INTERNET-DRAFT
WebDAV Versioning
September 28, 1998

INTERNET-DRAFT

draft-webdav-versioning-00.txt

Expires March 28, 1999
Christopher Kaler, Microsoft
Editor

September 28, 1998

Versioning and Variant Extensions to WebDAV

Status of this Memo

This document is an Internet draft. Internet drafts are working documents of the Internet Engineering Task Force (IETF), its areas and its working groups. Note that other groups may also distribute working information as Internet drafts.

Internet Drafts are draft documents valid for a maximum of six months and can be updated, replaced or obsoleted by other documents at any time. It is inappropriate to use Internet drafts as reference material or to cite them as other than as "work in progress".

To learn the current status of any Internet draft please check the "lid-abstracts.txt" listing contained in the Internet drafts shadow directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ftp.isi.edu (US East coast) or ftp.isi.edu (US West coast). Further information about the IETF can be found at URL: http://www.ietf.org/

Distribution of this document is unlimited. Please send comments to the mailing list at <www-webdav-dasl@w3.org>, which may be joined by sending a message with subject "subscribe" to <www-webdav-dasl-request@w3.org>.

Discussions of the list are archived at <URL:http://www.w3.org/pub/WWW/Archives/Public/www-webdav-dasl>.

Abstract

This document specifies a set of methods, headers, and content-types composing DAV Versioning and Variant extensions, an application of the HTTP/1.1 protocol to version DAV resources.

Table of Contents

1Versioning and Variant Extensions to WebDAV

Table of Contents
2
1.
Introduction
4
1.1.
DAV Versioning and Variant Authoring
4
1.2.
Relationship to DAV
4
1.3.
Terms
4
1.4.
Notational Conventions
4
2.
Intrinsic Versioning
4
2.1.
Overview
4
2.2.
Discovery
5
2.2.1.
The OPTIONS Method
5
2.2.2.
Example: Options Discovery
5
2.3.
Automatic Versioning
5
2.4.
Collection Versioning
5
2.5.
Mutable Properties
6
2.6.
Resource Properties
6
3.
Basic Versioning
6
3.1.
Discovery
7
3.2.
Basic Versioning Headers
7
3.2.1.
New-Version
7
3.2.2.
Version-Id
8
3.2.3.
Base-Version
8
3.2.4.
Comment
8
3.2.5.
Checkin-Token
8
3.3.
CHECKINOUT Method
9
3.3.1.
Discovery
9
3.3.2.
Checkout
9
3.3.3.
Checkin
10
3.3.4.
Undo Checkout
10
3.3.5.
Enumeration
11
3.4.
Default Version
11
3.5.
Sharing
12
3.6.
Resource History
12
3.6.1.
Example
12
3.6.2.
Linear History
12
3.6.3.
Full History
13
4.
Resource Branching
13
4.1.
Discovery
13
4.2.
Branching Resources
14
4.3.
Derivation
14
5.
Configurations
14
5.1.
Discovery
15
5.2.
Configuration Namespace
15
5.3.
Creating Configurations
15
5.4.
Configuration Properties
17
5.5.
Headers
17
5.5.1.
GET Example
17
5.5.2.
COPY Example
18
5.6.
Deleting Configurations
18
5.7.
Default Configurations
18
5.8.
Managing Configurations
18
5.8.1.
Adding Resources to a Configuration
18
5.8.2.
Removing Resources from a Configuration
19
5.8.3.
Synchronizing Configurations
19
5.8.4.
Purging Configurations
20
5.9.
Configuration Graphs
20
5.9.1.
Example
20
5.9.2.
Configuration Derivation
21
5.9.3.
Configuration Merge Graph
21
5.10.
Resolution Queues
22
5.10.1.
Discovery
22
5.10.2.
Obtaining Resolutions
22
5.10.3.
Processing Resolution Items
22
6.
Version Mapping
23
6.1.
Discovery
23
6.2.
Mapping Configurations
23
6.3.
Mapping Resource Versions
24
7.
Miscellaneous Functions
24
7.1.
Destroy
25
7.1.1.
Discovery
25
7.1.2.
Usage
25
7.1.3.
Headers
25
7.1.4.
Properties
25
7.2.
Keyword Expansion
25
7.2.1.
Properties
26
8.
Variant Authoring
26
8.1.
Discovery
26
8.2.
Resource Properties
26
8.3.
Header Extensions
26
8.4.
Default Variant
27
9.
The DAV Versioning Grammar
27
10.
Internationalization Considerations
27
11.
Security Considerations
27
12.
Scalability
27
13.
Authentication
28
14.
IANA Considerations
28
15.
Copyright
28
16.
Intellectual Property
28
17.
References
28
18.
Author's Addresses
28
19.
Change History
29

1. Introduction

1.1. DAV Versioning and Variant Authoring

This document defines DAV Versioning and Variant Authoring extensions, an application of HTTP/1.1 for handling resource versioning in a DAV environment. [DAVVERREQ] describes the motivation and requirements for DAV Versioning.

DAV Versioning will minimize the complexity of clients so as to facilitate widespread deployment of applications capable of utilizing the DAV services. As well, DAV Versioning supports a rich level of versioning options and support for variant authoring.

DAV Versioning consists of:

· Automatic versioning support for HTTP/1.1-based clients,

· Basic versioning for DAV Versioning-aware clients,

· File branching for basic parallel development,

· Configuration support for sophisticated parallel development, and

· Variant support for mixed language environments.

1.2. Relationship to DAV

DAV Versioning relies on the resource and property model defined by [WebDAV]. DAV Versioning does not alter this model. Instead, DAV Versioning allows clients to version and access DAV-modeled resources and histories.

