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Abstract—We present ADDSEN middleware as a holistic solution for Adaptive Data processing and dissemination for Drone swarms
in urban SENsing. To efficiently process sensed data in the middleware, we have proposed a cyber-physical sensing framework using
partially ordered knowledge sharing for distributed knowledge management in drone swarms. A reinforcement learning dissemination
strategy is implemented in the framework. ADDSEN uses online learning techniques to adaptively balance the broadcast rate and
knowledge loss rate periodically. The learned broadcast rate is adapted by executing state transitions during the process of online
learning. A strategy function guides state transitions, incorporating a set of variables to reflect changes in link status. In addition, we
design a cooperative dissemination method for the task of balancing storage and energy allocation in drone swarms. We implemented
ADDSEN in our cyber-physical sensing framework, and evaluation results show that it can achieve both maximal adaptive data
processing and dissemination performance, presenting better results than other commonly used dissemination protocols such as
periodic, uniform and neighbor protocols in both single-swarm and multi-swarm cases.
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1 INTRODUCTION

U NMANNED Aerial Vehicles (UAV), commonly known as
drones, are aircraft without a human pilot on board. These

flights are either controlled autonomously by computers in the
vehicle, or under the remote control of a pilot on the ground or
in another vehicle. Drones have a wide variety of shapes, sizes,
configurations, and characteristics, capable of communicating
voice, video, and other data. Drones are used in many military
and civil applications [1], [2], such as surveillance, policing,
firefighting, and search and rescue missions. Drones can form
swarms for self-organization and collaboration in airborne mobile
ad hoc networks [3]. In addition to their military applications,
drone swarms will become an increasingly important component
of smart cities [4], [5]. Governments are now in the process of
enabling these uses by adopting policies that will allow them
to be safely used (e.g. flying below 400 feet and always within
visual sight according to Federal Aviation Administration [6]). Of
particular interest is their use for demand and event responsive
monitoring of transportation systems and air quality. Swarms can
be dispatched as a sensing grid to sense traffic related informa-
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tion on the public roadway, or transmit real-time reports when
accidents or natural disasters impact traffic networks.

1.1 Motivations

As an important part of urban sensing, transportation monitoring
uses in- and over-roadway sensors to collect traffic data [7].
Examples of in-roadway sensors include inductive-loop detectors,
which are saw-cut into the pavement; and tape switches, which
are mounted on the roadway surface. Examples of over-roadway
sensors are video image processors that use cameras mounted
on tall poles adjacent to the roadway; and laser radar sensors
mounted on structures that span the traffic lanes. However, the
installation and maintenance costs of loop detectors and video
cameras are high, and they might not properly operate at night or
in severe weather conditions. These sensing techniques sometimes
are unreliable and frequently malfunction due to device failure,
corrosion and infrastructure deterioration. Moreover, sensor place-
ments are generally sparse over the transportation network (mainly
at arterioles and intersections), without robust coverage especially
for rural area and interstate highway.

Drone swarms are an emerging technology for wide area
sensing that involves over-roadway sensors mounted on aerial
platforms. The idea of using sensors in mobile vehicles to effi-
ciently and inexpensively monitor traffic network has gained quite
a bit of attention in the last few years [8]. Drone swarms provide
an additional way to manage these kinds of sensors as a mobile
platform with various sensing capabilities (e.g. traffic condition,
air quality, noise perception). They are particularly effective when
the city management centers need an integrated sensing solution
with robust coverage to areas of interest on demand.

Quadcopter UAVs such as the state-of-the-art DJI Phantom
3 [9] (product dimensions: 8 × 13 × 18 inches) and the Parrot
AR.Drone 2.0 [10] (product dimensions: 23 × 0.5 × 23 inches)
are the most successful class of commercially available drones,
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Fig. 1. Urban sensing in transportation using drone swarms.

due to their autonomous nature, cost effectiveness and size. In-
spired by the use of drones in agriculture for pesticide dispersion
and large-scale field imagery for data analysis [11], we propose
the deployment of quadcopters as a suitable solution for swarming
drones in urban sensing.

As shown in Fig. 1, in response to real-time traffic condi-
tions on the I-405 freeway in Southern California (one of the
most congested freeways in the US), two drone swarms can be
dispatched for some typical urban sensing tasks over different
roadway segments. One swarm is composed of 4 drones (R1,
R2, R3 and R4), and one swarm is composed of 3 drones (G1,
G2 and G3). The spatio-temporal communication links for these
drones in each swarm are marked by red connections and green
connections respectively. Three typical urban sensing tasks for
the two drone swarms illustrated in Fig. 1 are traffic sensing,
pollution sensing, and noise sensing. Each drone in each of
the two swarms is outfitted with a traffic camera (e.g. sensing
traffic speed, occupancy and volume), a pollution sensor (e.g.
sensing ozone, nitrogen dioxide and carbon monoxide) and a
noise sensor (e.g. sensing sound wavelength and intensity) on the
sensing platform to execute these tasks; additional urban sensing
tasks (for example temperature and moisture) can be achieved by
adding corresponding sensors. Since each drone can only sense
a partial area of a roadway segment along its flight path (see the
black dotted circle in Fig. 1), using drone swarm can efficiently
increase the coverage area by leveraging the sensing capabilities
of grouped drones. The sensed data collected by these drone
swarms can either be stored in the local memory of each drone
as spatial-temporal records for future analysis after the drone
returns to its originating depot, or immediately transmitted to the
traffic management center through a cellular tower for real-time
use. Therefore, drone swarms can provide robust and integrated
sensing platforms for future cities [12], [13].

1.2 Our Contributions
In this paper, we propose ADDSEN (Adaptive Data processing
and dissemination for Drone swarms in urban SENsing) as a holis-
tic middleware solution for drone swarms executing urban sensing

tasks. To efficiently process sensed data in the middleware, we
have implemented a cyber-physical sensing framework using par-
tially ordered knowledge sharing (POKS) for distributed knowl-
edge management in drone swarms (open-source code is available
at [14]).Knowledge is an entirely application defined concept for
data processing and dissemination. For example, the noise sensing
application defines noise as one kind of knowledge in urban sens-
ing with specific contents (sound values) as knowledge items
to store. There a distinction between “data” and “knowledge” in
our urban sensing applications. We consider “data” to be the raw
bytes collected by drones from sensor hardware. After a drone
collects data from their sensors this data is processed by the drone
into a set of knowledge items. Knowledge items have informative
headers and carry partially processed sensed data as their payload.
Drones transmit, receive, and process knowledge items during
the execution of their assigned tasks. While ADDSEN pro-
cesses and disseminates sensed data, knowledge items containing
partially processed data are the containers which are sent and
received by drones during data processing and dissemination. The
framework provides a generic service to represent, manipulate,
and share knowledge across aerial disruption-tolerant networking
(DTN) [15] under minimal assumptions about connectivity. To
overcome disconnection in DTN, knowledge items are stored for
an extended time and grouped as DTN bundles for dissemination.
This networked cyber-physical system framework is the founda-
tion for distributed urban sensing applications.

To better adapt to the link status for intra/inter-swarm data dis-
semination, a reinforcement learning based dissemination strategy
is implemented in our cyber-physical sensing framework, where
the wireless link status is estimated by knowledge exchange, and
broadcast rate is determined by our online learning solution. Our
use of reinforcement learning is similar to that of [16]. In our so-
lution, ADDSEN uses online reinforcement learning techniques
to adaptively balance the broadcast rate and loss rate periodically,
based on a strategy function incorporating a set of variables to
reflect the change in link status. The strategy function can guide
sequential state transitions to approach the best broadcast rate, so
that each drone can reduce the loss rate of data dissemination.

