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ABSTRACT OF THE DISSERTATION 

SimSE: A Software Engineering Simulation Environment  

for Software Process Education 

By 

Emily Navarro 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 2006 

André van der Hoek, Chair 

 

The typical software engineering education lacks a practical treatment of the processes of 

software engineering—students are presented with relevant process theory in lectures, but 

have only limited opportunity to put these concepts into practice in an associated class 

project. Simulation is a powerful educational tool that is commonly used to teach 

processes that are infeasible to practice in the real world. The work described in this 

dissertation is based on the hypothesis that simulation can bring to software engineering 

education the same kinds of benefits that it has brought to other domains. In particular, 

we believe that software process education can be improved by allowing students to 

practice, through a simulator, the activity of managing different kinds of quasi-realistic 

software engineering processes. 

 To investigate this hypothesis, we used a three-part approach: (1) design and build 

SimSE, a graphical, interactive, educational, customizable, game-based simulation 

environment for software processes, (2) develop a set of simulation models to be used in 

seeding the environment, (3) evaluate the usage of the environment, both in actual 

 xxi



software engineering courses, and in a series of formal, out-of-class experiments to gain 

an understanding of its various educational aspects. Some of the educational aspects 

explored in these experiments included how SimSE compares to traditional teaching 

techniques, and which learning theories are employed by students who play SimSE. 

 Our evaluations strongly suggest that SimSE is a useful and educationally effective 

approach to teaching software process concepts. Students who play SimSE tend to learn 

the intended concepts, and find it a relatively enjoyable experience. These statements 

apply to students of different genders, academic performance levels, and industrial 

experience backgrounds. However, in order for SimSE to be used in the most effective 

way possible, our experience has demonstrated that it is crucial that it be used 

complementary to other educational techniques and accompanied by an adequate amount 

of direction and guidance given to the student. Our evaluations also suggested a number 

of promising directions for future research that can potentially increase the effectiveness 

of SimSE and be applied to educational simulation environments in general. 
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1. Introduction 

While the software industry has had remarkable success in developing software that is of 

an increasing scale and complexity, it has also experienced a steady and significant 

stream of failures. Most of us are familiar with public disasters such as failed Mars 

landings, rockets carrying satellites needing to be destroyed shortly after takeoff, or 

unavailable telephone networks, but many more “private” problems occur that can be 

equally disastrous or, at least, problematic and annoying to those involved. Examining 

one of the prime forums documenting these failures, the Risks Forum [4], provides an 

illuminating insight: a significant portion of documented failures can be attributed to 

software engineering process breakdowns. Such breakdowns range from individuals not 

following a prescribed process (e.g., not performing all required tests, not informing a 

colleague of a changed module interface), to group coordination problems (e.g., not using 

a configuration management system to coordinate mutual tasks, not being able to deliver 

a subsystem in time), to organizations making strategic mistakes (e.g., choosing to follow 

the waterfall process model where an incremental approach would be more appropriate, 

not accounting for the complexity of the software in a budget estimate). As a result, it is 

estimated that billions of dollars are wasted each year due to ineffective processes and 

subsequent faulty software being delivered [79]. 

We believe the root cause of this problem lies in education: current software 

engineering courses typically pay little to no attention to students being able to practice 

issues surrounding the software engineering process. The typical software engineering 

course consists of a series of lectures in which theories and concepts are communicated, 

and, in an attempt to put this knowledge into practice, a small software engineering 
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project that the students must develop. Although both of these components are 

necessary—lectures as a source for the basic knowledge of software engineering and 

projects as a way to gain hands-on experience with some of the techniques of software 

engineering, this approach fails to adequately teach the overall software process, a key 

part of software engineering. 

The underlying issue is the constraints of the academic environment—while relevant 

process theory can be and typically is presented in lectures, the opportunities for students 

to practically and comprehensively experience the presented concepts are limited. There 

are simply not enough time and resources for the students to work on a project of a large 

enough size to exhibit many of the phenomena present in real-world software engineering 

processes. In addition, the brevity of the quarter, semester, or even academic year leaves 

little room for the student to try (and possibly fail at) different approaches in order to 

learn which processes work best for which situation. Most course projects simply guide 

students through a linear execution of the waterfall model (requirements, design, 

implementation, testing) in which students are left with little discretion. Students cannot 

decide which overall life cycle model to follow, whether or not to first build a rapid 

prototype, or even when to set the milestones for their deliverables—these and other 

decisions are usually made by the instructor. The focus strongly remains on creating 

project deliverables such as requirements documents, design documents, source code, and 

test cases, and little room is left to illustrate or experience the principles, pitfalls, and 

dimensions of the software process. The overall result is that students are unable to build 

a practical intuition and body of knowledge about the software process, and are ill-

equipped for choosing particular software processes, for recognizing potentially 
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troublesome situations, and for identifying approaches with which to address such 

troublesome situations. 

This lack of process education is evident in the way industry repeatedly complains 

that recent graduates of computer science programs are unprepared for tackling real-

world software engineering projects [27, 36, 98, 130]. Academia has also recognized this 

deficiency and has attempted to remedy it with a wide range of innovations designed to 

make class projects more closely resemble those in industry. These have included such 

things as intentionally introducing real-world complications into a project, (e.g., causing 

hardware and software to crash when a deadline is looming [45]), maintaining a large-

scale, ongoing project that different groups of students work on from semester to 

semester [97], requiring students to work on a real-world project sponsored by an 

industrial organization [66], incorporating multiple universities and disciplines into the 

project [21], and many others. However, in each of these approaches, the time and scope 

constraints imposed by the academic environment still remain, and prevent most of the 

phenomena involved in real world software engineering processes from being exhibited 

(although they do succeed in highlighting a few of these issues). So far, no single 

approach (or set of approaches) has been accepted as a sufficient solution to the problem. 

Simulation is a powerful educational tool that has been widely and successfully used 

in a number of different domains. Before airline pilots fly an actual jet plane full of 

passengers, they extensively train in simulators [118]. Military personnel practice their 

decision-making and leadership abilities in virtual reality simulation environments [92]. 

Students in hardware design courses use simulators to practice designing new, state-of-

the-art CPU’s [33]. In all of these cases, simulation provides significant educational 
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benefits: valuable hands-on experience is accumulated without incurring the high cost of 

actual exercise and without the risk of dramatic consequences that may occur in case of 

failure. Moreover, unknown situations can be introduced and practiced, experiences can 

be repeated, alternatives can be explored, and often a general freedom of experimentation 

is promoted in the training exercise, allowing the student to gain deeper insights with 

each simulation run [90]. 

On top of these known benefits, educational simulations are also known to embody a 

number of different well-known and well-understood learning 

theories [5, 20, 34, 56, 110, 123], a characteristic that suggests it has a great deal of 

educational potential that should be explored. In spite of this, simulation has been 

significantly under-explored in the field of software process and software engineering in 

general.  

The goal of this work is to understand whether simulation can bring to software 

engineering education the same kinds of benefits that it has brought to other domains. We 

hypothesize that software engineering education can be improved, specifically in the 

domain of software engineering processes, by using simulation. In particular, we believe 

that this improvement can be brought about by allowing students to practice, through a 

simulator, the activity of managing different kinds of quasi-realistic software engineering 

processes. While we certainly do not anticipate nor claim that this will address all of the 

educational deficiencies that typically lead to software process breakdowns, we have 

carefully chosen the focus of this hypothesis to be on what we believe is one of the root 

causes of these breakdowns: the lack of practice a student has in managing software 

processes from a project manager’s perspective.  
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To investigate this hypothesis, our approach was threefold: (1) build a graphical, 

interactive, educational, customizable, game-based simulation environment for software 

processes, (2) develop a set of simulation models to be used in seeding the environment, 

(3) evaluate the usage of the environment, both in actual software engineering courses, 

and in a series of formal, out-of-class experiments to gain understanding of its various 

educational aspects.  

Out of our technical development came SimSE, a computer-based environment that 

facilitates the creation and simulation of software engineering processes. SimSE allows 

students to virtually participate in realistic software engineering processes that involve 

real-world components not present in typical class projects, such as large teams of 

people, large-scale projects, critical decision-making, personnel issues, multiple 

stakeholders, budgets, planning, and random, unexpected events. In so doing, it aims to 

provide students with a platform through which they can experience many different 

aspects of the software process in a practical manner without the overarching emphasis 

on creating deliverables that is inherent in actual software development.  

Along with the environment, we also developed a set of simulation models to be used 

in SimSE. These models cover a number of different software engineering processes, 

such as the waterfall model, Extreme Programming, and a code inspection process. In 

each of these, the player is rewarded for following that process model’s “best practices” 

and penalized for deviating from them. 

We developed these models using SimSE’s model builder tool, a critical part of our 

environment that we created with the express intent of allowing instructors to build 

customized simulation models. Using this tool, instructors can encode the software 
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process lessons they want their students to learn, and then generate a customized 

simulation game based on those lessons. Because there exist a wide variety of different 

software process models, several different schools of thought about what are software 

process “best practices” [119], and numerous instructors with varied teaching objectives, 

one of SimSE’s fundamental goals was the ability to support customization of the 

software processes it simulates.  

Because the purpose of this work is to improve software engineering education, the 

third part of our approach started where learning primarily takes place: the classroom. 

Namely, we investigated the potential for simulation’s incorporation into an actual 

software engineering curriculum by putting SimSE into use in introductory software 

engineering courses. As the students used SimSE, we tested how well they were able to 

learn the software process concepts it was designed to teach, and carefully observed and 

collected their reactions and attitudes about the experience. 

We also evaluated SimSE in a series of formal, out-of-class experiments to look into 

educational aspects that were independent of SimSE’s in-class usage. In particular, we 

performed three such experiments: (1) A pilot experiment to evaluate the initial 

educational potential of SimSE and its first simulation model by having undergraduate 

computer science students play the game and provide us with their feedback; (2) A 

comparative study between students who played SimSE, students who read from a 

textbook, and students who listened to lectures (noting the differences in their attitudes, 

observations, and gain in software process knowledge); and (3) An in-depth observational 

study of the learning process students go through while playing SimSE that also served to 
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evaluate the effectiveness of SimSE’s explanatory tool in providing students with insight 

into their simulation runs, and hence, into the process being simulated as well. 

To summarize, this work addresses the following set of incremental research 

questions, each of which has driven the development, usage, and evaluation of SimSE: 

1. Can a graphical, interactive, educational, customizable, game-based 

software engineering simulation environment be built? We have 

successfully built such an environment, although, by necessity, certain tradeoffs 

had to be made between these qualities (graphics, interactivity, educational 

factors, “fun factors”, customizability) to create a balance that could effectively 

and feasibly be developed. 

2. Can students actually learn software process concepts from using such an 

environment? If given adequate background knowledge and guidance, which 

has proven to be crucial, students who use such an environment do seem to 

glean from the simulation models the concepts they are designed to teach.  

3. If students can learn software process concepts from using such an 

environment, how does the environment facilitate the learning of these 

concepts? The most common learning theories employed by players of SimSE 

are Discovery Learning, Learning through Failure, and Constructivism. 

Learning by Doing and Situated Learning are also significant, but seen slightly 

less. Certain aspects of Keller’s ARCS theory of motivation are employed 

strongly (attention and satisfaction) while others are only moderately employed 

(relevance and confidence).  
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4. How can such an environment fit into a software engineering curriculum? 

Simulation in a software engineering curriculum seems to fit best as a 

complementary component to lectures, projects, and readings. One option that 

has proven useful is to use simulation as an optional extra-credit assignment in a 

course that provides the background knowledge required to understand the 

simulation models. In our experience using SimSE in this manner, the majority 

of students chose to complete the assignment, enjoyed it for the most part, and 

seemed to learn the concepts the models are designed to teach. (Of course, this 

is only one option. As part of the follow-on work to this dissertation we plan to 

experiment with others, such as making it mandatory or optional. See Chapter 

12 for further information.) 

 Based on the answers to these research questions that have been suggested by our 

experience and the data we have collected, the work described in this dissertation 

provides the following contributions:  

1. The insight that simulation can be beneficial to software engineering process 

education, but with two crucial caveats: First, simulation needs to be used 

complementary to other educational techniques (such as lectures, projects, and 

readings) so that students will have adequate background knowledge to 

successfully use the simulation in such a way that they will learn the lessons it is 

designed to teach. Second, it is absolutely crucial that an adequate amount of 

direction and guidance be given with a simulation assignment, in order for the 

simulation to be used by the students correctly and effectively. 
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2. An implementation of a graphical, interactive, educational, customizable, game-

based software engineering simulation environment, along with a set of 

simulation models, that has been put through both in-class use and out-of-class 

formal evaluations. 

3. Insight into the role and potential of an explanatory tool in an educational 

simulation, as well as an implementation of such a tool. 

4. Experience with the use of simulation in software engineering education, 

including the lessons learned and promising directions for future research. 

 The remainder of this dissertation is organized as follows: Chapter 2 frames SimSE in 

its research context by providing an overview of the background research areas from 

which it stems. Chapter 3 presents the approach we took to addressing the problem our 

work aims to tackle. In Chapter 4, we describe the modeling capabilities of our 

simulation approach. Chapter 5 presents SimSE’s model builder tool. In Chapter 6, we 

discuss SimSE, including details of its game play, design, and implementation. Chapter 7 

details the various simulation models that have been built using the model builder tool. 

Chapter 8 introduces SimSE’s explanatory tool. Chapter 9 describes our experience with 

actual usage and evaluation of SimSE. In Chapter 10, we provide an overview of related 

work. Chapter 11 presents the conclusions we can draw from this work and in Chapter 12 

we describe our plans for future work. 
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2. Background 

In order to frame the context of our approach, this chapter will take a broad look at two 

major research areas from which this work stems: software engineering education and 

learning theories. First, we will present an overview of how other educators have 

attempted to address the problem of under-preparedness on the part of graduates starting 

their careers in industry. Then, we will survey the well-known learning theories that are 

applicable to the discipline of software engineering education. Finally, we will present a 

categorization of the surveyed approaches in terms of the learning theories they employ, 

focusing in particular on what this can teach us about the potential for educational 

software engineering simulation approaches. 

2.1 Software Engineering Educational Approaches 

In surveying the software engineering educational literature, it is clear that nearly every 

approach to teaching the subject is based on the same two components: lectures, in which 

software engineering theories and concepts are presented; and projects, in which students 

must work in groups to develop a (generally small) piece of software. However, judging 

from the dissatisfaction of industrial organizations that hire recent graduates (mentioned 

previously), it is clear that this approach is not sufficiently preparing future software 

engineers for jobs in the real world.  

The academic community has recognized this problem and, in response to it, has 

created a wealth of innovations that build on the standard lectures plus project approach. 

These approaches fall into three major categories. The first involves attempts to make the 

students’ project experience more closely resemble one they would encounter in the real 
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world (“realism”). The second category includes approaches that teach one or more 

specific subjects a particular instructor feels are currently missing (e.g., usability testing 

or formal methods), and are crucial to effectively educating the students (“missing 

piece”). The final category is simulation approaches, in which educators have students 

practice software engineering processes in a (usually) computer-based simulated 

environment. The remainder of this section describes these categories and their 

approaches in greater detail. 

2.1.1 Adding Realism to Class Projects 

It is clear from looking at the software engineering literature that the most common 

method of improving the educational experience involves modifying certain aspects of 

the class project to make it more closely resemble the experience students will face in 

their future software engineering careers. As the academic environment differs so greatly 

from the industrial, there are numerous angles from which educators have approached 

this issue in terms of aspects of the academic environment that they have tried to make 

more realistic.  

Some of these involve an industrial organization as a participant in the project, either 

by modifying the organization’s existing software [57], using one of their representatives 

in an advisory role [11], inviting one of their representatives to give guest lectures and/or 

mentor the students [125, 147], using one of their projects to be examined as a case 

study [60, 85], or by having an industrial participant actually function as a customer for 

the students’ project [54, 65, 66]. Through the extra pressure of having a non-academic 

party involved, these “industrial partnership” approaches aim to teach students a greater 
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appreciation of quality, give them an opportunity to learn a real application domain, and 

motivate them more thoroughly to do their best work.  

Another approach uses only maintenance- or evolution-based projects instead of 

building a system from scratch [7, 57, 97]. In some of these, the maintenance project is 

ongoing over a number of semesters or quarters, and each class extends and builds on the 

previous classes’ modifications [97, 126, 128, 146]. In others, the piece of software being 

modified is unique to that particular class and/or semester [7, 57, 82, 107, 109]. These 

approaches generally argue that, since the majority of real-world projects are 

maintenance projects, students will be better prepared for the real world by becoming 

familiar with these types of projects during their university education. 

Other “realism” approaches focus on the nature and composition of the student teams 

that work on the project, making them more closely mirror the team dynamics in real-

world software engineering situations so that students will learn the skills necessary to 

work in teams when they enter their industrial careers. These approaches have done such 

things as making the same people work together for multiple projects and/or 

semesters [125], making the student teams very large [15], distributing the members of a 

team across courses [132], majors [43], universities [21], or even countries [50], or 

enforcing formal structure and communication protocols [140].  

Some other “realism” approaches focus on non-technical skills such as 

communication, group process, interpersonal competencies, project management, and 

problem solving [62], rather than traditionally taught skills like design and coding. These 

approaches identify such “soft” skills as what are most lacking in university graduates, 

and hence argue that this kind of emphasis is crucial for their education. 
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Others have tried to mimic common less-structured real-world software engineering 

situations by making the project purposely open-ended and/or vague. This is done in two 

main ways: either by allowing the students to define their own requirements (giving 

students the pseudo-experience of new product development based on market 

research) [100], or by allowing them to define their own process (giving students 

experience in not only following a process, but in designing the process that they 

follow) [63]. 

A somewhat radical approach that has been used is a “practice-driven” approach in 

which the curriculum is largely lab- and project-based [67, 104, 140]. In these 

approaches, lectures are used only as supporting activities. These approaches argue that 

theory is something that cannot be taught in a lecture, but instead must be built in each 

individual through experience and making mistakes.  

Another approach that encourages learning through mistakes, although more 

explicitly, is deliberate sabotage. In this approach, the instructor purposely sets the 

students up for failure by introducing common real-world complications into projects, the 

rationale being that students will then be prepared when these situations occur in their 

future careers. Some of these sabotage tactics have included providing inadequate 

specifications, instructing the customer to be purposely uncertain when describing their 

needs, or purposely crashing the hardware just before a deadline [45].  

Finally, in a somewhat different sort of sabotage, some have assigned projects that 

had been known to fail in the past due to software process problems [12]. In all cases, the 

students also failed, providing a perfect opportunity for the instructor to explain the 
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rationale behind the best practices of software processes, as well as a way for the students 

to learn the consequences of not following these practices firsthand. 

2.1.2 Adding the “Missing Piece” 

While the “realism” approaches all mainly focus on changing the manner in which 

software engineering concepts are taught, there is another large school of thought that 

concentrates instead on changing the content of what is taught—in particular, these 

approaches believe that software engineering education is lacking in effectiveness due to 

the omission of one (or a few) important subject(s). What this “missing piece” is varies 

from approach to approach, but all generally believe that the addition of this subject to 

the curriculum (either to an existing course or as an entirely new and separate course) 

will make the students’ education much more complete, better preparing them for the real 

world. 

Some of these approaches believe that formality is underemphasized, and propose to 

teach more formal methods [3] or to make traditional engineering education a larger part 

of software engineering curriculum [40]. Others believe that students should be taught a 

specific software process (such as the Personal Software Process (PSP) [69, 70], the 

Team Software Process (TSP) [116, 138], the Rational Unified Process (RUP) [54, 64], 

or Extreme Programming (XP) [67, 131]) and be required to follow that process in their 

academic software engineering projects. Still others propose that students should not only 

be required to follow a specific software process, but to also practice process engineering 

and project management techniques to create their own software processes and use 

process improvement techniques to improve upon them [24, 63, 77]. 
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Rather than focus on process as a whole, other “missing piece” approaches focus on 

specific parts of the process (e.g., requirements analysis, testing), and specific techniques 

for performing that part (e.g., scenario-based requirements engineering [39], usability 

testing [143]). Other approaches, rather than teach software engineering in general, focus 

on a specific type of software engineering, such as maintenance-based software 

engineering [7, 133], component-based software engineering [53, 105], or software 

engineering for real-time applications [84, 86]. Still others believe it is certain non-

technical aspects of software engineering that should be added to the software 

engineering curriculum, such as communication [60, 62], interacting with 

stakeholders [108], Human-Computer Interaction [68, 142], or the business aspects of 

software engineering (e.g., intellectual property, product marketing, and financial 

models) [126]. 