1.3. Terms

This draft uses the terms defined in [RFC2068], [WebDAV], and [DAVVERREQ].

1.4. Notational Conventions

The augmented BNF used by this document to describe protocol elements is exactly the same as the one described in Section 2.1 of [RFC2068]. Because this augmented BNF uses the basic production rules provided in Section 2.2 of [RFC2068], those rules apply to this document as well.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Intrinsic Versioning

2.1. Overview

The base level of versioning support defined by this specification (intrinsic versioning) includes both automatic versioning and the basic versioning properties defined for all resources. To support intrinsic versioning, servers MUST allow for versioning to occur automatically whenever a resource is changed in any way and support the properties defined in this section.

2.2. Discovery

2.2.1. The OPTIONS Method

The OPTIONS method allows the client to discover if a resource supports versioning.

The client issues the OPTIONS method against a resource named by the Request-URI. This is a normal invocation of OPTIONS defined in [RFC2068].

If a resource supports versioning, then the server MUST list DAV:versioning in the OPTIONS response as defined by [RFC2068].

2.2.2. Example: Options Discovery

This example shows that the server supports versioning on the /somefolder resource.

>> Request

OPTIONS /somefolder/ HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK

Allow-Extension: DAV:versioning

Public-Extension: DAV:versioning

Content-Length: 0

2.3. Automatic Versioning

The DAV:autoversion property indicates if a resource is automatically versioned when modified for any reason. Resources with automatic versioning allow HTTP/1.1 clients to have changes versioned without explicit versioning commands.

Automatic versioning includes the following methods:

· Updates via PUT, MKCOL, COPY, MOVE, or DELETE

· Properties updates via PROPPATCH

2.4. Collection Versioning

Collections are versioned just like non-collection resources.
The DAV:autoversion property applies to methods on collections as well. However, this doesn’t specify if a collection is versioned when a contained resource changes. The DAV:autocollectionversion resource is used to indicate if a collection should be versioned when a contained resource is versioned.

2.5. Mutable Properties

In general, all properties on a resource are immutable with respect to versioning. That is, when the property is changed, a new version of the resource is created. However, there are some properties that MUST be immutable. For example, security settings, if stored as a property, MUST be mutable without creating a new version. To discover the mutable properties on a resource, the DAV:mutableproperties property returns a comma-separated list of properties that, if altered, will not create a new version.

2.6. Resource Properties

For resources that support versioning, the server MUST support the following properties using the “DAV:” namespace. Note that 0/1 is used as a FALSE (0) / TRUE (1) indicator.

DAV:isversioned – 0/1 to indicate if the resource is versionable. Note that servers can implement this as a read-only property.

DAV:autoversion – 0/1 to indicate if the resource is automatically versioned when modified. Note that servers can implement this as a read-only property.

DAV:versionid – This is a read-only property that returns a URI for this specific version of the resource. Every version of a resource will have a separate DAV:versionid.

DAV:resourceid – This is a read-only property that returns a URI for every unique resource independent of versions. That is, all versions of the resource have the same DAV:resourceid.

DAV:previousversionids – This is a read-only property that returns the URI for the previous version of the resource. An empty value indicates that there are no previous versions. Note that there could be multiple previous versions. If there are multiple versions, they are returned as a comma-separated list.

DAV:nextversionids – This is a read-only property that returns the URI for the next version of the resource. An empty value indicates that there is no next version. Note that there could be multiple next versions. If there are multiple versions, they are returned as a comma-separated list.

DAV:versionname – This property allows the specification of textual names that refer to this version of the resource. If there are multiple versions, each is returned in a separate DAV:versionname tag. The name MUST be unique for the resource. That is, no two versions of the same resource can have the same DAV:versionname.

DAV:autocollectionversion – This property’s value (0/1) specifies if a collection is automatically versioned when its contents change. That is, if /foo/bar.htm is versioned, is /foo/ versioned as well. Servers MAY implement this as a read-only property.

DAV:canautocollectionversion – This property’s value (0/1) specifies if the resource supports the ability to automatically version collections when a contained resource changes. This is a read-only property.

DAV:mutableproperties – This property returns a comma-separated list of properties that, if changed on this resource, will not cause a new version to be created.

DAV:checkinid – This read-only property returns the checkin Id associated with this version of the resource.

3. Basic Versioning

Servers that support DAV:versioning MUST also provide additional versioning semantics for versioning-aware clients. This section describes these new semantics which include enhancements to existing DAV methods, new headers, and a new versioning-specific method.

Although the semantics can vary, most versioning systems support the notion of indicating intent to modify a document and then submission of the modified version. Typically this involves some form of locking (either shared or exclusive). As well, many systems support the ability to cancel a check-out or undo a recent check-in. These options are available to the owner or to the Administrator.

Users can generally enumerate the current check-outs although they may not be able to determine the user in all cases. Likewise, users can review check-ins to see the change history. Most systems allow users to select different versions from the change history and present a comparison of the versions. Some systems allow the user to track related files that are logically “checked in” together.

It is important to note that everything is versioned. For example, when a property on a resource is changed, a new version of the resource is created.

However, some clients may not wish to have new versions automatically created. For example, they are working on a version and want to write the changes to the store and update them. New versions are created on request, not automatically (note that the default behavior is actually up to the store).

Note that locks are not covered in this specification as they are addressed by [WebDAV].

3.1. Discovery

Discovers of basic versioning support is as described above. However, support for the CHECKINOUT method is discovered by examining the support methods returned by the OPTIONs methos.