Periodic intra/inter-swarm broadcast dissemination also con-
sumes the storage and energy of each drone. To maximize the in-
field time of drone swarms as sensing grids, an optimal balancing
method is designed in ADDSEN for the cooperative task of bal-
ancing storage and energy allocation. This optimization program
can assign data dissemination and sharing tasks to drones with
more residual storage and energy; it also regulates the reception
behavior of drones after detecting a broadcast, to avoid reception
by drones with limited capacity.

The rest of this paper is organized as follows. Section 2
addresses the challenges and related works in urban sensing using
drone swarms. Section 3 introduces the distributed knowledge
management in ADDSEN . Section 4 presents the data pro-
cessing and dissemination strategies in ADDSEN . Section 5
evaluates the performance of ADDSEN . Finally, Section 6
concludes the paper.

2 CHALLENGES AND RELATED WORKS

Drones depart their depot as a swarm with assigned tasks, and
they are expected to be out in the field together for a period
of time before returning to the depot. To support efficient urban



sensing in a scenario described in Fig. 1, several challenges must
be addressed:

1) Data processing framework: each drone can only sense the
area along its flight path (see the black dotted circle in Fig. 1);
the drone swarm needs a way to aggregate the sensed data
from individual drones into a sensing grid. Meanwhile, the
same area may be sensed by multiple drones, resulting in
redundant information (see the overlapped areas of sensing
circles in Fig. 1). Therefore, in-network data processing is
needed to analyze the quality of sensed data so that low-
quality/faulty and redundant data can be discarded.
Haghighi et al [17] has proposed a stochastic time-domain
model for burst data aggregation in IEEE 802.15.4 wireless
sensor networks. In-network data aggregation and processing
have also been also addressed in the case of VANETs in [18],
[19]. In addition, some online and adaptive data processing
techniques have been proposed for VANETs in [20], [21].
However, none of these works have proposed a feasible
scheme for data aggregation and redundancy processing in
a sensing swarm. In our early work [22], we implemented
a networked cyber-physical system (NCPS) using a partial
ordering framework to handle data aggregation and analysis,
but its extension to support urban sensing applications is not
well studied.

2) Data dissemination strategy: To reduce the delay introduced
by real-time aggregation of data sensed from working drones,
the data can first be sent back to the depot via cellular
tower and then aggregated as needed. However, cellular
service is not always available and frequent transmissions
by cellular connections may quickly drain a drone’s battery.
Data dissemination between drones through WiFi Direct or
Bluetooth Low Energy [23], [24] to relay the data to the
depot is a feasible solution. Data dissemination for drone
swarms can be intra-swarm (i.e. in the same swarm) or
inter-swarm (i.e. between different swarms); data is usually
disseminated under disruption-tolerant networking (DTN)
due to the changing distances between drones or swarms.
In comparison with unicast, anycast and multicast, broadcast
can better support vehicular dissemination due to its inherent
data redundancy and complete transmission coverage [25].
The usual flooding approach results in the broadcast storm
problem which wastes valuable and limited bandwidth and
energy. Probabilistic approaches can optimize flooding, such
as the OAPB/DB [26] protocol that rebroadcasts data by con-
sidering the geographical zone area and local vehicle density
within two-hops of distance, and the REAR protocol [27]
that relays broadcast data based on their estimated message
received value. Low latency broadcast scheduling in duty-
cycled multi-hop wireless networks has been investigated
in [28]. However, under highly mobile connections and
harsh communication environments, drones require fast, link-
adaptive, and low-loss broadcast strategies [29].

3) Resource utilization: When drones in a swarm are sent out
to execute tasks together in the field, they are expected to
maximize their in-field time. However, drones are resource
(e.g. memory, energy and others) restricted aerial vehicles. A
small drone, such as the DJI Phantom 3, can fly for around 25
minutes on a full charge. The much larger InView Unmanned
Aircraft System [30] has a flight duration for 7 hours, but is
not suitable for large-scale swarming due to its cost. Periodic

dissemination with broadcasting and communication with
strong interference cause excessive energy consumption and
impacts a drone’s in-field time. The memory of drone is also
limited because sensing tasks can generate a large volume of
data.
To achieve efficient usage of mobile resources, mobile data
gathering problem has been formulated as a network utility
maximization problem which is constrained by flow, energy
balance, link and battery capacity of the mobile collector
in [31]. A game theory based data collection method was
also proposed to maximize the energy efficiency with fairness
constraints in [32]. To cooperatively schedule resource, a
self-adaptive strategy has been proposed for the evolution of
cooperation in distributed networks in [33], and cost-aware
cooperative resource provisioning for heterogeneous work-
loads has been studied in [34]. To increase the in-field time of
a drone swarm as a sensing grid that collects heterogeneous
data, we have to design an adaptive optimization method to
cooperatively balance the memory and energy capacities in
drone swarms so that the workload of heavy-duty drones can
be delegated to others with more resources.

We will present the specific designs of ADDSEN to address
above challenges in following sections.

3 DISTRIBUTED KNOWLEDGE MANAGEMENT

Knowledge is semantically meaningful information that can be
generated, stored, processed, aggregated, and communicated. The
distributed knowledge management in ADDSEN maintains a
distributed knowledge base, which can be accessed by other
system components via a common interface, for data processing
and dissemination in networked and distributed cyber-physical
environments. To this end, each node maintains a local knowledge
base to store knowledge-related application content (knowledge
items), and executes data dissemination protocols to exchange
knowledge items with its neighbors. The two fundamental dis-
tributed knowledge management and dissemination schemes in
ADDSEN middleware are partial ordering for knowledge shar-
ing, and a cyber-physical sensing framework to schedule system
components for various urban sensing applications.

3.1 Partially Ordered Knowledge Sharing

Partially ordered knowledge sharing (POKS) is organized asyn-
chronously and can make explicit use of distributed computations
in space and time. Each node’s local clock increases monotonically
by at least one unit in each instruction and is loosely synchronized
with other nodes in the network whenever admitted by the net-
working conditions. Our implementation of time synchronization
satisfies Lamport’s axioms of logical time.

Each node uses some of its storage as a cache, which we
refer to as a knowledge base. The local knowledge base is a
set of knowledge items, and each knowledge item has at least
the following attributes associated with it: the creator, i.e. the
node that created it; its creation time and its expiration time.
The additional attributes of a knowledge item depend on its appli-
cation content related knowledge classes, namely parameters,
status, and statistics. Knowledge based network caching allows
the system to support communication even if no end-to-end path
exists at a single point in time. In contrast to a shared-memory
model, POKS allows each node to have its own (typically partial



and delayed) view of the distributed state of knowledge. Unlike
a message-passing model, knowledge in POKS is not directed
toward a particular destination. Instead, each node decides based
on the knowledge attribute if it wants to use the unit of knowledge.

Specifically, we define an equivalence relation ≡ and a par-
tial ordering ≺ on knowledge items. Intuitively, the equivalence
k ≡ k′ means that k and k′ contain the same information, and
the relation k ≺ k′ means that k′ replaces k. A typical case in
the relation k ≺ k′ happens when k is obsolete given that k′

is fresher that k. For the operation of the knowledge manager,
k ≺ k′ implies that if k is in the local knowledge base and k′

is received then k should be replaced by k′. Similarly, k ≡ k′

implies that if k is in the local knowledge base and k′ is received
then k′ is redundant and can be ignored. In this paper, we use
the notation of k(ck, ctk, etk, . . .) to represent knowledge k with
creator ck, creation time ctk, expiration times etk and application-
specific attributes (if any). The ordering is specified by statements
of the form O: k(. . . ) ≺ k(. . . ) if condition. For example,
O: k(ck, ctk, . . .) ≺ k(ck, ct

′
k, . . .) if ctk < ct′k represents an

ordering based on creation time (in this case, fresher knowledge
replaces older one) between knowledge items that are generated
by same creator ck.