2.1.3 Simulation 

While the majority of the software engineering educational approaches focus on adding 

realism to class projects or critical topics to the curriculum, a number of others argue that 

the only feasible way to provide students with the experience of realistic software 

engineering processes within the academic environment is through simulation, as used in 

conjunction with lectures and projects. While these approaches vary in terms of the 

processes they simulate and their specific purposes, they are all designed to allow 

students to practice and participate in software engineering processes on a larger scale 

and in a more rapid manner than can be feasibly done through an actual project. Within 

the realm of software engineering simulation, there are three varieties: industrial 
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simulation brought to the classroom, group process simulations, and game-based 

simulations.  

 In industrial simulation brought to the classroom, a simulator that is used in industry 

to predict the effects of process planning decisions is brought into the classroom for the 

students to practice on [35, 106]. The models run in these simulators are generally based 

strictly on empirical data. They also typically have a non-graphical interface (meaning 

they display a set of gauges, graphs, and meters rather than characters and realistic 

surroundings) and a relatively low level of interactivity, taking a set of inputs such as 

person power, project size, and/or process plan, and outputting a set of results, such as 

budget, time, and defect rate. Use of these highly-realistic simulations in the classroom is 

designed to illustrate to students, using real-world data, the overall life cycle and project 

planning phenomena of software engineering. 

Group process simulations portray structured group discussion and interaction 

processes that are typically present in real-world software engineering 

situations [103, 136], such as code inspections and requirements analysis meetings. In 

these cases, the student engages in a discussion in which some or all of the other 

participants are simulated. Such simulations are designed to give students experience in 

these kinds of discussions, which, these approaches argue, is one area in which new 

graduates are typically unprepared. 

 The final category is game-based simulation, in which software engineering processes 

are practiced by “playing” them in a game-based environment [9, 44, 47, 78, 101, 129]. 

In these software engineering simulation games, the player is generally presented with a 

task to complete in the simulated world (normally to complete a software engineering 
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project within certain constraints), and must interact with the game to drive the 

simulation in order to complete the task. Most of these simulation games have graphical 

user interfaces in which the simulated physical surroundings are displayed, creating a fun, 

game-like atmosphere. The general hope in the game-based approach is that the 

additional enjoyment provided by the game features and dynamics will make learning 

about the particular software engineering process being modeled more memorable, and 

hence, more effective.  

2.2 Learning Theories 

When discussing and evaluating educational approaches, it is only appropriate that the 

discussion is tied back to the roots of educational theory: learning theories. Learning 

theories are theories that describe how people learn. One of the main purposes of learning 

theories is their use as a guide in evaluating and modifying existing educational 

approaches, as well as in creating new ones. In this section, we will present and describe 

some of the most widely accepted and well-known learning theories that are relevant to 

the domain of software engineering education. We chose the following set of learning 

theories because of three criteria: wide acceptance across fields beyond software 

engineering, orthogonality among the factors defining the theory, and relevancy to 

software engineering. That is, we wanted theories that apply beyond software engineering 

but still bore hands-on applicability in structuring our methods of teaching (thereby 

ignoring general theories such as cognitive dissonance, which focus on conflict resolution 

in the mind [52]), and we wanted to avoid listing numerous theories that vary ever so 

slightly (those that are similar we implicitly grouped under a single “learning theory”). 
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 One of the most well-known learning theories is Learning by Doing, a theory based 

upon the premise that people learn a task best not only by hearing about it, but also by 

actually doing it [8, 110, 117, 123, 124]. The implication of this theory for educational 

approaches is the following: the learner should be provided with ample opportunity to 

actually do what they are learning about, not simply absorb the knowledge through a 

lecture, book, or some other medium. Furthermore, they should be encouraged to reflect 

upon their actions through analysis, synthesis, and evaluation activities. 

 Situated Learning [5, 23, 56, 115, 135, 137] is an educational theory that builds upon 

the Learning by Doing approach. However, while Learning by Doing focuses on the 

specific learning activities that the student performs, the Situated Learning theory is 

concerned with the environment in which the learning by doing takes place. In particular, 

Situated Learning is based on the belief that knowledge is situated, being in large part a 

product of the activity, context, and culture in which it is developed and used. Therefore, 

the environment in which the student practices their newly learned knowledge should 

resemble, as closely as possible, the environment in which the knowledge will be used in 

real life. 

Like Situated Learning, Keller’s ARCS Motivation Theory [81] also focuses on 

motivating students to learn. However, rather than focusing on the physical environment 

in which they learn, Keller’s ARCS Motivation Theory concerns itself with promoting 

certain feelings in the learner that motivate them to learn. In particular, these feelings are 

attention, relevance, confidence, and satisfaction. 

• Attention: The attention and interest of the learner must be engaged. Proposed 

methods for doing so are: introducing unique and unexpected events; varying 
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aspects of instruction; and arousing information-seeking behavior by having the 

learner solve or generate questions or problems. 

• Relevance: Learners must feel that the knowledge is relevant to their lives. The 

theory suggests that knowledge be presented and practiced using examples and 

concepts that are relevant to learners’ past, present, and future experiences. 

• Confidence: Learners need to feel personal confidence in the learning material. 

This should be done by presenting a non-trivial challenge and enabling them to 

succeed at it, communicating positive expectations, and providing constructive 

feedback. 

• Satisfaction: A feeling of satisfaction must be promoted in the learning 

experience. This can be done by providing students with opportunities to 

practice their newly learned knowledge or skills in a real or simulated setting, 

and providing positive reinforcements for success. 

 Anchored Instruction [20] is another theory that deals with teaching techniques. In 

particular, Anchored Instruction says educators should center all learning activities 

around an “anchor”—a realistic situation, case study, or problem. Presentation of general 

concepts and theories should be kept to a minimum. Instead, Anchored Instruction 

believes that knowledge is best learned by exploration of these realistic case studies or 

problems. 

The Discovery Learning theory [5, 110] takes a similar approach to Anchored 

Instruction in that it believes that an exploratory type of learning is best. Discovery 

Learning is based on the idea that an individual learns a piece of knowledge most 

effectively if they discover it on their own, rather than having it explicitly told to them. 
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This theory encourages educational approaches that are rich in exploring, experimenting, 

doing research, asking questions, and seeking answers. 

Along the same lines as the Discovery Learning theory is the Learning Through 

Failure theory [123]. This theory is based on the assumption that the most memorable 

lessons are those that are learned as a result of failure. Learning through failure also 

provides more motivation for students to learn, so as to avoid the adverse consequences 

that they experience firsthand when they do not perform as taught. Failure can also 

engage students, as they are motivated to try again in order to succeed. Proponents of the 

theory argue that students should be allowed to (and even set up to) fail to encourage 

maximal learning. 

While most of the learning theories discussed so far focus mainly on the learner as an 

independent being who is responsible for fostering their knowledge on their own (using 

the proper learning materials/activities), the Learning through Dialogue theory [38] gives 

the teacher a much more active and pivotal role in the learner’s education. Learning 

through Dialogue suggests that dialogue between student and teacher is necessary for 

effective learning and retention. According to the theory, this dialogue should consist of 

the teacher encouraging reflection, assessing the student’s aptitudes and learning style, 

and tailoring their teaching strategy accordingly. 

 Like Learning through Dialogue, the Aptitude-Treatment Interaction [41] theory also 

recommends that the instructor take an active role in assessing the characteristics of the 

learner and modify their teaching style accordingly. Aptitude-Treatment Interaction 

focuses primarily on the aptitude of the learner, and states that the learning environment 

should be tailored to this particular characteristic. Specifically, low-ability learners need 
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highly-structured learning environments that incorporate a high level of control by the 

instructor, concrete and well-defined assignments, and specific sequences to follow for 

completing them. High-ability learners, on the other hand, tend to be more independent, 

which implies that a less structured approach is more effective for this type of student. 

 Like the Aptitude-Treatment Interaction theory, the theory of Multiple 

Intelligences [55] also deals with the diverse learning needs and styles of individuals. 

However, rather than focusing on the aptitude of the learner, the Multiple Intelligences 

theory is instead focused on the particular learning modalities that are unique to each 

individual. In particular, the theory identifies seven different learning modalities: 

linguistic, musical, logical-mathematical, spatial, body-kinesthetic, intrapersonal 

(metacognition and insight), and interpersonal (social skills). Whenever possible, 

instruction should be individually tailored to each student to target the particular learning 

modalities that are most effective for them. 

The theory of Learning through Reflection is primarily based on Donald Schön’s 

work suggesting the importance of reflection activities in the learning process [127]. In 

particular, Learning through Reflection emphasizes the need for students to reflect on 

their learning experience in order to make the learning material more explicit, concrete, 

and memorable. Some common reflection activities include discussions, journaling, or 

dialogue with an instructor [83]. 

While Learning Through Reflection is primarily concerned with what individuals do 

with knowledge once they have received it, the theory of Elaboration [113] is focused on 

how that information is presented to the learner in the first place. In particular, it states 

that, for optimal learning, instruction should be organized in order of complexity, from 
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least complex to most complex. Simplest versions of tasks should be taught first, 

followed by more complicated versions. 

The Lateral Thinking theory [46] is concerned with how students are encouraged to 

think about the information presented. Specifically, Lateral Thinking states that 

knowledge is best learned when students are presented with problems that require them to 

take on different perspectives than they are used to and practice “out of the box” thinking. 

The theory suggests that students be challenged to search for new and unique ways of 

looking at things, and in particular, these views should involve low-probability ideas that 

are unlikely to occur in the normal course of events. It is only through this type of 

relaxed, exploratory thinking that one can obtain a firm grasp on a problem or piece of 

knowledge. 

2.3 Software Engineering Educational Approaches and Learning 

Theories 

Table 1 presents the frequency of each software engineering educational approach 

discussed here, including a breakdown of each approach’s subcategories. Looking at the 

number of approaches that fall into the “Projects Plus Realism” category (53 out of 109 

total) and the “Missing Piece” category (48 out of 109), it is obvious that these are the 

two most popular approaches to addressing the problem of adequately preparing students 

for their future careers in software engineering. Simulation is by far the category of 

approach that is least often used. 

 If we then compare these teaching strategies with the set of learning theories 

discussed previously, the results are shown in Table 2. An ‘X’ in the table indicates that 

there have been approaches within that category that have embodied that theory (either 
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Table 1: Frequency and Breakdown of Each Software Engineering Educational Approach. 
 
Realism 53 Simulation 8 Missing Piece 48 
Industrial Partnerships 16 Industrial 2 Formality 3 

Game-Based 4 - Modify real software 1 - Formal methods 2 
Group Process 2 - Industrial advisor 1 - Engineering 1 

Process (Specific) 21 - Industrial mentor/lecturer 2   
- Case study 5   - Personal Software Process 14 
- Real project / customer 7   - Team Software Process 2 
Maintenance/Evolution 9   - Rational Unified Process 3 
- Multi-semester 4   - Extreme Programming 2 

Process (General) 6 - Single-semester 5   
Team Composition 13   - Process engineering 3 
- Long-term teams 1   - Project management 3 

Parts of Process 3 - Large teams 3   
- Different C.S. classes 1   - Scenario-based requirements  1 
- Different majors 2   - Code reviews 1 
- Different universities 2   - Usability testing 1 

Types of Software Eng. 8 - Different countries 1   
- Team structure 3   - Maintenance/Evolution 3 
Non-Technical Skills 2   - Component-based SE 2 
Open-Endedness 7   - Real-time SE 3 

Non-Technical Skills 7 - Requirements 2   
- Process 5   - Social/logistical skills 3 
Practice-Driven 3   - Interact w/ stakeholders 1 
Sabotage 2   - Human-Computer 

Interaction 
2 

Project Failures 1   - Business aspects 1 

accidentally or deliberately), and a ‘P’ represents that there is an obvious potential for 

that particular type of approach to employ that learning theory (in and of itself, not 

combined with any other approach), but there have been no known cases of it. The 

presence of both an ‘X’ and a ‘P’ indicates that perhaps one or two approaches in the 

category have taken advantage of the theory, but most have not, so there is significant 

potential for further exploitation. (See [99] for a more thorough explanation of this 

categorization). 

The first eight rows of results illustrate the correlation between learning theories and 

advances in the eight subcategories of the “realism” category. It should be clear that, 

although all learning theories are covered, each approach only covers a subset of the 
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Table 2. Learning Theories and Different Software Engineering Educational Approaches. 

 

surveyed learning theories. Approaches of the “missing piece” variety are worse off (and 

therefore grouped together). Because these approaches tend to focus on exposing students 

to a particular technology or topic, little time is spent in framing such exposures in 

learning theories. Exposure itself is typically considered a sufficient advance in and of 

itself. 

What is interesting to this dissertation, however, is the relationship between 

simulation and learning theories: all of the theories considered apply in some way or 

another. While it certainly is not the case that any teaching method that addresses more 

learning theories than another is better than that other method (consider a haphazard 

combination of strategies put together in some teaching method versus one well-thought-

out and tightly-focused method cleverly leveraging one very good strategy), an approach 

that naturally addresses factors and considerations of multiple learning theories is one 

that is most definitely worth exploring. Simulation is such an approach, but one that, as 
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Industrial Partnerships X X X    X/P  X/P P  
Maintenance / Evolution X X     P  P P  
Team Composition X X     P  P X/P P 
Open-Endedness X X X  X X P  P   
Non-Technical Skills X X     P  P P  
Practice-Driven X   X X X X/P P X/P P  
Sabotage X X    X P  P P  
Project Failures X X    X P  P P  
Missing Piece X           
Simulation X X X P X X X/P P X/P X/P X/P
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we have seen, has been significantly under-explored in the field of software process and 

software engineering in general—something that our approach aims to correct. 
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3. Approach 

This dissertation is based on the hypothesis that simulation can bring to software 

engineering education many of the same benefits it has brought to other educational 

domains. Specifically, we believe that software engineering process education can be 

improved by using simulation to allow students to practice managing different kinds of 

“realistic” software engineering processes. As discussed in Chapter 1, software process is 

a key part of software engineering that is not adequately addressed in typical software 

engineering educational approaches. The constraints of the academic environment 

prevent students from having the opportunity to practice many issues surrounding the 

software engineering process. Accordingly, our approach focuses on providing this 

opportunity through the use of a new educational software engineering simulation 

environment, SimSE. 

As simulation environments have become widely recognized as educationally 

beneficial and thus, have become a standard part of many curricula, there is a significant 

body of experience that can be drawn from in developing a new educational simulation 

approach. Rather than focusing on individual projects, we discuss collective lessons 

learned from these projects—lessons that identify some of the critical success factors for 

educational simulations, and thus, have driven the development SimSE:  

• Simulation must be used complementary to existing teaching methods. It is 

important to introduce topics in class lectures first in order to create a basic set 

of knowledge and skills that students use during simulations. Similarly, it is 

important to carry out class projects for the sake of Learning by Doing [117], 

since having hands-on confirmation of at least a few of the lessons learned 
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during simulation make these lessons that much more powerful and 

believable [51].  

• Simulation must provide students with a clear goal. Precisely defined objectives 

not only guide students through a simulation, but also pose a challenge that 

many students find hard to resist. Achieving the goal becomes a priority and 

Discovery Learning [110] is employed as creative thinking is sparked in coming 

to an approach that eventually achieves that goal [93, 112].  

• Simulation must start with simple tasks and gradually move towards more 

difficult ones. In line with the Elaboration learning theory [113], in order for 

simulation to be effective over multiple sessions, students first must become 

familiar with a simulation environment and achieve some early and successful 

results. Otherwise, they quickly become disenchanted and are not likely to 

complete any kind of larger simulation task [51].  

• Simulation must be engaging. In order to retain the attention of students, a 

simulation should provide them with interesting situations to be addressed that 

are adequately challenging (making it likely that they learn through failure at 

times) but not impossible, promoting eventual success that leads to confidence 

in the learning material and satisfaction in the experience. Moreover, it should 

sometimes provide surprising twists and turns, and have a visually interesting 

user interface that grabs the student’s attention [51]. As stated in the Keller’s 

ARCS learning theory [81], combining all of these qualities results in a learning 

experience that is highly motivating for the student. 
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• Simulation must provide useful feedback on a regular basis. One of the common 

mistakes in using simulation for educational purposes is to not provide feedback 

until the end of a simulation. Research has demonstrated that intermediate 

feedback is at least as important in contributing to an effective learning 

experience [6, 51, 96]. 

• Simulation must be accompanied by explanatory tools. Simulation relies heavily 

on independent learning: students draw their own conclusions regarding the 

relationship between their inputs and the resulting outputs. To aid in this 

process, explanatory tools must help illustrate and elucidate the cause and effect 

relationships triggered by student input [32]. 

Adherence to these six guidelines establishes simulation environments and broader 

educational approaches that promote effective learning, enhance a student’s knowledge 

and skills in a fun way [112], and are known to increase the interest, education, and 

retention rate of students [29, 76].  

3.1 Research Questions 

It was these lessons for successful educational simulations that drove and helped shape 

our approach to using simulation in the domain of software engineering education. In 

particular, we applied these lessons to our particular domain (software engineering 

education) to formulate the following research questions, which have guided the 

development of our approach:  

1. Can an educational software engineering simulation environment that is 

rooted in principles for effective educational simulations be built? In other 

words, can we successfully apply these principles to the domain of software 
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engineering education to create a simulation environment that follows these 

principles? Is it possible to create a maximal combination of all of the desired 

qualities, or are there tradeoffs that must be made between them? 

2. Can students actually learn software process concepts from using such an 

environment? As the ultimate goal of such a simulation environment is for 

students to learn certain lessons from it, it is crucial to determine whether this 

goal is achieved. 

3. If students can learn software process concepts from using such an 

environment, how does the environment facilitate the learning of these 

concepts? Answering this question can provide insights into the learning 

process students undergo when using such an environment, which can inform 

future work in educational simulation in software engineering, as well as in 

educational simulation environments in general. Moreover, it can validate 

whether or not the learning theories that simulation environments are thought to 

embody are actually employed by students who use them. 

4. How can such an environment fit into a software engineering curriculum? 

Does it work well as a voluntary, extra-credit, or mandatory exercise? How 

much guidance is needed, both by the game itself and by the instructor, and how 

much should the students be required to figure out by themselves through 

independent learning? 

3.2 Key Decisions 

To answer these research questions, we studied the domain of software engineering 

education to discover what its unique needs are, and combined these with the principles 
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for successful educational simulations. Through this combination we designed a new 

educational simulation approach that relies on the following key decisions, which 

characterize it and set it apart from existing approaches: 

1. Construct our simulation approach as a game. We could have chosen to base 

our simulation approach on the industrial simulation or group process 

simulation paradigms described in Section 2.1.3, but instead we chose the game 

paradigm. As one of the successful educational simulation principles states, 

there is a clear link between the level of engagement of an educational exercise 

and its effectiveness [51]. We deliberately chose to capitalize on this and the 

interest in computer games that is typical of college-age students by giving our 

simulation approach a distinct game-like feel. In designing our simulation 

environment and its simulation models, we made liberal use of graphics, 

interactivity, interesting, life-like challenges, and other game-like elements such 

as humorous employee descriptions and dialogues, and surprising random 

events. Moreover, the game paradigm allows us to naturally follow the principle 

of providing students with a clear goal: a game is, in essence, a set of precisely 

defined objectives that a player is asked to achieve in a game world. 

2. Create our simulation approach with a fully graphical user interface. To 

further adhere to the principle that educational simulations must be engaging, 

we chose to design a fully graphical, rather than textual interface. The focal 

point of this interface is a typical office layout in which the simulated process is 

“taking place”, including cubicles, desks, chairs, computers, and employees 

who “talk” to the player through pop-up speech bubbles over their heads (see 
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Figure 1). In addition, graphical representations of all artifacts, tools, customers, 

and projects along with the status of each of these objects are visible. Besides 

holding the attention of the learner, being able to see simulated software 

engineering situations portrayed graphically also leverages the theory of 

Situated Learning—the learner is provided with a visual context that 

corresponds to the real world situations in which the learned knowledge would 

typically be used [23]. 

3. Make our simulation approach highly interactive. Keeping the interest of the 

learner engaged is not only done by making a user interface visually appealing, 

but also by involving the learner continually throughout the simulation. Thus, 

rather than designing our simulation approach as a continuous simulation that 

simply takes an initial set of inputs and produces some predictive results, we 

have designed it in such a way that the player must make decisions and steer the 

simulation accordingly throughout the entire simulated process. Our simulation 

approach operates on a step-by-step, clock tick basis, and every clock tick the 

player has the opportunity to perform actions that affect the simulation. Not 

only does this continuous interaction with the simulation keep the player 

engaged, but it allows us to follow another educational simulation principle: 

provide useful feedback on a regular basis. Every clock tick, the player has the 

opportunity to receive feedback about their performance through specialized 

feedback mechanisms we have built into our simulation environment. 