This example shows that the server supports versioning and the CHECKINOUT method on the /somefolder resource.

>> Request

OPTIONS /somefolder/ HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Allow-Extension: DAV:versioning

Public-Extension: DAV:versioning

Content-Length: 0

3.2. Basic Versioning Headers

The following sub-sections describe the new version headers that MUST be supported for resources that support DAV:versioning.

3.2.1. New-Version

It is possible that clients may wish to overwrite a versioned resource rather than create a new version. To indicate this, clients specify the New-Version header with a T or F where T indicates creation of a new version and F indicates overwrite.

New-Version = “New-Version” “:” (“F” | “T”)

Note that servers are not required to honor overwrite requests and MUST return failure if they do not. Servers MUST not allow non-tip versions to be overwritten.

3.2.2. Version-Id

The Version-Id header is used to identify a specific version of a resource. This header can be specified on all methods and qualifiers the resource named in the method. As well, this header is included in all replies to indicate the version of the resource used or created.

The URI specified MUST be a valid version URI for the resource.

Version-Id = “Version-Id” “:” URI

This header can be used with collection resources when accessing properties on the collection, however, servers are not required to honor (or allow) this header when accessing the contents of a collection resource.

3.2.3. Base-Version

The Base-Version header is used to indicate the version of a resource on which a change request is based. This can be included with the following methods: PUT, PROPPATCH, MKCOL, COPY, MOVE, and DELETE.

The Base-Version header is used to track merge history as well as verification. If the base version specified is not the latest version, servers SHOULD fail the PUT request. That is, clients can not create a new version based on an older version (clients need to branch the resource – refer to the chapter on resource branching).

The URI specified MUST be a valid version URI for the resource.

Base-Version = “Base-Version” “:” URI

3.2.4. Comment

The Comment header is used to indicate a user-specified comment for the operation being requested. Servers SHOULD track this information.

Comment = “Comment” “:” Text

3.2.5. Checkin-Token

Clients may desire the ability to track a set of changes as a unit. This header allows semantic grouping changes as well as the ability operate on the entire collection of changes.

When a client modifies a resource (e.g. PROPPATCH, PUT, COPY, MOVE, …), the return header includes a resource for the change. Clients can use this identifier to refer to the change. As well, clients can also use the id on subsequent changes (e.g. PROPPATCH, PUT, COPY, MOVE, …) to allow the server to correlate the changes.

By default, a change operation will automatically “close” a checkin id. That is, no further changes are allowed using that checkin id. Clients can request that the checkin id be kept alive using a special header.

If a client specifies a correlation identifier using Checkin-Token that was not returned by the server, the server MAY fail with 412.

Checkin-Token = “Checkin-Token” “:” URI

Keep-Checkin-Alive = “Keep-Checkin-Alive” “:” (“T” | “F”)

The correlation resource can then be used with PROPFIND, PROPPATCH, DELETE, MOVE, and COPY.

The Checkin-Token URI is a resource in the checkin token collection. This URI can be obtained by accessing the DAV:checkinroot property on a resource.

>>Request

PUT /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Keep-Checkin-Alive: T

Content-Type: text/html

Content-Length: xxxx

...

>>Response

HTTP/1.1 200 OK

Checkin-Token: http://www.foobar.com/ci/DFDF3293289
Content-Length: 0

>>Request

PUT /foo/bing.htm HTTP/1.1

Host: www.foobar.com
Checkin-Token: http://www.foobar.com/ci/DFDF3293289
Content-Type: text/html

Content-Length: xxxx

...

>>Response

HTTP/1.1 200 OK

Checkin-Token: http://www.foobar.com/ci/DFDF3293289
Content-Length: 0

Clients can enumerate all checkins using PROPFIND to obtain the contents of the checkin root (DAV:checkinroot) collection. Using PROPFIND with the Checkin-Token URI, clients can enumerate the resources in the checkin collection.

3.3. CHECKINOUT Method

For versioning-aware clients, the CHECKINOUT method allows them to perform specific versioning operations. The CHECKINOUT method is directed at a specific URI and the body contains XML indicating the action to take.

Note that the headers described above for GET and PUT can be used with the CHECKINOUT method.

3.3.1. Discovery

Discovery of this feature is determined by seeing if the resource options include the CHECKINOUT method.

3.3.2. Checkout

Using the CHECKINOUT method, clients can request resources to be “checked out”. This involves creating a new version of a resource that is not automatically versioned. Checked out resources must be checked in or aborted. The diagram below illustrates this process:

 Versions of foo.htm: V1

 Checkout is performed: V1

 |

 +-> ChkOut

 Checkin is performed: V1 -> V2

The body XML indicates an optional checkout comment, an optional user token, and an optional local resource value. The server returns a URI for the resource and a URI for the version identifier. PUTs should include these references.

>>Request

CHECKINOUT /foo/bar HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:checkout>

<D:comment>checkout comment</D:comment>

<D:usertoken>client-defined token</D:usertoken>

<D:localresource>file:c:\foo\bar</D:localresource>
</D:checkout>

>>Response

HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: 0

Location: /foo/bar

Version-Id: VER:REEN4855

3.3.3. Checkin

When the client has completed changes to a resource and wishes it to become part of the version history, the client must check in the resource. This is performed using the CHECKINOUT method with special body tags.

>>Request

CHECKINOUT /foo/bar HTTP/1.1

Host: www.foobar.com
Versoin-Id: VER:REEN4855

Comment: “...”

Content-Type: text/xml

Content-Length: xxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:checkin/>

>>Response

HTTP/1.1 204 CREATED

Content-Length: 0

3.3.4. Undo Checkout

If a client chooses to cancel a checkout request, the CHECKINOUT method is used with special body tags.