POKS is of key importance for scalable implementations,
because its in-network replacement of inferior knowledge de-
creases the communication overhead by discarding information
in a semantically meaningful way and limiting the amount of
knowledge that needs to be stored at each node.

3.2 Cyber-Physical Sensing Framework

The cyber-physical sensing framework in ADDSEN middle-
ware provides network caching and in-network processing mech-
anisms to implement distributed sensing, storage, computing and
communication based on POKS. The framework consists of hosts,
engines, applications, devices, storage, etc. InADDSEN , a host
and an engine correspond to a specific drone and a process
on which applications are running, respectively. Urban sensing
application related information can be obtained from physical
devices including sensors, actuators and others. This information
is kept in local storage. Each drone uses some of its storage as a
network cache and enables opportunistic knowledge sharing even
in a disruptive environment.

Fig. 2 describes the operation and interaction of drones within
the framework. Each drone is running an engine which is in
turn hosting several transportation related sensing applications.
Applications interact with each other and with the engine through
the event-handling component of the engine. Drone applications
may also register for exclusive access to drone hardware resources
(such as sensors), which is handled by the scheduling component
of the engine. In this framework, all local computations are event-
based. There are two types of events: timed events, which can
be posted to be activated at any time in Fig. 2 to schedule local
action, and knowledge events, which can be posted to disseminate
knowledge in the network and to respond upon after receiving new
knowledge units. The event-handler allows applications to register
actions that are triggered upon event detection, and also to allow
for the triggering of such events. The event-handler serves as an
interface to both the local storage for each drone, and system-wide
distributed POKS.

Distributed knowledge sharing among 3 drones, as shown in
Fig. 2, can be achieved by the data dissemination application.
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Fig. 2. Cyber-physical sensing framework and partially ordered knowl-
edge sharing in distributed knowledge management.

The data dissemination component in the framework implements
specific strategies (e.g. broadcasting, load balancing) to propagate
knowledge on top of the underlying physical network layer. Each
knowledge base can serve as a distributed network cache to enable
opportunistic knowledge sharing with intermittent connectivity so
that senders and receivers are completely decoupled. The data
dissemination protocols make essential use of the partial order
defined on knowledge, by replacing and hence discarding a unit
of knowledge whenever a unit that is higher in the ordering is
received. We discuss the design of data dissemination protocols
for ADDSEN in Section 4.

4 DATA PROCESSING AND DISSEMINATION IN
DRONE SWARMS

The implementation of data processing and dissemination func-
tionality in ADDSEN is based on our distributed knowledge
management framework for drone swarms. This includes an online
learning scheme for adaptive dissemination, a cooperative dissem-
ination method for optimal balancing of storage and energy, and
several POKS rules for various urban sensing tasks.

4.1 Swarming Drones

We propose an urban sensing scheme allowing independent depots
to deploy drones into control zones for which each depot is
responsible. Drones launched from a depot may form one or
more swarms, and will be tasked (and programmed) by the
depot to perform urban sensing tasks. Each depot will upload the
appropriate applications as described in Fig. 2 to the drones to
enable their sensing and communication capabilities in that depot’s
control domain. The programmed drone will perform its assigned
urban sensing tasks around the way-points defined by the depot
for its corresponding swarm. The urban sensing data collected
by the drone can be either returned to its depot after the entire
swarm returns to the depot, or disseminated to drones in other
swarms to relay the information back to the depot (the latter is
done when the swarm has other tasks to perform at the time the
data is to be sent). The depot will process the returned data during
execution of assigned tasks, and incorporate this information into



a decision making processes which may result in a new swarm
task assignment.

In ADDSEN a swarm of drones performs a distributed
surveillance mission by flying to sensing locations in a formation
that creates an effective sensing grid to enable distributed and
cooperative execution. Drones from the same swarm or different
swarms can communicate with each other and assist others to
accomplish tasks. To achieve our distributed sensing mission by a
swarm formation, ADDSEN leverages the concept of virtual
potential field [35] for swarming drones. In a nutshell, virtual
potential can be seen as a specification of the desired state of a
system, where each member is driven by the desire to minimize
its perception of, and hence its own contribution to the virtual
potential. The potential field in ADDSEN is designed to guide
drones positioned at desired pairwise distances and to be adaptive
when a new target location is selected. In the simplest case, the
potential field can be a constant around the center of the desired
location and increase when the distance from the center grows.
To cope with local minimum, we use a distributed version of
simulated annealing [36] instead of constructing the potential field
using gradient descent.

In our prototype, the potential field is implemented using a
potential function for the formation of the drone swarm. We
define the potential p capturing the quality of a given swarm
configuration as a weighted sum, p = wfpf +wlpl, where pf and
pl are potentials corresponding to formation and desired location,
respectively. The formation potential pf should be minimal when
a swarm creates a hexagonal lattice for distributed sensing grids.
We define the formation potential of a swarm with n drones as
pf = 1

n

∑n
i=1 p

i
f , where

pif =


(Z − zi), if zi < zc
cr(

1
zi
− 1

Z ), if zc ≤ zi ≤ Z
ca(

1
Z −

1
zi
), if Z < zi

(1)

In the above equation, Z is the desired distance between
drones in the sensing zone, and zi is the current distance between
the drone solving the optimization and another drone i. If they
are located at the desired distance (zi = Z), then pif presents the
lowest potential. Otherwise, pif has repulsive impact if the drones
are closer than Z and attractive impact if they are farther than
Z . This corresponds to repulsive and attractive forces in artificial
physics, where a force law is defined between two particles [37].
In [37] the repulsive force is restricted to remain constant when
the distance between two particles gets too small, and we use this
threshold distance as a range constant zc in the above equation.
When the drones are further apart, pif is defined to be inversely
proportional to the distance z with the constants for repulsive
impact cr and for attractive impact ca. We define cr to ensure
that the potential field is continuous. A location potential pl is
defined as a function of distance between the center of a swarm
and the desired location.

4.2 Mobile Dissemination in Drone Swarms
Due to redundant data reception and a wide transmission range,
broadcasting can support data dissemination even when connec-
tions are highly mobile and the communication environments are
harsh, In our multi-swarm scenario, each drone collects data (e.g.,
traffic, pollution, noise) at work locations above the public road
and disseminate it by broadcasting it to other drones in the same
or in different swarms when they are in transmission range, along
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Fig. 3. Data dissemination in a multi-swarm scenario.

the flying route. Fig. 3 presents the data dissemination scenario
with two swarms at the meeting point, one with 4 drones (swarm
“Red”) and one with 3 drones (swarm “Green”). Drones from
different swarms disseminate DTN bundles with knowledge items
to neighbor drones in the transmission range. The partial ordered
knowledge sharing method introduced in Section 3.1 is applied to
the received knowledge items for update and forwarding purposes.

For the DTN-based broadcast, each DTN bundle includes
a number of knowledge items, and the broadcast decision is
made from the tuples in each broadcast knowledge item with the
following information:

• swarm ID, which is the unique ID to represent each
swarm.

• drone ID, which is the unique ID to represent the drone
in each swarm.

• aware, which is the set of drones that, according to the
local knowledge base, are already aware of this knowledge
item.

For security purposes, to protect the drone ID and local
knowledge base, if a drone from a swarm wants to disseminate
data to drones from another swarm, it first needs to check the
swarm ID of another swarm to make sure the receiving swarm
has been authorized to receive knowledge items from the sending
swarm. If the swarm ID from the receiving swarm passes the
verification test, then the drone in the sending swarm can obtain
ID information of drones in the receiving swarm and disseminate
data to these drones.

