spatial index structure can be used

to build the query index (e.g., R*-tree, Quad-tree, etc).

The problem of continuous query evaluation is: Given a set of queries and a set

of moving objects, continuously determine the set of objects that are contained within

each query. Notice that this approach can be easily extended to compute point to

query mapping, handle region queries, answer simple density queries (e.g. monitor

how many people are in a building) etc.

Clearly, with a large number of queries and moving objects, it is infeasible to

re-evaluate each query whenever any object moves. A more practical approach is

to re-evaluate all queries periodically taking into account the latest positions of all

objects. In order for the results to be useful, a short re-evaluation period is desired.
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The goal of the query evaluation algorithms is therefore to re-evaluate all queries in

as short a time as possible.

Input: Datasets X, Q, and index IQ on Q

Output: All qj .SX , for j = 1, . . . , |Q|
1. for i← 1 to |Q| do

(a) qi.SX ← ∅
2. for i← 1 to |X| do

(a) Get xi.SQ using index IQ

(b) for j ← 1 to |xi.SQ| do

i. q ← xi.SQ[j]

ii. q.SX ← q.SX ∪ {xi}

Figure 3.1 Query Indexing approach: a cycle processing

The evaluation of continuous queries in each cycle proceeds as follows. Let X =

{x1, . . . , x|X|} be the set of points. Let Q = {q1, . . . , q|Q|} be the set of queries. Let

xi.SQ be the set of all queries in which point xi is contained, xi.SQ = {q : xi ∈ q; q ∈
Q}. Let qj .SX be the set of all points contained in query qj , qj.SX = {x : x ∈ qj ; x ∈
X}. The goal is to compute all qj .SX , for j = 1, . . . , |Q|, based upon the current

locations of the objects by the end of each cycle. Since at any time instant all objects

move with arbitrary speeds and directions, all xi.SQ’s and qj .SX ’s are likely to be

completely different from one cycle to the next. Consequently, incremental solutions

are of little value.

In each cycle, we first use the query index to compute xi.SQ for each object xi, as

shown in Figure 3.1. Next, for each query q in xi.SQ, we add xi to q.SX .
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Some important consequences of indexing the queries instead of the data should

be noted. Firstly, the index needs no modification unless there is a change to the

set of queries – a relatively less frequent event in comparison to changes to object

locations. Secondly, the location of each object can change greatly from one cycle

to the next without having any impact on the performance. In other words, there

is no restriction on the nature of movement or speed of the objects. There is also

no restriction on the fraction of object that can move at any moment in time, that

is we assume that all objects move. This is an advantage since many known object

indexing techniques rely upon certain assumptions about the movement of objects.

Next we discuss the feasibility of in-memory query indexing by evaluating different

types of indexes for queries. Clearly, if we are unable to select an appropriate index,

the time needed to complete one cycle can be large (e.g., 1 min) and the approach

would be unacceptable. Below we briefly discuss indexing techniques for building a

query index in main memory. In Section 3.3 we evaluate the performance of these

alternative indexes.

3.2.3 Indexing techniques

We consider the following five well-known index structures: R*-tree, R-tree, CR-

tree, quad-tree, and grid. The R-tree and R*-tree index structures are designed to

be disk-based structures. The CR-tree [KCK01], on the other hand, is a variant of

R-trees optimized for main memory. All of these indexes were implemented for main

memory use. To make a fair comparison, we did not choose large node sizes for these

trees. Instead, we experimentally determined the best choice of node size for main-

memory evaluation. All three indexes (R*-tree, R-tree, and CR-tree) showed best

performance when the number of entries per node was chosen to be five. This value

was used for all experiments.

Details of the CR-tree are described in [KCK01]. The main idea is to make the

R-tree cache-conscious by compressing MBRs. The R-tree is a balanced tree where

each node has so called Minimum Bounding Rectangles (MBRs) associated with it.
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All object that a node covers are tightly bounded by the node’s MBR. Each node also

contains MBRs of its children. Processing of various types of queries normally starts

from the root node and proceeds based on the MBR information in each considered

node. The R*-tree is an R-tree which utilizes different heuristics for splitting a node

when it is overfull.

The CR-tree proposes a way for compressing MBRs by using so-called Quantized

Relative Minimum Bounding Rectangles (QRMBR). Other well-known minor opti-

mizations have also been proposed in the paper. We implemented the CR-tree based

upon the main idea of QRMBRs without the other optimizations.

Because many variations exist, we describe the grid index as it is used here for

query indexing. The grid index is a 2-dimensional array of “cells”. Each cell repre-

sents a region of space generated by partitioning the domain using a uniform grid.

Figure 3.2 shows an example of a grid. Throughout the chapter, we assume that the

�
�
�
�
�

Q1

Q2

X

Y

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Q1 Q2... ... ...

Query Array

Cell (2, 2)

xfull

part x

Cell (5, 2)

full

part

x

x

z

Figure 3.2 Example of grid

domain is normalized to the unit square.

In this example, the domain is divided into a 10 × 10 grid of 100 cells, each of

size 0.1 × 0.1. Since we have a uniform grid, given the coordinates of an object, it

is easy to calculate the cell that it falls under in O(1) time. Each cell contains two

lists that are identified as full and part (see Figure 3.2). The full (part) list of a cell
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contains pointers to all the queries that fully (partially) cover the cell. The choice of

data structures for the full and part lists is critical for performance. We implemented

these lists as dynamic-arrays1 rather than lists, improving performance by roughly

40% due to the achieved clustering. An analytical solution for the appropriate choice
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Figure 3.3 Example of grid with two tiers

of grid size is presented in Section 3.2.4. As will be seen in the experimental section,

this simple one-level grid index outperforms all other structures for uniform as well

as skewed data. However, for the case of highly skewed data (e.g., roughly half the

queries fall within one cell), the full and part lists grow too large. Such situations

are easily handled by switching to a two-tier grid. If any of the lists grows beyond

a threshold value, the grid index converts to a directory grid and a few secondary

grids, see Figure 3.3. The directory grid is used to determine which secondary grid

to use. Each directory grid cell points to a secondary grid. The secondary grid is

used in the same way as the one-level grid. While this idea of generating an extra

layer can be applied as many times as is necessitated by the data distribution, three

or more layers is unlikely to lead to a better performance in practice. Consider for

example, that the domain of interest represents a 1000-kilometer by 1000-kilometer

region. With a 1000 × 1000 grid, a cell of the two-tier grid corresponds a square of

1A dynamic array is a standard data structure for arrays whose size adjusts dynamically.
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side 1 meter – it is very unlikely that there are very many objects or queries in such

a small region in practice.

Observe that the grid index and the quad-tree are closely related. Both are space

partitioning and split a region if it is overfull. There is, however, a subtle difference:

the grid index avoids many conditional (“if”) branches in its search algorithm due to

its shorter known height. Furthermore, the grid index is not a tree since siblings can

point to a common “child” [KPAH02].

Another advantage of the grid is that it typically has far more cells per level. A

quad-tree therefore can be very deep, especially for skewed data. We expect that a

quad-tree like structure that has more cells per level would perform better than a

standard quad-tree. To test this hypothesis, we also consider what we call a 32-tree.

The 32-tree is identical to a quad-tree, except that it divides a cell using a 32 × 32

grid, compared to the 2× 2 grid used by the quad-tree. Pointers to children are used

instead of keeping an array of pointers to children. To further improve performance,

we implemented the following optimization: In addition to leaf nodes, internal nodes

can also have an associated full list. Only leaf nodes have a part list. A full list

contains all queries that fully cover the bounding rectangle (BR) of the node, but do

not fully cover the BR of its parent. Adding a rectangle (or region) to a node proceed

as follows. If the rectangle fully covers the BR, it is added to the full list and the

algorithm stops for that node. If this is a leaf node and there is space in the part

list, the rectangle is added to part list. Otherwise the set of all relevant children is

determined and the procedure is applied to each of them.

Storing full lists in non-leaf nodes has two advantages. One advantage is saving

of space: without such lists, when a query fully covers a node’s BR it would be

duplicated in all the node’s children. A second advantage is that it has the potential

to speed up point queries. If a point query falls within the BR of a node then it is

relevant to all queries in the full list of this node – no further checks for these queries

are needed. A leaf node split is based on the part list size only. While many more
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optimizations are possible, we did not explore these further. The purpose of studying

the 32-tree is to establish the generality and flexibility of the grid-based approach.

3.2.4 Choosing grid size

We now present an analysis of appropriate choice for the cell size for the grid index

in the context of main-memory query indexing. Consider the case where m square

Table 3.1 Parameters for choosing grid size

Param Meaning

D Domain, D = [0, 1]2

m The number of queries

q The length of query side

c The length of cell side

i i = 
 q
c
�

x x = q − i× c

queries with side q, uniformly distributed on [0, 1]2 domain, are added to index, see

Figure 3.4a. Let c be the side of each cell. Then query side q can be presented as

q = i× c + x; i = 
q
c
�, x = q − i× c.

Cell G(0, 0) can be logically divided into three parts (or sets), see Figure 3.4a. Set0 is

the top-left rectangle of size (c− x)2, Set1 is the bottom-left and top-right rectangles

of combined size 2x(c − x), and Set2 is the bottom-right rectangle of size x2. We

now analyze the average number of cells partly covered by a query. Without loss of

generality let us consider the case where the top-left corner of query Q is somewhere

within cell G(0, 0).

Case 1: Query side is greater than cell side (q > c). It can be verified that if the top-

left corner of Q is inside Set0, then Q is present in 4i part lists (see Figure 3.4b), for
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Figure 3.4 Example of query (a) choosing grid size (b) top-left corner in Set0
(c) top-left corner in Set1 (d) top-left corner in Set2

Set1 this number is 4i+2 (see Figure 3.4c), and for Set2 it is 4i+4 (see Figure 3.4d).

Assuming the uniform distribution, the probability that the top-left corner of Q is

inside Set0 is (c−x)2

c2
, inside Set1 is 2x(c−x)

c2
, and inside Set2 is x2

c2
. Therefore, on average,

each query ends up in avg number of part lists:

avg =
[4i(c− x)2 + (4i + 2)2x(c− x) + (4i + 4)x2]

c2

=
4c[x + ic]

c2

=
4q

c

Correspondingly, m queries end up in 4qm
c

part lists. Since the total number of cells

is 1
c2

, each cell has part list of size 4qmc on average.

In our implementation of the algorithm the difference in time needed to process a

cell when its part list is empty vs. when its part list has size one is very small. When

choosing cell size c such that 4qmc = 1, that is c = 1
4qm

, on average, the size of a

cell’s part list is one and choosing a smaller cell size is unnecessary. Since we consider

the case where query size is greater than cell size (q > c), the following must also be

true: q > 1
4qm

and therefore q > 1
2
√

m
.

Case 2: Query side is less than cell side (q < c). In this case i = 
 q
c
� = 0 and

x = q − i × c = q. It can be verified that if the top-left corner of Q is inside Set0,

then Q is present in 1 part list, for Set1 this number is 2, and for Set2 it is 4, see

Figure 3.4. The probabilities that the top-left corner is inside Set0, Set1, or Set2
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remain the same. Therefore, the average number of part lists, each query ends up in

is computed as:

avg =
[1× (c− x)2 + 2× 2x(c− x) + 4× x2]

c2

=
(x + c)2

c2

Correspondingly, m queries end up in m(x+c)2

c2
part lists. Since the total number

of cells is 1
c2

, each cell has part list of size m(x + c)2 on average.

In our implementation of the algorithm the difference in time needed to process

a cell when its part list is empty vs. when its part list has size one is very small. By

choosing cell size c such that m(x + c)2 = 1, that is c = 1√
m
− x, on average, the size

of each cell part list is one and choosing smaller cell size is unnecessary. Since we

consider the case where query size is less than cell size (q < c), and since q = x for

this case, the following must also be true q < 1√
m
− q and therefore q < 1

2
√

m
.

Final formula The final formula for choosing cell size c is:

c =




1
4qm

if q > 1
2
√

m
;

1√
m
− q otherwise.

Smaller values of cell size c give only minor performance improvement while incurring

large memory penalty. Remember, the grid size is computed as 1/c, and as the result

we have 1
c
× 1

c
cell grid.

Let us consider the example in Figure 3.13a. There the number of queries m is

25, 000 and the query size q is 0.01. We first need to test the condition q > 1
2
√

m
. Since

1
2
√

m
= 0.001 is less than q = 0.01, then c = 1

4qm
formula should be used, and therefore

cell size c = 0.001. This means that grid should be of size 1000 × 1000 cells (i.e.,

1
c
× 1

c
) and a finer grid gives only minor performance improvement while incurring a

large memory penalty. We study the impact of tile size in the experimental section

and show that the results match the analytical prediction.
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3.2.5 Memory requirements for grid

Let us first compute average size of full list of each cell in an analogous fashion as

in Section 3.2.4.

Case 1: Query side is greater than cell side: q > c. It can be verified that if the top-

left corner of Q is inside Set0, then Q is present in (i−1)2 part lists (see Figure 3.4b),

for Set1 this number is i(i−1) (see Figure 3.4c), and for Set2 it is i2 (see Figure 3.4d).

Assuming the uniform distribution, the probability that the top-left corner of Q is

inside Set0 is (c−x)2

c2
, inside Set1 is 2x(c−x)

c2
, and inside Set2 is x2

c2
. Therefore, on average,

each query ends up in avg number of part lists:

avg =
[(i− 1)2(c− x)2 + i(i− 1)2x(c− x) + i2x2]

c2

=
x2 + 2c(i− 1)x + c2(i− 1)2

c2

=
(x + c(i− 1))2

c2

=
(q − c)2

c2

Correspondingly, m queries end up in m(q−c)2

c2
part lists. Since the total number of

cells is 1
c2

, each cell has part list of size m(q − c)2 on average.

Case 2: Query side is less than cell side: q < c. In this case the size of each full list

is zero.

Final formula The space that a grid occupies in main memory can be estimated

as the sum of the space that is occupied be cells without the lists and of the space

occupied by the lists. The former can be computed as the number of cells times the

cell size, i.e. Scells = 1
c2

2Sp, where Sp is the size needed in the system to store a

pointers (e.g. 4). This is so because each cell simply contains two pointers to its full

and part lists. The space occupied by the lists Slists can be computed as the number

of cells times the space needed for full and part lists per cell on average. Let us first

compute the average combined size Nlist of full and part lists per cell:

Nlist =




4qmc + m(q − c)2 = m(q + c)2 if q > c;

m(q + c)2 otherwise.
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Nlist = m(q + c)2

Since there are c−2 cells, the space occupied by all lists can be computed as Nlists =

Nlist

c2
. Each element of the list consists of a pointer to a query and a pointer to the

next element, therefore Slists = Nlists × 2Sp.

Hence total space occupied by grid can be estimated as:

Sgrid = Scells + Slists

=
2Sp[1 + m(q + c)2]

c2

General Case: Assume each query on average ends up in L lists (full or part). Then

m queries end up in mL lists. Since the total number of cells is 1
c2

, each cell has the

combined list size of mLc2 on average.

The space occupied by the lists Slists can be computed as the number of cells

times the space needed for full and part lists per cell on average. As before, Slists =

Nlists × 2Sp = mL× 2Sp. Notice Scells remains the same as above. Hence total space

occupied by grid in general case can be estimated as:

Sgrid = Scells + Slists

= 2Sp(
1

c2
+ mL)

For example, for the Pentium III machine, for grid of size 1000 (e.g., c = 0.001), for

m = 25, 000 queries and given that Sp = 4, the size of grid is: Sgrid = 2Sp(
1
c2

+mL) =

8(1, 000, 000 + 25, 000 × L) = 8, 000, 000 + 200, 000 × L bytes. If each query ends

up in L = 1000 lists on average (i.e., cover 1000 cells – it is normally much smaller,

around 100) then Sgrid = 208, 000, 000 bytes (well within the memory of a typical

PIII machine, e.g. the PIII machine we used for our testing has 2 GB).

3.2.6 Improving cache hit-rate

The performance of main-memory algorithms is greatly affected by cache hit-rates.

In this section we describe an optimization that can drastically improve cache hit-

rates (and consequently the overall performance) for the query indexing approach.
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In each cycle the processing involves searching the index structure for each object’s

current location in order to determine the queries that cover the object’s current

location.

Unsorted
Point Array

X

Y

0 1 2 3 4

0

1

2

3

4

P1

P2

P3

Pk
Pn

P1

P2

P3

Pk

Pn

Z-Sorted
Point Array

P2

Pn

Pk

P3

P1

Figure 3.5 Example of un-sorted and z-sorted object arrays

For each object, its cell is computed, and the full and part lists of this cell are

accessed. The algorithm simply processes objects in sequential order in the array.