>>Request

DELETE /foo/bar HTTP/1.1

Host: www.foobar.com
Version-Id: VER:REEN4855

Content-Type: text/xml

Content-Length: 0

>>Response

HTTP/1.1 204 OK

Content-Length: 0

3.3.5. Enumeration

Clients can enumerate the current checkouts to a resource using the CHECKINOUT method. The depth header indicates that number of levels to include in the response.

The following tags can be used in the body request to limit discovery:

· DAV:before – only select items before the specified date

· DAV:after – only select items after the specified date

· DAV:usertoken – only select items from the specified user

· DAV:localresource – only select items with the specified local resource

The <DAV:enumcheckouts> tag is used to request enumeration of checkouts.

>>Request

CHECKINOUT /foo/bar HTTP/1.1

Host: www.foobar.com
Content-Type: text/html

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:enumcheckouts/>

>>Response

HTTP/1.1 200 OK

Content-Length: 0

TBD – need to fill in response (usertoken, localresource, ...)

3.4. Default Version

If a Version-Id header is not specified when referring to a resource, then the tip (latest) version is used, unless a default version has been identified. To mark a specified version as the default version, clients set the DAV:defaultversion property on the resource to the specific version. Note that servers MUST treat this property special in that it doesn’t create a new version of the resource and it can be applied to older immutable versions.

>>Request

PROPPATCH /foo/bar HTTP/1.1

Host: www.foobar.com
Content-Type: text/html

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propertyset>

<D:set>

<D:defaultversion>VER:HT58GHDW49</D:defaultversion>

</D:set>

</D:propertyset>

>>Response

HTTP/1.1 200 OK

Content-Length: 0

Note that when this property is set to a blank value, the default version is the tip (latest) version.

Collection resources CANNOT be set to a default version.

It should be noted that setting a default version may impact automatic versioning. If a client performs a PUT operation and doesn’t specify a Version-Id header, then servers MUST fail the PUT operation if a default version exists. This is because the client may not be able to obtain the version that was PUT because of the default version being in place.

3.5. Sharing

Many versioning systems today provide the ability to have a given resource visible in multiple parts of the namespace. In these situations, a resource is shared. That is, changes to the resource are visible to all versions.

Sharing is handled by use of referential members.

Note that default versions (described above) are per namespace share. That is, separate shares can have different default versions.

3.6. Resource History

Version history graphs of a resource are accessed via PROPFIND. Note that servers MAY support multiple styles of history. To enumerate the supported history graphs, clients use PROPFIND and the <DAV:enumgraphs> property. The results indicate the different graphs which can, themselves, be requested via PROPFIND.

3.6.1. Example

>>Request

PROPFIND /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:enumgraphs/>

</D:propfind>

>>Response

TBD – need to fill in the response

3.6.2. Linear History

Servers MUST support the <DAV:linearhistory> property. This enumerates the direct parent version history for a resource.

>>Request

PROPFIND /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Version-Id: VER:FHJRH3994

Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:linearhistory/>

</D:propfind>

>>Response

TBD – need to fill in the response

3.6.3. Full History

Servers MUST support the <DAV:fullhistory> property. This enumerates the full DAG history of a resource.

>>Request

PROPFIND /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:fullhistory/>

</D:propfind>

>>Response

TBD – need to fill in the response

4. Resource Branching

For more sophisticated clients, basic resource branching is required. This section describes the basic branching support defined by the versioning extensions.

Resource branching means that for a given resource, the history is not linear. That is, there are different lines of decent. The diagram below illustrates this.

 Version history V1 -> V2 -> V3

 Of foo.htm: |

 +-> V1.1 -> V1.2

 |

 +-> V1.1.1

Individual resource branching is common in many versioning systems today. Project branching (configurations) are described in the next section. The version history for a resource MUST be a directed acyclic graph (DAG). Note that when a collection is branched, the depth of the branch is infinity. There is no way to change this.

4.1. Discovery

Resource branching is optional for servers. This example shows that the server supports resource branching on the /somefolder resource.

>> Request

OPTIONS /somefolder/ HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, MKBRANCH

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, MKBRANCH

Allow-Extension: DAV:versioning, DAV:branching

Public-Extension: DAV:versioning, DAV:branching

Content-Length: 0

4.2. Branching Resources

A resource is branched using the MKBRANCH method. The resource to be branched is specified as the target URI for the method. The reply includes a URI for the resource and a URI for the version identifier.

>>Request

MKBRANCH /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Content-Type: text/html

Content-Length: 0

>>Response

HTTP/1.1 201 CREATED

Location: /foo/bar.htm

Version-Id: VER:DHFH558689

Content-Length: 0

4.3. Derivation

When clients use resource branching, they will likely need to perform merge operations. A merge is the process by which changes from different versions are combined to produce a new version. It is likely that clients will want to track this semantic information. When the Derived-From header is specified on a PUT, CHECKINOUT, or PROPPATCH method, it indicates the version (or versions) from which the change is derived.

Derived-Item = URI

Derived-List = Derived-Item | (Derived-List “,” Derived-Item)

Derived-From = “Derived-From” “:” Derived-List

>>Request

PUT /foo/bar HTTP/1.1

Host: www.foobar.com
Derived-From: VER:FDHJ43058

Content-Type: text/html

Content-Length: xxxx

...

>>Response

HTTP/1.1 200 OK

Content-Length: 0

5. Configurations

Many clients require more sophisticated management and organization of their versioned data. For this reason, configuration support is defined as part of this specification.