4. Create a simulation approach with customizable simulation models. This 

feature was primarily necessitated by the unique needs of the domain of 
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Figure 1: Graphical User Interface of SimSE. 

software engineering education. Multiple software process models exist and are 

regularly taught in software engineering courses. Thus, one of our chief goals in 

the design of our simulation approach was to facilitate the modeling and 

simulation of different software process models. Having a customization feature 

also allows for models of different complexities to be built so that the principle 

of starting with simple simulation tasks and gradually moving towards more 

difficult ones can be followed. This customization was accomplished through 

the inclusion of a model builder tool and associated modeling approach that 

allow an instructor to build simulation models and generate customized games 

based on these models. 
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5. Create a new modeling approach for creating graphical, interactive, game-

based software process models. Developing a game-based simulation 

approach that was also customizable required us to create a new modeling 

approach that was specifically tailored to the needs of our environment. In 

particular, our approach had to support the modeling of game-based, graphical, 

interactive models that are both predictive (i.e., can predict and execute the 

effects of player actions) and prescriptive (i.e., can specify a set of allowable 

next steps that the player can take), a combination that has not been achieved by 

other software process modeling approaches to date.  

6. Design a modeling approach that is deliberately more specific than other 

general-purpose software process modeling approaches for the sake of a 

simpler and more straightforward model building process. A careful 

balance between flexibility and specificity was orchestrated to create a 

modeling approach that adequately meets the needs of our particular domain 

and targeted audience—software engineering instructors. 

7. Root our simulation models in results from the research literature. We 

collected the rules and lessons we have encoded into our simulation models by 

scouring the research literature to discover what is commonly believed and 

taught about software engineering processes. Although most of this does not 

include hard numbers that are able to be directly encoded into a simulation (e.g., 

“integration is 65% faster when there is a design document” versus simply, 

“integration is faster when there is a design document”), we were able to 

incorporate rules such as these into our models by experimenting with different 
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values to come up with ones that are effective enough at conveying each 

particular lesson in the simulation (see Section 4.2). 

8. Construct simulation models that teach by rewarding good software 

engineering practices and penalizing bad ones. Because our simulation 

approach is a game, the goal of the player is to “win” the game by attaining a 

good score. Although it depends to a large degree on the simulation model 

being used, our environment is designed with the intent that players receive a 

good score when they follow proper software engineering practices and a bad 

score when they deviate from them. In this way the player can discover the 

lessons being taught by associating their (high or low) score with the actions 

they took and infer which ones are good practices and which ones are not. In 

addition to the score received at the end of the game, players are also rewarded 

or penalized throughout the game through various forms of intermediate 

feedback. For example, a player who skips requirements and goes straight to 

design will immediately see that design is slow and the design document is full 

of errors, hinting that skipping requirements was not the proper thing to do. 

9. Include an explanatory tool as part of the simulation environment. We have 

directly implemented the principle for successful educational simulations which 

states that simulation must be accompanied by explanatory tools. An integral 

part of SimSE is its novel explanatory tool that provides players with a visual 

representation of how the simulated process progressed over time and 

explanations of the rules underlying the game.  

 34



10. Use and evaluate our simulation approach in a classroom setting. Because 

one of the educational simulation principles states that simulation should be 

used complementary to existing teaching methods, a fundamental part of our 

approach is to use our simulation environment in conjunction with actual 

courses, so that it can be evaluated in the context of its ideal and intended usage. 

3.3 Detailed Approach 

These key decisions translate into the following three-part approach: (1) building a 

graphical, interactive, educational, customizable, game-based simulation environment for 

software processes (SimSE), (2) developing a set of simulation models to be used in 

seeding the environment, (3) evaluating the usage of the environment, both in actual 

software engineering courses, and in formal out-of-class experiments to gain 

understanding of its various educational aspects. 

The first part of our approach is SimSE, an educational software engineering 

simulation environment. SimSE is a single-player game in which the player takes on the 

role of project manager of a team of developers. The player is given a software 

engineering task to complete, which is generally a particular (aspect of a) software 

engineering project. In order to complete this task, they must perform various 

management activities such as hiring and firing, assigning tasks, monitoring progress, 

purchasing tools, and responding to (sometimes random) events, all through a graphical 

user interface that visually portrays all of the employees and the office in which they 

work (see Figure 1). In general, following good software engineering practices will lead 

to positive results while ignoring these practices will lead to failure in completing the 

project. 
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As stated in Section 3.2, one of the fundamental goals of SimSE is to allow 

customization of the software processes it simulates. Thus, its architecture was designed 

to support this customization, as can be seen in Figure 2. An instructor uses the model 

builder tool to create a simulation model that embodies the process and lessons they wish 

to teach their students. The generator component interprets this model and automatically 

generates Java code for a state management component, a rule execution component, a 

simulation engine, an explanatory tool, and the graphical user interface, which comprise 

the simulation environment. A student uses this custom-generated environment to 

practice the situations captured by the model.  
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Figure 2: SimSE Architecture. 
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explanatory tool. This is a tool that the student can run at the end of a game to view a 

trace of events, rules, and attribute values that were recorded during the game.  

To provide a set of models to be used in the simulation environment, as well as to test 

and refine the environment’s model-building capacities, the second part of our approach 

is a set of six simulation models that each portray a different software engineering 

process (or sub-process). Together, these models represent a wide spectrum of different 

software processes that vary in size, scope, and purpose. They comprise a library of 

models that can be either used as-is, or modified to meet the needs of a particular 

situation and/or instructor. 

The third and final part of our approach is a set of evaluations designed to determine 

the educational effectiveness of SimSE from various angles. These include both usage of 

SimSE in conjunction with a software engineering course, and a series of formal 

experiments done in controlled settings. Each evaluation was designed to assess a 

different aspect of our approach so that collectively, the results could be used to make 

conclusions about the overall educational effectiveness of SimSE. 

 

 37



4. Modeling/Simulation Capabilities 

Motivated by our key decision to make SimSE’s simulation models customizable, the 

first step in designing SimSE was determining exactly what kinds of things it should be 

able to model. Therefore, before going into detail on the game play aspects and inner 

workings of SimSE in later chapters, we will first present the modeling and simulation 

capabilities of SimSE. 

As a first step in determining what an educational software engineering simulation 

environment would have to model and simulate, we performed a survey of existing 

software engineering literature, talked to software engineering professionals, perused the 

lecture notes and textbooks for the introductory software engineering classes at UC 

Irvine, and looked at other software engineering simulations to see what kinds of 

phenomena they model. The result of these activities is a compendium of 86 

“fundamental rules of software engineering” (see Appendix A) that have driven the 

design of SimSE’s modeling and simulation capabilities. The following is a 

representative sample of the breadth of lessons that comprise these rules. 

1. In a waterfall model of software development, do requirements, followed by 

design, followed by implementation, followed by integration, followed by 

testing [134].  

2. At the end of each phase in the waterfall model, perform quality assurance 

activities (e.g., reviews, inspections), followed by correction of any discovered 

errors. Otherwise, errors from one artifact will be carried over into 

subsequently developed artifacts [134]. 

3. If you do not create a high quality design, integration will be problematic [134]. 
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4. Developers’ productivity varies greatly depending on their individual skills, and 

matching the tasks to the skills and motivation of the people available increases 

productivity [18, 26, 121]. 

5. The greater the number of developers working on a task simultaneously, the 

faster that task is finished, but more overall effort is required due to the growing 

need for communication among developers [22]. 

6. Software inspections find a high percentage of errors early in the development 

life cycle [141]. 

7. The better a test is prepared, the higher the amount of detected errors [134]. 

8. The use of software engineering tools leads to increased productivity [134]. 

9. The average assimilation delay, the period of time it takes for a new employee 

to become fully productive, is 80 days [2]. 

10. In the absence of schedule pressure, a full-time employee allocates, on average, 

60% of his working hours to the project (the rest is slack time: reading mail, 

personal activities, non-project related company business, etc.) [2]. 

The compendium as a whole covers a broad variety of rules—rules that agree with each 

other, rules that conflict with each other, rules that are precise, rules that are imprecise, 

rules that cover issues specific to software engineering, and rules that apply to a wide 

range of business processes. While this is certainly not a comprehensive set of all 

existing software engineering rules and processes, together they form a representative set 

that can be selected from as necessary to form different software process simulation 

models.  
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Our next step in designing a modeling approach was choosing several of these rules 

to incorporate into a preliminary prototype version of SimSE. These rules were selected 

based on a desire to cover several of the different dimensions present in the compendium, 

as well as the need to form a cohesive model of a software engineering process. The 

resulting version of SimSE was highly simplified compared to the current version in two 

major ways: First, it was non-graphical, using only tables, text boxes, and drop-down lists 

to portray the process to the player (see Figure 3). Second, it was non-customizable. The 

set of rules that we incorporated into this version were hard-coded and could not be 

modified except through changing the source code of the simulation. Moreover, the 

number of rules included in this version was smaller than many of our current models—

enough to demonstrate the feasibility of the approach but not so many as to require a 

large amount of unnecessary effort in programming this preliminary prototype. Basically, 

this model was a simplified version of our current waterfall model (see Section 7.1), 

including only its core set of rules and simplified versions of its objects and actions. 

After completing development of this non-graphical prototype, we then informally 

tested it out by observing a group of graduate students playing it. From this we gathered 

useful feedback that gave us good ideas to incorporate into the current version of SimSE 

(and also gave us confidence that this prototype was playable).  

After determining that building an educational software engineering simulation based 

on the types of rules we collected was feasible, we proceeded to abstract away from the 

hard-coded model the generic constructs that would be needed to model this and other 

software processes—constructs that would allow a user to choose and build different sets 

of rules into different models. These constructs are described in detail in the following. 
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Figure 3: SimSE Non-graphical Preliminary Prototype User Interface. 

4.1 Modeling Constructs 

A SimSE model consists of five parts. Object types define templates for all objects that 

participate in the simulation. The start state of a model is the collection of objects present 

at the beginning of the simulation. Each object in the start state instantiates an object 

type. Start state objects participate in actions, which are the activities represented in the 

simulated process. Each action has one or more rules that define the effects that action 

has on the rest of the simulation. Each object in the simulation is represented by graphics, 

which also provide visualizations of the relevant actions occurring in the simulation. 

Figure 4 illustrates the relationships between the different parts of a model. The following 

subsections discuss each of these parts of the overall modeling approach in further detail. 
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Figure 4: Relationships Between Modeling Constructs. 

4.1.1 Object Types 

The core of a SimSE model is the set of object types to be used in the model. Each major 

entity participating in the simulation is an instantiation of an object type. Every object 

type defined must descend from one of five meta-types: Employee, Artifact, Tool, 

Project, or Customer. Each of these meta-types has very limited semantics in and of 

itself, except for where objects of each type are displayed in the GUI of the simulation, 

and how the player can interact with each type of object. Specifically, only objects 

descending from Employee will display overhead pop-up messages during the game and 

have right-click menus associated with them so the player can command their activities.  

An object type consists of a name and a set of typed attributes. For each attribute, in 

addition to the name and type (String, Double, Integer, or Boolean), the following 

metadata must be specified:  
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• Meta-type: whether this object type is an Employee, Artifact, Tool, Project, or 

Customer.  

• Key: a Boolean value indicating whether or not this attribute is the key attribute 

for the object type. 

• Visible: a Boolean value denoting whether this attribute should be visible to the 

player throughout the game. 

• VisibleAtEnd: a Boolean value indicating whether or not this attribute should be 

visible at the end of the game. An attribute that was hidden throughout the game 

but revealed at the end can give further insight to the player about why they 

received their particular score. 

• MinVal: the minimum value for this attribute (for Double and Integer attributes 

only). 

• MaxVal: the maximum value for this attribute (also for Double and Integer 

attributes only). 

• MinDigits: the minimum number of digits after the decimal point to display for 

this attribute’s value (for Double attributes only). 

• MaxDigits: the maximum number of digits to display (also for Double attributes 

only).  

Three sample object types, a “Programmer” of type Employee, a “Code” of type 

Artifact, and an “SEProject” of type Project are shown in Figure 5. If we take a closer 

look at one of these, the Code object type, we can see how this metadata is used in 

practice. A Code artifact has a name, which is its key value, to distinguish it from other 

Code objects. It also has two types of error attributes: unknown errors 
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Programmer Employee  Code Artifact  SEProject Project 
{    {    { 
  name:      name:     description: 
    type: String      type: String      type: String 
    key: true      key: true      key: true 
    visible: true      visible: true      visible: true 
    visibleAtEnd: true     visibleAtEnd: true     visibleAtEnd: true 
  energy:     numUnknownErrors:   requiredSizeOfCode: 
    type: Double      type: Double      type: Double 
    key: false      key: false      key: false 
    visible: true      visible: false     visible: true 
    visibleAtEnd: true     visibleAtEnd: true     visibleAtEnd: true 
    minVal: 0.0      minVal: 0.0      minVal: 0.0 
    maxVal: 1.0      maxVal: boundless     maxVal: boundless 
    minDigits: 1      minDigits: 0      minDigits: 0 
    maxDigits: 2      maxDigits: 0      maxDigits: 0 
  productivity:    numKnownErrors:    budget: 
    type: Double      type: Double      type: Double 
    key: false      key: false      key: false 
    visible: true      visible: true      visible: true 
    visibleAtEnd: true     visibleAtEnd: true     visibleAtEnd: true 
    minVal: 0.0      minVal: 0.0      minVal: 0.0 
    maxVal: 1.0      maxVal: boundless     maxVal: boundless 
    minDigits: 1      minDigits: 0      minDigits: 0 
    maxDigits: 2      maxDigits: 0      maxDigits: 2 
  errorRate:    size:     allottedTime: 
    type: Double      type: Double      type: Integer 
    key: false      key: false      key: false 
    visible: true      visible: true      visible: true 
    visibleAtEnd: true     visibleAtEnd: true     visibleAtEnd: true 
    minVal: 0.0      minVal: 0.0      minVal: 0.0 
    maxVal: 1.0      maxVal: boundless     maxVal: boundless 
    minDigits: 1      minDigits: 1    score: 
    maxDigits: 2      maxDigits: 1      type: Integer 
  hired:     percentComplete:     key: false 
    type: Boolean      type: Double      visible: false 
    key: false      key: false      visibleAtEnd: true 
    visible: true      visible: true      minVal: 0 
    visibleAtEnd: true     visibleAtEnd: true     maxVal: 100 
  payRate:       minVal: 0.0    } 
    type: Double      maxVal: 100.0    
    key: false      minDigits: 1 
    visible: true      maxDigits: 1 
    visibleAtEnd: true   }   
    minVal: 0.0 
    maxVal: boundless 
    minDigits: 2 
    maxDigits: 2  
}    
 

Figure 5: Programmer, Code, and Project Object Types. 
 
(“numUnknownErrors”), which are those that the developers have not discovered, and 

known errors (“numKnownErrors”), which are those that the developers have discovered. 
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The known errors are visible during the game, while the unknown errors are hidden 

during the game, since this is a value that would not be known in a real life software 

engineering situation. However, to give the player some insight into where they might 

have gone wrong in the process, the unknown errors are revealed at the end of the game 

(visibleAtEnd is equal to true). Both the unknown errors and the known errors are stored 

as Doubles but displayed to the player as Integers, as both have a maxDigits value of 0 

(meaning no digits after the decimal place are shown). This is done so that errors can be 

added, “discovered”, and removed fractionally behind the scenes, but appear to the player 

as if these values are changing as they would in a real-life situation, by whole numbers. 

For example, if developers are inspecting a Code artifact, their productivities might 

dictate that they only discover ¼ of an error per clock tick. Thus, one whole error would 

be discovered after four clock ticks, at which point the player would see the number of 

known errors increase by one (hidden digits are truncated and resulting digits are not 

rounded off). 

In addition to these attributes, the Code artifact in Figure 5 also has a size attribute 

and a percent complete attribute, which are both visible to the player throughout the 

simulation. The percent complete attribute has a minimum value of 0 and a maximum 

value of 100 to enforce the standard percentage values of 0 to 100. 

It should be noted that the format of this example and the examples throughout this 

chapter are shown in a “shorthand” version of the actual SimSE modeling language 

format, which is XML-like and difficult to read. However, since this language is 

completely hidden from the user by our model building tool, we have accordingly 
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omitted it from this dissertation. (See Chapter 5 for a presentation of the model builder 

tool.) 

4.1.2 Start State 

The start state refers to the set of objects that are present when the simulation begins. 

Each one of these objects must be an instantiation of one of the object types defined for 

the model, and starting values for all attributes must be assigned—no default values are 

automatically given. Figure 6 shows sample instantiated objects for the “Programmer”, 

“Code”, and “SEProject” object types from Figure 5. The first object is a high-energy 

(0.9 out of 1.0) Programmer Employee named Roger, with moderate productivity (0.6 out 

of 1.0) and a relatively low error rate (0.3 out of 1.0), who makes $100 per clock tick and 

is currently hired. The second object is a Code Artifact named “My Code” that seems to 

have already been developed some. It has 18 unknown errors, 7 known errors, a size of 

25,600, and a completeness level of 10%. The final object is an “SEProject” Project 

described as “Rocket Launcher Software”, with a required code size of 256,000 (hence 

the 10% completeness of the code with a size of 25,600), a budget of $2,500,000, no 

money spent, an allotted time of 692, no time used, and score (which represents the 

current score for the player of the game) of 0. 

4.1.3 Actions 

The actions in a SimSE model represent the set of activities in which the objects in the 

simulation can participate. For example, to model a situation in which programmers are 

building a piece of code using an integrated development environment (IDE), one would 

create a “Coding” action, in which the participants include a “Code” Artifact, one or 

 46



Object Code Artifact  Object Project 
SEProject 

Object Programmer 
Employee { 

  name = “My Code” { { 
  numUnknownErrors =   description =   name = “Roger” 
    18     “Rocket Launcher   energy = 0.9 
  numKnownErrors = 7     Software”   productivity = 
  size = 25600.0 requiredSizeOfCode =     0.6 
  percentComplete =   256000   error rate = 0.3 
    10.0 budget = 2500000.00   hired = true 
} moneySpent = 0.00   payRate = 100.00 

} allottedTime = 692 
timeUsed = 0 
score = 0 

} 

Figure 6: Instantiated Programmer, Code, and SEProject Objects. 

more “Programmer” Employees and one or more “IDE” Tools. As another example, an 

Employee of any type could participate in a “Break” action, referring to the activity of 

taking a break, during which he or she rests and does not work. These two examples are 

shown in Figures 7 and 8, respectively, and will be referred to throughout the remainder 

of this subsection. 

For each action, the following information is specified: 

• Name: name of the action (e.g., “Coding” or “Break”). 

• VisibleInSimulation: whether or not the player should be able to see that the 

action is occurring during the simulation (in the “Current Activities” pane on 

the right-hand side of the user interface), and, if true, a short textual description 

of that action to display in the game’s user interface. This value is true for both 

the “Coding” and “Break” actions, as these are actions that, in a real-life 

situation, situation, would be visible to a project manager. An example of an 

action that would typically not be visible would be an 

“UpdateProjectAttributes” action that occurs every clock tick and simply 

updates the time used and money spent. Obviously seeing that this sort of action 
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Action Coding     Destroyer autoDestroyer 
{       { 
  VisibileInSimulation: true     type: Autonomous 
  SimulationDescription: “Creating code”   overheadText: “I’m finished 
  VisibleInExplanatoryTool: true      coding!”    
  ExplanatoryDescription: “Software   game-ending: false 
    engineers create a piece of code.”  priority: 10  
  conditions 
  Participant Coder  { 
  {    percentComplete == 100 
    quantity: at least 1    } 
    allowableTypes: Programmer, Tester } 
  }   
 Destroyer userDestroyer 
  Participant CodeDoc                     {  
  {  type: User-initiated  
    quantity: exactly 1  menuText: “Stop coding” 
    allowableTypes: Code     overheadText: “I’ve 
  }   stopped coding.” 
  game-ending: false 
  Participant IDE  priority: 11 
  {  conditions {} 
    quantity: at most 1 } 
    allowableTypes: Eclipse, JPad } 
  } 
 
  Trigger userTrigger 
  { 
    type: User-initiated 
    menuText: “Start coding” 
    overheadText: “I’m coding now!” 
    game-ending: false 
    priority: 8 
    conditions 
    { 
      Coder: 
        Programmer: 
          hired == true 
        Tester: 
          hired == true 
          health >= 0.7 
 
      IDE: 
        Eclipse: 
          purchased == true   
        JPad: 
          purchased == true 
    } 
} 

Figure 7: Sample “Coding” Action with Associated Triggers and Destroyers. 

is taking place would take away from the realism of the environment and would 

not be of any use to the player so it would be best to keep it invisible. 
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Action Break     Destroyer autoDestroyer 
{ { 
  VisibileInSimulation: true type: Autonomous 
  SimulationDescription: “On a Break” overheadText: “I’m going 
  VisibleInExplanatoryTool: true   back to work now!” 
  ExplanatoryDescription: “The employee game-ending: false 
    rests and does no work in order to priority: 1 
    regain his/her energy.” conditions 
 { 
  Participant Breaker Coder: 
  { Programmer: 
    quantity: exactly 1 energy == 1.0 
    allowableTypes: Programmer, Tester Tester: 
  } energy == 1.0 
 } 
  Trigger autoTrigger } 
  { } 
    type: Autonomous 
    overheadText: “I’m taking a break now!” 
    game-ending: false 
    priority: 2 
    conditions 
    { 
      Coder: 
        Programmer: 
          hired == true 
   energy <= 0.2 
        Tester: 
          hired == true 
   energy <= 0.2 
     } 
} 

  Figure 8: Sample “Break” Action with Associated Trigger and Destroyer. 