Our broadcast scheme uses meta-information in knowledge
items to reduce the number of unnecessary retransmissions. To this
end, we keep an additional awareness attribute for each knowledge
item, which is the set of drones that, according to local knowledge,
are already aware of this item. If a knowledge item k′ is received
and there is an existing knowledge item k in the local knowledge
base such that k ≡ k′, then k will not be replaced by k′ but
the awareness set of k will be extended by the awareness set
of k′. In this way awareness propagates through the network
even if no fresh knowledge is generated. The awareness set is
used to eliminate redundant transmissions of knowledge items. A
knowledge item is only transmitted if the receiving neighbor is not
already in its awareness set.

In addition, each drone locally maintains four sets of informa-
tion for broadcast decisions as follows:

• sentto, which is the set of drones that the knowledge item
has been sent to from the drone.



• senderList, which is the set of drones that send the
knowledge item to the drone.

• awareAll, which indicates if all neighbor drones are
aware of the knowledge item.

• senttoAll, which indicates if the drone sends the knowl-
edge item to all neighbor drones.

awareAll and senttoAll are derived from the “aware” and
“sentto” information recorded locally for each knowledge item.

During DTN-based broadcast, there is only one source of a
knowledge item, called a creator, which is the drone that originally
creates the DTN bundle and initiates its propagation. But the item
can be disseminated many times by different senders.

Our broadcast scheme estimates the knowledge loss rate
periodically by checking if a drone had already broadcasted a
knowledge item k before, and the drone is in the senderList of
other received knowledge items k′. In Fig. 3, creator drone R1
generates an original knowledge item KR1, and broadcasts it to
neighbor drones in its transmission range, e.g. drone R2 from
the same swarm “Red” and drone G1 from a different swarm
“Green” , so that drones R2 and G1 are in the sentto bitset.
The knowledge item KR1 will be received by R2 and G1, and
then rebroadcasted by them, in the form of knowledge items KR2

and KG1 respectively. If drone R1 can receive the two items,
it will know they are the same knowledge item as KR1 in its
local knowledge base, by checking attribute information in these
knowledge items (e.g. creator, creation time, and others), it can
then ignore the two items, and put drone R2 and drone G1 in the
aware bitset. Meanwhile, drone R1 can find its drone ID is in the
senderList of KR2 and KG1, so that drone R1 knows knowledge
item KR1 has been successfully received by neighbor drone R2
and drone G1. Similarly, if the broadcast time of KG1 is later then
KR2, drone R2 also can receive KG1 with its ID in the senderList
and then know that KR2 has been successfully broadcasted to
neighbor drone G1.

If a drone broadcasts a knowledge item to neighbor drones
and then cannot find its ID in the senderList of the rebroadcasted
knowledge items from some neighbor drones after a period, the
drone will determine the loss of the knowledge item. There are
two major reasons that cause loss during broadcast:

• random change of link status (up/down) during dissemina-
tion, because of uncontrolled channel conditions,

• bit error rate (BER) during reception, because of the
distance between drones and the number of neighbors
around the receiver.

The loss rate information is used in ADDSEN to estimate
the online link status and guide drones to adjust their dissemina-
tion strategy by the learning techniques discussed in Section 4.3.

4.3 Online Learning for Adaptive Broadcast
Online learning techniques are implemented in ADDSEN to
periodically and adaptively balance broadcast rate and loss rate.
The best broadcast rate is approached by executing state transitions
during the process of online learning. A strategy function guides
the state transitions, incorporating a set of variables to reflect
changes in link status.

4.3.1 Q-Learning Techniques
Reinforcement Learning provides us with a mechanism, by which
a system can learn to achieve a goal in control problems based on

its experience. An agent in reinforcement learning chooses actions
according to the current state of a system and the reinforcement
it receives from the environment. Most reinforcement learning
algorithms are based on estimating value functions, which are
functions of states (or of state-action pairs) that estimate how good
it is for the agent to be in a given state (or how good it is to perform
a given action in a given state).

In general, the agent seeks to maximize the expected return R
of going to the next state s′ from state s with a given action a.
The return at time t is defined as the sum of discounted rewards r
the agent receives over the future:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1, (2)

where γ is a parameter, 0 ≤ γ ≤ 1, called the discount rate.
The discount rate determines the present value of future rewards:
a reward received k time steps in the future is worth only γk−1

times what it would be worth if it were received immediately.
The Bellman Optimality Equation for reinforcement learning

is:

Q∗(s, a) =
∑
s′

P a
ss′

{
Ra

ss′ + γmax
a′

Q∗(s′, a′)

}
. (3)

where Q∗(s, a) denotes the expected value associated with taking
action a in state s. Given any state s and action a, P a

ss′ is the
transition probability to each possible next state, s′, and Ra

ss′ is
the expected return of going to the next state s′ from state s with
a given action a.

The optimal action-value function for Q∗ in Eq. 3 can be
directly approximated by following one-step Q-learning:

Q(s, a)← Q(s, a)+α

[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (4)

where α ∈ (0, 1] is the learning rate, which models the rate of
updating Q-values.

Q-learning technique is a model-free reinforcement learning
technique that solves decision problems. By learning the environ-
ment and evaluating an action-value function (Q-value), which
gives the expected reward of taking an action in a given state, the
distributed learning agent is able to make a decision automatically.
Q-learning can yield near-optimal policies without using many
computations and without requiring a model of the environment.

Before learning has started, Q returns a fixed value, chosen
by the designer. Then, in each time step the agent is given a
reward (the state has changed). New values are calculated for each
combination of a state s from the set of states, and action a from
the set of actions. The core of the algorithm is a simple value
iteration update. It assumes the old value and makes a correction
based on the new information. The algorithm ends when state s′

is a final state. Note that for all final states sf , Q(sf , a) is never
updated and thus retains its initial value.

4.3.2 Online Adaptive Broadcasts
The online learning procedure for adaptive broadcast is called
periodically in ADDSEN to update the data broadcast rate
according to changes in link status, e.g., the loss rate of knowledge
items.

There are two causes of knowledge item loss during the broad-
cast described in section 4.2. Changes in link status are random
events; their occurrence may result in knowledge item loss. The
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Fig. 4. Workflow of online learning in ADDSEN .

probability of a change in link status occurring at any time is
dependent on the attributes of the dissemination environment at
that time. The second cause of knowledge item loss are bit errors
introduced by the environment, we model the bit error rate (BER)
in ADDSEN as related to the distance of the receiver to the
transmitter and the number of neighbors around the receiver. If the
calculated BER is larger than the tolerated error rate, knowledge
items are lost. When knowledge item loss is detected the receiver
will assign a “lost” status to this knowledge item. This “lost” status
is indicated by a bitset assigned to the item.

In ADDSEN , we estimate the link quality with the knowl-
edge loss rate on the sender side by using online Q-learning.
After several rounds of DTN bundle transmissions within a short
period, e.g. 2s, the drone collects statistical information on the
communicated knowledge items, and periodically calculates the
knowledge loss rate within a longer period, e.g. 10s, to evaluate the
current broadcast strategy online. Based on these measurements,
the drone uses Q-learning to find the best strategy for data
dissemination under the current link state, by choosing a link-
related broadcast rate.

The run-time of our online Q-learning process is illustrated in
the state transition diagram in Fig. 4. The process state includes
the broadcast rate, and residual energy. Each learning action
represents a corresponding state transition and broadcast rate
update. A high knowledge loss rate requires a high broadcast
rate to guarantee the broadcast quality. However, a high broadcast
rate will result in greater energy consumption. And, energy is a
valuable resource that drones must carefully conserve. Therefore,
we need a method to balance the need for a higher broadcast rate
against high energy consumption resulting.