This specification defines two types of configurations: static and dynamic. A static configuration is a named collection of specific versions of selected resources. A dynamic configuration is a collection resources and their associated versions where the contents changes as new versions are created. Dynamic configurations can also track all versions that have been part of the configuration.

A configuration can be derived from another configuration. That is, the new configuration is based on the versions in the “parent” configuration. Optionally, derived configurations can automatically inherit new versions in the parent configuration (assuming there are no conflicts). However, a configuration can be derived from at most one other configuration.

5.1. Discovery

Configuration support is optional for servers. This example shows that the server supports configurations on the /somefolder resource.

>> Request

OPTIONS /somefolder/ HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Allow-Extension: DAV:versioning, DAV:branching, DAV:configurations

Public-Extension: DAV:versioning, DAV:branching, DAV:configurations

Content-Length: 0

5.2. Configuration Namespace

Servers maintain configurations in a private portion of the namespace. The root of this namespace is determined by examining the read-only DAV:configurationnamespace property. All configurations names MUST be unique on a server. Using the configuration namespace, clients can organize configurations hierarchically, however, this is for discovery only. That is, the namespace path is NOT required to identify the configuration, only its leaf name. Note that positioning in the namespace DOES NOT imply configuration derivation.

Each configuration can have a client-specified configuration name. This is defined by the DAV:configurationname property on the configuration resource. Note that the DAV:configurationname MUST be unique. That is, no other configuration can have the same DAV:configurationname.

5.3. Creating Configurations

Clients create new configurations by issuing the MKCOL method against the configuration namespace. This requests the server to create a new configuration.

When a configuration is created, special tags can be used to define the characteristics and relationships (e.g. derivations) for the configuration. The following table enumerates these tags.

Tag
Description

<DAV:configurationtype>
 xxx
</DAV:configurationtype>
This tag defines the type of configuration: DAV:Static or DAV:Dynamic.

<DAV:derivedfrom>”xxx”
</DAV:derivedfrom>
This tag allows the client to specify a URI to identify another configuration from which this new configuration is to be derived.

<DAV:inheritancetype>
 DAV:Auto
</DAV:inheritancetype>
The configuration automatically inherits changes from its derived-from configuration. Conflicts are recorded in resolution queues (see later section).

<DAV:inheritancetype>
 DAV:Manual
</DAV:inheritancetype>
The configuration inherits changes from its derived-from configuration, but they are not automatically inserted into the configuration. Instead they are recorded in resolution queues (see later section).

<DAV:inheritancetype>
 DAV:None
</DAV:inheritancetype>
The configuration is a snapshot of the current versions in the derived-from configuration. There is no inheritance of changes. This is the default type if no type is specified.

<DAV:basetime>”xxx”
</DAV:basetime>
The configuration is based on the current versions in the derived-from configuration at the indicated time. Note that use of this tag is incompatible with DAV:Auto inheritance types and servers MUST return an error.

The example below illustrates creating a new configuration that is derived from, and auto-inherits another configuration. For this example, the root of the configuration namespace has been determined to be /cfgs.

>>Request

MKCOL /cfgs/ HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:createconfiguration>

<D:configurationtype>Dynamic</D:configurationtype>

 <D:derivedfrom>http://www.foobar.com/cfgs/DDEJRJ445</D:derivedfrom>

<D:inherit>Auto</D:inherit>

</D:createconfiguration>

>>Response

HTTP/1.1 201 Created

Location: http://www.foobar.com/cfgs/RYURUS99009

Content-Length: 0

5.4. Configuration Properties

The standard PROPFIND and PROPPATCH methods can be used on the configuration resource to get and set properties on a configuration. Servers MUST provide configuration properties if configurations are supported. The following list identifies pre-defined properties that MUST be supported:

DAV:configurationnamespace – The URI for the base of the configuration namespace. This is a read-only property.
DAV:configurationtype – The type of the configuration. Servers can choose to make this a read-only property.

DAV:derivedfrom – The configuration from which the configuration is derived. Servers can choose to make this a read-only property.

DAV:inheritancetype – The type of inheritance for the configuration. Servers can choose to make this a read-only property.

DAV:basetime – The base time used to create the configuration. Servers can choose to make this a read-only property.

DAV:configurationame – A user-defined name for the configuration. This name MUST be unique for all configurations.

DAV:configurationroots – This property returns a comma-separated list of URL roots that should be checked (using PROPFIND) for contents within this configuration. Note this property is needed in case the server implements DAV support at various points in the server namespace.

5.5. Headers

To support configurations, two new headers are introduced that can be used with a variety of the DAV and HTTP methods. The following list identifies these headers:

Configuration-Id – This header is used to identify the configuration that is to be used when referencing a resource. This header is generally used in combination with Version-Id to identify the versioning collection to use. This header can be combined to set default versions per-configuration, enumeration of checkouts/checkins against a specific configuration, etc.

Configuration-Id = “Configuration-Id” “:” URI

Target-Configuration – This header is used to specify a target configuration when dealing with cross-configuration operations. For example, resources can be copied from one configuration to another using the Configuration-Id and Target-Configuration headers with the COPY method.

Target-Configuration = “Target-Configuration” “:” URI

Derived-From – When configurations are support, the Derived-From header is extended. This header is used to identify the derivation for changes (generally as part of a client-based merge operation). Clients can include configuration names in the event that a change is derived from resources in a different configuration. In this case, clients include a derivation pair (configuration, version) instead of just a version. If no configuration is specified, the configuration of the target resource is used.