• VisiblelnExplanatoryTool: whether or not the player should be able to see 

occurrences of the action when running the explanatory tool, and, if true, a more 

detailed description of that action to display in the explanatory tool user 

interface. Both the “Coding” and “Break” actions are denoted as visible in the 

explanatory tool since it would be useful for the player to view these actions in 

the context of the explanatory tool. At first glance it may seem that any action 

that is visible in the simulation should be visible in the explanatory tool and 

vice-versa. However, there are some cases where it is useful to make an action 

invisible in the simulation and visible in the explanatory tool, typically when it 
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is an action that would not necessarily be visible to a project manager in real-

life, but is appropriate for the player to see for educational reasons. An example 

of this is an action named “DoubleProductivity” in our code inspection model 

(see Section 7.6). This action is triggered autonomously whenever the ideal 

number of people (four) are participating in a code inspection [145], and has the 

effect of doubling the productivity of the inspection, causing bugs to be found 

twice as fast. So as not to give too much away during game play and maintain 

the realism of the simulation, this action is hidden during the simulation but 

revealed in the explanatory tool. 

• Participant(s): roles in the action that can be filled by one or more objects of 

one or more possible object types. In the “Coding” action there are three 

participants: (1) “Coder” (the person(s) working on the code), which can be 

filled by one or more Programmer and/or Tester Employees; (2) “CodeDoc” 

(the code artifact being worked on), which must be filled by exactly one Code 

Artifact; and (3) “IDE” (the integrated development environment being used for 

coding), which can be filled by at most one Eclipse or JPad tool. The “Break” 

action consists of only one participant: the “Breaker”, exactly one employee of 

type Programmer or Tester that is taking the break. 

• Trigger(s): what causes the action to begin to occur in the simulation. Three 

distinct classes of triggers exist: autonomous, user-initiated, and random. 

Autonomous triggers specify a set of conditions (based on the attributes of the 

participants in the action) that cause the action to automatically begin, with no 

user intervention. For instance, in the “Break” action, the employee 
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automatically takes a break when his or her energy level drops to 0.2 or below. 

User-initiated triggers also specify a set of conditions, but include a menu item 

text string, which will appear on the right-click menu for an Employee when 

these conditions are met. This menu item corresponds to this action, and when 

the menu item is selected, the action begins. For example, in the “Coding” 

action, a menu item with the text “Start coding” will appear on the menus of all 

“Programmer” and “Tester” Employees who meet the specified conditions 

(hired and, for testers, health level greater than or equal to 0.7). When this menu 

item is selected by the player, the action will begin. Random triggers provide 

the opportunity to introduce some chance into the model, specifying both a set 

of conditions and a frequency that indicates the likelihood of the action 

occurring whenever the specified conditions are met. For instance, a “Quit” 

action might have a 75% chance of occurring every clock tick that an 

Employee’s energy level is below 0.1, meaning that employees are likely to quit 

when they have been worked too hard, but may not always do so. As another 

example, a random trigger with a very small frequency (e.g., 0.5%) might be 

attached to an action that causes a rare disastrous event to occur, such as a 

catastrophic system failure that results in a significant portion of the project 

being lost. Finally, for every trigger that has one or more Employee participants, 

the modeler can specify overhead text that will appear to come from the 

employees participating in the action when the trigger executes. For the 

“Coding” action this text is “I’m coding now!” and for the “Break” action the 

employee will announce, “I’m taking a break now!” 
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• Destroyer(s): An action destroyer works in a manner similar to an action trigger, 

but has the opposite effect: whereas a trigger starts an action, a destroyer stops 

an action. Destroyers can be of the same types as triggers (autonomous, random, 

or user-initiated), but have one additional type: timed. A timed destroyer 

specifies a “time to live” value for an action—once an action starts, it exists for 

a number of simulation clock ticks equal to this value, and is then automatically 

destroyed. The “Coding” action has associated with it two destroyers: an 

autonomous one that will cause the action to stop when the code is 100% 

complete, and a user-initiated one that allows the player to make the action 

cease at any time they wish, by choosing the “Stop coding” menu option. These 

destroyers have different overhead text associated with them to distinguish the 

different scenarios—“I’m finished coding!” indicates that the code is complete 

and “I’ve stopped coding” indicates that they have simply stopped the activity 

but have not necessarily completed the task. The “Break” action has only one 

destroyer—an autonomous one that causes the break to end when the 

employee’s energy level is back up to its maximum value (1.0), at which point 

the employee will announce, “I’m going back to work now!” 

Triggers and destroyers have two additional pieces of information associated with 

them: priority and game-ending. The priorities of triggers and destroyers determine the 

order in which each trigger/destroyer will be checked, and, if all conditions are met, 

executed. All triggers in a model are prioritized in relation to all other triggers, and are 

checked in ascending order of priorities, e.g., one is the highest priority. Analogously, all 

destroyers are prioritized in relation to all other destroyers, and are also checked in 
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ascending order. So that the order of execution is always deterministic, no two triggers or 

destroyers can have the same priority. It is not required that triggers and destroyers be 

prioritized—non-prioritized triggers/destroyers will execute in an undetermined order, 

after all of the prioritized triggers/destroyers have executed in their specified ordering.  

In the “Coding” action, the autonomous destroyer (“autoDestroyer”) has priority 10, 

while the user-initiated destroyer (“userDestroyer”) has priority 11, indicating that when 

a “Coding” action is occurring, the conditions for the autonomous destroyer will be 

checked first. This sequence is specified so that if the code is 100% complete, the action 

will cease (as a result of the autonomous destroyer) before the user-initiated destroyer is 

checked and the “Stop coding” choice is put on an Employee’s menu. The “Break” 

trigger has priority 1 so that if an employee is tired, they will go on a break before they 

can get involved in any other task (by being triggered into another action). 

Any trigger or destroyer can also be designated as game-ending, meaning that when 

that trigger or destroyer occurs, the game will be over. A game-ending trigger or 

destroyer must have exactly one of its participant’s attributes specified as the score 

attribute, indicating that the value of that attribute at the time that trigger or destroyer is 

executed will be given as the player’s score. A typical game-ending trigger might be 

attached to a user-initiated “DeliverProductToCustomer” action in which the score is 

designated as the “score” attribute of an “SEProject” participant. 

4.1.4 Rules 

Each action can have attached to it one or more rules that define the effects of that 

action—how the simulation is affected when the action is active. Three example rules 
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attached to the “Coding” action are shown in Figure 9 and will be referred to in the 

remainder of this subsection. 

We distinguish three types of rules in a SimSE model: create objects rules, destroy 

objects rules, and effect rules. As its name indicates, a create objects rule causes new 

objects to be created in the game. For example, the “Coding” action has associated with it 

a create objects rule that creates a new “Code” Artifact object with its size and number of 

errors equal to zero. This indicates that a new piece of code comes into existence as a 

result of programmers participating in a “Coding” action. 

In contrast to a create objects rule, the firing of a destroy objects rule results in the 

destruction of existing objects. For instance, a “Fire” action might have associated with it 

a destroy objects rule that removes an Employee from the game, indicating that they have 

been fired. 

An effect rule is the most powerful and expressive type of rule in SimSE. Rules of 

this type specify the complex effects of an action on its participants’ states, including the 

values of their attributes and their participation in other actions. For instance, the first 

effect rule attached to the “Coding” action decreases the energy and productivity levels of 

the coders as they work, and adjusts their error rates based on their current energy levels. 

The second effect rule in this action: (a) causes the size of the code to increase by the 

additive productivity levels of all of the programmers currently working on it; (b) causes 

the number of unknown errors in the code to increase based on the error rates of the 

currently active coders; and (c) updates the completeness level of the code. As another 

example, shown in Figure 10, a “Break” action has one effect rule attached to it that 

deactivates the employee from all other actions in which he or she is currently 
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Rules  
{ 
  Action: Coding // action that these rules are attached to 
  CreateObjectsRule 
  { 
    timing: trigger 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “A new piece of code is created.” 
    priority: 1 
    createdObjects 
    { 
      Object Code Artifact  
      { 
        name =“My Code” 
        numUnknownErrors = 0 
        numKnownErrors = 0 
        size = 0.0 
        percentComplete = 0.0 
      } 
    } 
  } 
 
  EffectRule 
  { 
    timing: continuous 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “Each employee’s energy is decreased as 
      they expend energy working. As a result, their productivity 
      accordingly decreases and their error rate increases.” 
    priority: 13 
    Coder: 
      Programmer/Tester: 
        energy = this.energy – 0.05 
        productivity = this.productivity – 0.0375 
        errorRate = (1 - this.energy) * 0.4 
  } 
 
  EffectRule 
  { 
    timing: continuous 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “The size of the code is incremented by 
      the employees’ productivities in coding, and the number of 
      unknown errors is incremented by their error rates in coding.” 
    priority: 14 
    CodeDoc: 
      Code: 
        size = this.size + allActiveProgrammerCoders.productivity 
        numUnknownErrors = this.numUnknownErrors + 
          allActiveProgrammerCoders.errorRate 
        percentComplete = (this.size / 
          allSEProjectProjects.targetCodeSize) * 100 
  } 
} 

Figure 9: Example Create Objects Rule and Example Effect Rules for the “Coding” Action.
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Rules  
{ 
  Action: Break // action that these rules are attached to 
 
  EffectRule 
  { 
    timing: trigger 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “As the employee goes on a break, 

they are deactivated from all of their other actions.” 
    priority: 1 
    Breaker: 
      Programmer/Tester: 
        effectOnOtherActions: deactivate All 
  } 
 
  EffectRule 
  { 
    timing: continuous 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “The energy of the employee is 

increased as they enjoy their break.” 
    priority: 3 
    Breaker: 
      Programmer/Tester: 
        energy = this.energy + 0.1 
  } 
 
  EffectRule 
  { 
    timing: destroyer 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “As the employee returns to work from 

their break, they are reactivated into all of their previous 
actions.” 

    priority: 1 
    Breaker: 
      Programmer/Tester: 
        effectOnOtherActions: activate All 
  } 
} 

Figure 10: Example Effect Rules for the “Break” Action. 

participating for the duration of the “Break” action, one that increases the energy of an 

employee while they are on a break, and one that reactivates them into all of their other 

actions when the break is over. 

In specifying an effect rule, the modeler can use a number of different constructs as 

parameters in an effect’s expression. These include participant attribute values, the 
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number of participants in an action, the number of other actions in which a participant is 

involved, the time elapsed in the simulation, random values, numbers, user inputs, and 

mathematical operators. 

In addition to a rule’s general type (create objects, destroy objects, or effect), each 

rule is also assigned a timing type, indicating when and how often that rule will be 

executed. There are three possible timing types: trigger, destroyer, or continuous. A 

trigger rule will execute only once, at the time the action is triggered, while a destroyer 

rule will also execute only once, but at the time the action is destroyed. A continuous 

rule, on the other hand, will fire every clock tick that the action is active. Only effect rules 

can be continuous, since there is no need to create the same object multiple times (using a 

create objects rule), or destroy the same object multiple times (using a destroy objects 

rule). Table 3 summarizes these various combinations. In the “Coding” rules shown in 

Figure 9, the new Code Artifact is created once, at the time the action is triggered, since 

the create objects rule is assigned a trigger timing. Because the effect rules in this action 

are assigned continuous timings, however, their expressions are evaluated every clock 

tick that the action is active, and the “Coder” and “CodeDoc” attributes are updated 

accordingly. In the “Break” action’s rules shown in Figure 10, each of the different rule 

timings is represented: a trigger rule deactivates the employee from all of their other 

actions when their break starts, a continuous rule increases their energy level each clock 

tick during the break, and a destroyer rule reactivates them into all of their previous 

actions when the break ends. 

Like action triggers and destroyers, each rule may also be assigned a priority in order 

to specify the order in which it should be executed in relation to other rules. The 
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Table 3: Timing of Execution of Each Different Type of Rule. 
Rule Type  

Create Objects Destroy Objects Effect 
Trigger Once, at trigger time Once, at trigger time Once, at trigger time 

mechanism of prioritization varies depending on the timing of the rule. A trigger rule is 

prioritized in relation to the other trigger rules attached to the same action. A destroyer 

rule is prioritized in relation to the other destroyer rules attached to the same action. A 

continuous rule is prioritized in relation to all other continuous rules in the simulation. 

Like triggers and destroyers, all rules in a prioritization must have unique priorities to 

ensure a predictable ordering. Also like triggers and destroyers, the prioritization of a rule 

is optional. All prioritized rules will execute first (in their specified ordering), after which 

the non-prioritized rules will execute in an undetermined order. 

For example, the first continuous effect rule attached to the “Coding” action (the one 

that decreases employee energy and productivity) has a priority of 13 while the second 

one (the one that updates the progress on the code based on the employees’ productivity) 

has a priority of 14. This means that the employees’ productivities will be correctly 

updated before these productivity values are used to calculate the current progress on the 

code. 

Finally, for each rule it must also be specified whether or not the rule should be 

visible in the explanatory tool—whether the user should be able to see that this rule was 

executed during the game. If this value is true, a textual description of the rule must also 

be given, to be displayed in the user interface of the explanatory tool. 

Destroyer Once, at destroyer 
time 

Once, at destroyer 
time 

Once, at destroyer 
time 

R
ul

e 
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Continuous   
N/A N/A 

Once every clock 
tick that the action is 

active 
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4.1.5 Graphics 

Because the user interface of SimSE is fully graphical, graphics are an integral part of our 

modeling approach, and are woven throughout the different parts of a model. For 

instance, as mentioned previously, each action trigger and destroyer can have associated 

with it a string of text to appear in pop-up bubbles over the heads of that action’s 

employee participants when the action either begins (trigger) or ends (destroyer). 

Additionally, effect rules can have specified with them rule inputs that cause a dialog to 

appear during the simulation, prompting the user for input. Figure 11 shows an effect rule 

for a “GiveBonus” action that takes a rule input. As can be seen from the figure, each rule 

input has associated with it the following metadata: 

• Name: A name for the input (“BonusAmount”). 

• Type: Whether the input is a String, a Boolean, an Integer, or a Double. The 

“BonusAmount” input for the “GiveBonus” action is a Double, since it 

represents a monetary quantity. 

• Condition: If the type is either Integer or Double, this field can specify a 

condition on the input. For the “BonusAmount” input, the condition is that it 

must be greater than 0.0, since logically, an amount of money cannot be 0 or 

negative. 

• Prompt: The text that will appear when the player is prompted to enter the 

input. For instance, the player who is giving the bonus to their employee will be 

prompted with the text, “Please enter bonus amount”. 

A rule input can be used as a parameter in any of that effect rule’s expressions. In the 

“GiveBonus” action, the “BonusAmount” input is used to recalculate the employee’s 
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Rules  
{ 
  Action: GiveBonus // action that this rule is attached to 
 
  EffectRule 
  { 
    timing: trigger 
    visibleInExplanatoryTool: true 
    explanatoryToolDescription: “The employee's energy is increased 

by an amount that is proportional to the amount of the bonus 
compared to the employee's pay rate (larger bonus -> larger 
energy increase). 

    Recipient: 
      Programmer/Tester: 
        energy = this.energy + (input-BonusAmount / this.payRate) 
 
    ProjectWithBudget: 
      SEProject: 
        moneySpent = this.moneySpent + input-BonusAmount 
 
    Rule Input: 
      Name: “BonusAmount” 
      Type: Double 
      Condition: > 0.0 
      Prompt: “Please enter bonus amount” 
  } 
} 

Figure 11: Example Effect Rule for the “GiveBonus” Action. 

energy, increasing it by an amount dependent on the magnitude of the bonus in relation to 

the employee’s pay rate. For example, a bonus amount that is 10% of the employee’s pay 

rate will increase the employee’s energy by 10% of their maximum energy (0.1). In this 

same rule, the “BonusAmount” input is also used to add the amount of the bonus to the 

project’s “moneySpent” value. 

In addition to these graphical aspects woven throughout the model, there are two 

distinct parts of a model that are purely graphical. The first part is the assignment of 

specific images to each object in the start state, shown in Figure 12. Each model must 

have associated with it one directory that contains all of the icons that are to be used for 

representing objects in the simulation (denoted by the “iconDirectoryPath” field in Figure 

12). Each object in the start state, as well as each object created by a create objects rule, 
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must be assigned an image file contained in this directory. In addition, each Employee 

object must also be assigned an x, y location in the map of the simulated office in which 

the process takes place. For example, in Figure 12, the Programmer Employee named 

Roger will be represented by the image contained in the file “roger.gif” and will appear in 

tile 0, 5 in the office; the Code Artifact named “My Code” will be represented by the 

image named “code.gif”; and the SEProject Project with the description “Rocket 

Launcher Software” will be represented by the image “project.gif.” 

The second distinctly graphical part of a SimSE model is the map, which defines the 

layout of the simulated office that makes up the main portion of the user interface. In 

particular, the map specifies locations for all of the surroundings of the employees such 

as desks, walls, computers, and chairs. The images for all of these surroundings are 

predefined by SimSE, while, as already mentioned, the images for simulation objects are 

defined by the modeler (although a download of SimSE includes a set of icons that can be 

used for this purpose).  

The map is a 16 x 10 grid of tiles, a size that was chosen based on its fit into the rest 

of the SimSE graphical user interface. We considered making the map larger, or else 

customizable per model, but in the models we have built thus far, a larger map has not 

been needed. Moreover, making the map larger than 16 x 10 would require that the map 

be either scrollable (which might make user interaction more awkward) or the tiles be 

made smaller (which might make the images harder to see). Still, in future work we plan 

to experiment with making the map size customizable per model to see if this adds any 

benefit to SimSE (see Chapter 12). 
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Images 
{ 
  iconDirectoryPath = “C:\SimSE\Models\SampleModel\Icons” 
 
  Object Programmer Employee 
  { 
    keyAttributeValue: “Roger” 
    imageFilename: “roger.gif” 
    x-Position: 0 
    y-Position: 5 
  } 
 
  Object Code Artifact 
  { 
    keyAttributeValue: “My Code” 
    imageFilename: “code.gif” 
  } 
 
  Object SEProject Project 
  { 
    keyAttributeValue: “Rocket Launcher Software” 
    imageFilename: “project.gif” 
  } 
} 

Figure 12: Sample Image Assignments to Objects in SimSE. 

For each tile in the map, two pieces of data may be specified: a base image and a 

fringe image. The base image is what appears as the bottom-most image in the tile and 

the fringe is what appears directly above the base image. (If a tile is designated as the 

location for an employee, that employee’s image will appear above the fringe, in the 

object layer.) SimSE designates some of its predefined office surrounding images as base 

images (walls, doors, tables, and floor tiles) and some as fringe images (computers, 

chairs, trash cans, and papers).  

Figure 13 shows a portion of a sample map definition, for tiles 0, 0 through 0, 5. In 

this example, the first tile will display a floor tile, the second tile will display the left 

portion of a table with a computer sitting on top of it, the third tile will display the right 

portion of a table with papers on top of it, the fourth tile will display an empty trash can 

on the floor, the fifth tile will display only a floor tile, and the sixth tile will display a 
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Map 
{ 
  0,0:  
    base: FLOOR 
    fringe: // none 
  0, 1: 
    base: TABLE_TOP_LEFT 
    fringe: COMPUTER 
  0, 2: 
    base: TABLE_TOP_RIGHT 
    fringe: PAPERS 
  0, 3: 
    base: FLOOR 
    fringe: TRASH_CAN_EMPTY 
  0, 4: 
    base: FLOOR 
    fringe: // none 
  0, 5: 
    base: FLOOR 
    fringe: CHAIR 
     
  // etc… 
} 

Figure 13: Sample Map Definition in SimSE. 

chair on the floor. Per the example shown in Figure 12, the Programmer Employee 

“Roger” will also appear in this tile, on top of the chair. 

4.1.6 Modeling Sequence 

The order in which the constructs of a model must be defined is partially variable and 

partially constrained. Object types are the core of the model and therefore must be 

defined first, before any other construct can be created (except the map). This is not to 

say that all object types must be defined before moving on to define any other 

constructs—it is fully expected that models are developed iteratively. A few object types 

are generally created first, followed by the start state objects, actions, rules, and graphics 

that involve those object types. This sequence is then repeated as model development 

progresses. 
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Similarly, because rules are attached to actions, an action must be defined before the 

rule(s) attached to that action are defined. A start state object must, of course, also be 

created before the graphical counterpart of the object (the image representing the object 

and, if it is an employee, its location in the map) is assigned. Figure 14 summarizes the 

dependencies between modeling constructs in terms of order of development. 