Consider the example shown in Figure 3.5. The order in which the objects appear in

the array is shown on the left of the figure in the ”Unsorted Point Array”. Note that

we use the terms object and point interchangeably. In this example cell G(0, 0) and

its lists are accessed for processing object P2 and then later for processing object Pn.

Since several other objects are processed after P2 and before Pn, it is likely that cell

G(0, 0) and its lists are not in the cache when Pn is processed – resulting in cache

misses.

If objects are to maintain their locality, then the cache hit-rate can be improved by

altering the order of processing the objects. Objects are reordered in the array such

that objects that are close together in our [0, 1]2 2-dimensional domain are also tend

to be close together in the object array, as in the array on the right labeled ”Sorted

Point Array” shown in Figure 3.5. With this ordering, object P2 is analyzed first and

therefore cell G(0, 0) and its lists are processed. Then object Pn is analyzed and cell

G(0, 0) and its lists are processed again. In this situation everything relevant to cell
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G(0, 0) is likely to remain in the CPU cache after the first processing and is reused

from the cache during the second processing. The speed up effect is also achieved

because objects that are close together are more likely to be covered by the same

queries than objects that are far apart, thus queries are more likely to be retrieved

from the cache rather than from main memory.

Sorting the objects to ensure that objects that are close to each other are also

tend to be close in the array order can easily be achieved. One possible approach

is to group objects by cells – i.e. all objects that fall under each cell are placed

adjacently in the array and thus processed together. The objects grouped by cell can

then be placed in the array using a row-major or column-major ordering for the cells.

Although this is effective, the benefit of the sorting is lost if the object moves out of

its current cell and enters an adjacent cell that is not close by in the ordering used

for the cells (e.g object moves to adjacent cell in next row and row major ordering

is used). We propose an alternative approach: order the points using any of the

well-known space filling curves such as Z-order or Hilbert curve. We choose to use a

sorting based on the Z-order. Z-sorting significantly improves the performance of the

main memory algorithm, as will be shown in the experiment section.

It is important to understand that the use of this technique does not require that

objects have to preserve their locality. The only effect of sorting the objects according

to their earlier positions is to alter the order in which objects are processed in each

cycle. The objects are still free to move arbitrarily. Of course, the effectiveness of

this technique relies upon objects maintaining their locality over a period of time. If

it turns out that objects do not maintain their locality then we are, on the average,

no worse than the situation in which we do not sort. Thus, for the case where objects

preserve locality sorting the objects based upon their location at some time can be

beneficial. It should also be noted that the exact position used for each object is not

important. Thus the sorting can be carried out infrequently, say once a day.

For example for skewed data, 1,000,000 moving objects and 25,000 of continuous

range queries (size 0.01 × 0.01), the CPU cost of Z-sorting is 4.585 seconds. If the
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data is not Z-sorted the processing cost is 1.715 seconds, for Z-sorted data it is 0.763,

i.e., in this case there is 2.25× improvement. The cost of Z-sorting corresponds to the

processing cost of 2.67 cycles of unsorted data and 6 cycles of sorted data. In other

words, by losing a handful of processing cycles for doing the sorting, the performance

can be improved 2.25 times.

Of course, the performance will deteriorate as object move and the data will need

to be resorted periodically to maintain the level of performance close to that of ideally

sorted data.

3.3 Experimental results

In this section we present the performance results for the index structures. The

results report the actual times for the execution of the various algorithms. First we

describe the parameters of the experiments, followed by the results and discussion.

In all our experiments we used a 1GHz Pentium III machine with 2GB of memory.

The machine has 32K of level-1 cache (16K for instructions and 16K for data) and

256K level-2 cache. Moving objects were represented as points distributed on the unit

square [0, 1]× [0, 1]. The number of objects ranges from 100,000 to 1,000,000. Range-

queries were represented as squares with sides 0.01. Experiments with other sizes of

queries yielded similar results and thus are omitted. For distributions of objects and

queries in the domain we considered the following cases:

1. Uniform: Objects and queries are uniformly distributed.

2. Skewed: The objects and queries are distributed among five clusters. Within

each cluster objects and queries are distributed normally with a standard devi-

ation of 0.05 for objects and 0.1 for queries.

3. Hyper-skewed: Half of the objects (queries) are distributed uniformly on

[0, 1] × [0, 1], the other half on [0, 0.001] × [0, 0.001]. Queries in [0, 0.001] ×
[0, 0.001] are squares with sides 0.00001 to avoid excessive selectivity.
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We consider the skewed case to be most representative. The hyper-skewed case

represents a pathological situation designed to study the performance of the schemes

under extreme skew. In the majority of our experiments the grid was chosen to

consist of 1000×1000 cells. The testing proceeds as follows: first, queries and objects

are generated and put into arrays. Then the index is initialized and the queries are

added to it. In each cycle first the locations are updated then the query results are

evaluated.

3.3.1 Comparing efficiency of indexes

Figure 3.6a shows the results for various combinations of number of objects and

queries with uniform distribution. The y-axis gives the processing time for one cycle

in seconds for each experiment. Figure 3.6b shows similar results for the skewed case.
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Figure 3.6 Index comparison for (a) Uniform distribution (b) Skewed distribution

Each cycle consists of two steps: (i) moving objects (i.e., determining current

object locations) and (ii) processing/evaluation. From Figure 3.6b for the case of

100,000 objects and 100,000 queries the evaluation step for the grid takes 0.628 sec-

onds. Updating/determining object locations takes 0.15 seconds for 105 objects and
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1.5 seconds for 106 objects on average. Thus the length of each cycle is just 0.778

seconds on average.

Hyper-skewed
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Figure 3.7 Index comparison for Hyper-skewed distribution

The grid index gives the best performance in all these cases. While the superior

performance of the grid for the uniform case is expected, the case for skewed data is

surprising. For all experiments the grid index consisted of only a single level.

Figure 3.7 shows the results for the hyper-skewed case. For the hyper-skewed case,

the grid switches from one-tier to two-tier due to an overfull cell. The processing time

for a simple one-tier grid is too high, as expected, and is not shown on the figure. It

is interesting to see that the grid index once again outperforms the other schemes.

There is a significant difference in performance of grid and the other approaches

for all three distributions. For example, with 1,000,000 objects and 25,000 queries,

grid evaluates all queries in 1.724 seconds as compared to 33.2 seconds for the R-

Tree, and 8.5 seconds for the Quad Tree. This extremely fast evaluation implies

that with the grid index, the cycle time is very small – in other words, we can re-

compute the set of objects contained in each query every 3.2 seconds or faster (1.7

seconds for the evaluation step plus 1.5 seconds for updating the locations of objects).

This establishes the feasibility of in-memory query indexing for managing continuous

queries.
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3.3.2 32-tree index

It can be seen that the quad-tree performs better than R-tree like data structures

for skewed cases, but worse for the majority of the uniform and hyper-skewed cases.
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Figure 3.8 Performance of 32-tree (a) Uniform distribution (b) Skewed distribution
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Figure 3.9 Performance of 32-tree for Hyper-skewed distribution

The problem with the quad-tree for hyper-skewed case is that it has a large height.

This suggests that if it were able to ”zoom” faster it would be a better index than

R*-tree. We test this hypothesis by evaluating the 32-tree which is similar to the

quad-tree except that it has more divisions at each node.
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The performance of the 32-tree along with that for the grid and R*-tree for uni-

form, skewed, and hyper-skewed data is shown in Figures 3.11 and 3.12. As can

be seen from the figures our hypothesis is true: the performance of the 32-tree lies

between that of the R*-tree and the grid.

Skewed data distribution
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Figure 3.10 Memory requirements relative to the R-tree

Figure 3.10 show relative to the R-tree memory requirements for various indexes.

It shows that there is a tradeoff between the amount of memory occupied by an index

and its performance, i.e., the fastest indexes require more memory. Even though the

Grid index requires the most amount of memory, it was shown in Section 3.2.5 that

the grid fits in memory of an average workstation.

3.3.3 Prolonged queries

In this section we present the results of testing with prolonged queries of the four

best schemes: the Grid, 32-tree, Quad-tree, and R*-tree. In all experiments in this

section half of the queries are of the size 0.1× 0.001 and the other half is of the size

0.001× 0.1. That is the query shape is skewed: namely one side is 100 times larger

than the other. As before, our domain represents 1, 000 × 1, 000 mile area, hence

the size of each query is 1 mile by 100 miles. We think such a skew in query size is

unrealistic and uncommon in real life. Nevertheless this section shows the robustness

of our techniques even for prolonged queries.
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Uniform data distribution
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Figure 3.11 Performance for 50/50 mix of 0.1×0.001 and 0.001×0.1 queries (a) Uni-
form (b) Skewed

Hyper-skewed data distribution
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Figure 3.12 Performance for 50/50 mix of 0.1 × 0.001 and 0.001× 0.1 queries: Hy-
per-skewed distribution

All the figures in this case show similar patters to that of 0.01×0.01 square queries.

Notice that the area of each query in this section is equal to the area of a square query

from the other experiments. Once again the Grid index substantially outperforms all

other indexes. Because a prolonged query is likely to end up in larger amount of

cell lists the performance of the Grid index is slightly worse than that of the case

with the square queries. The performance of the R*-tree deteriorates substantially

because the MBRs are likely to become larger, i.e. each MBR is at least of size 0.1

in one dimension. This leads to larger overlap among the MBRs and, consequently,

poorer performance. The performance of the space partitioning quad-tree and 32-tree
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is affected adversely too because each query is likely to overlap more partitions, and

correspondingly be present in a larger number of nodes.

This section establishes the fact that the superiority of the Grid index verses the

other indexes is even greater when the queries are not squares but rather prolonged

rectangles with one side substantially greater than the other.

3.3.4 Choice of grid size

In this experiment we study the impact of the number of cells in the grid. The

analysis in Section 3.2.4 predicted that a 1000 × 1000 grid should be chosen for the

settings of this example (uniform, 1M objects, 25K queries). Figure 3.13a presents
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Figure 3.13 a) Impact of grid size on processing time. b) Effectiveness of Z-Sorting.

the processing time needed with grid sizes 100× 100, 1000× 1000, and 2000× 2000

cells. As can be seen, increasing the number of cells has the effect of reducing the

average number of queries for a cell thereby reducing the processing time. There is a

substantial increase in performance as we move from 100× 100 cells to 1000× 1000

cells. The increase is minor when we move from 1000 × 1000 to 2000 × 2000 cells

for our case of 1M objects and 25K queries. This behavior validates the analytical

results.
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3.3.5 Z-sort optimization

Figure 3.13b illustrates the effect of the Z-sort technique on evaluation time for

ideally Z-sorted data. Z-sorting reorders the data such that objects that are close

together tend to be processed close together. When processing each object in the

array from the beginning to the end, objects that close to each other tend to reuse

information stored in the cache rather than retrieve it from main-memory. From the

results, we see that sorting objects improves the performance by roughly 50%. The

Z-sort technique was used only in this experiment.

3.3.6 Grid: performance of adding and removing queries

We now study the efficiency of modifying the grid index. The results in Figure 3.14

show how long it takes to add and remove queries to/from an existing index that

already contains some queries. Although modifications to queries are expected to be

rare, we see that adding or removing queries is done very efficiently with the grid. For
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Figure 3.14 Adding and deleting queries.

example, the 100% bar shows that 100% of 25K queries can be added or deleted in

only 2.408 seconds. The decision whether to add or delete a query at a particular step
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is made with probability of 0.5 for each query. Therefore we see that even significant

changes to the query set can be effectively handled by the grid approach.

3.4 Summary

In this chapter we presented a Query-Index approach for in-memory evaluation

of continuous range queries on moving objects. We established that the proposed

approach is in fact a very efficient solution even if there are no limits on object speed

or nature of movement or fraction of objects that move at any moment in time,

which are common restrictions made in similar research. We presented results for

seven different in-memory spatial indexes. The grid approach showed the best result

even for the skewed case. A technique of sorting the objects to improve the cache hit-

rate was presented. The performance of the grid index was roughly doubled with this

optimization. An analysis for selecting optimal grid size and experimental validation

was presented. We also showed that even though the set of continuous queries is to

remain almost unchanged, nevertheless grid can very efficiently add or remove large

numbers of queries. Overall, indexing the queries using the grid index gives orders of

magnitude better performance than other index structures such as R*-trees.
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4. GRID-BASED SIMILARITY JOINS

4.1 Introduction

Similarity (spatial) joins are an important database operation for several applica-

tions including GIS, multimedia databases, data mining, location-based applications,

and time-series analysis. Spatial joins are natural for geographic information systems

and moving object environments where pairs of objects located close to each other

are to be identified [PD96, LR96]. Many algorithms for basic data mining operations

such as clustering [GRS98], outlier detection [KN98], and association rule mining

[KH95] require the processing of all pairs of points within a certain distance to each

other [BBKK01]. Thus a similarity join can serve as the first step for many of these

operations [BBBK00].

The problem of efficient computation of similarity joins has been addressed by

several researchers. Most researchers have focused their attention on disk-based joins

for high-dimensional data. Current high-end workstations have enough memory to

handle joins even for large amounts of data. For example, the self-join of 1 million 32-

dimensional data points, using an algorithm similar to that of [BBKK01] (assuming

float data type for coordinate and int for point identities) requires roughly 132MB of

memory (i.e., (32× 4 + 4)× 106 ≈ 132MB, plus memory for stack etc.). Furthermore

there are situations when it is necessary to join intermediate results situated in main

memory or sensor data, that is to be kept in main memory. With the availability of

a large main memory, disk-based algorithms may not necessarily be the best choice.

Moreover, for certain applications (e.g., moving object environments) near real-time

computation may be critical and require main memory evaluation.

In this chapter we consider the problem of main memory processing of similarity

joins, also known as ε-joins. Given two datasets A and B of d-dimensional points and
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value ε ∈ 
, the goal of a join operation is to identify all pairs of points, one from

each set, that are within distance ε from each other, i.e.

A ��ε B = {(a, b) : ‖a− b‖ < ε; a ∈ A, b ∈ B}.

While several research efforts have concentrated on designing efficient high-dimen-

sional join algorithms, the question of which method should be used when joining low-

dimensional (e.g., 2–6 dimensions) data remains open. This chapter addresses this

question and investigates the choice of join algorithm for low- and high-dimensional

data. We introduce two new join algorithms: the Grid-join and EGO*-join, and

evaluate their along with the state of the art algorithm – EGO-join [BBKK01], and

a method which serves as a benchmark in many similar publications, the RSJ join

[BKS93].

These techniques are compared through experiments using synthetic and real data.

We considered the total wall-clock time for performing a join without ignoring any

costs, such as pre-sorting data, building/maintaining index etc. The experimental

results show that the Grid-join approach showed the best results for low-dimensional

data.

Under the Grid-join approach, the join of two sets A and B is computed using

an index nested loop approach: an index (i.e., specifically constructed 2-dimensional

grid) is built on circles with radius ε centered at the first two coordinates of points

from set B. The first two coordinates of points from set A are used as point-queries

to the grid-index in order to compute the join. Although several choices are available

for constructing this index, only the grid is considered in this chapter. The choice

is not accidental, it is based upon our earlier results for main memory evaluation

of range queries. In Chapter 3 we have shown that for range queries over moving

objects, using a grid index results in an order of magnitude better performance than

memory optimized R-tree, CR-tree, R*-tree, or Quad-tree.

The results for high-dimensional data show that the EGO*-join is the best choice

of join method, unless ε is very small. The EGO*-join that we propose in this

chapter is based upon the EGO-join algorithm. The Epsilon Grid Order (EGO) join
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[BBKK01] algorithm was shown to outperform other techniques for spatial joins of

high-dimensional data. The new algorithm significantly outperforms EGO-join for

all cases considered. The improvement is especially noticeable when the number of

dimensions is not very high, or the value of ε is not large. The RSJ algorithm is

significantly poorer than all other three algorithms in all experiments. In order to

join two sets using RSJ, an R-tree index needs to be built or maintained on both of

these sets. But unlike the case of some approaches, these indexes need not be rebuilt

when the join is recomputed with different ε.

Although not often addressed in related research, the choice of the ε parameter

for the join is critical to producing meaningful results. We have discovered that often

in similar research the choice of values of ε yields very small selectivity, i.e. almost

no point from one dataset joins with a point from the other dataset. In Section 4.4.1

we present a discussion on how to choose appropriate values of ε.

The contributions of this chapter are as follows:

• Two join algorithms that give better performance (almost an order of magnitude

better for low dimensions) than the state of the art EGO-join algorithm.

• Recommendations for the choice of join algorithm based upon data dimension-

ality d, and ε.

• Highlight the importance of the choice of ε and the corresponding selectivity

for experimental evaluation.