Derived-Item = URI | (“(“ URI “,” URI “)”)

Derived-List = Derived-Item | (Derived-List “,” Derived-Item)

Derived-From = “Derived-From” “:” Derived-List

5.5.1. GET Example

>>Request

GET /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Configuration-Id: /cfgs/DFEE2034

Version-Id: VER:JKGRKJ9094

Content-Length: 0

5.5.2. COPY Example

>>Request

COPY /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Destination: http://www.foobar.com/foo/bar.htm

Depth: infinity

Configuration-Id: /cfgs/DFEE2034

Target-Configuration: /cfgs/FKJLE3454

Content-Type: text/xml

Content-Length: xxx

5.6. Deleting Configurations

To delete a configuration, use the location returned from the configuration creation. Note that servers SHOULD NOT delete a configuration if other configurations are derived from it.

>>Request

DELETE /cfgs/RYURUS99009 HTTP/1.1

Host: www.foobar.com

Content-Length: 0

5.7. Default Configurations

Clients can establish a default configuration that is to be used if clients do not specify a configuration. To do this, clients set a property on the configuration namespace root collection identifying the default configuration.

>>Request

PROPPATCH /cfgs/ HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propertyupdate>

<D:set>

<D:prop>

<D:defaultconfiguration>/cfgs/RYURUS99009</D:defaultconfiguration>

</D:prop>

</D:set>

</D:propertyupdate>

5.8. Managing Configurations

In order to manage a configuration, clients need to be able to populate, synchronize, merge, and purge the contents of a configuration.

5.8.1. Adding Resources to a Configuration

Resources are added to a configuration using the COPY method.

>>Request

COPY /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Depth: infinity

Configuration-Id: /cfgs/DFEE2034

Target-Configuration: /cfgs/ERRJ3440

Content-Type: text/xml

Content-Length: xxx

5.8.2. Removing Resources from a Configuration

Resources are removed from a configuration using the DELETE. The target URI indicates the resource to delete and the Configuration-Id header to identify the configuration. The Depth header can be used to remove collection contents.

>>Request

DELETE /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Depth: infinity

Configuration-Id: /cfgs/DFEE2034

Content-Type: text/xml

Content-Length: 0

5.8.3. Synchronizing Configurations

In some scenarios, clients are working on separate configurations to keep themselves isolated from other team members. However, they occasionally need to synchronize their configuration with the derived-from configuration so that they don’t get too far out of synchronization. As well, changes (or entire configurations) can be copied from one configuration to another. Both operations are performed using the COPY method and special body tags.

Clients can request that specific resources are copied by including the resource tag. If no resources are specified, then all resources are copied.

The example below shows the synchronization of one configuration against another. All resources are synchronized.

>>Request

COPY /cfgs/DHFHR99392 HTTP/1.1

Host: www.foobar.com
Destination: http://www.foobar.com/cfgs/RRURU329049
Content-Type: text/xml

Content-Length: xxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:configurationsync/>

The example below shows the synchronization of one configuration against another. The specified resources are synchronized to the indicated time.

>>Request

COPY /cfgs/DHFHR99392 HTTP/1.1

Host: www.foobar.com
Destination: http://www.foobar.com/cfgs/RRURU329049
Content-Type: text/xml

Content-Length: xxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:configurationsync>

<D:resource>/foo/bar.htm</resource>

<D:resource>/bing/bop.htm</resource>

<D:basetime>...</D:basetime>

</D:configurationsync>

A synchronization request could result in conflicts. By default, if conflicts exist, the synchronization fails and the conflicts are returned (as shown below). To override, clients should include the <DAV:override/> tag. This tag indicates that the synchronization should do as much as possible and return any conflicts.

>>Response

TBD – show failure response

...

<D:multistatus>

<D:response>

<D:href> http://www.foobar.com/foo/bar.htm</D:href>

<D:conflict>

<D:conflictid>VER:DJHFH443</D:conflictid>

<D:baseversion>VER:DJHFH443</D:baseversion>

<D:newversion>VER:FDFEE55544</D:newversion>

</D:conflict>

<D:response>

...

</D:multistatus>

...

The sample response above shows that each conflict includes and ID and a reference to the resource in conflict. Servers MAY choose to restrict configurations until conflicts have been resolved. To inform the server that a conflict has been resolved, clients should include a Conflict-ID header on PUT, PROPPATCH, etc. methods specifying the ID returned in the synchronization response.

Conflict-ID = “Conflict-ID” “:” URI

5.8.4. Purging Configurations

Purging a configuration means to reduce the number of versions in a dynamic configuration. This is performed by extending the DELETE method. In the example below, all but the latest three versions are purged from a dynamic configuration.

>>Request

DELETE /cfgs/BHFR59593 HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:purgeset>

<D:purge>

<D:resource>/foo/bar.htm<D:keep>3</D:keep></D:resource>

</D:purge>

</D:purgeset>

5.9. Configuration Graphs

Version history and configuration dependency graphs are accessed via PROPFIND. Note that servers MAY support multiple styles of history and dependency. To enumerate the supported history graphs, clients use PROPFIND and the <DAV:enumgraphs> property. The result indicate the different graphs which can, themselves, be requested via PROPFIND.

5.9.1. Example

>>Request

PROPFIND /cfgs/FHJRH3994 HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:enumgraphs/>

</D:propfind>

>>Response

TBD – need to fill in the response

5.9.2. Configuration Derivation

Servers MUST support the <DAV:configurationderivation> property. This enumerates the full derivation of a resource.