Figure 14: Dependencies of Modeling Construct Development. 
 

4.1.7 Summary of Modeling Constructs 

To summarize our presentation of SimSE’s modeling language constructs, a UML-like 

diagram representing the language is shown in Figure 15. Modeling constructs are 

denoted as rectangles, with the name of the construct in bold in the top part of the 

rectangle and its attributes listed below. Attributes that are either optional or only present 

for certain types of that particular construct (e.g., minVal is only present for Integer or 

Double object types) are shown in parentheses. Relationships between two constructs are 

indicated by an arrow drawn between them, and each arrow is labeled with the type of 

relationship it represents. The cardinality of a relationship is specified at each end of the 

corresponding arrow (with the exception of the “type of” relationship, which has no 
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Figure 15: A UML-like Representation of SimSE’s Modeling Language. 

cardinality). As an example, let us consider the object type and start state object 

constructs and their relationships, shown in the top part of the diagram. An object type 
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has the mandatory attributes Name, Meta-type, Key, Visible, and VisibleAtEnd, and the 

optional attributes MinVal, MaxVal, MinDigits, and MaxDigits. Each object type also has 

one or more attributes. Zero or more start state objects can instantiate each object type. 

Each start state object has one or more instantiated attributes, each of which have one 

attribute, Value. One or more instantiated attributes can instantiate one attribute. One or 

more start state objects can participate in an action, etc. etc. 

4.2 Sample Implementation 

In order to more thoroughly demonstrate the modeling constructs of SimSE, we now 

present a few implemented SimSE rules from some of our completed simulation models. 

These rules represent some of the “fundamental rules of software engineering” discussed 

at the beginning of this chapter and listed in Appendix A. The first rule is a continuous 

effect rule attached to the “CreateDesign” action that modifies the “size” attribute of the 

design document artifact being created: 

1  DesignDoc: 
2   Design: 
3    size = this.size + 
4     (allActiveSoftwareEngineerDesigners.productivityInDesign  
5      * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))  
6       * (1 + this.completenessDiffRequirementsDoc) 
7        * (1 + 
8     allActiveDesignEnvironmentTools.productivityIncreaseFactor)) 
 

 
In short, this rule says that as a design is being created, the size will increase by an 

amount dependent on the additive productivity of the designers (line 4), the 

communication overhead of the number of designers working on it (line 5), the difference 

in completeness between the requirements document and the design document (line 6), 

and the productivity increase factor of any design environment tool used (lines 7 and 8). 

The amount of increase is primarily based on the additive productivity of the designers, 
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and each of the other factors serve as multipliers to either raise or lower this amount. We 

can see in this rule the implementation of a number of the software engineering rules 

presented in the beginning of this chapter. In the first multiplier, listed on line 4, we can 

see the implementation of rule 5 (the greater the number of developers working on a task 

simultaneously, the faster that task is finished, but more overall effort is required due to 

the growing need for communication among developers). The amount of increase is 

reduced by 1% for each communication link between two people who are working on the 

design. (Note that because there exists no empirical data for this value, we assigned it to 

1% after trying several different values and playing the game repeatedly in order to 

determine which value produced the most educationally effective result. As mentioned in 

Section 3.2, this same process was used to formulate many of the rules in our models for 

which there exists no empirical data.) In the second multiplier (line 6) we can see the 

implementation of rule 1, which enforces the sequential nature of the waterfall model. 

The design document’s “completenessDiffRequirementsDoc” attribute is an integer 

attribute with minimum value 0 and maximum value 1 (hence, it must be either 0 or 1). 

This value is set in another effect rule that is executed before the one shown here, which 

sets it to 0 if the requirements document is less complete than the design document, or 1 

otherwise. Hence, the amount of increase in the size of the design document is doubled if 

the features the developers are designing have been specified first. Otherwise, there is no 

effect. Again, no empirical data was available regarding the exact magnitude of this 

effect (how much faster design should be if requirements are done first) and so the 

multiplier was set at this particular value (100% speed increase) through experimentation 

and play-testing. 
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In the third multiplier (line 8), we can see the implementation of rule 8, which states 

that tools increase productivity. The amount of increase in the size of the design 

document is increased according to the productivity increase factor of the design 

environment tool (which, in this particular model, was set to 0.5). 

The next rule is also a continuous effect rule attached to the “CreateDesign” action, 

but this one modifies the design document’s “numUnknownErrors” attribute: 

1  Design Doc: 
2   Design: 
3    numUnknownErrors = this.numUnknownErrors +  
4     (allActiveSoftwareEngineerDesigners.errorRateInDesign 
5       * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))  
6        * (1 + (allActiveRequirementsDocuments.PercentErroneous / 100 
7     * 10))  
8          * (1 + (1 – this.completenessDiffRequirementsDoc))  
9           * (1 –  
10   allActiveDesignEnvironmentTools.errorRateDecreaseFactor)) 
 

This rule represents the effect that, as the design is being created, a number of unknown 

errors are being introduced into the design document. This number is primarily based on 

the designers’ additive error rate in design (line 4), and is affected by the communication 

overhead between the designers (line 5), the number of errors in the requirements 

document (lines 6 and 7), the completeness of the requirements document (line 8), and 

the error rate decrease factor of any design environment tool used (lines 9 and 10). In this 

rule, we can again see rule 5 implemented (the cost of communication overhead) in line 

5—the amount of errors the designers can introduce is tempered by the communication 

overhead (as the rate at which the designers work slows down, the rate at which they can 

introduce errors slows down as well). The next multiplier (lines 6 and 7) illustrates rule 2, 

which states that any errors that are not corrected in one artifact will be carried over into 

the next artifact. In this expression, the amount by which the design document’s unknown 
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errors will increase will be (x * 10)% higher, where x is the percentage of the 

requirements document that is erroneous. (This multiplication by ten is obviously an 

exaggeration—See Section 7.7 for a discussion on the tradeoff between accuracy and 

educational effectiveness.) 

The next multiplier (line 8) again illustrates the sequential nature of the waterfall 

model stated in rule 1. It represents that the number of unknown errors introduced into 

the design document will be doubled if the requirements document is less complete than 

the design document (completenessDiffRequirementsDoc = 0), but will otherwise have 

no effect (completenessDiffRequirementsDoc = 1). 

Finally, the last multiplier (lines 9 and 10) again implements rule 8 (tools increase 

productivity), but affects the artifact’s errors rather than the artifact’s size, as in the 

previous rule. This expression represents that the number of unknown errors introduced 

into the design document will be decreased according to the error rate decrease factor of 

the design environment tool. 

4.3 Discussion 

The unique educational, interactive, game-based, and graphical nature of SimSE required 

that we design a new process modeling language that fit our particular needs, rather than 

adopt an existing one. Specifically, these four goals and characteristics of SimSE 

(educational, interactive, game-based, and graphical) impose three unique requirements 

upon its process modeling language. 

First, it must be simultaneously predictive—allow the modeler (instructor) to specify 

causal effects that the player’s actions will have on the simulation, and prescriptive—

support the specification of the allowable next steps the player can take at any given time. 
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Being both predictive and prescriptive serves three purposes in terms of the objectives of 

SimSE: 

1. Interactivity is maximized in that the player is able to both affect how the 

process plays out and be guided in their enacting of the process, rather than 

simply one or the other. 

2. A game-like feel is promoted, as computer games are typically both predictive 

and prescriptive. 

3. Educational effectiveness is maximized by providing two different avenues 

through which the simulation can teach the player: the player learns how their 

actions affect the process as they see them played out in the simulation, and the 

player learns the flow of the process from the actions that are allowed at each 

point in the simulation.  

The second unique requirement imposed upon SimSE’s process modeling language is 

that it must be interactive, meaning that it should operate on a step-by-step basis, 

accepting user input and providing feedback constantly throughout the simulation. The 

player should feel that they are an active and constantly involved participant in the 

simulated process, rather than simply an observer of the simulation. Such a quality is 

known to strongly engage the player and hence, increase educational effectiveness [51].  

Finally, because SimSE is a fully graphical simulation, the third requirement for its 

underlying modeling language is that it must allow the modeler to specify the graphical 

representations of the elements in the model. Our survey of existing process modeling 

approaches revealed that most are either predictive [2, 17, 88] or prescriptive [30, 102], 

but not both; few are interactive [30, 102]; few support graphics [71, 94]; and none fulfill 
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all of these requirements. Therefore, since no existing process modeling language fit our 

unique needs, we needed to develop our own approach to incorporate predictive, 

prescriptive, interactive, and graphical facilities into one language. 

In designing SimSE’s software process modeling approach however, it became 

apparent that some tradeoffs would have to be made. First and foremost, we acknowledge 

that it is not as generic or flexible as some general purpose modeling and simulation 

approaches [14, 71], or even domain-specific languages designed specifically for 

modeling software processes [30, 48, 80]. For instance, our approach requires that every 

object being modeled be an employee, artifact, project, customer, or tool. However, aside 

from the fact that none of these existing approaches met the unique needs of our 

educational game domain, we felt that such a level of generality and flexibility was 

unnecessary for our purposes. The process by which we designed our modeling approach 

underscores this: As mentioned previously, we surveyed the software engineering 

literature and extracted the widely accepted process lessons and rules that would 

conceivably go into a SimSE model, and then designed the modeling approach with these 

rules in mind. Although they include a wide range of different types of phenomena, from 

management issues, to organizational behavior theories, to corporate culture, to the 

traditional software engineering theories, all of the rules that we have collected thus far 

can be modeled and simulated using SimSE’s modeling approach. 

The chief limitations of our modeling approach lie mainly in the fact that it lacks 

many common programming language constructs, such as if-else statements, explicit data 

structures, loops, and predicates. Because the intended user of SimSE’s model building 

facilities is the instructor, we have chosen to focus on the simplicity and rapidity of the 
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model building process over the flexibility and expressivity of the approach. Namely, 

rather than a textual process modeling language, we have chosen to provide a model 

builder tool that abstracts away the textual representation of a modeling language (see 

Chapter 5).  

The lack of language features makes it necessary at times to use some non-intuitive, 

roundabout techniques to achieve the desired effect. One example of this is in the 

existence of the “completenessDiffRequirementsDoc” attribute attached to a design 

document object, discussed in the sample implementation presented in Section 4.2. In any 

programming language, such an attribute would be unnecessary—an if-else statement 

with a predicate could simply be used to check whether the completeness of the 

requirements document was greater than or equal to the completeness of the design 

document, and, if so, adjust the multiplier in question accordingly. Instead, in our 

approach, we have to first create this hidden attribute, specify that it can only be equal to 

either 0 or 1 by making it an integer with minimum value 0 and maximum value 1, and 

then create a rule that sets it to the correct value using additional mathematical 

manipulations. 

Another instance of this sort of limitation was revealed when we attempted to model 

the following software engineering rule: Error correction is done most efficiently by the 

document’s author [47]. In a full-fledged modeling language this might be modeled by 

keeping an array of employee names or IDs with the document/artifact object, indicating 

that those people had been authors of that document. When an employee would then go 

to correct that document, this array would simply be searched for that employee’s 

name/ID, and, if found, correction would speed up accordingly. In our approach, 
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however, there is not a simple way to perform such a task, due to the absence of arrays, 

loops, and if-else statements. Another roundabout workaround could accomplish the 

same effect, however: Each employee could have an integer attribute called, 

“authorOfDocument” (where “Document” is replaced by the name of the document in 

question) that must be either 0 or 1. Each employee’s “authorOfDocument” attribute is 

set to 0 to begin with, but when an employee authors the document, this attribute is set to 

1. Then, when that document is being corrected, the progress in correction made each 

clock tick can be multiplied by the sum of all the correctors’ “authorOfDocument” values 

plus 1. In this way, if none of the correctors were authors there would be no effect 

(progress would simply be multiplied by 1), but each corrector that was also an author 

would cause progress to increase by 100% (or some other value as desired). For example, 

if there are three employees correcting the document, and two of them were also authors 

of that document (meaning their “authorOfDocument” value is 1), the progress in 

correction made each tick would be multiplied by 3, increasing progress by 200%. 

Another example of an effect that is difficult to model in SimSE is the influence of 

the work environment on productivity. For instance, [141] states that improving the work 

environment by doing such things as giving employees enclosed offices and providing 

common areas where employees can participate in “water cooler” conversations increases 

productivity. Because our modeling approach currently uses graphics mainly for 

decorative purposes, it does not directly support this kind of phenomenon. However, a 

“quick and dirty” workaround could be that the modeler assigns each employee start state 

object their productivity value based on their location in the office. For instance, the 

modeler could assign a high productivity to someone who has a large, comfortable, 
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enclosed office adjacent to a water cooler, and a low productivity to someone whose 

office is simply a desk and a chair in the middle of a hallway, far away from any water 

cooler. Although this is not an ideal approach in which the simulation itself could 

calculate productivity modifiers based on employee surroundings, this workaround would 

probably still communicate the effect somewhat. 

So, while we are aware that the specificity of our modeling approach results in certain 

effects being difficult to model in SimSE, we also consider this an acceptable tradeoff, as 

most of the rules we collected, and especially those that we consider the most 

fundamental principles of software engineering, can be modeled in SimSE. Many of the 

effects that seemed to be infeasible to model in SimSE could be modeled, but required 

somewhat of a different mode of thinking—in terms of the SimSE modeling constructs 

provided, rather than the programming language constructs to which most people are 

used. In order to assist with these difficulties, we have provided a “tips and tricks” guide 

(see Appendix B) along with the model builder’s documentation. This document, 

compiled from lessons we have learned in building our models, provides guidelines for 

how common effects can be modeled that might not be intuitive at first, as well as 

generally helpful hints on the model-building process. Based on the number of simulation 

models that have been successfully developed and used, we believe that the added 

simplicity of the model builder tool, along with its documentation, offsets most of the 

drawbacks of the absence of programming language constructs. 

Another fundamental tradeoff we have made in designing our modeling approach is 

one between graphics and customizability. Namely, we have chosen to forego much of 

the sophistication typical of commercial computer game graphics for the sake of having 
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easily customizable models. Currently, the graphical extent of our approach is a simple 

icon attached to each object, a two-dimensional grid-based map, and textual pop-up 

messages. Using a more complex graphical model that includes such things as three-

dimensional graphics, animation, and sound would undoubtedly make SimSE more 

appealing to students, but would also make it significantly more difficult to build a 

model, as all of these graphical components would need to be customized as well. 

Because the purpose of SimSE is education, and the intended users of the modeling 

approach are software engineering instructors, we concluded that this was an acceptable 

tradeoff to make. However, in our usage of SimSE with students, we found that many of 

them did express their desire for more sophisticated graphics to make the game more 

interesting. Therefore, we plan to investigate possible ways of adding some simple 

animation capabilities without too much added complexity in the modeling approach (see 

Chapter 12). 
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5. Model Builder

Motivated by our key decision to make SimSE’s simulation models customizable, we 

have developed a model builder tool to facilitate the model building process. The model 

builder completely hides the underlying textual representation of the modeling language 

from the modeler, and provides a graphical user interface for specifying the object types, 

start state, actions, rules, and graphics for a model. Figure 16 shows the user interface for 

the model builder, with the tab for defining object types in focus. The tabs for the other 

parts of the model builder are not shown in this figure, but they are similar in appearance 

to the object builder in that they all facilitate building a model using buttons, drop-down 

lists, menus, and dialog boxes—no programming is required. Once a model is specified, 

the model builder then generates Java code for a complete, customized simulation game 

based on the given model. The following sections detail each part of the model builder, as 

corresponding to the five parts of a SimSE model. 

5.1 Object Types Tab 

The object types tab, shown in Figure 16, allows the user to create new object types and 

edit existing ones. A new object type can be defined by first choosing a meta-type 

(employee, artifact, tool, project, or customer) for the object using the drop-down list in 

the upper portion of the user interface, and then clicking on “OK”. The user will then be 

prompted to enter a unique name for the object type (e.g., “Code”). Attributes can then be 

added to the object type by clicking the “Add New Attribute” button. For each new 

attribute created, the user will be prompted to enter the attribute information detailed in 

Section 4.1.1, using the interface shown in Figure 17. After each new attribute is added, it 
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Figure 16: Model Builder User Interface.

Figure 17: User Interface for Entering Attribute Information. 

will appear in the table of attributes in the middle of the object tab user interface, with its 

detailed information shown in the columns of the table. Attributes can be edited by 

double-clicking on them or by clicking the “Edit Attribute” button, and attributes can be 

deleted by clicking the “Remove Attribute” button. 
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All of the object types that have been defined in the model appear in the list at the 

bottom of the object tab. Any of these object types can be brought into focus by clicking 

on them, and an object type can be renamed or removed using the “Rename” and 

“Remove” buttons. 

5.2 Start State Tab 

The start state tab, shown in Figure 18, is the portion of the model builder that facilitates 

the creation of start state objects—those objects with which the simulation begins. A new 

start state object can be created by first choosing an object type for the object from the 

drop-down list at the top of the interface. Each item in this list refers to an object type 

that was created in the object types tab for this model. Once an object type is chosen, the 

user will be prompted to enter a value for that object’s key attribute (e.g., a name for a 

software engineer employee). The new object is then created and its attributes appear in 

the table in the upper half of the start state tab. The last column in this table, titled 

“Value”, lists the starting value for each attribute. A value for each attribute can be 

entered by either double-clicking on the row (attribute) or by using the “Edit Starting 

Value” button. 

All of the objects created in the start state for the model are displayed in a list in the 

middle part of the interface. An object from this list can be brought into focus by clicking 

on it, and an object can be removed by using the “Remove” button. 

Finally, the bottom portion of the start state tab will list any warnings about 

inconsistencies in the model that involve the start state objects. In particular, these 

warnings notify the user if any of the object types on which the start state objects are 

based have changed, causing some part of the start state objects to be invalidated (e.g., a 

 78



Figure 18: Start State Tab of the Model Builder. 
 

string attribute changed to an integer attribute after a string starting value has already 

been assigned to that attribute; an object type being removed after start state objects that 

are based on that object type have already been created). Such inconsistencies are 

checked every time the focus is switched to a different tab, or when an attempt is made to 

save the model (a model with inconsistencies can be saved, but the warnings will re-

appear to the user the next time they open the model). 

5.3 Actions Tab 

The actions tab allows the user to define the actions in a model, and can be seen in Figure 

19. A new action can be created using the “Create New Action Type” button, at which 

point the user will be asked to give the action a unique name (e.g., “CreateCode”). 
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Figure 19: Actions Tab of the Model Builder.

Participants can then be added to the action using the “Add Participant” button, which 

will result in prompting the user to provide the necessary information about the 

participant, including its name, quantity restrictions, and allowable types through the 

form shown in Figure 20. Once a participant is added, it will appear in the participant 

table in the upper half of the interface. A participant can be edited or removed using the 

“Edit Participant” and “Remove Participant” buttons, respectively. 

Once all of the participants have been added to an action type, the next step is to 

define one or more triggers for the action. A trigger can be defined by clicking the 

“View/Edit Triggers” button, which will cause a trigger management window to appear 

(see Figure 21a). All of the triggers that are attached to the action will appear here, and 
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Figure 20: Action Participant Information Form. 

any one of them can be viewed and/or edited using the “View/Edit” button, or removed 

using the “Remove” button. A new trigger can be added using the “Add New Trigger” 

button, after which a “Trigger Information” window will appear, as shown in Figure 21b. 

First, the trigger type can be chosen from the “Choose the trigger type” drop-down list. If 

the random trigger type is chosen, it will prompt for a frequency to be entered, which 

must be a number between 0 and 100, denoting the percent chance this action has of 

occurring when all of the specified conditions are met. If the user-initiated trigger type is 

chosen, as in Figure 21b, it will prompt for menu text to be entered. The text that is 

entered here will be displayed on the menus of all possible participants in this action that 

are of meta-type Employee (when the trigger conditions are met). If at least one of the 

participants in the action is of meta-type Employee, there will be a prompt for entering 

“overhead text”, referring to the text that will be displayed in a pop-up bubble over the 

head of all Employee participants when this action begins in the simulation. Checking the 

“Game-ending trigger” box indicates that, when this trigger occurs in the game, the game 

will end and a score will be given to the player. 
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Figure 21a: Trigger management window.                   Figure 21b: Trigger information window. 
 

The trigger conditions can be specified using the “View/Edit Trigger Conditions” 

button. This will bring up a new window in which these conditions or constraints can be 

entered, as shown in Figure 22. All of the allowable object types that this participant can 

be are listed in the “Allowable Types” list in the upper part of the window. In the 

example shown in Figure 22, this particular participant can only be of type 

“SoftwareEngineer”, so only that type is shown in the list. If other types, such as 

“Manager” and “Tester” had been chosen when defining this participant, they would also 

appear on the list. The bottom half of the window allows entry of the constraints for each 

attribute of the object type currently selected in the “Allowable Types” list. The 

comparison operator (>, <, >=, <=, =) can be selected, and a value entered for each 
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Figure 22: Window for Entering Participant Trigger Conditions. 

attribute. In the example shown in Figure 22, the only condition for this participant is that 

the employee’s health must be greater than or equal to 0.7. 