To approach the balanced result during learning, we define
a strategy function to incorporate a set of variables that can
impact the program execution and introduce a penalty value to
reflect changes to these variables. The utility value in the strategy
function for transition from the current state to the next state
is based on the environmental conditions (e.g. broadcast loss
rate, energy consumption). The Q-learning reward from the state
transition is also related to the value returned by the strategy
function.

The goal state in our learning process is the best achievable
configuration of control variables in each drone. However, due
to environmental changes such broadcast interference and energy
consumption, drones need to adjust their broadcast rate and cannot
always be in their goal states. The Q-learning algorithm in
ADDSEN can adapt to the current link state by changing its
control variables based on the knowledge loss rate derived from
the current round of learning. The drone approaches its goal state
through sequential transitions in the state transition diagram; the

transition is made through a function of the drone’s current state
and the environmental variables.

Fig. 5 describes the strategy function and state transition table
for the workflow of online learning in Fig. 4, where S0 is the start
state and S4 is the goal state. In ADDSEN the tuple consisting
of the penalty value indicated by the strategy function (f(LR,E)
in Fig. 5) and the ID of the current state can be used to look up
the probabilities for each state transition from the current state to
each possible next state. The actualized transition is determined
probabilistically, based on these stored probabilities of different
actions. If the current state is the goal state (S4 in Fig. 5), then
no state transition is made (as show in the back-edge from state
S4). Finally, after the state transition to the new state is made the
reward is calculated based on the environmental values resulting
from the transition to the new state; this in turn updates the Q
value.

Note that in Fig. 5, the probabilities from the start state
(S0) indicate an equal probability of transitioning to a lower
rebroadcast rate than to a higher rate; this serves to bootstrap
the system and either edge is traversed at most once. Each
transition with probability 1.0 is a coerced transition; that means
that the transition is deterministically triggered whenever the
goal condition is met. Finally, the remaining probabilities are the
previously recorded values for the normalized calculated rewards
earned when using the associated state transition. Initially these
values are bootstrapped to 0.5 each to indicate equal likelihood
between two competing transitions from a single state.

4.4 Balanced Dissemination in Swarms

Drones are resource restricted unmanned aerial vehicles. Their
storage capacity and residual energy decrease as they complete
spatial-temporal sensing tasks. Periodically intra/inter-swarm dis-
semination by broadcasting also reduces storage and energy
of each drone. To maintain the lifetime of the sensing grid
functionality of drone swarms, an optimal balancing method is
needed to share and send knowledge items to drones with more
residual storage and energy, while avoiding reception on drones
with limited capacity. The online learning based dissemination
strategy in Section 4.3.2 focuses on resource (e.g. energy) savings
on the sender side, however the cost of resources involved in
the dissemination process on the receiver side should also be
considered in designing a balanced dissemination.

The optimization in Fig. 6 presents a mixed integer linear
programming (MILP) for the task of balancing storage and energy
allocation in drone swarms to maximize field-time, that is time
spent by drones in performing useful activity (a drone in this
state will be referred to as “active”). The integer program below
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Fig. 5. Illustration of state transitions in ADDSEN .

discretizes time, memory, and energy units. Let T represent the
set of discrete time intervals in each scenario. Let D be the set of
drones in the scenario. Let Md and Pd represent the number of
memory units and energy units respectively expended in a single
time unit by drone d, when drone d is active. Let Id represent the
number of energy units expended in a single time unit by drone
d, when drone d is inactive. Bt,d = 1 if drone d is broadcasting
data at time t, it is 0 otherwise. Rt,d = 1 if drone d is receiving
data at time t, 0 otherwise. Kd is the per time-unit cost in energy
for drone d to broadcast or receive data. Hd is the per number of
memory capacity units a drone may transmit in a single time unit.
Et,d is the residual energy of drone d at time t. This number takes
into account the amount of energy needed for drone d would need
to expend if it were to return to the nearest drone depot at time t.
Ct,d is the residual memory capacity of drone d at time t.

Note that ∀t,d Md, Et,d, Ct,d, Pd, Id,Kd, Hd are problem
specific constants. Also, ∀d E0,d, C0,d are problems specific
constants. ∀t,dBt,d, Rt,d, At,d and ∀t>0,dEt,d, Ct,d are variables
assigned when the problems is solved. Residual energy is defined
as the energy that remains after a drone has left its originating
depot and traveled to its assigned work location minus the amount
of energy needed for that drone to travel from the work location
to an energy supply depot. This definition of residual energy
supposes some pre-calculation when calculating the initial values
for residual energy. For data dissemination in drone swarms,

maximize
t,d

T∑
t

D∑
d

At,d

subject to

1) ∀t,d Et,d ≤ Pd ∨ Ct,d ≤Md ⇐⇒ At,d = 0

2) ∀t,d Et,d > Pd ∧ Ct,d > Md ⇐⇒ At,d = 1

3) ∀t,d Et+1,d = Et,d − Id −Kd ·Bt,d

−Kd ·Rt,d ⇐⇒ At,d = 0

4) ∀t,d Et+1,d = Et,d − Pd −Kd ·Bt,d

−Kd ·Rt,d ⇐⇒ At,d = 1

5) ∀t,d Ct+1,d = Ct,d −Hd ·Bt,d

+Hd ·Rt,d ⇐⇒ At,d = 0

6) ∀t,d Ct+1,d = Ct,d −Md −Hd ·Bt,d

−Hd ·Rt,d ⇐⇒ At,d = 1

7) ∀t,d Bt,d +Rt,d < 2

8) ∀t,d Bt,d = 1 =⇒
D∑
d

Rt,d = 1

Fig. 6. Optimization program for balancing dissemination

constraints 3 and 4 in Fig. 6 are energy constraints, and constraints
5 and 6 are storage constraints. Constraint 7 represents the half-
duplex communication constraint on wireless networks, while
constraint 8 describes the two way communication constraints.
The optimization program in Fig. 6 is given in non-canonical
form for clarity. We convert it into canonical form by applying
some well known methods introduced in [38] to convert logical
constraints to integer programming standard form. After it is in
standard form the program can be input into a standard integer
programming solver, such as CPLEX [39] or GUROBI [40] to
derive a balanced data dissemination solution.

Our load balancing optimization is run periodically within a
swarm. In each balancing period the drone with the most residual
energy is selected to be the balancer. The balancer will then solve
the optimized load balancing program for the new time window.
The resulting solution will indicate which drones will offload
data, and which will receive data. The balancer will send this
solution to every drone in the swarm and select partial drones
with better storage and energy capacity to disseminate and receive
sensed data. The balancer can also coordinate with balancers from
other swarms to run the optimization algorithm and distribute
the solution to drones in different swarms to achieve cooperative
balanced inter-swarm dissemination.

Note that if the remaining energy of drones in a swarm is
significantly low they can be authorized by the balancer to leave
the swarm and return back to the depot in advance. Meanwhile,
new member drones from neighboring swarms could join the
swarm to maintain its completed sensing grid. While we do not
explicitly explore the case in which drones leave their original
swarms and the join another swarm in the paper, there is nothing
in the design of our system that prevents that. In addition, if in
fact none of the drones in a swarm have sufficient residual energy
to act as a balancer, then it indicates that all the drones in the
swarm have residual energy below a critical threshold; therefore
these drones will also not have enough energy to fulfill their urban



sensing missions. In this case, all the drones in the swarm will
have to return to their depot to recharge batteries.