• Highlight the importance of the cache miss reduction techniques: spatial sort-

ings (2.5 times speedup) and clustering via utilization of dynamic arrays (40%

improvement).

• For the Grid-join, the choice of grid size is an important parameter. In order

to choose good values for this parameter, we develop highly accurate estimator

functions for the cost of the Grid-join. These functions are used to choose an

optimal grid size.
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The rest of this chapter is organized as follows. Related work is discussed in Sec-

tion 4.5. The new Grid-join and EGO*-join algorithms are presented in Section 4.2.

The proposed join algorithms are evaluated in Section 4.4, and Section 4.6 concludes

the chapter. A sketch of the algorithm for selecting grid size and cost estimator

functions for Grid-join are presented in Section 4.3.

4.2 Similarity join algorithms

In this section we introduce EGO*-join and Grid-join. The EGO*-join method is

discussed in Section 4.2.1. In Section 4.2.2 we first present the Grid-join algorithm

followed by an important optimization for improving the cache hit-rate. An analysis

of the appropriate grid size as well as cost prediction functions for the Grid-join is

presented in Section 4.3.

4.2.1 EGO*-join (JEGO∗)

In this section we present an improvement of the disk-based EGO-join algorithm

proposed in [BBKK01]. We dub the new algorithm the EGO*-join. We use notation

JEGO for the EGO-join procedure and JEGO∗ for the EGO*-join procedure. According

to [BBKK01], the state of the art algorithm JEGO was shown to outperform other

methods for joining massive, high-dimensional data.

We begin by briefly describing JEGO as presented in [BBKK01] followed by our

improvement of JEGO.

The Epsilon Grid Order: JEGO is based on the so called Epsilon Grid Ordering

(EGO), see [BBKK01] for details. In order to impose an EGO on dataset A, a regular

grid with the cell size of ε is laid over the data space. The grid is imaginary, and

never materialized. For each point in A, its cell-coordinate can be determined in O(1)

time. A lexicographical order is imposed on each cell by choosing an order for the

dimensions. The EGO of two points is determined by the lexicographical order of the

corresponding cells that the points belong to.
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Input: Datasets A, B, and ε ∈ 

Output: Result set R

1. EGO-sort(A, ε)

2. EGO-sort(B, ε)

3. join sequences(A, B)

Figure 4.1 EGO-join Procedure, JEGO

EGO-sort: In order to perform JEGO of two sets A and B with a certain ε,

first the points in these sets are sorted in accordance with the EGO for the given ε.

Notice that for a subsequent JEGO operation with a different ε sets A and B need to

be sorted again since their EGO values depend upon the cells.

Recursive join: The procedure for joining two sequences is recursive. Each

sequence is further subdivided into two roughly equal subsequences and each subse-

quence is joined recursively with both its counterparts. The partitioning is carried

out until the length of both subsequences is smaller than a threshold value, at which

point a simple-join is performed. In order to avoid excessive computation, the al-

gorithm avoids joining sequences that are guaranteed not to have any points within

distance ε of each other. Such sequences can be termed non-joinable.

EGO-heuristic: A key element of JEGO is the heuristic used to identify non-

joinable sequences. The heuristic is based on the number of inactive dimensions,

which will be explained shortly. To understand the heuristic, let us consider a simple

example. For a short sequence its first and last points are likely to have the same first

cell-coordinates. For example, points with corresponding cell-coordinates (2, 7, 4, 1)

and (2, 7, 6, 1) have two common prefix coordinates (2, 7,×,×). Their third coordi-

nates differ – this corresponds to the active dimension, the first two dimensions are
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called inactive. This in turn means that for this sequence all points have 2 and 7 as

their first two cell-coordinates – because both sequences are EGO-sorted before being

joined.

The heuristic first determines the number of inactive dimensions for both se-

quences, and computes min – the minimum of the two numbers. It is easy to prove

that if there is a dimension between 0 and min − 1 such that the cell-coordinates of

the first points of the two sequences differ by at least two in that dimension, then the

sequences are non-joinable. This is based upon the fact that the length of each cell

is ε.
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Figure 4.2 Two sequences with (a) 0 inactive dimensions (b) 1 inactive dimension.
Unlike EGO-heuristic, in both cases EGO*-heuristic is able to tell that the sequences
are non-joinable.

New EGO*-heuristic: The proposed JEGO∗ (EGO*-join) algorithm is JEGO (EGO-

join) with an important change to the heuristic for determining that two sequences

are non-joinable. The use of the EGO*-heuristic significantly improves performance

of the join, as will be seen in Section 4.4.

We now present our heuristic with the help of an example for which JEGO is unable

to detect that the sequences are non-joinable.

Two sequences are shown in Figure 4.2(b). Assume that each sequence has many

points. One sequence starts in cell (0,1,3) and ends in cell (0,2,2). The second se-

quence starts in cell (0,5,6) and ends in (0,6,3). Both sequences have one inactive
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Input: The first and last cells of a sequence: CF andCL

Output: Bounding rectangle BR

1. for i← 0 to d− 1 do

(a) BR.lo[i]← CF .x[i]

(b) BR.hi[i]← CL.x[i]

(c) if (R.lo[i] = R.hi[i]) then continue

(d) for j ← i + 1 to d− 1 do

i. BR.lo[j]← 0

i. BR.hi[j]←MAX CELL

(e) break

2. return BR

Figure 4.3 JEGO∗: procedure for obtaining a Bounding Rectangle of a sequence

dimension: 0. The EGO-heuristic will conclude that these two should be joined, al-

lowing recursion to proceed. Figure 4.2(a) demonstrates the case when two sequences

are located in two separate slabs, both of which have the size of at least two in each

dimension. There are no inactive dimensions for this case and recursion will proceed

further for JEGO.

The new heuristic being proposed is able to correctly determine that for the cases

depicted in Figures 4.2(a) and 4.2(b) the two sequences are non-joinable. It should be-

come clear later on that, in essence, our heuristic utilizes not only inactive dimensions

but also the active dimension.

The heuristic uses the notion of a Bounding Rectangle for each sequence. Notice

that in general, given only the first and last cells of a sequence, it is impossible to

compute the Minimum Bounding Rectangle (MBR) for the sequence. However, it is
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possible to compute a Bounding Rectangle (BR). Figure 4.3 describes an algorithm

for computing a bounding rectangle.

The procedure takes as input the coordinates for first and last cells of the se-

quence and produces the bounding rectangle as output. To understand the getBR()

algorithm, note that if first and the last cell have n prefix equal coordinates (e.g.,

(1, 2, 3, 4) and (1, 2, 9, 4) have two equal first coordinates – (1, 2,×,×) ) then all cells

of the sequences have the same values in the first n coordinates (e.g., (1, 2,×,×) for

our example). This means that the first n coordinates of the sequence can be bounded

by that value. Furthermore, the active dimension can be bounded by the coordinates

of first and last cell in that dimension respectively. Continuing with our example,

the lower bound is now (1, 2, 3,×) and the upper bound is (1, 2, 9,×). In general,

we cannot say anything precise about the rest of the dimensions, however the lower

bound can always be set to 0 and upper bound to MAX CELL.

Input: Two sequences A and B

Output: Result set R

1. BR1 ← getBR(A.first, A.last)

1. BR2 ← getBR(B.first, B.last)

3. Expand BR1 by one in all directions

4. if (BR1 ∩BR2 = ∅) then return ∅
5. ... // continue as in JEGO

Figure 4.4 Beginning of JEGO∗: EGO*-heuristic
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Once the bounding rectangles for both sequences being joined are known, it is

easy to see that if one BR, expanded by one in all directions, does not intersect with

the other BR, than the two sequences will not join.

As we shall see in Section 4.4, JEGO∗ significantly outperform JEGO in all in-

stances. This improvement is a direct result of the large reduction of the number of

sequences compared based upon the above criterion. This result is predictable since if

EGO-heuristic can recognize two sequences as non-joinable then EGO*-heuristic will

always do the same, but if the EGO*-heuristic can recognize two sequences as non-

joinable then, in general, there are many cases when the EGO-heuristic will decide

the sequences are joinable. Thus the EGO*-heuristic is more powerful. Furthermore,

the difference in CPU time needed to compute the heuristics given the same two

sequences is insignificant.

4.2.2 Grid-join (JG)

Assume for now that we are dealing with 2-dimensional data. The spatial join

of two datasets, A and B, can be computed using a standard Index Nested Loop

approach as follows. We treat one of the point data sets as a collection of circles of

radius ε centered at each point of one of the two sets (say B). This collection of circles

is then indexed using some spatial index structure. The join is computed by taking

each point from the other data set (A) and querying the index on the circles to find

those circles that contain the query point. Each point (from B) corresponding to each

such circle joins with the query point (from A). An advantage of this approach (as

opposed to the alternative of building an index on the points of one set and processing

a circle region query for each point from the other set) is that point queries are much

simpler than region queries and thus tend to be faster. For example, a region query

on a quad-tree index might need to evaluate several paths while a point query is

guaranteed to be a single path query. An important question is the choice of index

structure for the circles.
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In Chapter 3 we have investigated the execution of large numbers of range queries

over point data in the context of evaluating multiple concurrent continuous range

queries on moving objects. The approach can also be used for spatial join if we

compute the join using the Index Nested Loops technique mentioned above. The two

approaches differ only in the shape of the queries which are circles for the spatial join

problem and rectangles for the range queries.

In Chapter 3 the choice of a good main-memory index was investigated. Several

key index structures including R-tree, R*-tree, CR-tree [KCK01], quad-tree, and 32-

tree were considered. All trees were optimized for main memory. The conclusion of

the study was that a simple one-level Grid-index outperformed all other indexes by

almost an order of magnitude for uniform as well as skewed data. Due to its superior

performance, in this study, we use the Grid-index for indexing the ε-circles.

The Grid Index While many variations exist, we have designed our own im-

plementation of the Grid-index, which we denote as IG. IG is built on circles with

ε-radius. Note however, that it is not necessary to generate a new dataset consisting

of these circles. Since each circle has the same radius (ε), the dataset of the points

representing the centers of these circles is sufficient. The similarity join algorithm

which utilizes IG is called the Grid-join, or JG for short.

Case of 2 dimensions For ease of explanation assume the case of 2-dimensional

data. IG is a 2-dimensional array of cells. Each cell represents a region of space
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Figure 4.5 An example of the Grid Index, IG
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generated by partitioning the domain using a regular grid.

Figure 4.5 shows an example of IG. Throughout the chapter, we assume that the

domain is normalized to the unit d-dimensional hyper-cube, [0, 1]d. In this example,

the domain is divided into a 10× 10 grid of 100 cells, each of size 0.1× 0.1.

Since the grid is uniform, it is easy to calculate cell-coordinates of an object

in O(1) time. Each cell contains two lists that are identified as full and part, as

shown in Figure 4.5. Let C(p, r) denote a circle with center at point p and radius

r The full (part) list of a cell contains pointers to all points bi from B such that

C(bi, ε) fully (partially) cover the cell. That is for cell C in IG its part and full

lists can be represented mathematically as C.full = {b : C ⊂ C(b, ε); b ∈ B} and

C.part = {b : C �⊂ C(b, ε) ∧ C ∩ C(b, ε) �= ∅; b ∈ B}.
To find all points within ε-distance from a given point a first the cell corresponding

to a is retrieved. All points in full list are guaranteed to be within ε-distance. Points

in part list need to be post-processed.

The choice of data structures for the full and part lists is critical for performance.

We implemented these lists as dynamic-arrays1 rather than lists which improves per-

formance by roughly 40% due to the resulting clustering (and thereby reduced cache

misses).

Case of d dimensions For the general d-dimensional case, the first 2 coordinates

of points are used for all operations exactly as in 2-dimensional case except for the

processing of part lists, which uses all d coordinates to determine whether ‖a−b‖ < ε.

The reason for two separate lists per cell for 2-dimensional points is that points

in the full list do not need potentially costly checks for relevance since they are

guaranteed to be within ε-distance. Keeping a separate full list is of little value for

more than 2 dimensions since now it too needs post-processing to eliminate false

positives similar to the part list. Therefore only one list is kept for all circles that at

least partially intersect the cell in the chosen 2 dimensions. We call this list part list:

C.part = {b : C ∩ C(b′, ε) �= ∅; b ∈ B}.
1A dynamic array is a standard data structure for arrays whose size adjusts dynamically.
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Input: Datasets A, B, and ε ∈ 

Output: Result set R

1. R← ∅
2. z-sort(A)

3. z-sort(B)

4. Initialize IG

5. for i← 0 to |B| − 1 do

(a) b′i ← (b0
i , b

1
i )

(b) Insert {bi, C(b′i, ε)} into IG

6. for i← 0 to |A| − 1 do

(a) a′
i ← (a0

i , a
1
i )

(b) Let Ci be the cell in IG corresponding to a′
i

(c) for j ← 0 to |C.part| − 1 do

i. b← Ci.part[j]

ii. if (‖ai − b‖ < ε) then R← R ∪ {(ai, b)}
(d′) for j ← 0 to |Ci.full| − 1 do

i. b← Ci.full[j]

ii. R← R ∪ {(ai, b)}
7. return R

Figure 4.6 Grid-join procedure, JG

JG is described in Figure 4.6. Steps 2 and 3, the z-sort steps, apply a spatial sort

to the two datasets. The need for this step is explained later. IG is initialized in

Step 4. In the loop in Step 5, all points bi from set B are added to IG one by one.

First b′i, a 2-dimensional point constructed from the first two coordinates of bi, is
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considered. Then pointer to bi is added to part lists of each cell C in IG that satisfies

C ∩ C(b′i, ε) �= ∅.
The loop in Step 6 performs a nested loop join. For each point ai in A all points

from B that are within ε distance are determined using IG. To do this, point a′
i is

constructed from the first two coordinates of ai and the cell corresponding to a′
i in IG,

Ci, is determined in Steps 6(a) and 6(b). Then, in Step 6(c), the algorithm iterates

though all elements of the part list of cell Ci and finds all relevant to a points. Step

6(d′) is analogous to Step 6(c) and valid only for 2-dimensional case.

Choice of grid size The performance of JG depends on the choice of grid size,

therefore it must be selected carefully. Intuitively, the finer the grid the faster the

processing but the slower the time needed to initialize the index and load the data

into it. We now present a sketch of a solution for selecting appropriate grid size.

The first step is to develop a set of estimator functions that predict the cost of

the join given a grid size. The cost is composed of three components, the costs of:

(a) initializing the empty grid; (b) loading the dataset B into the index; and (c)

processing each point of dataset A through this index. Section 4.3 presents details on

how each of these costs is estimated. The quality of the prediction of these functions

was found to be extremely high. Using these functions, it is possible to determine

which grid size would be optimal. These functions can also be used by a query

optimizer – for example to evaluate whether it would be efficient to use either JG for

the given parameters or another method of joining data.

Improving the cache hit-rate The performance of main-memory algorithms

is greatly affected by cache hit rates. In this section we describe an optimization

that improves cache hit rates and, consequently, the overall performance of JG. This

optimization is similar to that of Section 3.2.6.

Sorting the points to ensure that points that are close to each other are also close

in the array order can easily be achieved by various methods. As in Section 3.2.6

we choose to use a sorting based on the Z-order. The speed-up is achieved because

such points are more likely to be covered by the same circles than points that are
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far apart, thus the relevant information is more likely to be retrieved from the cache

rather than from main memory. We sort not only set A but also set B, which reduces

the time needed to add circles to IG. As we will see in the Experimental Section,

∼2.5× speedup is achieved by utilizing Z-sort, e.g. as shown in Figure 4.18.

4.3 Choice of grid size

In this section we develop cost estimator functions for JG. These functions can

be used to determine the appropriate choice of grid size for computing the similarity

join for a specific problem. The discussion focuses on the case of two dimensions, but

can be generalized to any number of dimensions in a straight-forward manner.

Table 4.1 lists parameters needed for our analysis. All the parameters are known

before the join, except for the grid size n. We are interested in finding n such that

Table 4.1 Parameters for JG cost estimation

Parameter Meaning

A First dataset for join

B Second dataset, (on which the index is built)

k = |A| Cardinality of dataset A

m = |B| Cardinality of dataset B

c Length of side of a cell

n = 1
c

Grid size: i.e. n× n grid

eps, ε Epsilon parameter for the join

the time needed for the join is minimized. Furthermore, if there are several values

of n that yield minimal or close to minimal join cost, then we are interested in the

smallest such n. This is because the memory requirements for the grid increase with

the number of cells in the grid.
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In order to determine the relationship between the join cost and the various pa-

rameters of the problem, we develop what we call estimator (or predictor) functions

for the various phases of JG. Once the predictor functions are constructed, a suitable

choice for n can be found by identifying a minimal value of the cost. For the value

of n selected, the predictor functions are also useful in providing an estimated cost

to the query optimizer which can use this information to decide whether or not JG

should be used for the problem.