If the trigger is a game-ending trigger, an additional column of radio buttons, marked 

“Score?” will appear to the left of each attribute, as shown in Figure 23. Choosing one of 

these indicates that the corresponding attribute’s value will be given as the score to the 

player when the game ends. 

The interfaces for defining an action destroyer are exactly identical to defining an 

action trigger, aside from the additional capability to define a “timed” destroyer by 

specifying a time to live value. 

The visibility for an action can be specified using the “View/Edit Visibility” button in 

the center portion of the actions tab (see Figure 19). This will bring up a form for entering 
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Figure 23: Participant Trigger Conditions Window for a Game-Ending Trigger. 

both the simulation visibility and the explanatory tool visibility of the action, including 

optional descriptions for each (see Figure 24). 

All actions that have already been defined for the model are displayed in the list in the 

middle portion of the actions tab. Actions can be brought into focus by clicking on them, 

and can be renamed or removed using the “Rename” and “Remove” buttons. 

Like the start state tab, the actions tab also has an area to display warnings. Warnings 

will be shown here if a change was made to an object type that invalidated some part of a 

defined action. For instance, if a trigger condition of “size=85.5” was specified, and then 

the size attribute was changed to an integer, a warning would appear notifying the user 

that this trigger condition is no longer valid, since the value of 85.5 is not an integer. 
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Figure 24: Interface for Specifying an Action’s Visibility. 

5.4 Rules Tab 

The rules tab of the model builder is the tool that allows the creation of SimSE rules, and 

is shown in Figure 25. All of the actions for the model are listed in the “Actions” list in 

the middle portion of the user interface. When one of these actions is selected, the rules 

attached to that action (if any) appear in the table in the upper portion of the interface. 

These rules can be viewed, edited, renamed, or removed using the buttons to the right of 

the table. Like the start state and actions tab, the rules tab also has an area at the bottom 

for warnings that will appear if a change was made to another part of the model that 

creates an inconsistency with a defined rule. 

The rules tab allows the creation of the three types of rules in SimSE: create objects 

rules, destroy objects rules, and effect rules (see Chapter 4.1.4). A create objects rule can 

be created by first choosing an action to which the rule will be attached, and then using 
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Figure 25: Rules Tab of the Model Builder. 

the “Add New Create Objects Rule” button. The user will first be prompted to specify a 

name for the rule, and then a form will appear through which the specifics of this create 

objects rule can be defined (see Figure 26). 

The timing for the rule (continuous, trigger, or destroyer, discussed in Chapter 4.1.4) 

can be chosen through the “Timing of Rule:” radio buttons. The object type for an object 

to be created must first be chosen from the drop-down list at the top of the window, and 

the “OK” button must be clicked. A form will then appear in which valid starting values 

for each of this attribute’s values must be entered (attribute types and min/max values are 

enforced), and when the “OK” button is clicked, the object is added to this rule. Once an 

object is added to the rule, it will appear in the “Created Objects” list (see Figure 26). 
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Figure 26: Create Objects Rule Information Window. 
 

Any of these objects can then be clicked on and then viewed and edited using the 

“View/Edit Starting Values” button or removed using the “Remove Object” button. 

A destroy objects rule can be created using the “Add New Destroy Objects Rule” 

button, which will cause the user to be prompted to enter a name for the rule, followed by 

the appearance of the form shown in Figure 27, which displays all of the participants in 

the rule’s associated action. A set of conditions that must be met by an object’s attributes 

in order for that object to be destroyed by the destroy objects rule can be specified using 

the “View/Edit Participant Conditions” button. This will bring up a new window in which 

these conditions can be entered, as shown in Figure 28. All of the allowable object types 

for this participant are listed in the “Allowable Types” list in the upper part of the 

window. The bottom half of the window allows entry of the conditions/constraints for 

each attribute of the object type currently selected in the “Allowable Types” list. The 

comparison operator (>, <, >=, <=, =) can be selected, and a value entered for each 
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Figure 27: Destroy Objects Rule Information Window. 
 

attribute. In the example shown in Figure 28, the “SoftwareEngineer” object will be 

destroyed if its energy is less than or equal to 0.5. 

Effect rules can be created and added to an action using the “Add New Effect Rule” 

button, which prompts the user to enter a name for the rule, followed by the appearance 

of the window shown in Figure 29. The middle part of this window contains a list of all 

of the participants in the action for which this rule is being created, along with all of the 

possible object types for each. An effect for one of these participants can be specified by 

bringing into focus one of the object types for the participant, and then using the 

“View/Edit Effects” button. The effects for each attribute of that object type (if any) will 

then appear in the top part of the window, as is the case in Figure 29 for the “Code” 

participant. 

Once a participant object type (e.g., “CodeDoc” Code Artifact) is brought into focus, 

two types of effects for this participant object type can be defined: (1) the effect on the 

participant’s other actions; and (2) the effects on each of this object type’s attributes. The 
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Figure 28: Window for Entering Participant Conditions for a Destroy Objects Rule. 
 

effect on the participant’s other actions can be specified by selecting one of the choices 

next to the text: “Effect on Participant’s Other Actions”. This refers to what will happen 

every time this effect rule is fired. Every participant in an action at run-time is either 

active or inactive. The first choice, “Activate all other actions,” causes this participant to 

become active in all of their actions (besides the one that this rule is attached to) in which 

they were previously inactive. The second choice, “Deactivate all other actions,” has the 

opposite effect. The “none” indicates that there is to be no effect on the participant’s 

other actions. The modeler is currently limited to these two choices (activate/deactivate 
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Figure 29: Effect Rule Information Window. 

all or none), but our future plans include adding the ability to choose specific actions to 

activate or deactivate (see Chapter 12).  

The effects on each of the participant object type’s attributes can be specified as 

follows: In the top part of the effect rule information window, next to each of the 

attributes, there is a text box in which expressions can be entered that specify what the 

values of each of these attributes will be set to each clock tick that the action is active. As 

shown in Figure 29, both “CompletenessDiffReqDoc” and “CompletenessDiffDesDoc” 

attributes for the “CodeDoc” Code Artifact will be set to the evaluated value of the 

expression in the text box next to it. 

The button pad, shown in Figure 30, is the interface through which the user can 

specify an effect rule expression. In order to specify an expression, the text box can be 
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Figure 30: Button Pad for Entering Effect Rule Expressions. 

double-clicked or the “Button Pad” button can be used, at which point the button pad will 

appear. Each click of the button pad will result in text being inserted into the effect rule 

expression. Aside from the digit (0 through 9) buttons, the operator (+, -, *, /) buttons, 

and the backspace button, which are self-explanatory, the meaning and use of the other 

buttons are as follows, from left to right, top to bottom on the button pad: 

• Rule Input: One of the rule inputs (see Chapter 4.1.5) that have been defined in 

this effect rule can be chosen to be inserted, and when this rule fires, the current 

value of the rule input will be evaluated in this expression.  

• Attributes – this participant: One of the attributes in this participant object 

type can be chosen to be inserted (including the attribute for which the effect is 

being edited), and when this rule fires, the current value of that attribute will be 

evaluated in this expression. 

• Attributes – other participants: This refers to the attributes of the other 

participants in this action. Upon clicking this button, it will prompt for three 
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selections: status, participant, and attribute. Status refers to whether active, 

inactive, or all (both active and inactive) participants’ attribute values should be 

included. Participant refers to the name of the participant whose attribute is 

being chosen. Attribute simply refers to the attribute being chosen.  

• Num participants in action: This button will insert a value that refers to how 

many participants are in this action. Once again, an all/active/inactive status can 

be chosen, as well as a participant.  

• Num actions – this participant: This button corresponds to the number of 

actions that this participant is in. An all/active/inactive status must be chosen, 

along with either an action type or the “*” choice, the latter indicating that all 

actions should be included regardless of type. For example, if “All Inactive” and 

“Designing” are chosen, and the participant is currently inactive in two 

“Designing” actions, the number 2 would be inserted at run-time.  

• Num actions – other participants: This button is similar to the “Num actions – 

this participant” button, but instead of the number of actions that this participant 

is in, it corresponds to the number of actions that another participant in this 

action is in. The all/active/inactive status must be selected, along with the 

participant and the action (or “*”). 

• totalTimeElapsed: This is equal to the total number of clock ticks that have 

executed in the simulation.  

• actionTimeElapsed: This is equal to the total number of clock ticks that have 

executed since this action began. 
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• Random(min, max): When a min and a max are entered, this will generate a 

random number at runtime that is between min (inclusive) and max (exclusive). 

• String: A literal string value can be entered. 

• Boolean: A Boolean value can be entered. 

We aimed to augment the simplicity of the button pad and provide some guidance to 

the user by designing it so that buttons are enabled or disabled depending on what input is 

allowed at any given time. For example, once one mathematical operator is inserted, the 

buttons for the other mathematical operators become disabled (except for the ‘-‘ button, 

which can be used as a negative sign as well). As another example, if the attribute for 

which an expression is being created is a non-numerical attribute, the buttons that result 

in a number being inserted into the expression are disabled. Once an expression is 

entered, the user will also receive a warning if that expression is not valid, such as in the 

case of a missing closing parenthesis or an expression ending with an operator. For the 

user who wishes to learn the syntax or wants to quickly insert a simple expression 

parameter, the text fields can also be directly edited. 

The area below the participant list in the effect rule information window (see Figure 

29) deals with rule inputs. A new rule input can be defined using the “Add new rule 

input”, after which it will prompt for a name for the rule input. Following this, a rule 

input information form will appear, as shown in Figure 31. The type (String, Boolean, 

Double, or Integer) of the input must be chosen, a condition can be specified on the input 

if it is of type Double or Integer, and a prompt must be entered. The prompt will be the 

text the user of the simulation will see when they are asked to enter the input (e.g., the 

amount of a bonus an employee is to be given). Whether or not the rule input can be 
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Figure 31: Rule Input Information Form. 

cancelled by the player must also be specified. After clicking “OK”, the rule input will be 

added to the rule, and it will then be accessible through the button pad for use in the effect 

rule expressions. 

Below the rule input area in the effect rule information window (see Figure 29) is the 

area that allows the selection of the rule timing (either continuous, trigger, or destroyer) 

through the “Timing of Rule” radio buttons. Finally, the visibility of the rule, along with 

a textual description of the rule can be entered using the checkbox and the button below 

the rule input area. 

5.5 Graphics Tab 

The graphics tab, shown in Figure 32, is used to assign an image to each object in the 

start state, as well as each object that is created by a create objects rule. The image 

assigned will be used to represent the object in the graphical user interface of the 

simulation. 

Operation of the graphics tab is straightforward. The first step to assigning graphics is 

to specify the directory that contains the icons to be used, using the “Icon Directory” 

button in the upper portion of the graphics tab. This directory must contain the images 

(50 x 50 pixels or smaller) to be matched to objects. Once the directory is chosen, the 
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Figure 32: Graphics Tab of the Model Builder. 

images appear in the grid in the middle part of the interface. Images can then be matched 

to objects by simply choosing an object from the list and choosing an image, and then 

clicking the “Match” button. 

Again, like the other tabs, the graphics tab also contains a warning area that will 

display warnings about any inconsistencies between the objects assigned to images and 

the rest of the simulation (e.g., if the object type for an object that was assigned to an 

image is deleted). 

5.6 Map Tab 

The map tab of the model builder is used to specify the layout of the office in the 

generated game, and is also quite straightforward in operation. The map is represented as 
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a 16 x 10 grid, and each square in the grid may be assigned an image using a right-click 

menu (see Figure 33). Using this menu, the user can place office furniture, doors, walls, 

floor tiles, and employees (both those in the start state and those created by create objects 

rules) in the office. Employees created by create objects rules will appear inside a pink 

box with a blue hue around them, to differentiate them from employees in the start state. 

For instance, the employee in the lower left-hand corner of the map in Figure 33 is an 

employee created by a create objects rule. Of course, both types of employees will look 

the same at run-time, in the game’s user interface.  

 
Figure 33: Map Tab of the Model Builder. 

As discussed in Section 4.1.5, there are three allowable image layers per tile: base 

(bottom), fringe (middle), and object (top). The right-click menu is accordingly organized 
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in terms of these layers: The topmost section, listed in blue, contains all of the base 

images. The section below this, listed in green, contains all of the fringe images. Below 

this are the employees, which are placed in the object layer. Start state employees are 

listed first, followed by employees created by create objects rules, which are listed in red 

in their own section of the menu. Finally, the bottommost option in the menu is “Delete”, 

which clears all images from a tile. 

5.7 Menu Items 

There are four menu items in the menu bar of the model builder: “File”, “Narratives”, 

“Prioritize”, and “Generate”. The “File” menu allows the user to perform the standard file 

management functions of opening, closing, saving, and creating new models. The 

“Narratives” menu allows the user to enter the starting narrative for a model (the text that 

will appear to the player of the simulation at the start of the game). The “Prioritize” 

menu, shown in Figure 34, lets the user specify the order in which they want their 

model’s trigger, destroyers, and rules to be executed. This menu is organized into sub-

menus according to the following rules: triggers are prioritized in relation to other 

triggers, destroyers are prioritized in relation to other destroyers, continuous rules are 

prioritized in relation to other continuous rules, trigger rules are prioritized in relation to 

other trigger rules attached to the same trigger, and destroyer rules are prioritized in 

relation to other destroyer rules attached to the same destroyer. When any of these menu 

items are selected, a window similar to the one shown in Figure 35 (the one for 

continuous rules) appears. The user can move a rule/trigger/destroyer from the non-

prioritized list to the prioritized list (or vice-versa) using the arrow buttons in the middle. 
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Figure 34: The “Prioritize” Menu. 
 
 

 
Figure 35: The Continuous Rule Prioritizer. 

The order of the prioritized list can also be changed by selecting a list item and using the 

“Move Up” and “Move Down” buttons. 

Finally, the “Generate” menu allows the user to generate a simulation game from a 

model. When this menu item is selected, the user will be prompted to specify a 

destination directory for the generated code. They will then be either notified that the 

simulation was successfully generated, or else shown an error message explaining any 

problems that might have occurred during code generation. 
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5.8 Design and Implementation 

The model builder is comprised of approximately 50,000 lines of Java code. Its design is 

shown in Figure 36, and consists of two main components: the builder and the code 

generator. The builder is the component that facilitates the creation of a model. Within 

the builder, there are eight sub-components. The GUI houses all of the components of the 

user interface. The six sub-components in the middle row of the builder each correspond 

to a part of a SimSE model (object types, start state, actions, rules, graphics, map) and a 

tab in the model builder user interface. Each one of these sub-components is responsible 

for handling the creation of its corresponding model part, using the model/file 

manipulation component, which creates and manages the actual model in memory and on 

the file system. 

 

Figure 36: Model Builder Design. 
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When the user commands the model builder to generate a simulation game from a 

model, the builder passes this command to the code generator component. When the code 

generator receives this command, it reads the model and uses its sub-components to 

generate code for a simulation game based on this model. The code generator contains 

five sub-components, each corresponding to a component in the generated simulation 

environment (see Chapter 6.2). Each one of these sub-components is responsible for 

generating the code for its corresponding part of the simulation environment (e.g., the 

state generator generates the state component of the simulation environment, the logic 

generator generates the logic component, etc.) 

5.9 Discussion 

Although the model builder removes many of the inherent difficulties of a programming 

language (e.g., syntax and text manipulation), we recognize that building a model in 

SimSE is still not a trivial matter. Most notably, the difficulty of collecting software 

engineering phenomena and rules and translating these into SimSE actions and rules still 

remains. This was one of the chief purposes of building our collection of six different 

simulation models and making them freely available with SimSE (see Chapter 7). These 

models embody some of the most commonly taught software processes, and can readily 

be used by instructors who wish to either adapt them for their own purposes or use them 

directly. Our hope is that any instructor who wishes to create a new SimSE model will be 

able to, at minimum, either use our models as examples to follow or else take bits and 

pieces from them and reuse them. Although doing so would not necessarily make the 

process “quick and easy”, it would at least give the instructor something to work with, 

rather than require that they build a model from scratch. 
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As another resource for the model-building instructor, we have also written a 50-page 

user guide to accompany the model builder. This guide explains, in detail, how to use the 

tool, and also includes the “tips and tricks” guide presented in Appendix B. As mentioned 

in Section 4.3, this document includes (among other topics) suggested steps for starting a 

model, finishing a model, and working around the lack of common programming 

language constructs (e.g., if-else statements).  

It is important to note that use of the model builder also does not guarantee the model 

is a “good” model. Rather, a strongly iterative development cycle is required. In our 

experience, building a model involves a significant amount of time aside from the initial 

construction of the model in which the model is repeatedly played and refined in order to 

ensure that the desired lessons and effects are illustrated, as well as to achieve the proper 

balance between educational effectiveness and realism (see Section 7.7 for further 

discussion on this issue).  
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6. SimSE

Now that we have established what a SimSE can model and simulate and how a SimSE 

model can be built, in this chapter we focus on how a SimSE model actually works. 

Specifically, we detail what the game play of a model is like and how the simulation 

environment is designed and implemented.  

6.1 Game Play 

SimSE is a single-player game in which the player takes on the role of project manager 

and must manage a team of developers in order to successfully complete an assigned 

software engineering task. This task may comprise an entire life cycle of a software 

product from inception to delivery, a small, specific activity within a software process 

(such as a code review), or some other aspect of a software engineering process. 

 At the beginning of the game, the player is presented with a description of the 

software engineering task they are expected to perform. This description usually includes 

what the goal of the game is, how much time and/or money the player is allowed, how 

the final score will be calculated, and perhaps some helpful hints to guide the player 

along the way (see Figure 37 for an example). The player then drives the process by, 

among other things, hiring and firing employees, assigning tasks, monitoring progress, 

and purchasing tools. At the end of the game the player receives a score indicating how 

well they performed, and additional information that was hidden throughout the game is 

revealed to give the player some insight into why they were given their particular score. 

The player can also run the explanatory tool at the conclusion of a game to gain further 

insight about their simulation run. 
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Figure 37: SimSE Introductory Information Screen. 
 

Motivated by our key decision to make extensive use of graphics in our approach, the 

user interface of SimSE is fully graphical, as shown in Figure 38. The center part of the 

interface displays a virtual office in which the software engineering process is taking 

place, including typical office surroundings and employees. Employees “communicate” 

with the manager (player) through speech bubbles over their heads. Through these, they 

inform the player of important information, such as when they have started or completed 

a task, when a random event has occurred, or to express a response to one of the player’s 

actions. In addition, depending on the particular simulation model being used, the text in 

these speech bubbles can also serve as a mechanism for providing the player with subtle 

guidance and feedback as they play the game. For instance, an employee could make a 

recommendation about what the next action should be after they inform the player that 
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Figure 38: SimSE Graphical User Interface (Duplicate of Figure 1). 

they have completed a task (e.g., “We just finished the requirements document. We 

should move onto design now.”). As another example, an employee could notify the 

player of a mistake they made and suggest a remedy (e.g., “We ended up with a number 

of errors in the design because the people you assigned to create it did not have design 

expertise. You should now assign experienced designers to review and correct the design 

so we can get it into better shape.”). In all cases, these “comments” by the employees 

provide valuable information that the player can use to make decisions and take action, 

steering the simulation accordingly. 

 SimSE has a variety of control mechanisms for playing the game. One of these is the 

simulation clock, the controls of which are located in the lower right corner of the user 
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interface, and through which the user drives the simulation. Because one of our key 

decisions was to make SimSE as interactive as possible, we designed SimSE to operate 

on a clock-tick basis, rather than as a continuous simulation in which the user provides a 

set of inputs, commands the simulation to run, and obtains a set of outputs such as cost 

and schedule. The SimSE player has two choices about how to advance through time: 

They can either choose to advance the clock a particular number of ticks, or advance until 

the next time an event occurs (when one of the employees has something to say). 

 The player can interact with the employees through right-click menus on each 

employee (see Figure 39). Using these menus, they can assign software engineering tasks 

(e.g., write code, review the design document), or perform other managerial activities in 

relation to an employee, such as firing, giving bonuses, or changing an employee’s pay 

rate. They can also perform “global” managerial actions such as purchasing software 

engineering tools for the whole company, or delivering the final product to the customer.  

 

 

Figure 39: Right-click Menus on Employees. 
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 Detailed information about each object (artifacts, customers, employees, projects, and 

tools) can be obtained by clicking on the corresponding tab for the object’s type in the 

upper left hand corner of the interface, and then choosing the image representing the 

desired object. (In addition, to promote consistency and intuitiveness, any employee icon 

appearing in the office or in the panel on the right-hand side of the interface can also be 

clicked on to bring up their information.) Doing so brings the object’s icon and all of its 

attributes into view in the bottom of the user interface. In Figure 38, the requirements 

document object is in focus with its attributes of name, number of known errors, and 

percent complete all shown. 