4.5 POKS for Urban Sensing
Urban sensing requires reliable results with high-quality and
trusted data. Drone swarms for urban sensing in transportation
can collect various data (e.g. traffic, pollution, noise) through
corresponding sensors. The redundant drones in swarms with
the same type of sensors provide the possibility of in-network
diagnosis for detecting faulty data or replacing low-quality data by
comparing data quality related knowledge attributes with others
through the data dissemination scheme described above. As a
distributed knowledge management scheme, the partially ordered
knowledge sharing (POKS) introduced in Section 3.1 can be used
to analyze the quality of local knowledge items, discard faulty
knowledge items, and replace low-quality knowledge items with
high-quality ones from other drones. We present the POKS rules
for reliable urban sensing in transportation here.

Traffic Sensing
Traffic cameras enable drones to capture and record contiguous
traffic flows at different roadway segments, and merge the result-
ing synchronous images to perform responsive traffic analysis;
this is similar to recent deployments of drones in agriculture
for large-scale field imagery [11]. In our urban sensing scenario,
drones occupy a specific area (GPS location g) over a roadway
segment, synchronize with each other and record contiguous traffic
flow at a specific time (timestamp t). The flow information can
then be returned to the traffic manager. In this scenario if any
of the drones takes faulty images or video recordings during a
synchronized reading all the drones in the tasked swarm will rate
these recordings low in the partial ordering, and they will be
overwritten by subsequent synchronous non-faulty recordings in
the same area but with a different timestamp t′, as follows:
Otraffic : r(. . . , t, g, image, . . .) ≺ r(. . . , t′, g, image′, . . .)

if quality(image) < quality(image′).
Images or videos can be faulty for a variety of application

specific reasons. In our case, poor quality can best be defined as
images or videos taken at positions that preclude a high quality
stitched panoramic image or video; this can be caused by for ex-
ample unexpected air turbulence. More generally there are several
causes for poor quality videos and images. Photos and videos may
be blurred due to air turbulence at the time of recording. The image
may experience lens-flare, a crooked horizon, image blurring,
lens distortion, noise, chromatic aberration, or sensor occlusion
(e.g by dust). Each of these effects occurs due to unexpected
environmental conditions such as electomagnetic radiation, or
increased dust pollution in the sensor area. However, each of these
effects is easy to detect once the image has been taken.

Pollution Sensing
Swarms of drones equipped with carbon monoxide sensors may be
sent on demand to different roadway segments to detect pollution
levels. Sensing with several independent drones in a specific area,
the localized effects of carbon monoxide concentrations in an
area can be estimated by taking an average of the readings. In
this scenario inaccurate or faulty pollution data, due to erroneous
readings of the sensor or other mechanical/environmental impacts,
has a lower confidence in the partial ordering than more accurate
pollution data. Therefore, POKS should replace the inaccurate

data by more accurate data sensed in the same area at the same
timestamp as follows. Confidence could for example be measured
by closeness of the value calculated by the drone to the mean value
across the swarm. Note that ppm stands for “parts per million” and
is a standard measure of carbon monoxide levels.
Opollution : r(. . . , t, g, ppm, . . .) ≺ r(. . . , t, g, ppm′, . . .)

if confidence(ppm) < confidence(ppm′).

Noise Sensing
Drone swarms with microphone sensors may be sent on demand to
investigate noise levels in city sectors. Drones may be configured
so as to converge on areas with higher sound reading to locate
and isolate noise trouble spots. In this scenario inaccurate noise
data also has a lower confidence in the partial ordering than more
accurate noise data. Following the same confidence measurement
and POKS rules in pollution sensing, inaccurate data will be
discarded to save storage and replaced by more accurate data as
follow. Note that decibel is a standard measure of sound levels.
Onoise : r(. . . , t, g, decibels, . . .) ≺ r(. . . , t, g, decibels′, . . .)

if confidence(decibels) < confidence(decibels′).
Note that different urban sensing applications in POKS could

use some state attributes in different ways. For example, a different
partial ordering is imposed on timestamps for a traffic sensing
application (t comes before t′) than the ordering imposed on the
pollution and noise sensing applications. For most urban sensing
applications, each drone in a swarm only can cover a small part of
a roadway segment, as shown in Fig. 1. The panoramic traffic view
of a roadway segment stitches images collected by drones located
over different parts at time t. If a drone captures a low-quality
image of its coverage area at time t, this image will impact the
panoramic view of the roadway segment. In this case, the drone
swarm needs to generate another panoramic view of the same
segment at t′ for traffic sensing; POKS will use the high-quality
view to replace the old one generated at time t. In the pollution
and noise sensing applications, ppm and decibel values with high
confidence ratings collected by a drone may be representative of
a reasonably wide area around the roadway segment. In these
cases, POKS needs to compare all the values collected by different
drones at the same timestamp t, and pick the one with the highest
confidence rating as the sensing result of the roadway segment.
Therefore, for drone swarms in urban sensing, attributes in POKS
should be tuned to their intended use within the context of each
individual urban sensing application.

5 PERFORMANCE EVALUATION

We implemented the ADDSEN middleware using our dis-
tributed knowledge management framework and Networked
Cyber-Physical Systems framework developed by researchers at
SRI [14] and related software packages for adaptive data process-
ing and dissemination in drone swarms. For comparison purposes,
we have also implemented three classic data dissemination pro-
tocols in our framework; we refer to them as periodic, uniform
and neighbor-aware broadcast, respectively. The basic ideas of the
these broadcast methods are as follows:

• Periodic broadcast: each drone periodically broadcasts its
knowledge to all the neighbors.

• Uniform broadcast: each drone broadcasts its knowledge
to all the neighbors with a uniformly distributed probabil-
ity value between 0 and 1.



0

200

400

600

800

1000

1200

1400

1600

1800

2000

Protocols

S
u

c
c
e

s
s
fu

l 
T

ra
ns

m
itt

ed
 B

un
dl

es

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

Protocols

S
u

c
c
e

s
s
fu

l T
ra

ns
m

itt
ed

 It
em

s

 

 

0

2

4

6

8

10

12

14

16

18

20

Protocols

A
ve

ra
ge

 L
os

s 
R

at
e 

(%
)

 

 

Periodic
Uniform
Neighbor
ADDSEN

(a) Average number of transmitted DTN bundles (b) Average number of transmitted knowledge items (c) Average knowledge item loss rate

Fig. 7. Data processing and dissemination in one-swarm case.

• Neighbor-aware broadcast: each drone broadcasts its
knowledge to all the neighbors with a non-zero probability
p = r/n, where r is a reflection parameter and n is the
number of outgoing neighbors.

ADDSEN uses learning-based broadcasting and POKS for
data processing and dissemination. If the potential receiver is not
known to be aware of knowledge K , then K will be broadcast.
Otherwise, K is broadcasted with a unique broadcast rate to
achieve adaptive dissemination. The broadcast rate is learned from
the neighbor and link status after a short period of transmission.

In Eq. 2, if the discount rate γ < 1, the infinite sum has a finite
value as long as the reward sequence rk is bounded. If γ = 0,
the agent is “myopic” and is concerned only with maximizing
immediate rewards: its objective in this case is to learn how to
choose action at so as to maximize only rt+1. As γ approaches
1, the agent becomes more farsighted, taking future rewards into
account more heavily. In Eq. 4, the learning rate α determines
to what extent the newly acquired information will override the
old information. A factor of 1 results in only the most recent
information being considered while a factor of 0 ensures that no
learning takes place. We choose γ = 0.9 and α = 0.1 for our
evaluations. The example in Fig. 5 is used to model the states and
actions of online learning.