In our analysis we assume the uniform distribution of points in set A and B. The

JG procedure can be divided into three phases:

1. The initialization phase: initialization of the grid pointers and lists

2. The loading phase: loading the data into the grid

3. The processing phase: processing the point queries using the grid

4.3.1 The trade-off between costs of the building and processing phases

The initialization and loading phases collectively are called the building index

phase. There is a tradeoff between the building and processing phases with respect to

the grid size n. With smaller grid size n (and thus fewer cells), each circle is likely to

intersect with fewer cells and thus be added to fewer full and part lists, making the

building phase faster. On the other hand, with fewer cells the average length of the

part lists is likely to be larger and each query takes longer to process on average. In

other words, the coarser (i.e., smaller n) the grid the faster the building phase, but

the slower the processing phase.

4.3.2 Determining domain of grid size n

While the general trend is that a finer grid would imply shorter query processing

time (since the part lists would be shorter or empty), beyond a certain point, a finer

grid may not noticeably improve performance. For our implementation, the difference

in time needed to process a cell when its part list is empty vs. when its part list has
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size one is very small. It is enough to choose the grid size n such that the average size

of part list is one; further partitioning does not noticeably improve query processing

time. Thus we can estimate an upper bound U of the domain Dn = [1, U ] of the good

choice for grid size n.

For example, for 2-dimensional square queries it can be shown that the upper

bound is given by (see Chapter 3):

U =




4qm if q > 1
2
√

m
;

1
1√
m
−q

otherwise.

In this formula q is the size of each square. Since for similarity join we are adding

circles, the formulas is reused by approximating the circle by a square with the same

area (i.e., q ≈ ε
√

π). The corresponding formula for U is therefore:

U =



�4√πεm� if ε > 1

2
√

πm
;

� 1
1√
m
−ε

√
π
� otherwise.

A finer grid than that specified by the above formula gives very minor performance

improvement while incurring a large memory penalty. Thus the formula establishes

the upper bound for grid size domain. However, if the value returned by the formula

is too large, the grid might not fit in memory. In that case the upper bound U is

further limited by memory space availability.

In our experiments the optimal value for the grid size tended to be closer to one

rather than to U (remember, Dn = [1, U ]), as shown in Figures 4.10 and 4.11.

4.3.3 Method of analysis

For each of the phases of JG, the analysis is conducted as follows. 1) First the pa-

rameters on which a phase depends are determined. 2) The nature of the dependence

on each parameter separately is predicted based on the algorithm and implementation

of JG. Since the grid is a simple data structure, dependence on a parameter, as a rule,

is not complicated. 3) Next the dependence on the combination of the parameters

is predicted based on the dependence for each parameter. 4) Finally, an explanation
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is given on how the calibration of predictor functions can be achieved on a specific

machine.

4.3.4 Estimating cost of the initialization phase

The time to initialize the index depends only on the grid size n. The process of

index initialization can be described as O(1) operations followed by the initialization

of n2 cells. Thus the index initialization time is expected to be a polynomial of degree

two over n: Pinit(n) = an2 + bn + c, for some coefficients a, b, and c. This value of

the coefficients depend upon the particular machine on which the initialization is

performed. They can be determined through a calibration step. To validate the

correctness of this estimator, we calibrated it for a given machine. The corresponding

estimator function was then used to predict the performance for other values of n

not used for the calibration. The result is shown in Figures 4.7 and 4.8, where
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Figure 4.7 Estimating cost of the initialization phase, n ∈ [10, 100]

a = 8.26× 10−7, b = 0, and c = 0. The two figures shown are for different ranges of

the grid size n: on the left n varies from 10 to 100, on the right n varies from 100 to

1000. The figures show the actual times measured for different values of n as well as

the time predicted by the estimator function. As can be seen, the estimator gives a
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Figure 4.8 Estimating cost of the initialization phase, n ∈ [100, 1000]

very good approximation of the actual initialization times. This is especially true for

larger values of n.

Figures 4.7 and 4.8 show that the time needed for index initialization phase can

be approximated well with a simple polynomial. Any numerical method can be used

for calibrating the coefficients a, b, and c for a particular machine.

4.3.5 Estimating cost of the loading phase

This phase is more complicated than the initialization phase because its cost de-

pends on three parameters: the grid size n, cardinality of the indexed set B (i.e., m),

and ε. By analyzing the dependence on each parameter separately, we have deter-

mined that the overall function can be represented as a polynomial Padd(n, m, ε) =

a17n
2ε2m + · · · + a1m + a0 with degrees of n and ε no greater than two and degree

of m no greater than one. The next step is to calibrate the coefficients ai’s. This can

be done by solving a system of 18 linear equations. These equations can be obtained

by choosing three different values of n, three values of ε, and two values of m (i.e.,

3× 3× 2 = 18).

In our example the combinations of the following calibration points have been

examined in order to get the coefficients: three values for the grid size n : n0 = 10,

n1 = 100, n2 = 200; three values for ε : ε0 = 0.001, ε1 = 0.01, ε2 = 0.02; and two
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Figure 4.9 Estimating cost of the loading phase

values for B’s cardinality m : m0 = 50 000, and m1 = 100 000. The choice of values

implies we assume that typically for the grid size n ∈ [10, 200], ε ∈ [0.001, 0.02],

and B’s cardinality m ∈ [50 000, 100 000]. The linear system was solved using the

“Gaussian elimination with pivoting” method. Figure 4.9 demonstrates time needed

for the loading phase as function of ε when n = 150 and m = 75 000; the other

curve is our interpolation polynomial. Observe that the estimator function is highly

accurate. In fact we have never encountered more than a 3% relative error in our

experiments.

4.3.6 Estimating cost of the processing phase

The processing phase depends on all parameters: the grid size n, k = |A|, m =

|B|, and ε. Thankfully, the dependence on k is linear since each point is processed

independent of other points. Once the solution for some fixed k0 is known, it is easy

to compute the solution for an arbitrary k. However, there is a small complication:

the average lengths of the full and part lists are given by different formulae depending

upon whether cell size c is greater than
√

πε or not (see Chapter 3, in our case query

side size q is replaced by
√

πε).

Consequently the processing phase cost, when A’s cardinality k is fixed at some

value k0, can be estimated by one of two polynomials, depending upon whether
√

πε ≥
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c is true: Pproc,
√

πε≥c(c, ε, m, k0) and Pproc,
√

πε<c(c, ε, m, k0) each of type P (c, ε, m, k0) ≡
a17c

2ε2m + · · ·+ a1m + a0 with degrees of c and ε no greater than two and degree of

m no greater than one. Once again the calibration can be done by solving a system

of 18 linear equations for each of the two cases.

4.3.7 Estimating total cost of JG

The estimated total time needed for JG is the sum of estimated time needed for

each phase. Figures 4.10 and 4.11 demonstrate estimation of time needed for JG
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Figure 4.10 Estimation of total join time, n ∈ [10, 190]

when ε = 0.001, m = 20 000, k = 10 000 as a function of grid size n. The estimator

functions of each phase were calibrated using different values of m, k, and ε than

those shown in the figure.

4.3.7.1 Bisection method

A simple bisection method for finding the optimal value of n was used. This

method assumes that it is given a concave downwards function, defined on [a, b].

The function has been concave downwards in all our experiments, however in future

work we hope to prove that the estimator function is always concave downwards for

various combinations of parameters. The bisection method in this context works as
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Figure 4.11 Estimation of total join time, n ∈ [70, 80]

follows. The goal is to find the leftmost minimum on the interval [a, b]. Compute

c = (a + b)/2. If f(c − 1) ≤ f(c + 1) then make new b be equal c and repeat the

process, otherwise make new a be equal c and repeat the process. The process is

repeated until (b− a) < 2.

The bisection method for the example in Figures 4.10 and 4.11 gives an estimated

optimal value for the grid size n as 74. Experimentally, we found that the actual

optimal value for n was 73. The difference between time needed for JG with 73× 73

grid and 74× 74 grid is just two milliseconds for the given settings. These numbers

show the high accuracy of the estimator functions.

4.4 Experimental results

In this section we present the performance results for in-memory joins using JRSJ

(RSJ join), JG, JEGO [BBKK01], and JEGO∗. The results report the actual time

for the execution of the various algorithms. First we describe the parameters of the

experiments, followed by the results and discussion.

In all our experiments we used a 1GHz Pentium III machine with 2GB of memory.

The machine has 32K of level-1 cache (16K for instructions and 16K for data) and
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256K level-2 cache. All multidimensional points were distributed on the unit d-

dimensional box [0, 1]d. The number of points ranges from 68,000 to 200,000. For

distributions of points in the domain we considered the following cases:

1. Uniform: Points are uniformly distributed.

2. Skewed: The points are distributed among five clusters. Within each cluster

points are distributed normally with a standard deviation of 0.05.

3. Real data: We tested data from ColorHistogram and ColorMoments files rep-

resenting image features. The files are available at the UC Irvine repository.

ColorMoments stores 9-dimensional data, which we normalized to [0, 1]9 domain,

ColorHistogram – 32-dimensional data. For experiments with low-dimensional

real data, a subset of the leading dimensions from these datasets were used.

Unlike uniform and skewed cases, for real data a self-join is done.

Often, in similar research, the costs of sorting the data, building or maintaining

the index or costs of other operations needed for a particular implementation of join

are ignored. No cost is ignored in our experiments for JG, JEGO, and JEGO∗. One

could argue that for JRSJ the two indexes, once built, need not be rebuilt for different

ε. While there are many other situations where the two indexes need to be built from

scratch for JRSJ , we ignore the cost of building and maintaining indexes for JRSJ ,

thus giving it an advantage.

4.4.1 Correlation between selectivity and ε

The choice of the parameter ε is critical when performing an ε-join. Little justifi-

cation for choice of this parameter has been presented in related research. We present

this section because we have discovered that often in similar research selected values

of ε are too small. We think that the mistake happened because too often researchers

choose to test self-join of dataset A which is simpler than join of two different datasets

A and B. In self-join each point joins at least with itself. Thus the cardinality of the
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result set R is no less than the cardinality of A. By increasing the dimensionality

d and fixing ε to a relatively small value, the size needed to store each data point

increases, consequently the size needed to store R (e.g., in bytes) increases, even

though the cardinality of R is close to the cardinality of A. The increase of size of R

is probably often mistaken for the increase of cardinality of R.

The choice of ε has a significant effect on the selectivity depending upon the

dimensionality of the data. The ε-join is a common operation for similarity matching.

Typically, for each multidimensional point from set A a few points (i.e., from 0 to 10,

possibly from 0 to 100, but unlikely more than 100) from set B need to be identified

on average. The average number of points from set B that joins with a point from

set A on average is called selectivity.

In our experiments, selectivity motivated the range of values chosen for ε. The

value of ε is typically lower for smaller number of dimensions and higher for high-

dimensional data. For example a 0.1 × 0.1 square2 query (ε = 0.1) is 1% of a two-

dimensional domain, however it is only 10−6% of an eight-dimensional domain, leading

to small selectivity.

Let us estimate what values for ε should be considered for joining high-dimensional

uniformly distributed data such that a point from set A joins with a few (close to

1) points from set B. Assume that the cardinality of both sets is m. We need

to answer the question: what should the value of ε be such that m hyper-squares

of side ε completely fill the unit d-dimensional cube? It is easy to see that the

solution is ε = 1
m1/d . Figure 4.12 plots this function ε(d) for two different values of m.

Our experimental results for various number of dimensions corroborate the results

presented in the figure. For example the figure predicts that to obtain a selectivity

close to one for 32-dimensional data, the value of ε should be close to 0.65, or 0.7,

and furthermore that values smaller than say 0.3, lead to zero selectivity (or close to

zero) which is of little value3. This is in very close agreement to the experimental

results.

2A square query was chosen to demonstrate the idea, ideally one should consider a circle.
3For self-join selectivity is always at least 1, thus selectivity 2–100 is desirable.
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Figure 4.12 Choosing ε for selectivity close to one for 105 (and 106) points uniformly
distributed on [0, 1]d

If the domain is not normalized to the unit square, such as in [KS98], the values of

ε should be scaled accordingly. For example ε of 0.1 for [−1, 1]d domain correspond

to ε of 0.05 for our [0, 1]d domain. Figure 4.13 demonstrates the pitfall of using
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Figure 4.13 Pitfall of using improper selectivity

an improper selectivity. The parameters of the experiment (distribution of data,

cardinality of sets and ε (scaled)) are set to the values used in one publication. With

this choice of ε the selectivity plunges to zero even for the 10-dimensional case. In fact,

for our case, the figure presumably shows that the Grid-join is better than JEGO and
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JEGO∗ even for high-dimensional cases. However, the contrary is true for a meaningful

selectivity as will be shown in Section 4.4.3.

Due to the importance of the selectivity in addition to the value of ε, we plot

the resulting selectivity in each experiment. The selectivity values are plotted on the

y-axis at the right end of each graph. The parameter ε is on the x-axis, and the time

taken by each join method is plotted on the left y-axis in seconds.

4.4.2 Low-dimensional data

We now present the performance of JRSJ , JEGO, JEGO∗ and JG for various settings.

The cost of building indexes for JRSJ is ignored, giving it an advantage.

The x-axis plots the values of ε, which are varied so that meaningful selectivity is

achieved. Clearly, if selectivity is 0, then ε is too small and vice versa if the selectivity

is more than 100.

In all but one graph the left y-axis represents the total time in seconds to do the

join for the given settings. The right y-axis plots the selectivity values for each value

of ε in the experiments, in actual number of matching points. As expected, in each

graph the selectivity, shown by the line with the ‘×’, increases as ε increases.

JRSJ is depicted only in Figures 4.14 and 4.15 because for all tested cases it has
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Figure 4.14 Join 4D uniform data
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shown much worse results than the other joins, Figure 4.14 depicts performance of

the joins for 4-dimensional uniform data with cardinality of both sets being 105.

Figure 4.15 shows the performance of the same joins relative to that of JRSJ .

Relative to RSJ performance of ε-join(A,B)
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Figure 4.15 Join 4D uniform data, cost relative to JRSJ

In Figure 4.15, JEGO shows 3.5–6.5 times better results than those of JRSJ , which

corroborates the fact that, by itself, JEGO is a quite competitive scheme for low-

dimensional data. But it is not as good as the two new schemes.

Next comes JEGO∗ whose performance is always better than that of JEGO in all

experiments. This shows the strength of JEGO∗. Because of the selectivity, the values

of ε are likely to be small for low-dimensional data and large for high-dimensional

data. The EGO-heuristic is not well-suited for small values of ε. The smaller the

epsilon, the less likely that a sequence has an inactive dimension. In Figure 4.15

JEGO∗ is seen to give 13.5–24 times better performance than JRSJ .

Another trend that can be observed from the graphs is that JG is better that

JEGO∗, except for high-selectivity cases (Figure 4.19). JEGO shows results several

times worse than those of JG, which corroborates the choice of the Grid-index which

also was the clear winner in our comparison with main memory optimized versions

of R-tree, R*-tree, CR-tree, and quad-tree indexes in Chapter 3. In Figure 4.15 JG

showed 15.5–46 times better performance than JRSJ .
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Unlike JEGO, JEGO∗ always shows results at least comparable to those of JG. For

all the methods, the difference in relative performance shrinks as ε (and selectivity)

increases.
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Figure 4.16 Join 3D real data
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Figure 4.17 Join 3D real data without JEGO (for clarity)

Figures 4.16 and 4.17 show the results for the self-join of real 3-dimensional data

taken from the ColorMom file. The cardinality of the set is 68,000. The graph on the

left shows the best three schemes, and the graph on the right omits JEGO scheme due

to its much poorer performance. From these two graphs we can see that JG is almost

two times better than JEGO∗ for small values of ε.



93

Time to ε-join(A,B)
4D, uniform, |A| = |B| = 100,000

0

5

10

15

20

25

30

35

0.01 0.03 0.05 0.07 0.09ε
T

im
e 

(s
ec

s)

0

5

10

15

20

25

30

S
el

ec
ti

vi
ty

Grid
Grid, no Z-sort
EGO
EGO*
Selectivity

Figure 4.18 Join 4D uniform data |A| = |B| = 100, 000
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Figure 4.19 Join 4D uniform data |A| = |B| = 200, 000

Figures 4.18 and 4.19 show the results for 4-dimensional uniform data. The graph

on the left is for sets of cardinality 100,000, and that on the right is for sets with

cardinality 200,000. Figure 4.18 emphasizes the importance of performing Z-sort on

data being joined: the performance improvement is ∼ 2.5 times. JG without Z-sort,

in general, while being better than JEGO, shows worse results than that of JEGO∗.