>>Request

PROPFIND /cfgs/BHFR59593 HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:configurationderivation/>

</D:propfind>

>>Response

TBD – need to fill in the response

5.9.3. Configuration Merge Graph

Servers SHOULD support the <DAV:configurationmerge> property. This enumerates the derivation of a configuration including merges from one configuration to another.

>>Request

PROPFIND /cfgs/BHFR59593 HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propfind>

<D:configurationmerge/>

</D:propfind>

>>Response

TBD – need to fill in the response

5.10. Resolution Queues

When configurations inherit, there is the potential for conflicts. Servers have the option to help clients manage these conflicts. However, if they do not, then servers MUST return an error if the result of the operation would result in a conflict.

Servers that help resolve conflicts track and maintain lists of issues that need to be resolved as a result of actions. These lists are referred to as resolution queues. Clients can request the resolution issues and react accordingly. Note that the server only manages the list. That is, the client is responsible for resolving the issue (or deciding not to) and then removing the resolution item.

5.10.1. Discovery

Resolution queue support is optional for servers. This example shows that the server supports resolution queues on the /cfgs/DFEE2034 configuration.
>> Request

OPTIONS /cfgs/DFEE2034 HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Allow-Extension: DAV:versioning, DAV:configurations, DAV:resolution

Public-Extension: DAV:versioning, DAV:configurations, DAV:resolution

Content-Length: 0

5.10.2. Obtaining Resolutions

Conflicts can arise against any resource, however, they are always associated with a configuration. Pending resolutions items are obtained by examining the resolution queue for a configuration. The resolution queue is actually a configuration-specific collection in the DAV namespace. The collection resource identifying the resolution queue for a configuration is obtained via the DAV:resolutionqueue property on the configuration. To enumerate the pending resolutions, clients use PROPFIND to obtain the resources within the collection.

Each resource within the collection represents a separate resolution queue item and are named such that a standard ANSI sort on the resource name will ensure correct temporal ordering.

5.10.3. Processing Resolution Items

Clients can GET the contents of a resolution item. This is an XML document that describes the action that caused the resolution item to be created. For example:

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:resolutionitem>

<D:resolutionid>http://foobar.com/reso/ZZZZ3493</D:resolutionid>

<D:resource>http:/foo/bar.htm</D:resource>

<D:newversion>DAV:FDFEE55544</D:newversion>

</D:resolutionitem>

Once a client has resolved an issue (or decided to ignore it), the client is responsible for canceling the resolution item. This is done using the DELETE method on the resolution item.

>>Request

DELETE http://foobar.com/reso/ZZZZ3493 HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: 0

6. Version Mapping

This specification defines headers to specify configurations and resource versions. However, there are times when clients require a single URI for when working against configurations or versions. Version mapping support allows servers to create namespaces that map to configurations and versions.

Note that mappings are dynamic. That is, as resources are added, removed, and modified, the changes are reflected in any active maps.

TBD – Should maps have timeouts like locks?

6.1. Discovery

Version mapping support is optional for servers. This example shows that the server supports version mapping on the /cfgs/DFEE2034 configuration.
>> Request

OPTIONS /cfgs/DFEE2034 HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, MAP

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, MAP

Allow-Extension: DAV:mapping

Public-Extension: DAV:mapping

Content-Length: 0

6.2. Mapping Configurations

The MAP method is used to create server namespaces based on a configuration. When a configuration is mapped to a new namespace, all elements within the configuration can be directly accessed within the namespace without requiring the configuration to be identified in the header.

In the example below, a new namespace is created for accessing the contents of the /cfgs/DFEE2034 configuration.

>> Request

MAP /cfgs/DFEE2034 HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 201 CREATED

Location: http://foobar.com/map/DFEE2034/

Context-Length: 0

6.3. Mapping Resource Versions

The MAP method is also used to create server namespaces based on a resource’s versions. When a resource is mapped, its version history within the configuration is made available without requiring the Version-Id header. Within the mapped namespace, a hierarchy is created for the versions. A collection is created for each version which contains the document and collections for derived from versions. The diagrams below illustrate two possible hierarchies. The left diagram illustrates basic linear versioning. The right diagram illustrates a hierarchy with branched resources.

 V1 V1

 | |

 +----+ +----+--------+

 | | | | |

 V2 bar.htm V2 bar.htm V1.1

 | | |

 +----+ +----+ +-----+

 | | | | | |

 V3 bar.htm V3 bar.htm V1.2 bar.htm

 | | |

 bar.htm bar.htm bar.htm

In the example below, a new namespace is created for accessing the versions of the /foo/bar.htm resource in the /cfgs/DFEE2034 configuration.

>> Request

MAP /foo/bar.htm HTTP/1.1

Connection: Close

Host: foobar.com

Configuration-Id: /cfgs/DFEE2034

Content-Type: text/xml

Content-Length: xxx

>> Response

HTTP/1.1 201 CREATED

Location: http://foobar.com/map/DFEE2034/

Context-Length: 0

7. Miscellaneous Functions

The following sub-sections detail miscellaneous versioning functions.

7.1. Destroy

Many version management systems use tombstones to note deleted items. These systems also support the ability to permanently destroy tombstones for an object. The DESTROY method provides this functionality and servers SHOULD support it, but servers are not required to implement it. Servers MUST return an error for DESTROY requests that are not honored.

7.1.1. Discovery

Discovery of this feature is determined by seeing if the resource options include the DESTROY method.

7.1.2. Usage

The DESTROY method is used against a specific resource to permanently remove it from the server. This is a namespace level-operation. That is, all resources matching the specified URI are destroyed.