5.1 Data Dissemination in Drone Swarms

We first test our algorithm in the single-swarm case with 10
drones. The transmission range of each drone is 10 meters, and the
10 drones are not fully connected in the swarm. For each mobile
drone, the swarm formation limits the number of neighbors to be
not more than 3, which can be achieved by predefined hexagonal
lattice structure for sensing grids and neighboring distance con-
straints used in formation potential pf (see our swarming method
in Section 4.1). The test time is 1000 seconds.

For comparison purposes, we refer to the four broadcast pro-
tocols as periodic broadcast, uniform broadcast, neighbor-aware
broadcast, and our own learning-based adaptive broadcast, respec-
tively, as Periodic, Uniform, Neighbor, and ADDSEN in
Fig. 7.

Fig. 7 (a), (b) and (c) compare the average performance of the
10 drones, with confidence intervals on the number of successful
transmitted DTN bundles, the number of successfully transmitted
knowledge items, and the knowledge loss rate, respectively. We
run the evaluation 10 times to compare the four broadcast proto-
cols under the same settings. It can be observed that broadcasting
using probabilistic methods has better performance than periodic
broadcasts, since we see fewer transmission collisions with those

schemes. Probabilistic broadcasting methods can use the network
bandwidth to achieve more effective knowledge transmission
and a lower knowledge loss rate. The neighbor-aware broadcast
has better performance than the uniform broadcast, because its
broadcast probability is selected by considering the number of
neighbors of each drone. However, the performance variance of
uniform broadcast and neighbor-aware broadcast are higher than
periodic broadcast and ADDSEN .

ADDSEN can effectively estimate the link status based
on the neighbors, the BER and piggyback information on the
broadcasted knowledge items, thus ADDSEN can learn the
communication environment in an online manner and determine a
reasonable broadcast rate for each drone. The POKS scheme and
awareness attribute in each knowledge item can further reduce
the transmission error and improve the transmission throughput.
Because of this adaptive learning process in our framework,
ADDSEN can achieve higher knowledge transmission, lower
knowledge loss rate, and more stable performance, in comparison
with the other schemes.

The performance of ADDSEN is also verified for data dis-
semination in multi-swarm communication under a DTN scenaria.
We present the simulation results of data dissemination for a
two-swarm case in Fig. 8, and its test scenario from which our
evaluation was taken in Fig. 9. In the two-swarm case, there is one
swarm with 3 drones and another swarm with 4 drones moving in
a 500 meters by 500 meters road area. Fig. 9 clearly demonstrates
how drone swarms can coalesce and separate at three different
time instants, therefore achieving distributed deployment and co-
operation of multiple swarms for urban sensing. The transmission
range of each drone in our test is 20 meters. The test time is
1000 seconds. Drone swarms maintain formations specific to their
sensing missions. The drones collect data (e.g. traffic, pollution,
noise) at specific locations. Each drone disseminates knowledge
items to other neighbor drones in the same swarm throughout the
sensing mission, and to drones in different swarms at meeting
points along the DTN route. Partially ordered sharing is applied
the received knowledge items for rebroadcasting.

Fig. 8 (a), (b) and (c) compares the performance, on the
average number of transmitted DTN bundles, the average number
of transmitted knowledge items, and the average knowledge loss
rate, respectively, of the four broadcast protocols under the same
two-swarm setting. In general, ADDSEN can achieve higher
knowledge transmission, lower knowledge loss rate, and more
stable performance, in comparison with other broadcast protocols.

Note that the number of transmitted knowledge items using
two drone swarms (as shown by the two-swarm case in Fig. 8) is
less than using one swarm to perform urban sensing (as shown by
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Fig. 8. Data processing and dissemination in the two-swarm case.

     

          (a)                                                      (b)                                                      (c) 
Fig. 9. Simulation scenario of data dissemination for two-swarm case at
three different instants.
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Fig. 10. Effects of online learning on action value and broadcast rate.

the one-swarm case in Fig. 8). In the two-swarm case there are 3
drones in one swarm and 4 drones in another swarm as shown in
Fig. 9. In the one-swarm case there are 10 drones all in a unique
swarm. Since the number of drones in any swarm in the two-
swarm case is less than that in the one-swarm case, the number of
transmitted knowledge items is correspondingly decreased as well.
In addition, the communication mode of the two-swarm case here
is under a DTN scenario with only a few meeting points where
data dissemination can occur between two swarms. Therefore, in
the two swarm case, most of time, each drone broadcasts fewer
knowledge items than that in the one-swarm case.

5.2 Effects of Online Learning
We next investigate the effects of online learning solution in
ADDSEN . In order to study this, we collect the action values
of State S2 when the scenario in Fig. 5 is executed. A plot
of these readings by time, is shown in Fig. 10(a). Initially, the
action value (Q value) for the state is 0, then it increases and
becomes steady around 200s, which means that the agent learns
the environment and has reached an accurate approximation of the
environment. Each increase in the action value induces a change
in the communication environment and the link status. The agent
keeps increasing its action value while adapting to the changing
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(a) Broadcast rate of drone G1. (b) Broadcast rate of drone G3.

Fig. 11. Effects of online learning on multiple drones in the same swarm.

environment. The decrease in the rate of change in the Q-values
indicates that the action value has converged and tracks the link
status well.

The broadcast rate keeps changing as learning progresses.
We plot these broadcast rate changes in Fig. 10(b). The initial
broadcast rate of this drone is 1. When a drone detects knowledge
loss, it adaptively changes the broadcast rate to approach the best
state to balance the broadcasting and energy consumption. The
broadcast rate becomes steady around 200s, which means that the
agent has learned the link status well as the action values have
converged. There is a sharp decrease in the broadcast rate after
800s. This decrease is a result of the fact that the two swarms
meet at that time and the number of neighbors increases for every
drone. Therefore, at the time of the meeting the drone needs to
decease its broadcast rate to avoid broadcast collisions for intra-
swarm data dissemination. After the other swarms flies away, the
drone begins to broadcast with a higher probability once more.

To evaluate the impact of online learning on data dissemination
in drone swarms, we choose two drones with ID G1 and G3
respectively from the same swarm “Green” as illustrated in Fig. 3.
For intra-swarm dissemination, drones in the same swarm need to
adjust their broadcast rate frequently due to their periodic broad-
casts and communication interference from other drones in the
transmission range. Online learning in ADDSEN is proposed
to mitigate the interference and improve transmission stability.
As shown in Fig. 11 (a) and (b), G1 and G3 not only interfere
with each other’s dissemination, but also suffer communication
interference from other drones in the same swarm (G3), which
may result in severe loss of knowledge items during dissemina-
tion and correspondingly trigger the change of broadcast rate as
presented in the figure. Online learning allows drones to adjust
their broadcast rates and adapt to changes in the communication
environment. In addition, online learning always tries to improve
the broadcast rate of each drone by approaching a better state
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(a) Broadcast rate of drone R1. (b) Broadcast rate of drone G2.

Fig. 12. Effects of online learning on multiple drones from different
swarms.

whenever the current state is associated with a low broadcast rate.
For example, when G1 deceases its broadcast rate around at time
400s, online learning in G3 can sense the change of link status
and then adaptively increase the broadcast rate.