Figure 4.19 presents another trend. In this figure JEGO∗ becomes a better choice

than JG for values of ε greater than ∼ 0.07. This choice of epsilon corresponds to a

high selectivity of ∼ 43. Therefore JEGO∗ can be applied for joining high selectivity

cases for low-dimensional data.
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Figure 4.20 Join 4D skewed data
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Figure 4.21 Join 4D real data

Figures 4.20 and 4.21 show the results for 4-dimensional skewed and real data.

Note that the values of ε are now varied over a smaller range than that of the uniformly

distributed case. This is so because in these cases points are closer together and

smaller values of ε are needed to achieve the same selectivity as in uniform case. In

these graphs JEGO, JEGO∗, and JG exhibit behavior similar to that in the previous

figures with JG being the best scheme.

4.4.3 High-dimensional data

We now study the performance of the various algorithms for higher dimensions.

Figures 4.22 and 4.23 show the results for 9-dimensional data for uniformly distributed
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Figure 4.22 Join 9D uniform data
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Figure 4.23 Join 9D uniform data, the best two techniques
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Figure 4.24 Join 9D skewed data

data. Figure 4.24 presents the results for 9-dimensional skewed data, Figure 4.25 gives

the results for real 9-dimensional data. Figures 4.26 and 4.27 show the results with
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Figure 4.25 Join 9D real data
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Figure 4.26 Join 16D real data
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Figure 4.27 Join 32D real data

the 16- and 32-dimensional real data respectively. As with low-dimensional data, for
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all tested cases, JRSJ had the worst results. Therefore, the performance of JRSJ is

omitted from most graphs – only one representative case is shown in Figure 4.22.

An interesting change in the relative performance of JG is observed for high-

dimensional data. Unlike the case of low-dimensional data, JEGO and JEGO∗ give

better results than JG. JG is not competitive for high-dimensional data, and its results

are often omitted for clear presentation of JEGO and JEGO∗ results. A consistent

trend in all graphs is that JEGO∗ results are always better than those of JEGO . The

difference is especially noticeable for the values of ε corresponding to low selectivity.

This is a general trend: JEGO does not work well for smaller epsilons, because in this

case a sequences is less likely to have an inactive dimension. JEGO∗ does not suffer

from this limitation.

Set Cardinality When the join of two sets is to be computed using Grid-join, an

index is built on one of the two sets. Naturally, the question of which set to build the

index on arises. We ran experiments to study this issue. The results indicate that

building the index on the smaller dataset always gave better results.

4.5 Related work

The problem of the spatial join of two datasets is to identify pairs of objects, one

from each dataset, such that they satisfy a certain constraint. If both datasets are

the same, this corresponds to a self-join. The most common join constraint is that

of proximity: i.e. the two objects should be within a certain distance of each other.

This corresponds to the ε-join where ε is the threshold distance beyond which objects

are no longer considered close enough to be joined. Below we discuss some of the

most prominent solutions for efficient computation of similarity joins.

Shim et. al. [SSA97] propose to use ε-KDB-tree for performing high-dimensional

similarity joins of massive data. The main-memory based ε-KDB-tree and the corres-

ponding algorithm for similarity join are modified to produce a disk-based solution
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that can scale to larger datasets. Whenever the number of points in a leaf node ex-

ceed a certain threshold it is split into 
1/ε� stripes4 each of width equal to or slightly

greater than ε in the ith dimension. If the leaf node is at level i, then the ith dimension

is used for splitting. The join is performed by traversing the index structures for each

of the data sets. Each leaf node can join only with its two adjacent siblings. The

points are first sorted with the first splitting dimension and stored in an external file.

The R-Tree Spatial Join (RSJ) algorithm [BKS93] works with an R-tree index

built on the two datasets being joined. The algorithm is recursively applied to corres-

ponding children if their minimum bounding rectangles (MBRs) are within distance

ε of each other. Several optimizations of this basic algorithm have been proposed

[HJR97]. A cost model for spatial joins was introduced in [BK01]. The Multipage

Index (MuX) was also introduced that optimizes for I/O and CPU cost at the same

time.

In [PD96] Patel et. al a plane sweeping technique is modified to create a disk-based

similarity join for 2-dimensional data. The new procedure is called the Partition Based

Spatial Merge join, or PBSM-join. A partition based merge join is also presented in

[LR96]. Shafer et al in [SA97] present a method of parallelizing high-dimensional

proximity joins. The ε-KDB-tree is parallelized and compared with the approach of

space partitioning. Koudas et al [KS98] have proposed a generalization of the Size

Separation Spatial Join Algorithm, named Multidimensional Spatial Join (MSJ).

Recently, Böhm et al [BBKK01] proposed the EGO-join. Both sets of points being

joined are first sorted in accordance with the so called Epsilon Grid Order (EGO).

The EGO-join procedure is recursive. A heuristic is utilized for determining non-

joinable sequences. More details about EGO-join will be covered in Section 4.2.1.

The EGO-join was shown to outperform other join methods in [BBKK01].

A excellent review of multidimensional index structures including grid-like and

Quad-tree based structures can be found in [TUW98]. Main-memory optimization

of disk-based index structures has been explored recently for B+-trees [RR00] and

4Note that for high-dimensional data ε can easily exceed 0.5 rendering this approach into a brute
force method.
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multidimensional indexes [KCK01]. Both studies investigate the redesign of the nodes

in order to improve cache performance.

4.6 Conclusions

Table 4.2 Choice of Join Algorithm

Small ε Average ε Large ε

Low Dim JG JG JG or JEGO∗

High Dim JG or JEGO∗ JEGO∗ JEGO∗

In this chapter we considered the problem of similarity join in main memory for

low- and high-dimensional data. We propose two new algorithms: Grid-join and

EGO*-join that were shown to give superior performance than the state-of-the-art

technique (EGO-join) and RSJ.

The significance of the choice of ε and recommendations for a good choice for

testing and comparing algorithms with meaningful selectivity were discussed. We

demonstrated an example with values of ε too small for the given dimensionality where

one methods showed the best results over the others whereas with more meaningful

settings it would show the worst results.

While recent research has concentrated on joining high-dimensional data, little

attention was been given to the choice of technique for low-dimensional data. In

our experiments, the proposed Grid-join approach showed the best results for low-

dimensional case or when values of ε are very small. The EGO*-join has demonstrated

substantial improvement over EGO-join for all the cases considered and is the best

choice for high-dimensional data or when values of ε are large. The results of the

experiments with RSJ proves the strength of Grid-join and EGO*-join.
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An analytical study has been presented for selecting the grid size. As a side effect

of the study the cost-estimating function for the Grid-join has been developed. This

function can be used by a query optimizer for selecting the best execution plan.

Based upon the experimental results, the recommendation for choice of join algo-

rithm is summarized in Table 4.6.
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5. PROBABILISTIC QUERIES OVER IMPRECISE DATA

5.1 Introduction

In many applications, sensors are used to continuously track or monitor the status

of an environment. Readings from the sensors are sent back to the application,

and decisions are made based on these readings. For example, temperature sensors

installed in a building are used by a central air-conditioning system to decide if the

temperature of any room needs to be adjusted or to detect other problems. Sensors

distributed in the environment can be used to detect if hazardous materials are present

and how they are spreading. In a moving object database, objects are constantly

monitored and a central database may collect their updated locations.

The framework for many of these applications includes a database or server to

which the readings obtained by the sensors or the locations of the moving objects

are sent. Users query this database to find information of interest. Due to several

factors such as limited network bandwidth to the server and limited battery power of

the mobile device, it is often infeasible for the database to contain the exact status of

an entity being monitored at every moment in time. An inherent property of these

applications is that readings from sensors are sent to the central server periodically.

In particular, at any given point in time, the recorded sensor reading is likely to be

different from the actual value. The correct value of a sensor’s reading is known only

when an update is received. Under these conditions, the data in the database is only

an estimate of the actual state of the environment at most points in time.

This inherent uncertainty of data affects the accuracy of answers to queries. Fig-

ure 5.1(a) illustrates a query that determines the sensor (either x or y) that reports

the lower temperature reading. Based upon the data available in the database (x0

and y0), the query returns “x” as the result. In reality, the temperature readings
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Figure 5.1 Example of sensor data and uncertainty.

could have changed to values x1 and y1, in which case “y” is the correct answer. This

example demonstrates that the database does not always truly capture the state of

the external world, and the value of the sensor readings can change without being

recognized by the database. Sistla et. al. [SWCD98] identify this type of data as a

dynamic attribute, whose value changes over time even if it is not explicitly updated

in the database. In this example, because the exact values of the data items are not

known to the database between successive updates, the database incorrectly assumes

that the recorded value is the actual value and produces incorrect results.

Given the uncertainty of the data, providing meaningful answers seems to be a

futile exercise. However, one can argue that in many applications, the values of objects

cannot change drastically in a short period of time; instead, the degree and/or rate of

change of an object may be constrained. For example, the temperature recorded by

a sensor may not change by more than a degree in 5 minutes. Such information can

help solve the problem. Consider the above example again. Suppose we can provide

a guarantee that at the time the query is evaluated, the actual values monitored by x

and y could be no more than some deviations, dx and dy, from x0 and y0, respectively,

as shown in Figure 5.1(b). With this information, we can state with confidence that

x yields the minimum value.
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In general, the uncertainty of the objects may not allow us to identify a single

object that has the minimum value. For example, in Figure 5.1(c), both x and y have

the possibility of recording the minimum value since the reading of x may not be lower

than that of y. A similar situation exists for other types of queries such as those that

request a numerical value (e.g., “What is the lowest temperature reading?”). For

these queries too, providing a single value may be infeasible due to the uncertainty in

each object’s value. Instead of providing a definite answer, the database can associate

different levels of confidence with each answer (e.g., as a probability) based upon the

uncertainty of the queried objects.

The notion of probabilistic answers to queries over uncertain data has not been

well studied. Wolfson et. al briefly touched upon this idea [WSCY99] for the case of

range queries in the context of a moving object database. The objects are assumed to

move in straight lines with a known average speed. The answers to the queries consist

of objects’ identities and the probability that each object is located in the specified

range. In this chapter we extend the notion of probabilistic queries to cover a much

broader class of queries. The class of queries considered includes aggregate queries

that compute answers over a number of objects. We also discuss the importance

of the nature of answer requested by a query (identity of object versus the value).

For example, we show that there is a significant difference between the following

two queries: “Which object has the minimum temperature?” versus “What is the

minimum temperature?”. Furthermore, we relax the model of uncertainty so that

any reasonable model can be used by the application. Our techniques are applicable

to the common models of uncertainty that have been proposed elsewhere.

The probabilities in the answer allow the user to place appropriate confidence in

the answer as opposed to having an incorrect answer or no answer at all. Depending

upon the application, one may choose to report only the object with the highest

probability as having the minimum value, or only those objects whose probability

exceeds a minimum probability threshold. Our proposed work will be able to work

with any of these models.
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Answering aggregate queries (such as minimum or average) is much more chal-

lenging than range queries, especially in the presence of uncertainty. The answer to a

probabilistic range query consists of a set of objects along with a non-zero probability

that the object lies in the query range. Each object’s probability is determined by

the uncertainty of the object’s value and the query range. However, for aggregate

queries, the interplay between multiple objects is critical. The resulting probabilities

are greatly influenced by the uncertainty of attribute values of other objects. For

example, in Figure 5.1(c) the probability that x has the minimum value is affected

by the relative value and bounds for y.

A probabilistic answer also reflects a certain level of uncertainty that results from

the uncertainty of the queries object values. If the uncertainty of all (or some) of

the objects was reduced (or eliminated completely), the uncertainty of the result

improves. For example, without any knowledge about the value of an object, one

could arguably state that it falls within a query range with 50% probability. On the

other hand, if the value is known perfectly, one can state with 100% confidence that

the object either falls within or outside the query range. Thus the quality of the result

is measured by the degree of ambiguity in the answer. We therefore need metrics to

evaluate the quality of a probabilistic answer. We propose metrics for evaluating the

quality of the probabilistic answers in this chapter. As we shall see, it turns out that

different metrics are suitable for different classes of queries.

It is possible that the quality of a query result may not be acceptable for certain

applications – a more definite result may be desirable. Since the poor quality is

directly related to the uncertainty in the object values, one possibility for improving

the results is to delay the query until the quality improves. However this is an

unreasonable solution due to the increased query response time. Instead, the database

could request updates from all objects (e.g., sensors) – this solution incurs a heavy

load on the resources. In this chapter, we propose to request updates only from

objects that are being queried, and furthermore those that are likely to improve the

quality of the query result. We present a number of heuristics and an experimental
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evaluation. These policies attempt to optimize the use of the constrained resource

(e.g., network bandwidth to the server) to improve average query quality.

It should be noted that the imprecision in the query answers is inherent in this

problem (due to uncertainty in the actual values of the dynamic attribute), in contrast

to the problem of providing approximate answers for improved performance wherein

accuracy is traded for efficiency.

To sum up, the contributions introduced in this chapter are:

• A broad classification of probabilistic queries over uncertain data, based upon

a flexible model of uncertainty;

• Techniques for evaluating probabilistic queries, including optimizations;

• Metrics for quantifying the quality of answers to probabilistic queries;

• Policies for improving the quality of answers to probabilistic queries under re-

source constraints.

The material presented in this chapter is a joint work with Rey Cheng.

The rest of this chapter is organized as follows. In Section 5.2 we describe a

general model of uncertainty, and the concept of probabilistic queries. Sections 5.3

and 5.4 discuss the algorithms for evaluating different kinds of probabilistic queries.

Section 5.5 discusses quality metrics that are appropriate to these queries. Section 5.6

proposes update policies that improve the query answer quality. We present an ex-

perimental evaluation of the effectiveness of these update policies in Section 5.7.

Section 5.8 discusses related work and Section 5.9 concludes the chapter.

5.2 Probabilistic queries

In this section, we describe the model of uncertainty considered in this chap-

ter. This is a generic model, as it can accommodate a large number of application

paradigms. Based on this model, we introduce a number of probabilistic queries.



106

5.2.1 Uncertainty model

One popular model for uncertainty for a dynamic attribute is that at any point

in time, the actual value is within a certain bound d of its last reported value. If

the actual value changes more than d, then the sensor reports its new value to the

database and possibly changes d. For example, [WSCY99] describes a moving-object

model where the location of an object is a dynamic attribute, and an object reports

its location to the server if its deviation from the last reported location exceeds a

threshold. Another model assumes that the attribute value changes with known

speed, but the speed may change each time the value is reported. Other models

include those that have no uncertainty. For example, in [PJ], the exact speed and

direction of movement of each object are known. This model requires updates at the

server whenever an object’s speed or direction change.

For the purpose of our discussion, the exact model of uncertainty is unimportant.

All that is required is that at the time of query execution the range of possible values

of the attribute of interest are known. We are interested in queries over some dynamic

attribute a of a set of database objects T . Also, we assume that a is a real-valued

attribute, although our models and algorithms can be extended to other domains

easily. We denote the ith object of T by Ti and the value of attribute a of Ti by Ti.a

(where i = 1, . . . , |T |). Throughout this chapter, we treat Ti.a at any time instant t

as a continuous random variable. Sometimes instead of writing Ti.a(t) meaning the

value of the attribute at time instant t we write just Ti.a for short. The uncertainty of

Ti.a(t) can be characterized by the following two definitions (we use pdf to abbreviate

the term “probability density function”):

Definition 5.1: An uncertainty interval of Ti.a(t), denoted by Ui(t), is an interval

[li(t), ui(t)] such that li(t) and ui(t) are real-valued functions of t, li(t) ≤ ui(t), and

that the conditions ui(t) ≥ li(t) and Ti.a(t) ∈ [li(t), ui(t)] always hold.
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Definition 5.2: An uncertainty pdf of Ti.a(t), denoted by fi(x, t), is a pdf of Ti.a(t)

such that fi(x, t) = 0 for ∀x /∈ Ui(t).

Notice that since fi(x, t) is a pdf, it has the property that
∫ ui(t)

li(t)
fi(x, t)dx = 1.

The above definition specifies the uncertainty of Ti.a(t) in terms of a closed interval

and the probability distribution of Ti.a(t). Notice that this definition does not specify

how the uncertainty interval evolves over time, and what the pdf fi(x, t) is inside the

uncertainty interval. The only requirement for fi(x, t) is that its value is 0 outside

the uncertainty interval. Usually, the scope of uncertainty is determined by the last

recorded value, the time elapsed since its last update, and some application-specific

assumptions. For example, one may decide that Ui(t) contains all the values within

a distance of (t − tupdate) × v from its last reported value, where tupdate is the time

that the last update was obtained, and v is the maximum rate of change of the value.