 As can be seen in Figure 38, for each group of objects appearing in the upper right 

hand side of the user interface, there is also a button labeled “ALL”. This button brings

 on the right side of the interface that lists all of the activities 

 

up an at-a-glance, tabular view of all objects in that group. For instance, when the 

employees are in focus, the “ALL” button brings up a view of all of the employees and 

their attributes, as shown in Figure 40. By right-clicking on a column, the table can be 

customized by hiding and un-hiding columns to focus only on the attributes that are 

relevant to the current task. The at-a-glance view was designed particularly for situations 

in which the objects need to be compared quickly, such as the activity of allocating 

employees to tasks. A player can use this view to gain a rapid overview of which 

employees possess which strengths, and assign them to tasks accordingly. 

 We also included a panel

in which each employee is currently participating. This is provided so that the player can 

be continuously aware of what everyone is doing and have this important information at 

hand to assist them in making decisions about their next steps.  
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Figure 40: At-a-glance View of Employees. 

 During game play, the player also has access to the “information” and “restart” 

buttons in the upper left hand corner (labeled with an “i” and an “r” respectively). The 

“information” button brings up the starting narrative again, so that the player is always 

able to review the simulation’s goals and success criteria, as well as any guidance that is 

given in the narrative to help the player along the way. The “restart” button, as its name 

indicates, restarts the game.  

 The “Analyze” menu in the upper left-hand corner launches the explan

 

atory tool (see 

to see intermediate traces 

6.1.1 Game Play Example 

To provide an example of what a SimSE simulation game is like, we will use a brief 

scenario of how a student may use SimSE in completing the task of developing a 

Chapter 8). (Currently, this menu is only enabled once a game has been finished and the 

score has been revealed, as the current version of the explanatory tool is designed as an 

end-of-game tool. However, in the future we plan to make it accessible at any point 

during the game so that the player can use the explanatory tool 

of their game in progress, as will be discussed in Chapter 12.) While the explanatory tool 

is running, the player can also navigate around the game to view any information needed 

(although the clock and the employee right-click menus are disabled at this point). 
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software product from requirements specification to product delivery. In addition, this 

example will illustrate how some software engineering lessons are exhibited during game 

play and demonstrate our key decision to make SimSE teach by rewarding good software 

engineering practices and penalizing deviant ones. This particular scenario is based on 

SimSE’s waterfall model, presented in Section 7.1. 

When the game begins, the player sees a starting narrative that describes to them the 

goals of the simulation. In this example, the starting narrative is the following (taken 

from Figure 37):  

”Welcome to SimSE! Your task is to create Groceries@Home, a Web-

based system that will allow people to place orders over the Internet for 

for groceries solely by telephone, but now wants to step into the 

to complete the project. However, you should keep checking your project 

error-free your code is, whether your code is integrated or not, and how 

The first step this player takes is to go 

what they have to work with. The player br

groceries to be delivered to their homes. The customer is the Grocery 

Home Delivery Service, a company who, up until now, has taken orders 

information age. Your budget is $280,000, and you have 1,350 clock ticks 

info to monitor this information – the customer has the tendency to 

introduce new requirements, and will sometimes give you more time 

and/or money along with those new requirements. Your final score will be 

out of 100 points, and it will be calculated based on how complete and 

well you stick to your budget and schedule. Good luck!” 

through some of their resources and assess 

ings into focus the at-a-glance view of all 
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employ t the 

differen wo of 

the too ro, so 

they im

Sin their 

employ Anita, 

Calvin,  these 

are the  steps 

the sim  that the requirements 

doc

is going a bit slower than they would like, so 

they

ees and views their skill levels in each area, noting who is good and bad a

t tasks. They then look at each tool and note its cost. The player sees that t

ls, the JUnit automated testing tool and the Eclipse IDE, have a cost of ze

mediately “purchase” those two. 

ce this is the waterfall model, the player decides to start out having 

ees specify the requirements for the product. Because the employees 

 Pedro, and Andre (see Figure 40) have the most experience in requirements,

 ones the player assigns to start creating the requirements. The player then

ulation forward 20 clock ticks, after which they see

ument is 7% complete. Now that some requirements have been specified, some of the 

other employees can start reviewing them. The player assigns the rest of the employees, 

Mimi, Roger, and Emily, to review the requirements document. The player steps forward 

20 more clock ticks, and sees that the requirements document is now 14% complete, and 

the reviewers have discovered three errors (see Figure 41). At this point the player is 

thinking that requirements specification 

 decide that it might be worth the $10,000 to purchase the requirements capture tool, 

which they do. They then step forward another 20 clock ticks, and see that the 

requirements document is now 25% complete, and are pleased that their purchase seems 

to have sped things up by a factor of about 1.5. 

We now fast forward a bit, and assume that the employees finished the requirements 

document, reviewed it, and the player has their requirements experts, Anita, Calvin, 

Pedro, and Andre correcting it. The player now decides to move on to the design phase. 

Since the requirements tool seemed to be so helpful, the player also purchases a design 
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environment tool for $5,000. Unfortunately, two of the three experts in design (Andre and 

Anita) are also requirements experts, so they are already engaged in correcting the 

requirements document. As a result, the player assigns only one employee who is 

experienced in design (Emily) along with two less-experienced designers, Roger and 

Mimi, to start creating the design document. They continue this until the other employees 

are finished correcting the requirements document. At this point, the designers have been 

designing for 33 clock ticks, and they are only 4% finished. Now that the other two 

expert designers, Andre and Anita, are freed up, the player adds them to the designing 

task, and has all of the other employees start reviewing the design. The player then steps 

Figure 41: Requirements Creation and Review. 
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forward 20 clock ticks and is pleased to see that this reallocation of tasks has sped up 

design tremendously—the design document is now 10% complete. 

The player continues like this until the design document is 100% complete. They then 

(unwisely) figure that since they had such qualified people working on the design, and 

they would like to try to finish the project as quickly as possible, they stop the design 

review process and have all of the employees correct the design errors that have already 

been found. They move on to the coding phase, assigning all of the coding experts to 

coding, and they complete the code. Once the player begins inspection, however, they 

realize that they have made a bad decision somewhere, because inspection seems to be 

endless, taking 230 clock ticks and finding 194 errors (see Figure 42). (Many of these are 

errors that were carried over from the design document, which the player will find out 

later.)  

The player has their employees correct all of these errors, and then integrate the code 

(which also seems to be awfully slow). They then prepare the system test plan, test the 

system, which reveals 108 errors, and correct these errors. Due to all of the errors in the 

code, which required extra time spent on inspection, testing and correction, the project is 

now slightly late (145 more clock ticks than allotted) and $20,580 over budget. As can be 

seen in Figure 43, the player delivers the product to the customer, and receives a score of 

81 out of 100—not a bad score, but it could have been better.  

When the hidden attributes are revealed, the player discovers that there were 149 

unknown errors in the design document (see Figure 43), indicating that they probably 

should have had the employees review and correct the design before moving on to 

coding. (Use of the explanatory tool would underscore this lesson, as well as provide 
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Figure 42: 194 Errors are Found When the Code is Inspected. 

further insight—See Chapter 8.) Most likely, this player would engage in multiple 

simulation runs of this same model (along with use of the explanatory tool) in order to try 

to c

6.2 Design and Implementation 

erated from a simulation 

model. The internal design of the simulation environment is shown in Figure 44, and 

orrect their mistakes, explore different approaches, and gain a thorough understanding 

of the lessons and the process being taught. 

The overall architecture of SimSE was shown in Figure 2. In this section, we will focus 

on the part of the architecture that corresponds to SimSE’s game play, namely the 

simulation environment that embodies a custom game gen

 112



Figure 43: A Score is Given and Hidden Attributes are Revealed. 

contains five major components: the GUI, the engine, the logic component, the state, and 

the explanatory tool.  

The GUI is a simple component that contains all of the game’s user interface 

components and main functions. 

to update itself accordingly. 

The logic component is the heart of the simulation, and contains five major 

components: the trigger checker, the destroyer checker, the rule executor, the menu input 

handles user actions. The engine component has two 

First, when the game begins, it runs a startup script that creates the start state objects and 

adds them to the proper repositories in the state component. Second, during the 

simulation, the engine drives the simulation by responding to clock events sent by the 

GUI and notifying the rest of the simulation 
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Figure 44: Simulation Environment Design. 

manager, and a miscellaneous updater. The trigger checker knows the conditions that 

contains all of the rules embodied in the simulation model. Every 

cloc

correspond to each trigger in the simulation, and is responsible for checking if these 

conditions are met by querying the state component. The trigger conditions are checked 

at every clock tick, as well as when an action is started, stopped, or when a rule is fired. If 

a trigger condition is met, that trigger is fired. In a similar manner, the destroyer checker 

checks which destroyers should be fired. 

The rule executor 

k tick, it queries the state to check which actions are currently occurring. For each 

action that is occurring, it executes the appropriate rule(s). For instance, it would be 

responsible for causing the size of a code artifact to increase (by the additive productivity 
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levels of all the employees working on it) every clock tick that a “create code” action is 

occurring. 

The menu input manager receives from the GUI all of the user actions performed 

through employee right-click menus. This component knows which menu commands 

correspond to which action triggers and destroyers, and causes the corresponding trigger 

or destroyer to fire (sometimes after asking the user for more information, such as which 

other participants they would like to participate in an action). Finally, the miscellaneous 

updater performs various maintenance and cleanup activities every clock tick, such as 

clearing employee overhead text and menus and telling the action state repository to 

update the elapsed time of each action. 

The state component, as its name indicates, holds the current state of the simulation at 

any given time by keeping track of the state of all objects and actions. It does this by 

storing these objects and actions in “repositories”. Each object meta-type (employee, 

artifact, tool, project, and customer) has a corresponding repository (employee state 

repository, artifact state repository, tool state repository, project state repository, and 

customer state repository, respectively) where all objects of that meta-type are stored, and 

which can be queried at any time to find out the current attribute values of a particular 

object. There also exists an action state repository, which contains all of the actions that 

are occurring at a given time. This repository can be queried to obtain information about 

an action, such as who its participants are, how long the action has been occurring, and 

which participants are active or inactive. 

The state also contains a clock, which simply keeps track of the time—the current 

clock tick of the simulation. The logger component (inside the state) and the explanatory 
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tool component both function for the express purpose of the explanatory tool, so they will 

be explained in Chapter 8 (the chapter that presents the explanatory tool). 

date itself (at which point it increments the time) and the logger to update 

itse

model) lines of code (not including the generated 

exp

The overall loop the environment performs during game play is as follows: The user 

drives the simulation through the GUI by commanding the clock to step forward in time. 

This command is passed to the engine, which responds to clock events by informing the 

state and logic components that time is stepping forward and that they should update 

themselves accordingly. When the state receives this notification to update, it tells the 

clock to up

lf (see Chapter 8). When the logic receives the command to update, it tells the trigger 

checker, destroyer checker, rule executor, and miscellaneous updater components to 

perform their various updating functions—the trigger checker to check triggers, the 

destroyer checker to check destroyers, the rule executor to execute rules, and the 

miscellaneous updater to perform its updates. 

The generated simulation environment code is in Java, and for the models built to 

date, the size of each generated package ranges from about 12,000 (inspection model) to 

about 47,000 (Rational Unified Process 

lanatory tool code). 
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7. Models 

A SimSE model embodies the lessons a model developer (generally a software 

engineering instructor) wishes to teach to the players of the resulting generated game 

(generally software engineering students). We have developed a base set of models and 

made them available with SimSE. Doing so serves three main purposes for the research: 

First, these models are necessary in order for educators to be able to use SimSE with 

students. Second, having a set of models available to instructors who wish to use SimSE 

makes it easier for them to use it: Pre-existing models will provide examples that 

modelers can either look at to help them in building their own models, or extend and/or 

modify for their own purposes. Additionally, instructors who do not wish to build their 

own models will have a variety of ready-made ones from which to choose. Third, 

building a variety of different models has demonstrated the capabilities of the modeling 

approach and provided us with a significant amount of data about the strengths and 

limitations of the model builder and modeling approach, as well as possible 

improvements that could be made to each (see Sections 4.3 and 9.5). 

 To maximize SimSE’s applicability and evaluate its modeling approach, it is 

important to not only build a significant number of models, but to also ensure that these 

models cover a wide variety of different processes. Hence, we have built models that fall 

into three distinct categories: 

• Classic approaches: This category consists of those process models that are 

well-known and embody an entire software lifecycle. These include a waterfall 

model, an incremental model, and a rapid prototyping model. 
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• Modern approaches: These are full life cycle models that have been developed 

in recent years and are less traditional. Modern approaches that we have 

modeled are Extreme Programming and the Rational Unified Process. 

• Specific models: In contrast to the models that embody an entire software life 

cycle, specific models are on a smaller scale and portray only a specific sub-

process within the life cycle. We have developed one model within this 

category—one of a code inspection process.  

The remainder of this chapter describes each of the models we have developed in detail. 

Because of our key decision to base SimSE’s models on research literature, a model is 

essentially a series of lessons taken from this literature and encoded in a game. Therefore, 

for the most part, we will largely describe each model in terms of the lessons it teaches 

and how those lessons are expressed during game play.  

7.1 Waterfall Model 

The waterfall model was our initial attempt at building a SimSE model. Although the 

waterfall is not the most interesting or challenging life cycle model that exists, it is 

probably the most well-known process, and its simplicity allowed us to evaluate and 

demonstrate the principles of the environment. Moreover, because the waterfall model is 

a relatively simple and straightforward process, we were able to also include in this 

model several general, non-waterfall-specific software engineering lessons. 

Since this particular model was purposed to emulate a waterfall process, we 

developed the model to reward the player for following the proper steps and practices of 

the waterfall model and penalize them for doing otherwise. In parallel, we aimed to teach 

a number of overall lessons about the software engineering process in general. These 
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lessons were taken from our compendium of 86 “fundamental rules of software 

engineering”, mentioned in Chapter 4 (and listed in Appendix A). The following two 

waterfall-specific lessons were implemented in this model: 

• Do requirements, followed by design, followed by implementation, followed by 

integration, followed by testing. The player must adhere to this sequence, 

although they can do some activities in parallel, as long as they are not 

performing a later development activity for a requirement that has not been 

worked on in an earlier phase. For instance, a player may have their employees 

work on coding at the same time they are working on design, as long as the code 

is not more complete than the design document, in which case the player would 

incur a penalty—namely, development of the later artifact becomes slower than 

usual, and more errors are introduced. This enforces that while each complete 

phase does not have to be entirely finished by the time the next phase begins, 

each feature must be specified before it is designed, designed before it is coded, 

coded before it is integrated, and integrated before it is tested. Furthermore, if 

the player goes back to a previous phase and works on, say, the design 

document after they have already worked on the code to a completeness level 

greater than that of the design document (e.g., the code is 90% complete 

whereas the design document is only 60% complete), some new errors will 

appear in the code. This represents to the player that they implemented some 

features for which there was no design, and now that they have gone back and 

properly designed those features, they have found that much of this un-designed 

code was erroneous. 
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• At the end of each phase, perform quality assurance activities (e.g., reviews, 

inspections), followed by correction of any discovered errors. Although 

working on two phases in parallel is acceptable in certain situations (as 

mentioned previously), any uncorrected errors in an artifact (e.g., requirements 

document) will be carried over into the next phase’s artifact (e.g., design 

document) if they are not discovered and corrected before work on the next 

phase begins. 

In addition to these waterfall-specific lessons, the SimSE waterfall model also aims to 

teach the following lessons that are general to most software engineering processes: 

• If you do not create a high quality design, integration will be slower and many 

more integration errors will be introduced. The speed of integration and the 

number of errors that are introduced into the code during integration are directly 

dependent on the completeness and correctness of the design. If the player 

spends an adequate amount of effort and resources on the design phase, they 

will be rewarded with a faster integration and a more correct system. 

• Developers’ productivity varies greatly depending on their individual skills, and 

matching the tasks to the skills and motivation of the people available increases 

productivity [18, 26, 121]. The employees that the player is given to manage 

each have different skill levels in requirements, design, coding, and testing. In 

any given development activity, this skill level is the greatest influencing factor 

on their productivity, as well as on the rate at which they introduce errors into 

the artifact on which they are working. Hence, when a player assigns tasks only 
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to employees that are skilled at those tasks, the project will be finished faster, 

and fewer errors will be introduced. 

• The greater the number of developers working on a task simultaneously, the 

faster that task is finished, but more overall effort is required due to the growing 

need for communication among developers (Brooks’ Law) [22]. For each 

development activity, the productivity of each developer is decreased by a small 

factor for each additional employee working on that same activity. 

• Software inspections are more effective the earlier they are performed [141]. To 

demonstrate the fact that software inspections are more effective the earlier they 

are done during development, the more integrated the code is, the less effective 

an inspection will be at finding errors in the code. 

• The better a test is prepared for, the higher the amount of detected errors. 

Before doing system testing, the player should ensure that their employees have 

developed a system test plan. The more complete and correct that test plan is, 

the more efficient testing will be. 

• Monetary incentives increase motivation, which leads to increased productivity 

(but faster expenditures) [141]. The player can give their employees pay raises 

and bonuses, which will increase their mood by an amount proportional to the 

amount of the raise or bonus. As a result, the employee’s productivity will also 

increase. Bonuses have a short-term effect on productivity, while pay raises 

have a longer one. Both pay raises and bonuses are taken out of the project 

budget, so players must use caution in how they dole out such incentives.  
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• The use of software engineering tools leads to increased productivity [141]. The 

waterfall model allows the player to obtain up to four different tools: a 

requirements capture tool, a design environment, an integrated development 

environment (IDE), and an automated testing tool. Some of these tools have a 

cost associated with them, while others are free (in accordance with the 

common practice of downloading free software engineering tools off of the 

Internet), so the player must also balance the potential benefit of the tool with 

the monetary cost. Each tool has a productivity increase factor and an error rate 

decrease factor, both of which are hidden from the player (until the end of the 

game). When a tool is used in a development task, the productivity of the 

developers involved in that task is increased accordingly, and at the same time 

the error rate is decreased. 

• New requirements frequently emerge during development since they could not 

be identified until portions of the system had been designed or 

implemented [42]. During game play, the customer introduces new requirements 

at random. In some cases, they will also give the player more time and/or 

money to finish the project. Introducing new requirements increases the 

required size of the artifacts, so if the player has time it is in their best interest to 

go back and work these new requirements into each artifact. 

In addition to these, there are a number of other general workplace issues not specific to 

software engineering that are included in the model to add realism and make things more 

interesting. For instance, employees sometimes get sick, take breaks when they are tired, 
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become less productive when they are tired, and quit when they are upset about 

something significant (e.g., a pay cut). 

7.2 Inspection Model 

After building the large waterfall model that depicted an entire software life cycle from 

requirements analysis to product delivery and contained numerous parallel and 

interacting effects, we decided to take the opposite approach with our next model. The 

inspection model was our initial attempt at building a model of a small, specific process 

within the software life cycle that teaches only a few, very focused lessons. We chose 

code inspection as the subject of this model because there exists real-world data in the 

literature regarding the best practices of this process. Because of this data, and because 

the process simulated in this model was so small compared to the other models, we were 

able to teach a small set of very well-defined lessons related to code inspections. To keep 

the model small and specific, we chose to concentrate only on these lessons and ignore 

other details of the inspection process, such as the different roles and the detailed steps 

involved in the process. Thus, a player of this model has three main concerns: choosing 

the right number of people with the right qualifications, choosing the right size of code to 

inspect, and choosing the right size of inspection checklist to use. These decisions are 

based on the following lessons, which are collectively taken from [59], [73], and [145]: 

• A code inspection takes place in a group setting. While the office layout of the 

other models all portray employees working alone (for the most part) in their 

cubicles, this model’s layout shows a large conference room with several people 

sitting around a table (see Figure 45). 
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Figure 45: Screenshot of the Conference Room Layout of the Inspection Game. 

• The productivity of an inspector depends equally on their familiarity with the 

product and their inspection experience. Each employee in this model has a 

project experience attribute and an inspection experience attribute. Both of these 

values contribute equally to the employee’s effectiveness in finding bugs. 

• A four-person inspection team is ideal, and is twice as effective as a three-

person team. The player will find that the most bugs are discovered in the 

shortest period of time if they use four people, and only half as many are found 

in the same period of time if they use three people. 

• A larger inspection team does not necessarily equal a more productive 

inspection team. After each bug is found, the employees discuss it. As the 
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number of people in an inspection team increases, it takes the group a shorter 

time to find each bug, but an exponentially longer time to discuss each one, as 

the number of communication links (and opinions) also increases. 