>>Request

DESTROY /foo/bar/x.cpp HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

7.1.3. Headers

Clients may chose to display deleted but not destroyed objects however they choose. The header keyword Show-Deleted is used to indicate if deleted items should be included in the GET request. By default, they are not. Inclusion of “Show-Deleted: Y” indicates that deleted resources should be included. Using “Show-Deleted: O” indicates that only resources that have been deleted should be returned. Using “Show-Deleted: N” indicates that deleted resources shouldn’t be returned.

Show-Deleted = “Show-Deleted” “:” (“Y” | “N” | “O”)

7.1.4. Properties

DAV:isdeleted – A 0/1 property where 1 indicates that the resource has been deleted.

7.2. Keyword Expansion

A common feature of version control systems is to allow keyword expansion. That is, the resource is automatically annotated with specific information by the server. Servers SHOULD implement this functionality, but are not required to do so.

There currently exist a number of version control systems that support keyword expansion in a unique fashion. Consequently it is unlikely that a unified definition of the expansions and expansion symbols can be defined. This protocol provides a mechanism for discovering the supported expansions for a resource and the associated expansion symbols.

This protocol does not specify if keyword expansion occurs on GET or PUT – that is up to each server. Nor is there a requirement for the keywords that must be supported. This is a per-resource list.

TBD – give example

7.2.1. Properties

DAV:expansionavailable –indicates if a resource supports expansion (1) or doesn’t (0)

DAV:expansionsymbols – a read-only property indicating a comma-separated list of the expansion symbols available for a resource

DAV:expansionsused – a read-only property indicating a comma-separated list of the keyword expansions in use by a specific resource

8. Variant Authoring

For sites that maintain multi-language variations of resources, variant authoring is important. Servers SHOULD support language variants, but are not required to do so.

Language variants are treated as different “versions” of a resource. That is, clients request a resource and indicate which language variant is desired. Servers take the request and map it to the closest match.

TBD – need to address accept-type and what else?

8.1. Discovery

Variant authoring support is optional for servers. This example shows that the server supports variant authoring on the /somefolder resource.

>> Request

OPTIONS /somefolder/ HTTP/1.1

Connection: Close

Host: foobar.com

Content-Length: 0

>> Response

HTTP/1.1 200 OK

Date: Tue, 20 Jan 1998 20:52:29 GMT

Connection: close

Accept-Ranges: none

Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, CHECKINOUT

Allow-Extension: DAV:variants

Public-Extension: DAV:variants

Content-Length: 0

8.2. Resource Properties

Every resource has the following read-only property:

DAV:language-variant – This specifies the language variant associated with the resource.

8.3. Header Extensions

The header qualifier Accept-Language allows clients to specify language variants they desire. When this qualifier is present on a GET request, the client specifies the desired variants. Servers take this under advisement, but are not required to return a variant of the requested type.

GET /foo.htm HTTP/1.1

Host: www.foobar.com
Accept-Language: de, en

Content-Type: text/xml

Content-Length: xxxx

When resources are sent to the server in a PUT request, the client specifies the language variant of the resource using the header tag Content-Language.

PUT /foo.htm HTTP/1.1

Host: www.foobar.com
Content-Language: de

Content-Type: text/xml

Content-Length: xxxx

...

8.4. Default Variant

For a given resource, clients can establish the default language variant that is to be used if clients do not request a specific language variant.

In the example below, the default variant for /foo/bar.htm is set to German.

PROPPATCH /foo/bar.htm HTTP/1.1

Host: www.foobar.com
Content-Type: text/xml

Content-Length: xxxx

<?xml version=”1.0” ?>

<?xml:namespace ns=”DAV:” prefix=”D” ?>

<D:propertyset>

<D:set>

<D:defaultlanguage>de</D:defaultlanguage>

</D:set>

</D:propertyset>

9. The DAV Versioning Grammar

To be supplied – Describe and detail the DTDs

10. Internationalization Considerations

To be supplied.

11. Security Considerations

To be supplied.
12. Scalability

To be supplied.
13. Authentication

Authentication mechanisms defined in WebDAV will also apply to DAV Versioning.

14. IANA Considerations

This document uses the namespace defined by [WebDAV] for XML elements. All other IANA considerations mentioned in [WebDAV] also applicable to DAV Versioning.

15. Copyright

To be supplied.

16. Intellectual Property

To be supplied.

17. References

[DAVVERREQ] TBD, "Requirements for DAV Versioning and Variant Authoring", TBD, internet-draft, work-in-progress, draft-webdav-versioning-requirements-##.txt

[Kaler] C. Kaler, "Versioning Extensions for WebDAV", September 1998, internet-draft, work-in-progress, draft-kaler-webdav-versioning-00.

 [RFC2068] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2068, U.C. Irvine, DEC, MIT/LCS, January 1997.

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels." RFC 2119, BCP 14. Harvard University. March, 1997.

 [WebDAV] Y. Goland, E.J. Whitehead, A. Faizi, S.R. Carter, D. Jenson, "Extensions for Distributed Authoring on the World Wide Web", April. 1998, internet-draft, work-in-progress, draft-ietf-webdav-protocol-08.

[White] E.J. Whitehead, "A Web Versioning Protocol", June 1998, internet-draft, work-in-progress, draft-whitehead-webdav-versioning-00.

18. Author's Addresses

Christopher Kaler, Editor

Microsoft

One Microsoft Way

Redmond WA, 9085-6933

Email:ckaler@microsoft.com

E. James Whitehead, Jr.

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425

Email: ejw@ics.uci.edu
TBD – list all members of the working group
Change History

Sep 28, 1998

Initial Draft based on [White] and [Kaler].
Kaler, ed.

[Page 1]

Kaler, ed.

[Page 3]