One may also specify that Ti.a(t) is uniformly distributed inside the interval, i.e.,

fi(x, t) = 1/[ui(t) − li(t)] for ∀x ∈ Ui(t), assuming that ui(t) > li(t). Note that the

uniform distribution represents the worst-case uncertainty over a given interval.

5.2.2 Classification of probabilistic queries

We now present a classification of probabilistic queries and examples of common

representative queries for each class. We identify two important dimensions for classi-

fying database queries. First, queries can be classified according to the nature of the

answers. An entity-based query returns a set of objects (e.g., sensors) that satisfy the

condition of the query. A value-based query returns a single value, examples of which

include querying the value of a particular sensor, and computing the average value

of a subset of sensor readings. The second property for classifying queries is whether

aggregation is involved. We use the term aggregation loosely to refer to queries where

interplay between objects determines the result. In the following definitions, we use

the following naming convention: the first letter is either E (for entity-based queries)

or V (for value-based queries).
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1. Value-based Non-Aggregate Class

This is the simplest type of query in our discussions. It returns an attribute value

of an object as the only answer, and involves no aggregate operators. One example

of a probabilistic query for this class is the VSingleQ:

Definition 5.3: Probabilistic Single Value Query

(VSingleQ) When querying Tk.a(t), a VSingleQ returns bounds l and u of an

uncertainty region of Tk.a(t) and its pdf fk(x, t).

An example of VSingleQ is “What is the wind speed recorded by sensor s22?”

Observe how this definition expresses the answer in terms of a bounded probabilistic

value, instead of a single value. Also notice that
∫ ui(t)

li(t)
fi(x, t) dx = 1.

2. Entity-based Non-Aggregate Class

This type of query returns a set of objects, each of which satisfies the condition(s)

of the query, independent of other objects. A typical example of this class is the

ERQ, defined below.

Definition 5.4: Probabilistic Range Query (ERQ) Given at time instant t a

closed interval [l, u], where l, u ∈ 
 and l ≤ u, an ERQ returns set R of all tuples

(Ti, pi), where pi is the non-zero probability that Ti.a(t) ∈ [l, u], i.e. R = {(Ti, pi) :

pi = P(Ti.a(t) ∈ [l, u]) and pi > 0}
An ERQ returns a set of objects, augmented with probabilities, that satisfy the

query interval.

3. Entity-based Aggregate Class

The third class of query returns a set of objects which satisfy an aggregate condi-

tion. We present the definitions of three typical queries for this class. The first two

return objects with the minimum or maximum value of Ti.a:
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Definition 5.5: Probabilistic Minimum (Maximum) Query

(EMinQ (EMaxQ)) An EMinQ (EMaxQ) returns set R of all tuples (Ti, pi), where

pi is the non-zero probability that Ti.a is the minimum (maximum) value of a among

all objects in T .

A one-dimensional nearest neighbor query, which returns object(s) having a min-

imum absolute difference of Ti.a and a given value q, is also defined:

Definition 5.6: Probabilistic Nearest Neighbor Query (ENNQ) Given a value

q ∈ 
, an ENNQ returns set R of all tuples (Ti, pi), where pi is the non-zero proba-

bility that |Ti.a− q| is the minimum among all objects in T .

Note that for all the queries we defined in this class the condition
∑

Ti∈R pi = 1

holds.

4. Value-based Aggregate Class

The final class involves aggregate operators that return a single value. Example

queries for this class include:

Definition 5.7: Probabilistic Average (Sum) Query (VAvgQ (VSumQ)) A

VAvgQ (VSumQ) returns bounds l and u of an uncertainty interval and pdf fX(x) of

r.v. X representing the average (sum) of the values of a for all objects in T .

Definition 5.8: Probabilistic Minimum (Maximum) Value Query (VMinQ

(VMaxQ)) A VMinQ (VMaxQ) returns bounds l and u of an uncertainty interval

and pdf fX(x) of r.v. X representing the minimum (maximum) value of a among all

objects in T .
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All these aggregate queries return answers in the form of a pdf fX(x) and a closed

interval [l, u], such that
∫ u

l
fX(x) dx = 1.

Table 5.2.2 summarizes the basic properties of the probabilistic queries discussed

above. For illustrating the difference between probabilistic and non-probabilistic

Table 5.1 Classification of Probabilistic Queries.

Query Class Entity-based Value-based

Aggregate ENNQ, EMinQ, EMaxQ VAvgQ, VSumQ, VMinQ, VMaxQ

Non-Aggr. ERQ VSingleQ

Answer

(Probabilistic)

{(Ti, pi) : 1 ≤ i ≤ |T | ∧ pi > 0} l, u, fX(x)

Answer

(Non-Prob.)

{Ti : 1 ≤ i ≤ |T |} x ∈ 


queries, the last row of the table lists the forms of answers expected if probability

information is not augmented to the result of the queries e.g., the non-probabilistic

version of EMaxQ is a query that returns object(s) with maximum values based only

on the recorded values of Ti.a. It can be seen that the probabilistic queries provide

more information on the answers than their non-probabilistic counterparts.

Example. We illustrate the properties of the probabilistic queries with a simple

example. In Figure 5.2, readings of four sensors s1, s2, s3 and s4, each with a different

uncertainty interval, are being queried at time t. Assume that readings of these

sensors s1(t), s2(t), s3(t), and s4(t) are uniformly distributed on their uncertainty

intervals [l1, u1], [l2, u2], [l3, u3] and [l4, u4]. A VSingleQ applied on s4 at time t gives

us the result: l4, u4, fs4(x) = 1/(u4− l4). When an ERQ (represented by the interval

[l, u]) is invoked at time t to find out how likely each reading is inside [l, u], we see

that the reading of s1 is always inside the interval. It therefore has a probability of 1

for satisfying the ERQ. The reading of s4 is always outside the rectangle, thus it has
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Figure 5.2 Illustrating the probabilistic queries

a probability of 0 of being located inside [l, u]. Since U2(t) and U3(t) partially overlap

[l, u], s2 and s3 have some chance of satisfying the query. In this example, the result

of the ERQ is: {(s1, 1), (s2, 0.7), (s3, 0.4)}.
In the same figure, an EMinQ is issued at time t. We observe that s1 has a

high probability of having the minimum value, because a large portion of the U1(t)

has a smaller value than the others. The reading of s1 has a high chance of being

located in this portion because s1(t) has the uniform distribution. The reading of s4

does not have any chance of yielding the minimum value, since none of the values

inside U4(t) is smaller than others. The result of the EMinQ for this example is:

{(s1, 0.7), (s2, 0.2), (s3, 0.1)}. On the other hand, an EMaxQ will return {(s4, 1)} as

the only result, since every value in U4(t) is larger than any readings from the other

sensors, and we are assured that s4 yields the maximum value. An ENNQ with a

query value q is also shown, where the results are: {(s1, 0.2), (s2, 0.5), (s3, 0.3)}.
When a value-based aggregate query is applied to the scenario in Figure 5.2, a

bounded pdf p(x) is returned. If a VSumQ is issued, the result is a distribution in

[l1+l2+l3+l4, u1+u2+u3+u4]; each x in this interval is the sum of the readings from the

four sensors. The result of a VAvgQ is a pdf in [(l1+l2+l3+l4)/4, (u1+u2+u3+u4)/4].

The results of VMinQ and VMaxQ are probability distributions in [l1, u1] and [l4, u4]

respectively, since only the values in these ranges have a non-zero probability value

of satisfying the queries.
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5.3 Evaluating entity-based queries

In this section we examine how the probabilistic entity-based queries introduced in

the last section can be answered. We start with the discussion of an ERQ, followed by

a more complex algorithm for answering an ENNQ. We also show how the algorithm

for answering an ENNQ can be easily changed for EMinQ and EMaxQ.

5.3.1 Evaluation of ERQ

Recall that ERQ returns a set of tuples (Ti, pi) where pi is the non-zero probability

that Ti.a is within a given interval [l, u]. Let R be the set of tuples returned by

the ERQ. The algorithm for evaluating the ERQ at time instant t is described in

Figure 5.3.

1. R← ∅
2. for i← 1 to |T | do

(a) D ← Ui(t) ∩ [l, u]

(b) if (D �= ∅) then

i. pi ←
∫

D
fi(x, t) dx

ii. if pi �= 0 then R← R ∪ {(Ti, pi)}
3. return R

Figure 5.3 ERQ Algorithm.

In this algorithm, each object in T is checked once. To evaluate pi for Ti, we first

compute the overlapping interval D of the two intervals: Ui(t) and [l, u] (Step 2a). If

D is the empty set, we are assured that Ti.a does not lie in [l, u], and by the definition

of ERQ, Ti is not included in the result. Otherwise, we calculate the probability that
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Ti.a is inside [l, u] by integrating fi(x, t) over D, and put the result into R if pi �= 0

(Step 2b). The set of tuples (Ti, pi), stored in R, are returned in Step 3.

5.3.2 Evaluation of ENNQ

Processing an ENNQ involves evaluating the probability of the attribute a of each

object Ti being the closest to (nearest-neighbor of) a value q. In general, this query

can be applied to multiple attributes, such as coordinates. In particular, it could

be a nearest-neighbor query for moving objects. Unlike the case of ERQ, we can

no longer determine the probability for a object independent of the other objects.

Recall that an ENNQ returns a set of tuples (Ti, pi) where pi denotes the non-zero

probability that Ti has the minimum value of |Ti.a − q|. Let S be the set of objects

to be considered by the ENNQ, and let R be the set of tuples returned by the query.

The algorithm presented here consists of 4 phases: projection, pruning, bounding and
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Figure 5.4 Phases of the ENNQ algorithm.

evaluation. The first three phases filter out objects in T whose values of a have no
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chance of being the closest to q. The final phase, evaluation, is the core of our so-

lution: for every object Ti that remains after the first three phases, the probability

that Ti.a is nearest to q is computed.

1. Projection Phase.

In this phase, the uncertainty interval of each Ti.a is computed based on the

uncertainty model used by the application. Figure 5.4(a) shows the last recorded

values of Ti.a in S at time t0, and the uncertainty intervals are shown in Figure 5.4(b).

2. Pruning Phase.

Consider two uncertainty intervals U1(t) and U2(t). If the smallest distance be-

tween U1(t) and q is larger than the largest distance between U2(t) and q, we can

immediately conclude that T1 is not an answer to the ENNQ: even if the actual value

of T2.a is as far as possible from q, T1.a still has no chance to be closer to q than T2.a.

Based on this observation, we can eliminate objects from T by the algorithm shown

in Figure 5.5. In this algorithm, Ni and Fi record the closest and farthest possible

values of Ti.a to q, respectively. Steps 1(a) to (d) assign proper values to Ni and

Fi. If q is inside the interval Ui(t), then Ni is taken as the point q itself. Otherwise,

Ni is either li(t) or ui(t), depending on which value is closer to q. Fi is assigned in

a similar manner. After this phase, S contains the (possibly fewer) objects which

must be considered by q. This is the minimal set of objects which must be considered

by the query since any of them can have a value of Ti.a closest to q. Figure 5.4(b)

illustrates how this phase removes T5, which is irrelevant to the ENNQ, from S.

3. Bounding Phase.

For each object in S, there is no need to examine all portions in its uncertainty

interval. We only need to look at the regions that are located no farther than f from

q. We do this conceptually by drawing a bounding interval B of length 2f , centered

at q. Any portion of the uncertainty interval outside B can be ignored. Figure 5.4(c)

shows a bounding interval with length 2f , and (d) illustrate the result of this phase.
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1. for i← 1 to |S| do

(a) if q ∈ Ui(t) then Ni ← q

(b) else

i. if |q − li(t)| < |q − ui(t)| then Ni ← li(t)

ii. else Ni ← ui(t)

(c) if |q − li(t)| < |q − ui(t)| then Fi ← ui(t)

(d) else Fi ← li(t)

2. f ← min1≤i≤|S||Fi − q|; m← |S|
3. for i← 1 to m do

if (|Ni − q| > f) then S ← S � {Ti}
4. return S

Figure 5.5 Algorithm for the Pruning Phase of ENNQ.

The phases we have just described attempt to reduce the number of objects to be

evaluated, and derive an upper bound on the range of values to be considered.

4. Evaluation Phase.

Based on S and the bounding interval B, our aim is to calculate, for each object in

S, the probability that it is the nearest neighbor of q. In the pruning phase, we have

already found Ni, the point in Ui(t) nearest to q. Let us call |Ni−q| the near distance

of Ti, or ni. Let as define new r.v. Xi such that Xi = |Ti.a(t) − q|. Also, let Fi(x)

be the Xi’s cdf, i.e., Fi(x) = P(|Ti.a(t) − q| ≤ x), and fi(x) be its pdf. Figure 5.6

presents the algorithm for this phase.

Note that if Ti.a(t) has no uncertainty i.e., Ui(t) is exactly equal to Ti.a(t), the

evaluation phase algorithm needs to be modified. In the rest of this section, we will

explain how the evaluation phase works, assuming non-zero uncertainty.
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1. R← ∅
2. Sort the elements in S in ascending order of ni, and

rename the sorted elements in S as T1, T2, . . . , T|S|

3. n|S|+1 ← f

4. for i← 1 to |S| do

(a) pi ← 0

(b) for j ← i to |S| do

i. p← ∫ nj+1

nj
fi(x) ·∏j

k=1∧k �=i(1− Fk(x)) dx

ii. pi ← pi + p

(c) R← R ∪ {(Ti, pi)}
5. return R

Figure 5.6 Algorithm for the Evaluation Phase of ENNQ.

Evaluation of Fi(x) and fi(x) To understand how the evaluation phase works,

it is crucial to know how to obtain Fi(x). As introduced before, Fi(x) is the cdf of

Xi, and thus Fi(x)
def
= P(|Ti.a(t) − q| ≤ x). We illustrate the evaluation of Fi(x) in

Figure 5.7.

1. if x < ni return 0

2. if x > |q − Fi|, return 1

3. D ← Ui(t) ∩ [q − x, q + x]

4. return
∫

D
fi(x, t) dx

Figure 5.7 Computation of Fi(x).
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Recall that fi(x) is the pdf of Xi and fi(x, t) is the pdf of Ti.a(t). If Fi(x) is a

differentiable, fi(x) is the derivative of Fi(x).

Evaluation of pi. We can now explain how pi, the probability that Ti.a is closest to

q, is computed. In terms of Xi’s the question is formulated as how pi, the probability

that Xi has the minimum value among all Xi’s, is computed.

Let f̂i(x) dx for indefinitely small dx be the probability that (1) Xi ∈ [x, x + dx]

and (2) Xi = min1≤k≤|S|Xk. Then Equation 5.1 outlines the structure of our solution:

pi =

∫ f

ni

f̂i(x) dx (5.1)

The f̂i(x) dx is equal to probability P(Xi ∈ [x, x + dx]) times the probability that Xi

is the minimum among the all X ′
is. The former probability is equal to fi(x) dx since

fi(x) is Xi’s pdf. The latter probability is equal to the probability that each Xj in

S except for Xi have values greater than Xi, which equals to
∏|S|

k=1∧k �=i P(Xk > x),

which also can be written as
∏|S|

k=1∧k �=i

(
1 − Fk(x)

)
. Thus the formula for pi can be

written as:

pi =

∫ f

ni

fi(x) ·
|S|∏

k=1∧k �=i

(
1− Fk(x)

)
dx (5.2)

Observe that each 1− Fk(x) term registers the probability that Tk.a is farther from

q than Ti.a.

Efficient Computation of pi The computation time for pi can be improved. Note

that Fk(x) has a value of 0 if x < nk. This means if x < nk then 1−Fk(x) is always 1,

and Tk has no effect on the computation of pi. Instead of always considering |S| − 1

objects in the
∏

term of Equation 5.2 throughout [ni, f ], we may actually consider

fewer objects in some ranges, resulting in a better computation speed.

This can be achieved by first sorting the objects according to their near distance

from q. Next, the integration interval [ni, f ] is broken down into a number of intervals,

with end points defined by the near distance of the objects. The probability of an

object having a value of a closest to q is then evaluated for each interval in a way

similar to Equation 5.2, except that we only consider Tk.a with non-zero Fk(x). Then
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pi is equal to the sum of the probability values for all these intervals. The final formula

for pi becomes:

pi =

|S|∑
j=i

∫ nj+1

nj

fi(x) ·
j∏

k=1∧k �=i

(
1− Fk(x)

)
dx (5.3)

Here we let n|S|+1 be f for notational convenience. Instead of considering |S| − 1

objects in the
∏

term, Equation 5.3 only handles j−1 objects in interval [nj , nj +1].

This optimization is shown in Figure 5.6.