In our multi-swarm scenario, drones collect data at work
locations above the public roadway and can disseminate the
information to other drones from different swarms when they
fall within its transmission range, along the flight path as shown
in Fig. 9. Through inter-swarm communication, urban sensed
data can be collected by multi-hop data relay under disruptive
scenario; also the possibility of losing data can be decreased by
data replication. Fig. 12 evaluates the effects of online learning on
inter-swarm data dissemination. We choose two drones with ID
R1 and G2 respectively from swarm “Red” and swarm “Green”
as illustrated in Fig. 3. From Fig. 12 (a) and (b), we learn that R1
andG2 meet around at time 600s within each other’s transmission
range. In the meeting period from approximately time 600s to time
700s, R1 is trying to increase its broadcast rate, therefore G2
adaptively decreases its broadcast rate to avoid interference. After
time 700s, R1 and G2 fly out of each other’s transmission ranges,
then G2 can increase its broadcast rate for data dissemination in
its local swarm. Also, the broadcast rates of R1 and G2 become
stable when the two swarms fly far apart.

Overall, our online learning scheme in ADDSEN can select
satisfactory broadcast rates for each drone while accommodating
other drones’ transmissions (both intra/intre-swarm).

5.3 Effects of Balanced Dissemination

Periodic intra/inter-swarm dissemination may reduce the storage
and energy reserves of each drone to a different extent. To maintain
the in-field time of a drone swarm as a sensing grid, we have
designed an optimization program, as introduced in Section 4.4,
to balance the dissemination tasks in drone swarms so that we
can relocate the work load for heavy-duty drones and extend their
lifetime within their swarm.

To investigate the effects of cooperative dissemination in drone
swarms, we make two swarms (one with 3 drones and another with
4) fly close to each other. Sensing coverage of the two swarms
are overlapped for a period around 1000s; it means that at least
one pair of drones, one from each swarm are within a sufficient
transmission range to guarantee inter-swarm dissemination during
this period. Each swarm selects the drone with the most residual
energy as its balancer to run the optimization program for intra-
swarm cooperative dissemination. This balancer also coordinates
with another balancer from the different swarm for inter-swarm
dissemination. As shown in Fig. 13, in the experimental scenario,
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Fig. 13. Effects of cooperative dissemination on multiple drones.
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Fig. 14. Effects of cooperative dissemination on broadcast rate and
energy.

our balancing optimization solution ensures that at least 5 drones
reach the goal state by at most time 1000s. After time 800s, some
drones with limited resources need to conserve these resources.
The balancer adjusts the cooperative solution at every drone and
selects partial drones with better storage and energy capacity to
disseminate and receive sensed data.

Fig. 14 evaluates the effect of cooperative dissemination on a
single drone over time. Since each broadcast has a uniform and
relatively high energy cost, we assume the energy consumption
per broadcast is 1 unit and evaluate the changes in broadcast
rate and residual energy in drones after applying our optimization
program. As shown in Fig. 14 (a), for a drone with an average
broadcast rate (probability of broadcasting of more than 0.6),
between time 610s and 760s, its energy is consumed quickly
given a high constant dissemination rate (shown in figure Fig. 14
(b). Once a drone’s residual energy is low (e.g. residual energy is
only 425 units at time 790s), the load balancer, a selected drone
running our optimization program within a swarm, will decrease
the low energy drone’s broadcast rate to conserve its energy, while
identifying candidate drones with better capacity to disseminate
the same knowledge items. Therefore, our optimization program
can achieve a balanced dissemination and extend each drone’s
lifetime within the swarm.

5.4 Effects of POKS for Urban Sensing

In previous evaluations on data dissemination, POKS has been
used in our distributed knowledge management framework to
process data before dissemination. Its equivalence relation (≡) and
partial ordering (≺) schemes on knowledge items can select fresh
and correct data to broadcast, and remove redundant and faulty
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Fig. 15. Drone testbed with urban sensing capabilities.

data in local base (see Section 3.1), therefore present an efficient
way to avoid unnecessary data dissemination in ADDSEN .

To further evaluate the performance of POKS for urban sens-
ing scenario, we have designed a drone testbed with urban sensing
capabilities based on DJI Matrice 100 flight platform [41], as
shown in Fig. 15 (a). Matrice 100 is a state-of-the-art quadcopter
for developers. In comparison with other commercial quadcopters,
it has some additional easy-to-fly features such as A2 model
to provide GPS and compass functions, and Guidance as a vi-
sual sensing system to automatically detect obstacles and avoid
collision in real time. Matrice 100 also supports the Manifold
embedded computer for DJI SDK-based software and application
development. The Ubuntu-based Manifold runs the NVIDIA Tegra
K1 quad-core ARM Cortex-A15 processor with 192 GPU cores,
and has standard and extended connectors and interfaces, therefore
it can connect our third-party urban sensing platform and collects
and analyzes data in the air.

The urban sensing platform we built is shown in Fig. 15 (b).
Matrice 100 is configured with a Zenmuse X3 camera that can be
used as the traffic camera in our platform. PM 2.5 sensor and CO2
sensor are deployed to detect various pollution sources. Sound sen-
sor can determine the magnitude of noise level. WiFi module can
support wireless data dissemination between neighboring drones.
These sensing and communication devices are all connected to a
sensor shield that is plugged on top of an Arduino UNO R3 [42] as
a sensing extension, and the Arduino board can send data collected
from the sensing extension to the Manifold that is running our
POKS-based data processing schemes.

Some urban sensing data collected from the drone platform
are listed by time sequence in our customized application, as

(a) An example of urban sensing results.
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Fig. 16. Effects of POKS on sensing data.

shown in Fig. 16 (a). Each entry in the example displays PM
2.5, noise volume and CO2 values collected by corresponding
environmental sensors at the same time. The PM 2.5 and CO2
are two major urban pollution sources. Noise level is measured
by mapping units in the acoustic domain to units in the electrical
domain such as analog output voltage. Due to the space limit,
we only present the impact of POKS for CO2 data. As shown
in Fig. 16 (b), our application running in every drone collects a
CO2 sample per 0.3 second. Given a time window of nearly 4
seconds to sense a roadway segment, a single drone can totally
collect 12 CO2 samples. Considering sensing variances among
the 12 samples, ADDSEN applies POKS to evaluate CO2
concentration for the roadway segment. Specifically, POKS uses
the metric “confidence” to replace inaccurate samples by more
accurate samples sensed in the same geographical area; the sample
with highest confidence is selected as the representative CO2 value
for the area. Confidence for pollution evaluation is measured by
closeness of the value calculated by the drone to the mean value
of all samples in the same area (See Section 4.5).

Single drone may generate inaccurate or faulty pollution
data due to erroneous readings of the sensor or other mechan-
ical/environmental impacts, therefore drone swarm can be used
to compensate this kind of error, where above POKS method is
also applicable. As shown in Fig. 16 (c), we have evaluated CO2
samples collected by a drone swarm composed of three drones. For
a given roadway segment, the estimated CO2 concentrations by
drone 1, drone 2 and drone 3 are 583 ppm, 602 ppm and 495 ppm
respectively. After the three drones disseminate and exchange
these CO2 values, ADDSEN can first derive their mean value
as 560 ppm. The confidence here is measured by closeness of the
value calculated by the drone to the mean value across the swarm,
therefore the CO2 value 583 ppm collected by drone 1 is selected
byADDSEN to represent the CO2 concentration in the roadway
segment. In contrast, drone 3 has a lower confidence than drone 1
and drone 2 in the swarm, indicating faulty sampling happened in
the area by its urban sensing platform.



6 CONCLUSION

In this paper, we present a middleware solution for adaptive data
processing and dissemination for drone swarms in urban sensing.
The features of ADDSEN include:

• distributed knowledge management based on partially
ordered knowledge sharing and a cyber-physical sensing
framework,

• online learning based data dissemination to adaptively
select the best broadcast rate according to link status,

• and, a cooperative dissemination approach to balancing
storage and energy allocation in drone swarms.

We implemented ADDSEN using our framework, and provide
evaluation results to show that it can achieve adaptive data pro-
cessing and dissemination, and extend the lifetime of a drone
formation.
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