Example Let us use our previous example to illustrate how the evaluation phase

works. After 4 objects T1, . . . , T4 were captured (Figure 5.4(d)), Figure 5.8 shows the

x
0 n1 n2 n3 n4 n5=f

U1

U2

U3

U4

Figure 5.8 Illustrating the evaluation phase.

result after these objects have been sorted in ascending order of their near distance,

with the x-axis being the absolute difference of Ti.a from q, and n5 equals f . The

probability pi of each Ti.a being the nearest neighbor of q is equal to the integral of

f̂i(x) over the interval [ni, n5].

Let us see how we evaluate uncertainty intervals when computing p2. Equation 5.3

tells us that p2 is evaluated by integrating over [n2, n5]. Since objects are sorted

according to ni, we do not need to consider all 5 of them throughout [n2, n5]. Instead,

we split [n2, n5] into 3 sub-intervals, namely [n2, n3], [n3, n4] and [n4, n5], and consider

possibly fewer uncertainty intervals in each sub-interval. For example, in [n2, n3], only

U1 and U2 need to be considered.
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5.3.3 Evaluation of EMinQ and EMaxQ

We can treat EMinQ and EMaxQ as special cases of ENNQ. In fact, answering

an EMinQ is equivalent to answering an ENNQ with q equal to the minimum lower

bound of all Ui(T ) in T . We can therefore modify the ENNQ algorithm to solve an

EMinQ as follows: after the projection phase, we evaluate the minimum value of li(t)

among all uncertainty intervals. Then we set q to that value. We then obtain the

results to the EMinQ after we execute the rest of the ENNQ algorithm. Solving an

EMaxQ is symmetric to solving an EMinQ in which we set q to the maximum of ui(t)

after the projection phase of ENNQ.

5.4 Evaluating value-based queries

In this section, we discuss how to answer the probabilistic value-based queries

defined in Section 5.2.2.

5.4.1 Evaluation of VSingleQ

Evaluating a VSingleQ is simple, since by the definition of VSingleQ, only one

object, Tk, needs to be considered. Suppose VSingleQ is executed at time t. Then

the answer returned is the uncertainty information of Tk.a at time t, i.e., lk(t), uk(t)

and its pdf fk(x, t).

5.4.2 Evaluation of VSumQ and VAvgQ

Let us first consider the case where we want to find the sum of two uncertainty

intervals [l1(t), u1(t)] and [l2(t), u2(t)] for objects T1 and T2. Notice that the values in

the answer that have non-zero probability values lie in the range [l1(t) + l2(t), u1(t) +

u2(t)]. For any x inside this interval, fX(x) (the pdf of random variable X = T1.a +

T2.a) is:

fX(x) =

∫ min{u1(t),x−l2(t)}

max{l1(t),x−u2(t)}
f1(y, t)f2(x− y, t) dy (5.4)
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The lower (upper) bound of the integration interval are evaluated according to the

possible minimum (maximum) value of T1.a.

We can generalize this result for summing the uncertainty intervals of |T | objects

by picking two intervals, summing them up using the above formula, and using the

resulting interval to add to another interval. The process is repeated until we finish

adding all the intervals. The resulting interval should have the following form:

[ |T |∑
i=1

li(t),

|T |∑
i=1

ui(t)
]

VAvgQ is essentially the same as VSumQ except for a division by the number of

objects over which the aggregation is applied.

5.4.3 Evaluation of VMinQ and VMaxQ

To answer a VMinQ, we need to find the bounds of uncertainty region [l, u], and

pdf fX(x) of r.v. X = min1≤i≤|T | Ti.a(t). Like for EMinQ the lower bound l can be

set as min1≤i≤|S| li(t) and upper bound u as min1≤i≤|S| ui(t), because X cannot take

values outside [l, u] The steps of the algorithm are similar to first three phases of

ENNQ (projection, pruning, bounding) when q is set to be equal to l. Each Ti such

that li(t) > u is removed from set S of the relevant tuples. Then all tuples in S are

sorted in ascending order of li. For notational convenience we introduce an additional

parameter l|S|+1 and set it equal to u.

To compute fX(x) notice that probability P(X ∈ [x, x + dx]) for some small dx

can be computed as sum of probabilities for each Ti.a(t) to be inside [x, x+ dx] times

the probability that the other Ti.a(t)’s are in (x + dx, +∞). As we tend dx to zero

we have:

fX(x) =

|S|∑
i=1

(
fi(x, t) ·

|S|∏
k=1∧k �=i

(
1− Fk(x, t)

))
, ∀x ∈ [l, u] (5.5)

Since if x ∈ [lj , lj+1] and k > j, then Fk(x, t) = 0, therefore terms (1 − Fk(x, t))

are equal to 1 for such x’s and k’s and need not be considered by the formula. The
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simplified formula is thus:

fX(x) =

|S|∑
i=1

(
fi(x, t) ·

j∏
k=1∧k �=i

(
1− Fk(x, t)

))
, ∀x ∈ [lj, lj+1], 1 ≤ j ≤ |S| (5.6)

Also notice that if x ∈ [lj , lj+1] and k > j, then fi(x, t) = 0. Thus formula for fX(x)

can be written as:

fX(x) =

j∑
i=1

(
fi(x, t) ·

j∏
k=1∧k �=i

(
1− Fk(x, t)

))
, ∀x ∈ [lj, lj+1], 1 ≤ j ≤ |S| (5.7)

VMaxQ is handled in an analogous fashion.

5.5 Quality of probabilistic results

In this section, we discuss several metrics for measuring the quality of the results

returned by probabilistic queries. It is interesting to see that different metrics are

suitable for different query classes.

5.5.1 Entity-based non-aggregate queries

For queries that belong to the entity-based non-aggregate query class, it suffices to

define the quality metric for each (Ti, pi) individually, independent of other tuples in

the result. This is because whether an object satisfies the query or not is independent

of the presence of other objects. We illustrate this point by explaining how the metric

of ERQ is defined.

For an ERQ with query range [l, u], the result is the best if we are sure either Ti.a

is completely inside or outside [l, u]. Uncertainty arises when we are less than 100%

sure whether the value of Ti.a is inside [l, u]. We are confident that Ti.a is inside [l, u]

if a large part of Ui(t) overlaps [l, u] i.e., pi is large. Likewise, we are also confident

that Ti.a is outside [l, u] if only a very small portion of Ui(t) overlaps [l, u] i.e., pi is

small. The worst case happens when pi is 0.5, where we cannot tell if Ti.a satisfies

the range query or not. Hence a reasonable metric for the quality of pi is:

|pi − 0.5|
0.5

(5.8)
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In Equation 5.8, we measure the difference between pi and 0.5. Its highest value,

which equals 1, is obtained when pi equals 0 or 1, and its lowest value, which equals

0, occurs when pi equals 0.5. Hence the value of Equation 5.8 varies between 0 to 1,

and a large value represents good quality. Let us now define the score of an ERQ:

Score of an ERQ =
1

|R|
∑
i∈R

|pi − 0.5|
0.5

(5.9)

where R is the set of tuples (Ti.a, pi) returned by an ERQ. Essentially, Equation 5.9

evaluates the average over all tuples in R.

Notice that in defining the metric of ERQ, Equation 5.8 is defined for each Ti,

disregarding other objects. In general, to define quality metrics for the entity-based

non-aggregate query class, we can define the quality of each object individually. The

overall score can then be obtained by averaging the quality value for each object.

5.5.2 Entity-based aggregate queries

Contrary to an entity-based non-aggregate query, we observe that for an entity-

based aggregate query, whether an object appears in the result depends on the ex-

istence of other objects. For example, consider the following two sets of answers to

an EMinQ: {(T1.a, 0.6), (T2.a, 0.4)} and {(T1.a, 0.6), (T2.a, 0.3), (T3.a, 0.1)}. How can

we tell which answer is better? We identify two important components of quality for

this class: entropy and interval width.

Entropy. Let r.v. X take values from set {x1, . . . , xn} with respective probabilities

p(x1), . . . , p(xn) such that
∑n

i=1 p(xi) = 1. The entropy of X is a measure H(X):

H(X) =

n∑
i=1

p(xi) log2

1

p(xi)
(5.10)

If xi’s are treated as messages and p(xi)’s as their probability to appear, then the

entropy H(X) measures the average number of bits required to encode X, or the

amount of information carried in X [Sha49]. If H(X) equals 0, there exists some

i such that p(xi) = 1, and we are certain that xi is the message, and there is no
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uncertainty associated with X. On the other hand, H(X) attains the maximum

value when all the messages are equally likely, in which case H(X) equals log2 n.

Recall that the result to the queries we defined in this class is returned in a set

R consisting of tuples (Ti, pi). Let r.v. Y take value i with probability pi if and

only if (Ti, pi) ∈ R. The property that
∑n

i=1 pi = 1 holds. Then H(Y ) measures the

uncertainty of the answer to these queries; the lower the value of H(Y ), the more

certain is the answer.

Bounding Interval. Uncertainty of an answer also depends on another important

factor: the bounding interval B. Recall that before evaluating one of these aggregate

queries, we need to find B that dictates all possible values we have to consider. Then

we consider all the portions of uncertainty intervals that lie within B. Note that the

decision of which object satisfies the query is only made within this interval. Also

notice that the width of B is determined by the width of the uncertainty intervals

associated with objects; a large width of B is the result of large uncertainty intervals.

Therefore, if B is small, it indicates that the uncertainty intervals of objects that

participate in the final result of the query are also small. In the extreme case, when

the uncertainty intervals of participant objects have zero width, then the width of B

is zero too. The width of B therefore gives us a good indicator of how uncertain a

query answer is.

An example at this point will make our discussions clear. Figure 5.9 shows four

different scenarios of two uncertainty intervals, U1(t0) and U2(t0), after the bounding

phase for an EMinQ. We can see that in (a), U1(t0) is the same as U2(t0). If we assume

a uniform distribution for both uncertainty intervals, both T1 and T2 will have equal

probability of having the minimum value of a. In (b), it is obvious that T2 has a much

greater chance than T1 to have the minimum value of a. Using Equation 5.10, we can

observe that the answer in (b) enjoys a lower degree of uncertainty than (a). In (c)

and (d), all the uncertainty intervals are halved of those in (a) and (b) respectively.

Hence (d) still has a lower entropy value than (c). However, since the uncertainty

intervals in (c) and (d) are reduced, their answers should be more certain than those
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(a) (b)

U2 U2

(c) (d)

U1

U2U2U1

U1

U1

Figure 5.9 Illustrating how the entropy and the width of B affect the quality of answers
for entity-based aggregate queries. The four figures show the uncertainty intervals (U1(t0)
and U2(t0)) inside B after the bounding phase. Within the same bounding interval, (b) has
a lower entropy than (a), and (d) has a lower entropy than (c). However, both (c) and (d)
have less uncertainty than (a) and (b) because of smaller bounding intervals.

of (a) and (b). Notice that the widths of B for (c) and (d) are all less than (a) and

(b).

The quality of entity-based aggregate queries is thus decided by two factors: (1)

entropy H(Y ) of the result set, and (2) width of B. We define their scores as follows:

Score of an Entity, Aggr Query = −H(Y ) · width of B (5.11)

Notice that the query answer gets a high score if either H(Y ) is low, or the width

of B is low. In particular, if either H(Y ) or the width of B is zero, then H(Y ) = 0

is the maximum score.

5.5.3 Value-based queries

Recall that the results returned by value-based queries are all in the form an

uncertainty interval [l, u], and pdf f(x). To measure the quality of such queries, we

can use the concept of entropy of a continuous distribution, defined as follows:

Ĥ(X) = −
∫ u

l

f(x) log2 f(x) dx (5.12)

where Ĥ(X) is the entropy of continuous random variable X with pdf f(x) defined

in the interval [l, u] [Sha49]. Similar to the notion of entropy, Ĥ(X) measures the
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uncertainty associated with the value of X. Moreover, X attains the maximum value,

log2(u− l) when X is uniformly distributed in [l, u]. Entropy Ĥ(X) can be negative,

e.g. for uniform r.v. X ∼ U[0, 1
2
].

We use the notion of entropy of a continuous distribution to measure the quality

of value-based queries. Specifically, we apply Equation 5.12 to f(x) as a measure of

how much uncertainty is inherent to the answer of a value-based query. The lower

the entropy value, the more certain is the answer, and hence the better quality is the

answer. We now define the score of a probabilistic value-based query:

Score of a Value-Based Query = −Ĥ(X) (5.13)

The quality of a value-based query can thus be measured by the uncertainty associated

with its result: the lower the uncertainty, the higher score can be obtained as indicated

by Equation 5.13.

Please notice that though not presented here many different metrics are possible;

e.g. one might choose the standard deviation as a metric for the quality of VMinQ,

etc.

5.6 Improving answer quality

In this section, we discuss several update policies that can be used to improve the

quality of probabilistic queries, defined in the last section. We assume that the sensors

cooperate with the central server, i.e., a sensor can respond to update requests from

the server by sending the latest value, as in the system model described in [OW02].

Suppose after the execution of a probabilistic query, some slack time is available

before results are needed. The server can improve the quality of the answers to

that query by requesting updates from sensors, so that the uncertainty intervals of

some sensor data are reduced, potentially resulting in an improvement of the answer

quality. Ideally, a system can demand updates from all sensors involved in the query;

however, this is not practical in a limited-bandwidth environment. The question is
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how to improve the quality with as few updates as possible. Depending on the types

of queries, we propose a number of update policies.

Improving the Quality of ERQ The policy for choosing objects to update for

an ERQ is very simple: choose the object with the minimum value computed in

Formula 5.8, with an attempt to improve the score of ERQ.

Improving the Quality of Other Queries Several update policies are proposed

for queries other than ERQ:

1. Glb RR. This policy updates the database in a round-robin fashion using the

available bandwidth, i.e., it updates the data items one by one, making sure

that each item gets a fair chance of being refreshed.

2. Loc RR. This policy is similar to Glb RR, except that the round-robin policy

is applied only to the data items that are related to the query, e.g., the set

of objects with uncertainty intervals overlapping the bounding interval of an

EMinQ.

3. MinMin. An object with its lower bound of the uncertainty interval equal to

the lower bound of B is chosen for update. This attempts to reduce the width

of B and improve the score.

4. MaxUnc. This heuristic simply chooses the uncertainty interval with the max-

imum width to update, with an attempt to reduce the overlapping of the un-

certainty intervals.

5. MinExpEntropy. Another heuristic is to check, for each Ti.a that overlaps

B, the effect to the entropy if we choose to update the value of Ti.a. Suppose

once Ti.a is updated, its uncertainty interval will shrink to a single value. The

new uncertainty is then a point in the uncertainty interval before the update.

For each value in the uncertainty interval before the update, we evaluate the

entropy, assuming that Ui(t) shrinks to that value after the update. The mean
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of these entropy values is then computed. The object that yields the minimum

expected entropy is updated.

5.7 Experimental results

In this section, we experimentally study the relative behaviors of the various

update policies described above with respect to improving the quality of the query

results. We will discuss the simulation model followed by the results.

5.7.1 Simulation model

The evaluation is conducted using a discrete event simulation representing a server

with a fixed network bandwidth (B messages per second) and 1000 sensors. Each

update from a sensor updates the value and the uncertainty interval for the sensor

stored at the server. The uncertainty model used in the experiments is as follows: An

update from sensor Ti at time tupdate specifies the current value of the sensor, Ti.asrv,

and the rate, Ti.rsrv at which the uncertainty region (centered at Ti.asrv) grows. Thus

at any time instant, t, following the update, the uncertainty interval (Ui(t)) of sensor

Ti is given by Ti.asrv ± Ti.rsrv × (t− Ti.tupdate). The distribution of values within this

interval is assumed to be uniform.

The actual values of the sensors are modeled as random walks within the nor-

malized domain as in [OW02]. The maximum rate of change of individual sensors

are uniformly distributed between 0 and Rmax. At any time instant, the value of a

sensor lies within its current uncertainty interval specified by the last update sent

to the server. An update from the sensor is necessitated when a sensor is close to

the edge of its current uncertainty region. Additionally, in order to avoid excessively

large levels of uncertainty, an update is sent if either the total size of the uncertainty

region or the time since the last update exceed threshold values.

Note that the server has to assume certain model of change of values, e.g., it can

assume the uniform or Gaussian distributions within each uncertainty interval. The

actual change in values might follow a different distribution, and therefore the server
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might make not very accurate predictions. We plan to address this problem in future

work.

The representative experiments presented considered either EMinQ or VMinQ

queries only. In each experiment the queries arrive at the server following a Poisson

distribution with arrival rate λq. Each query is executed over a subset of the sensors.

The subsets are selected randomly following the 80-20 hot-cold distribution (20% of

the sensors are selected 80% of the time). The cardinality of each set was fixed at

Nsub =100. The maximum number of concurrent queries was limited to Nq =10. Each

query is allowed to request at most Nmsg updates from sensors in order to improve

the quality of its result.

In order to study different aspects of the policies, query termination can be spec-

ified either as (i) a fixed time interval (Tactive) after which the query is completed

even if its requested updates have not arrived (due to network congestion) or (ii)

when a target quality (G) is achieved. Depending upon the policy, we study either

the average achieved quality (score), the average size of the uncertainty region, or

the average response time needed to achieve the desired quality. All measurements

were made after a suitable warm up period had elapsed. For fairness of comparison,

in each experiment, the arrival of queries as well as the changes to the sensor values

was identical.

Table 5.7.1 summarizes the major parameters and their default values. The simu-

lation parameters were chosen such that average cardinality of the result sets achieved

by the best update policies was between 3 and 10.

5.7.2 Results

All figures in this section show averages.

Bandwidth. Figure 5.10 shows scores for EMinQ achieved by various update policies

for different values of bandwidth. The quality metric in this case is negated entropy

times the size of the uncertainty region of the result set. Figure 5.11 is analogous



129

Table 5.2 Simulation parameters and their default values

Param Default Meaning

D [0, 1] Domain of attribute a

Rmax 0.1 Maximum rate of change of a (sec−1)

Nq 10 Maximum # of concurrent queries

λq 20 Query arrival rate (query/sec)

Nsub 100 Cardinality of query subset

Tactive 5 Query active time (sec)

B 350 Network bandwidth (msg/sec)

Nmsg 5 Maximum # of updates per query

Nconc 1 The # of concurrent updates per query

to Figure 5.10 but shows scores for VMinQ instead of EMinQ. The score for VMinQ

queries is negated continuous entropy.

In Figures 5.10 and 5.11, the scores increase as bandwidth increases for all policies,

approaching the perfect score of zero for EMinQ. This is explained by the fact that

with higher bandwidth the updates requested by the queries are received faster. Thus

for higher bandwidth the uncertainty regions for freshly updated sensors tend to be

smaller than those using lower bandwidth. Smaller uncertainty regions translate into

smaller uncertainty of the result set, and consequently higher score. The reduction

in uncertainty regions with increasing bandwidth can be observed from Figure 5.12.

All schemes that favor updates for sensors being queried significantly outperform

the the only scheme that ignores this information: Glb RR. The best performance

is achieved by the MinMin policy, which updates a sensor with the lower bound of

the uncertainty region li(t) equal to the minimum lower bound among all sensors

considered by the query. The MinExpEntropy policy showed worse results1 than the

1The experiment with bandwidth of 200 takes too much time to complete.
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Figure 5.10 EMinQ score as function of B

MinMin and MaxUnc policies in Figures 5.10 and 5.12 and worse results than those of

the MinMin policy for VMinQ queries, Figure 5.11. When comparing the MinMin and

MaxUnc policies, the better score of the MinMin policy is explained by the fact that

the sensor picked for an update by the MinMin policy tends to have large uncertainty

too – in fact, the uncertainty interval is at least as large as the width of the bounding

interval. In addition the value of its attribute a tends to have higher probability of

being minimum.
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Figure 5.11 VMinQ score as function of B
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Figure 5.12 Uncertainty as function of B
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Figure 5.13 Response time as function of B

Response Time. Figure 5.13 shows response time as a function of available band-

width for EMinQ. Unlike the other experiments, in this experiment a query execution

is stopped as soon as the goal score G (-0.06) is reached. Once again the MinMin

strategy showed the best results, reaching the goal score faster than the other poli-

cies. The difference in response time is especially noticeable for smaller values of

bandwidth, where it is almost twice as good as the other strategies. Predictably, the

response time decreases when more bandwidth becomes available.

Arrival Rate. Figures 5.14 and 5.15 show the scores achieved by EMinQ and

VMinQ queries for various update policies as a function of query arrival rate λq.
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Figure 5.14 EMinQ score as function of λq
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Figure 5.15 VMinQ score as function of λq

As λq increases from 5 to 25, more queries request updates and reduce the uncer-

tainty regions. As a result, the uncertainty decreases, which leads to better scores

(Figure 5.16). When λq reaches 25 the entire network bandwidth is utilized. As λq

continue to increase queries are able to send fewer requests for updates and receive

fewer updates in time, leading to poor result quality and larger uncertainty.

We can observe from Figures 5.14, 5.15, and 5.16 that the relative performance of

the various policies remains the same over a wide range of arrival rates (λq ∈ [5, 45]).

The experiments show that all policies that favor query-based updates achieve

much higher levels of quality. For the queries considered, the MinMin policy gives
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Figure 5.16 Uncertainty as function of λq

the best performance. Evaluation of the policies for all types of queries is beyond the

scope of this thesis. We plan to address this issue as part of future work.

5.8 Related work

Many studies have focused on providing approximate answers to database queries.

These techniques approximate query results based only upon a subset of data. In

[VL94], Vrbsky et. al studied how to provide approximate answers to set-valued

queries (where a query answer contains a set of objects) and single-valued queries

(where a query answer contains a single value). An exact answer E can be approxi-

mated by two sets: a certain set C which is the subset of E, and a possible set P such

that C ∪ P is a superset of E. Unlike our assumptions, their model assumes there is

no uncertainty in the attribute values. Other techniques use precomputation [PG99],

sampling [GM98] and synopses [AGPR99] to produce statistical results. While these

efforts investigate approximate answers based upon a subset of the (exact) values

of the data, our work addresses probabilistic answers based upon all the (imprecise)

values of the data.

The problem of balancing the tradeoff between precision and performance for

querying replicated data was studied by Olston et. al. [OW00, OLW01, OW02]. In

their model, the cache in the server cannot keep track of the exact values of sensor
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sources due to limited network bandwidth. Instead of storing the actual value for each

data item in the server’s cache, they propose to store an interval for each item within

which the current value must be located. A query is then answered by using these

intervals, together with the actual values fetched from the sources. In [OW00], the

problem of minimizing the update cost within an error bound specified by aggregate

queries is studied. In [OLW01], algorithms for tuning the intervals of the data items

stored in the cache for best performance are proposed. In [OW02], the problem of

minimizing the divergence between the server and the sources given a limited amount

of bandwidth is discussed.

Khanna et. al [KT01] extend Olston’s work by proposing an online algorithm that

identifies a set of elements with minimum update cost so that a query can be answered

within an error bound. Three models of precision are discussed: absolute, relative

and rank. In the absolute (relative) precision model, an answer a is called α-precise

if the actual value v deviates from a by not more than an additive (multiplicative)

factor of α. The rank precision model is used to deal with selection problems which

identifies an element of rank r: an answer a is called α-precise if the rank of a lies in

the interval [r − α, r + α].

In all the works that we have discussed, the use of probability distribution of

values inside the uncertainty interval as a tool for quantifying uncertainty has not

been considered. Discussions of queries on uncertainty data were often limited to the

scope of aggregate functions. In contrast, our work adopts the notion of probability

and provides a paradigm for answering general queries involving uncertainty. We also

define the quality of probabilistic query results which, to the best of our knowledge,

has not been addressed.

With the exception of [WSCY99], we are unaware of any work that discusses the

evaluation of a query answer in probabilistic form. The study in [WSCY99] is limited

to range queries for objects moving in straight lines in the context of a moving-

object environment. We extend their ideas significantly by providing probabilistic
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guarantees to general queries for a generic model of uncertainty. Other related work

include [PXK+02, CPK03, KPHA02].

5.9 Conclusions

In this chapter we studied the problem of augmenting probability information

to queries over uncertain data. We propose a flexible model of uncertainty, which is

defined by (1) an lower and upper bound, and (2) a pdf of the values inside the bounds.

We then explain, from the viewpoint of a probabilistic query, we can classify queries

in two dimensions, based on whether they are aggregate/non-aggregate queries, and

whether they are entity-based/value-based. Algorithms for computing typical queries

in each query class are demonstrated. We present novel metrics for measuring quality

of answers to these queries, and also discuss several update heuristics for improving the

quality of results. The benefit of query-based updates was also shown experimentally.
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6. CONCLUSION

This thesis addresses the problem of efficient querying of constantly evolving data.

Constantly evolving data are common in moving object and sensor database environ-

ments.

Moving object environments are characterized by large numbers of moving objects

and concurrent active queries over these objects. Efficient continuous evaluation of

these queries in response to the movement of the objects is critical for supporting

acceptable response times. We showed that neither the traditional approach, nor the

brute force strategy achieve reasonable performance.

We presented a novel indexing technique for scalable execution: Velocity Con-

strained Indexing (VCI) and compared it with the Query Indexing technique. VCI is

an indexing methods that help to avoid constant updates to the index as the data

change. VCI approach gives good performance for up to a thousand of continuous

queries, and, unlike the query indexing approach, it is unaffected by changes in queries

and actual object movement. We showed that the two techniques complement each

other enabling a combined solution that efficiently handles not only ongoing queries

but also dynamically inserted queries. The experiments also demonstrated the robust-

ness of the new techniques to variations in the parameters. The combined schemes

therefore achieve superior performance to existing solutions for the efficient and scal-

able evaluation of continuous queries over moving objects.

We presented several approaches for in-memory evaluation of continuous range

queries on moving objects. We established that the proposed method is in fact a

very efficient solution even when there are no restrictions on object speed or nature

of object movement or fraction of objects that move at any moment in time, which
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are common restrictions made in similar research. We presented results for six dif-

ferent in-memory spatial indexes. The grid approach showed the best result for the

uniform, skewed, and hyper-skewed cases. Even though the set of continuous queries

is likely to remain almost unchanged, we also showed that nevertheless grid can very

efficiently add and remove large numbers of queries. Overall, the Grid indexing is a

highly scalable solution that gives orders of magnitude better performance than other

index structures such as R*-trees.

We considered the problem of similarity join in main memory for low- and high-

dimensional data. Two new algorithms were developed: Grid-join and EGO*-join

that were shown to give superior performance than the state of the art EGO-join

algorithm as well as RSJ. The significance of the choice of ε and recommendations

for a good choice for testing and comparing algorithms with meaningful selectivity

were discussed. While recent research has concentrated on joining high-dimensional

data, little attention was been given to the choice of technique for low-dimensional

data. In our experiments, the proposed Grid-join approach showed the best results

for low-dimensional case or when values of ε are very small. The EGO*-join demon-

strated substantial improvement over EGO-join for all the cases considered and is

the best choice for high-dimensional data or when values of ε are large. The opti-

mal choice of grid size was studied analytically and than corroborated experimentally.

Constantly evolving data is inherently uncertain. Querying such data with regu-

lar queries might lead to incorrect results. We investigated probabilistic methods of

queries such data where each result has a probability of satisfying a query. We pro-

posed a flexible model of uncertainty defined by uncertainty intervals and probability

distribution of the values inside the intervals. We proposed a classification of queries

based on the nature of query result set. Algorithms for computing typical queries in

each query class are demonstrated. We showed that, unlike standard queries, prob-

abilistic queries have the notion of quality of probabilistic answer. We present novel
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metrics for measuring quality of answers to these queries, and also discuss several up-

date policies for improving the quality of results. The benefit of query-based updates

was shown experimentally.

To conclude, this thesis presented highly scalable and efficient state of the art

solutions for the problems of handling multiple concurrent continuous range queries

on moving objects and similarity joins. In addition to that it provided solutions to

the problem of handling uncertainty in data for moving objects and sensor databases.
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[IVB94] Tomasz Imieliński, S. Viswanathan, and B. R. Badrinath. Energy effi-
cient indexing on air. In Proceedings of the International Conference on
Management of Data, pages 25–36, May 1994.

[KCK01] K. Kim, S. K. Cha, and K. Kwon. Optimizing multidimensional index
trees for main memory access. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Santa Barbara, California,
May 2001.

[KGT99] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects.
In Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), June 1999.

[KH95] K. Koperski and J. Han. Discovery of spatial association rules in ge-
ographic information databases. In International Symposium on Large
Spatial Databases, 1995.



142

[KH00] H. Koshima and J. Hoshen. Personal locator services emerge. IEEE
Spectrum, 37(2):41–48, February 2000.

[KN98] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers
in large datasets. In Proceedings of the International Conference on Very
Large Data Bases, 1998.

[KPAH02] Dmitri V. Kalashnikov, Sunil Prabhakar, Walid Aref, and Susanne Ham-
brusch. Efficient evaluation of continuous range queries on moving ob-
jects. Technical Report TR 02-015, Department of Computer Science,
Purdue University, West Lafayette, Indiana, June 2002.

[KPHA02] Dmitri V. Kalashnikov, Sunil Prabhakar, Susanne Hambrusch, and Walid
Aref. Efficient evaluation of continuous range queries on moving objects.
In Proceedings of the International Conference on Database and Expert
Systems Applications, Aix en Provence, France, September 2002.

[KS98] Nick Koudas and Kenneth C. Sevcik. High dimensional similarity joins:
Algorithms and performance evaluation. In Proceedings of the Four-
teenth International Conference on Data Engineering, pages 466–475.
IEEE Computer Society, 1998.

[KT01] S. Khanna and W. C. Tan. On computing functions with uncertainty. In
ACM Symposium on Principles of Database Systems, 2001.

[KTF98] Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. Designing access
methods for bitemporal databases. IEEE TKDE, 10(1):1–20, 1998.

[LR96] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data, pages 247–258, June 1996.

[Ltd99] Trimble Navigation Ltd. Trimble customer solutions. http://www.trim-
ble.com/solution/index.htm, 1999.

[McN] Rand McNally. Streetfinder GPS for Palm IIIc connected organizer.
http://www.randmcnally.com/palmIIIc/index.ehtml#receiver.

[MOS85] M. McKenna, J. O’Rourke, and S. Suri. Finding the largest rectangle
in an orthogonal polygon. In Proceedings of the Allerton Conference on
Communication, Control, and Computing, pages 486–495, 1985.

[OLW01] C. Olston, Boon Thau Loo, and J. Widom. Adaptive precision setting
for cached approximate values. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2001.



143

[OW00] C. Olston and J. Widom. Offering a precision-performance tradeoff for
aggregation queries over replicated data. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, 2000.

[OW02] C. Olston and J. Widom. Best-effort cache synchronization with source
cooperation. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 73–84, 2002.

[PD96] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge
join. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1996.

[PG99] V. Poosala and V. Ganti. Fast approximate query answering using pre-
computed statistics. In Proceedings of the International Conference on
Data Engineering, page 252, 1999.

[PJ] D. Pfoser and C. S. Jensen. Querying the trajectories of on-line mobile
objects. In Proceedings of the MobiDE Conference, 2001.

[PJ99] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-objects
representations. In Proceedings of the SSDBM Conference, pages 123–
132, 1999.

[PJT00] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query
processing for moving objects. In Proceedings of the International Con-
ference on Very Large Databases (VLDB), Cairo, Egypt, September 2000.

[PTJ99] D. Pfoser, Y. Theodoridis, and C. S. Jensen. Indexing trajectories of
moving point objects. Technical Report Chorochronos Technical Report
CH-99-3, June 1999.

[PXK+02] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch. Query
indexing and velocity constrained indexing: Scalable techniques for con-
tinuous queries on moving objects. IEEE Transactions on Computers,
51(10):1124–1140, October 2002.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 71–79, San Jose, California, 1995.

[RR00] Jun Rao and Kenneth A. Ross. Making B+-trees cache conscious in main
memory. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 475–486, May 2000.

[SA97] John C. Shafer and Rakesh Agrawal. Parallel algorithms for high-
dimensional similarity joins for data mining applications. In Proceedings
of the International Conference on Very Large Data Bases, pages 176–185,
August 1997.



144

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, Reading, Massachusetts, 1990.

[SDK01] Ayse Y. Seydim, Margaret H. Dunham, and Vijay Kumar. Location de-
pendent query processing. In Second ACM International Workshop on
Data Engineering for Mobile and Wireless Access, Santa Barbara, Cali-
fornia, May 2001.

[Sha49] C. E. Shannon. The Mathematical Theory of Communication. University
of Illinois Press, 1949.

[SJLL00] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexing the posi-
tion of continuously moving objects. In Proceedings of the ACM SIGMOD
Conference, Dallas, Texas, May 2000.

[SSA97] Kyuseok Shim, Ramakrishnan Srikant, and Rakesh Agrawal. High-
dimensional similarity joins. In Proceedings of the International Con-
ference on Data Engineering, pages 301–311, April 1997.

[SWCD97] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Mod-
eling and querying moving objects. In Proceedings of the Fourteenth In-
ternational Conference on Data Engineering (ICDE’97), pages 422–432,
1997.

[SWCD98] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the
uncertain position of moving objects. In Temporal Databases: Research
and Practice, number 1399. 1998.

[Tru] TruePosition. What is trueposition cellular location system? http://
www.trueposition.com/intro.htm.
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