• A code inspection checklist should be no larger than one page. When the player 

starts the inspection meeting, they must choose one of three different sized 

checklists to use: a quarter-page list, a one-page list, or a five-page list. Using 

the one-page checklist causes the inspectors to find bugs the fastest, while both 

the quarter-page checklist and the five-page checklist have a speed-up effect 

that is one-half as fast as the one-page list. 

• The piece of code being inspected should be less than or equal to 300 lines, but 

less than or equal to 200 lines is ideal. At the start of the inspection meeting, 

the player also must choose from three different pieces of code to inspect, each 

with a different size (20, 150, and 1500 lines of code, respectively). Inspecting 

the 150-line piece of code will yield the most productive inspection meeting in 

terms of the speed with which bugs are found, while the productivity of 

inspecting the 20- and 1500-line pieces of code is only half as much.  

• An inspection meeting should last no more than 2 hours. In the starting 

narrative, the player is notified that in this model, one clock tick is equal to one 

real-world minute. Thus, after 120 clock ticks the developers declare, “I’m so 

tired…” and their productivity wanes significantly. 

7.3 Incremental Model 

With our incremental SimSE model we returned to portraying an entire life cycle, but 

aimed to simulate a different approach, although one that is still well-known and 
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considered “classic.” This model was designed to embody an iterative development 

process that values regularly providing the customer with incremental versions of the 

software throughout the life cycle. We accomplished this using a module-based approach 

that accommodated the partial submissions of a project throughout the process. In this 

model, a module represents an anonymous part of the project that can be worked on and 

developed independently of the other parts. Development actions, such as risk analysis, 

requirements analysis, design, and implementation are performed on each module 

separately. We specifically designed the attributes of a module to facilitate teaching about 

incremental software process approaches. In particular, a module in this model has the 

following attributes (none of which are visible to the player at the beginning of the game, 

but instead are only revealed through various analysis activities performed on each 

module): 

• Value: This represents the priority of this module to the customer, which in turn 

controls how much the completion of that module will help the player’s final 

score. Discovering this value through risk analysis can help the player to 

prioritize the completion of each module if time constraints prevent a complete 

submission. 

• Inflexibility: This value signifies the degree to which the customer will be 

unwilling to accept deviations from their ideal concept of the module. The 

higher the inflexibility of a module, the more the player’s score will be hurt if 

that module is implemented incorrectly. Once again, using risk analysis to 

discover this value will help to guide the player in prioritizing modules. 
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• Changeability: This value corresponds to how often the module is likely to be 

changed by the customer and, like value and inflexibility, is also discovered 

using risk analysis. This value is very important to determining how the player 

should proceed. Overcoming frequent customer changes is one of the primary 

challenges of this model, so knowing which modules are most likely to change 

is one of the most important pieces of information that should be used when 

devising a strategy for playing the game. 

• Accuracy: This represents how well the developed module corresponds to the 

customer’s expectations for that module. Accuracy is improved by working on a 

module’s requirements, and it is eroded whenever the customer makes changes 

to the module. Even if a module is complete, if its accuracy is too low, it might 

represent no value at all to the customer in terms of the final project. This is 

especially true in modules with high inflexibility values. 

• Phase difficulties: Each module contains a difficulty value for each 

development action that can be performed on it (requirements, design, and 

implementation). These values can help a player to determine which modules 

might make good candidates for the basis of early, rapid prototypes. Performing 

difficulty analysis on a module reveals that module’s difficulty values. 

The central challenge in this model lies in the player dedicating time to performing 

various analysis activities in order to reveal these attribute values and gather the 

information necessary to guide their decisions in completing the process. Careful 

consideration of each module’s attribute values to determine which tasks to perform on 

which modules in which order should be a player’s main concern.  
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While there are a number of specific software process models that can be classified as 

incremental processes (Extreme Programming, rapid prototyping, Rational Unified 

Process), rather than focusing on one of these, in this model we instead endeavored to 

teach a number of lessons about incremental software processes in general. Surveying 

several publications about incremental processes [10, 19, 58, 89, 120, 122] revealed the 

following overarching principles which are inherent to nearly any incremental software 

process: 

• Software versions should be created early and often. The player will have a 

much higher chance of achieving a good score each time they submit a partial 

build of their project to the customer during development. When a module is 

submitted to the user, the player gains many benefits. First, many of its hidden 

attributes are either revealed or clarified, as customer feedback provides insight 

into their valuation of, and inflexibility about, the module in question. Second, 

the difficulty of all other actions on a module is reduced when that module is 

submitted. Requirements is foremost among these, as insight from the customer 

feedback guides the creation of related documents. Third, the changeability of 

the module is reduced, helping to overcome the problems related to customer 

changes described previously. Fourth, all of these benefits are conferred, albeit 

to a lesser degree, onto other modules in the game that were not submitted. This 

represents the insight gained into the system as a whole via the discussion of 

one of its parts. When a player submits a multiple, rather than a single-module, 

build, even greater benefits are reaped, in terms of both the submitted modules 

and the other modules in the project. 
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• Early versions can be used to gather information about how to develop later 

versions. As we have discussed already, a partial build submitted to the 

customer causes some of each module’s hidden attributes to be revealed for the 

first time (if no risk analysis or difficulty analysis was done) or clarified (if 

these values were previously estimated through risk analysis or difficulty 

analysis). This represents that incremental versions of the software can provide 

useful aids for discussion with the customer about their desires for the project, 

which can help to steer development of subsequent versions to the customer’s 

liking.  

• Risk analysis should be used liberally to shape the process. As mentioned 

previously, performing risk analysis on a module causes its value, inflexibility, 

and changeability to be revealed, all of which are the most important factors in 

determining which modules should be developed in which order. 

• Frequent iterations should be used to ease the difficulties of changing 

requirements. To encourage an incremental approach, this model simulates a 

customer that makes frequent changes to their concept of the product. This 

frequency is lessened significantly each time the player submits an intermediate 

version to the customer (and hence, completes an iteration). 

• Do requirements before design. Although this is a general best practice of 

software engineering not specific to incremental models, this simulation model 

enforces it in a way that demonstrates the role of requirements in incremental 

processes in particular. First, working on the requirements for a module 

increases the accuracy of the module, and is the primary means of doing so. 
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Thus, implementing a module without thoroughly working on its requirements 

will leave the player with a fully implemented module that most likely does not 

meet the customer’s needs. In the case of a high-inflexibility module, this can be 

catastrophic. Second, working on requirements for a module reduces the 

changeability of that module, representing that engaging in requirements 

discussions with the customer helps to settle any uncertain issues that may be 

present. On top of these incremental-specific effects, the value of requirements 

in general is illustrated in that the design of a module will be sped up if its 

requirements have been specified beforehand. 

• Do design before implementation. Again, while this is a well-known theme of 

software engineering in general, our model illustrates it in a way that is unique 

to an incremental process in which the requirements are likely to change. In 

particular, the design greatly determines the difficulty of evolving the code. 

Thus, while a player may be able to implement their code without a design, if 

the customer makes changes to their desires for the module, adjusting the code 

to restore its accuracy to the customer’s demands will be nearly impossible 

without a design. In addition, creating a design for a module also increases the 

ease of implementation and integration of that module. 

7.4 Extreme Programming Model 

After successfully completing one “specific” and two “classic” software process 

simulation models, we decided to stretch the modeling capabilities of SimSE in a 

different direction by modeling a modern, agile process: Extreme Programming (XP). XP 

has numerous facets and dimensions, too many to go inside a single SimSE model. 
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Hence, we chose a subset of XP lessons that covers some of the most central tenets of the 

process, resulting in a model that encourages employees working in pairs using test-

driven development to create small, frequent releases that are continuously tested, 

refactored, and integrated. Specifically, this model embodies the following lessons (all 

taken from [144]): 

• Pair programming delivers more efficient results than programming 

individually or in small groups. If the player instructs their employees to “pair 

up” with each other, development will be much faster. The higher the 

percentage of team members that are paired up, the faster development will be. 

• System development should consist of small, frequent releases. The model 

rewards an approach in which code is developed incrementally and releases are 

made at increments of about 20% completion (i.e., a release at 20% completion, 

a release at 40% completion, etc.) Increments significantly larger or smaller 

than this will decrease the efficiency of testing, refactoring, and integration of 

the code.  

• Testing, refactoring, and integration should be done frequently. Testing, 

refactoring, and integration should all be done (in that order) after the 

implementation of each increment. Otherwise implementation will become 

increasingly slower as it progresses, indicating that the system is getting clunky, 

buggy, and difficult to evolve. The order of test, refactor, integrate is enforced 

in that if the preceding step (e.g., refactoring) is not completed, the subsequent 

step (e.g., integration) will be slowed down. 
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• Test cases should be created before implementation. Both implementation and 

testing will be significantly slowed down if test cases are not created first, 

demonstrating the value of test cases as a guide for both activities. 

• Development of a rapid prototype should be the first step before any 

implementation of the actual system. The more complete the rapid prototype, the 

faster implementation of the actual system will be.   

• Coding standards should be created and used for development. If the player has 

their employees invest time to create coding standards at the start of 

development, implementation, testing, refactoring, and integration will go much 

faster, representing that having a standard to follow will help make all 

development activities more efficient. 

• Provide an open workspace in which there is a central area where pairs can 

collaborate surrounded by private spaces for encouraging focus. As can be seen 

in Figure 46, the office layout for this model fits this description of a workspace 

conducive to XP. Enclosed, “private” spaces are lined up along the top part of 

the office, while the bottom part houses the open areas for collaboration. 

7.5 Rapid Prototyping Model 

With our rapid prototyping model we set out to do a number of things differently than we 

had done in the other models, both to test the different aspects and capabilities of our 

modeling approach, and to create more variety in our set of models. First, although the 

rapid prototyping model, like the waterfall and incremental models, depicts an entire 

software life cycle, we made it much more focused and did not include some of the 

effects that were included in the other models. For instance, this model ignores budget, 
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Figure 46: The Open Workspace Depicted in the Extreme Programming Model. 

considers all employees to be equally skillful at every task, and omits explicit review, 

inspection, testing, and correction activities (the starting narrative states that these 

activities are implied in the development of each artifact). These simplifications were 

made in order to put the focus strongly on the prototyping process and create a model that 

depicts an entire software life cycle but focuses on one particular aspect of that life cycle.  

The second difference in this model concerned the use of the employee speech 

bubbles. In the first three models, we had mainly used the speech bubbles for making 

simple statements that gave very little insight, such as, “I’ve finished coding!” or “I’m 

reviewing the requirements document now!” In this model we attempted to make the 

statements appearing in these speech bubbles more meaningful by using them to provide 
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guidance to the player in taking a successful route through the simulation. For instance, 

when the player has spent too long on the prototype, the employees will announce that 

the customer has called and complained about not seeing a prototype yet. As another 

example, once the employees are told to start the initial meeting with the customer to 

outline the requirements, they declare, “We’re off to meet with the customer to get an 

idea of what they want for their software. Monitor the requirements document to see how 

requirements discovery is progressing.” Likewise, when the employees are told to have 

the customer evaluate the prototype, they state, “We’re off to the customer now to see 

what they think of the prototype! Monitor the requirements document and the prototype 

to see the progress of this meeting.” Comments such as these are designed to both 

provide some more explanation about what the employees are actually doing while 

completing these tasks and inform the player about how they can find out what the results 

of the task are. For example, when a player follows the directions to “monitor the 

requirements document and the prototype to see the progress of [the prototype 

evaluation] meeting,” they will see that this task results in new requirements being 

discovered, communicating to them that a prototype can be a good tool for eliciting 

requirements from the customer.  

Finally, in this model we experimented with making the scoring easier. In previous 

models, players were penalized severely for deviations from an “ideal” approach, making 

it difficult to obtain a good score. In this model, we made this less severe, making it 

easier to achieve a good score. 

Our rapid prototyping model depicts a “throw-away” prototyping process in which a 

rapid prototype is iteratively developed with customer input, and then thrown away, after 
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which a final version of the software is built. (This is in contrast to an evolutionary 

prototyping process in which the rapid prototype is evolved to become the final version 

of the software.) The rapid prototype is basically used as a requirements analysis tool in 

this model, as the process of developing the prototype and subsequently discussing the 

prototype with the customer is the primary means of discovering the requirements for the 

system. The basic process that the model enforces and rewards is the following: 

(1) Outline the requirements for the system with the customer, (2) develop a prototype, 

(3) have the customer evaluate the prototype, (4) continue re-developing the prototype 

and having the customer re-evaluate the prototype until the player decides that it is time 

to move on, and (5) follow the waterfall model for development of the final system. 

(Although we could have built any one of a number of different life cycle models to 

follow after the rapid prototyping cycle, we chose the waterfall model because its 

simplicity allows us to keep this simulation model focused on the rapid prototyping 

process, in which the model’s central challenges lie.) Aside from this overall process, our 

rapid prototyping simulation model also teaches the following lessons (all taken 

from [134]): 

• A rapid prototyping approach is appropriate for situations in which the 

requirements are unclear or not well-known to begin with. In the starting 

narrative of this model, after describing what the project is, the player is told, 

“Your customer is not entirely sure what they want the system to do or to look 

like, so unearthing their requirements might take a little bit of work and 

creativity.” This piece of text was included specifically to hint to the player that 

a rapid prototyping approach should be considered in situations such as this one. 
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When the customer is unsure of their requirements, a rapid prototype can serve 

as a tangible tool with which to transform vague requirements into concrete 

ones. 

• A rapid prototype can be an effective means of eliciting requirements from the 

customer. As mentioned previously, discussing a prototype with the customer is 

the primary means of discovering requirements in this model. Each time the 

developers bring a revised prototype to the customer for evaluation and they 

spend time engaging with the customer in a discussion about it, new 

requirements are discovered as the ability to look at and play with an executable 

prototype of the system gives the customer more ideas about what they want. 

However, there does come a point when all of the requirements that are going to 

be discovered are discovered, and in this model that occurs after three rounds of 

prototype development and customer evaluation. 

• Rapid prototyping can make the rest of development go more smoothly. The 

more complete the prototype, the faster requirements specification, design, and 

implementation will go. This signifies that having a prototype: (1) helps make 

the requirements clear and (2) gives the developers a head start on design and 

implementation, as they have already at least experimented with some of the 

design and implementation issues they will likely encounter in the development 

of the final system.  

• Rapid prototyping can have a positive impact on the quality of the resulting 

system. The completeness of the prototype also has a positive effect on the 

correctness of the subsequent artifacts (requirements document, design, and 
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code), representing that prototyping can help to ensure that what the developers 

are specifying, designing, and implementing matches what the customer wants. 

• Too much or too little prototyping can be detrimental to the project. Despite a 

lengthy literature search to determine what the “right amount” of prototyping is, 

we found no real-world data suggesting a value—only the general consensus 

that too little prototyping can result in a product that does not fully meet the 

customer’s needs, and too much prototyping can be an unnecessary waste of 

time, as the return on the investment into prototyping starts to dwindle at a 

certain point. As a result, we set this “right amount” around 60%, meaning that 

the player is rewarded for developing the prototype to include about 60% of the 

total discovered requirements at any given point. We experimented with 

different numbers and found that this value did well at communicating to the 

player that there is a balance that must be achieved between too much and too 

little prototyping, and this balance falls somewhere in the middle region of the 

spectrum from prototyping no requirements to prototyping all of the 

requirements. This is enforced in the model in three ways. First, as development 

of the prototype begins to go past the 60% mark (indicating that they are 

probably spending too much time on it), the developers will announce to the 

player, “The customer called – he’s anxious for the prototype and wants to 

know what the hold up is!” This is designed to give the player a hint about what 

the right stopping point for prototype development is in the game. Second, the 

factor by which the completeness of the prototype speeds up development of 

subsequent artifacts (requirements, design, code) is maximized at a prototype 
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completeness level of about 60% (meaning more than 60% of the total 

discovered requirements are incorporated into the prototype), and significantly 

levels off shortly thereafter. This is designed to illustrate that the most important 

requirements should be prototyped so that they can become well-understood, 

but if less important requirements that the customer is not too particular about 

begin to be included, precious time that could be spent implementing those 

requirements into the final system is being wasted. Third, this effect of 

diminishing return on investment is also present in the prototype’s effect on the 

correctness of subsequent artifacts. The difference between the correctness of, 

say, a design for which a prototype is 100% complete and the correctness of one 

for which a prototype is 60% complete is miniscule—about 1%. 

• Certain programming languages are more appropriate for prototyping than for 

implementation, some more appropriate for implementation than prototyping, 

and some are appropriate for both. The player must choose both a prototyping 

language and an implementation language from three choices: Visual Basic, 

Java, and C++. In our model, we have made the generalization that Visual Basic 

is the one most appropriate for prototyping, C++ is the one most appropriate for 

implementation, and Java falls somewhere in the middle and can be used for 

either one. Choosing C++ for prototyping will make development of the 

prototype go awfully slow. Choosing Visual Basic for implementation will 

make implementation go fast, but will result in decreased correctness, 

illustrating that a prototyping language generally does not have the capacity to 

implement all of the requirements for the system. Choosing Java for either 
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activity influences the speed and correctness by an amount that is somewhere in 

between the two other languages. 

7.6 Rational Unified Process Model 

Our second attempt at building a simulation model of a “modern” approach was our 

Rational Unified Process (RUP) [87] model. We roughly based our model on a non-

computerized RUP simulation game that IBM uses to train their employees in the RUP 

process, but also added and removed some elements to make it more appropriate and 

fitting for SimSE. For instance, in the IBM game the player could “progress” through 

development by answering a series of questions about RUP correctly. In SimSE, 

development progresses by having employees work on artifacts.  

Like the rapid prototyping model, the RUP model also makes extensive use of the 

employee speech bubbles for conveying important information to the player, even more 

so than in the rapid prototyping game. Most importantly, in this model frequent 

intermediate feedback is given to the player through the text in the speech bubbles. This 

is done in two major ways: through phase assessments and through prototype 

submissions. Before attempting to end a development phase, the player must have their 

employees assess the phase. When they are finished with their assessment, the employees 

let the player know what their determination is—whether all of the work that should have 

been done during the phase was actually completed, and whether they are on track in 

terms of budget and schedule. At this time they also suggest to the player what their next 

step should be: either start planning for the next phase, go back and do some more work 

in the current phase, or, in the most severe circumstances, quit and abandon the project. 
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Likewise, when the player has their employees submit a prototype to the customer, 

the employees report what the customer’s reaction was through their speech bubbles. 

There are three possible reactions that the customer may have: (1) They are happy with 

the prototype because it covers all of the use cases they had hoped to see there, (2) they 

are unhappy with the prototype because it does not include all of the critical use cases 

they had hoped to see, or (3) they feel the prototype is too complete and wish it would 

have been delivered sooner with less functionality. 

The RUP model also makes frequent use of the speech bubbles to provide guidance 

and hints to the player about how to proceed successfully through the simulation. We 

have already seen, in the phase assessments example, a case in which explicit next steps 

are suggested. In addition to cases like these, we also used the speech bubbles to give the 

player more subtle guidance. For instance, after the player begins a new phase, they must 

first assign employees to a phase and then assign them tasks before any progress can be 

made. In order to hint at this and try to ensure that the player does not think that starting a 

new phase automatically causes some activities to occur (in which case they would likely 

waste time stepping the clock forward with an idle staff), an employee will say something 

to the effect of, “We are now officially in the Inception phase—which of us do you want 

to work on this phase?” Likewise, in order to ensure that the player also knows that they 

must assign a task to an employee after assigning them to a phase, an employee who just 

got assigned to, say, the Inception phase says, “I am assigned to the Inception phase and 

am ready to work. Let me know what to do.”  

In the RUP model we also tried to make more realistic use of random events than we 

have done in any other model. So far the only model that has any random events is the 
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waterfall model, which has only relatively simple ones, such as the customer introducing 

new requirements and employees getting sick. The IBM game that this model is based on 

included numerous slightly more complex and realistic “surprise” events that either set 

the player back or move the player ahead in progress. We incorporated some of these into 

our RUP model. For instance, sometimes the employees will discover a component from 

a previous project that implements one of the use cases for the current project, so they 

can reuse it. As a result, that particular use case in the current project gets automatically 

set to100% completion. In another random event, the player is notified that the customer 

has changed the contact person for the project—this new contact person decides to 

rework some of the requirements, which results in the player losing all progress for one 

of their implemented use cases. 

Probably the most distinguishing factor about the RUP model is its use of the 

prescriptive aspects of SimSE. In particular, a significant portion of what this model 

teaches is communicated through the allowable actions a player can take at each point in 

the process. This is partly by necessity: RUP is a highly dense process with numerous 

prescribed steps. If we were to make them all available at every point throughout the 

game, the player would undoubtedly be lost and overwhelmed by all the choices. Instead 

we limit the choices available at each step, depending on what part of the process the 

player is in. For example, a player can only develop the architecture when in the 

Elaboration phase and can only develop code when in the Construction phase. As another 

example, a player may only plan for one phase after they have completed all of the work 

required in the preceding phase. This is even taken so far so that, at several points 

throughout the game, only one choice appears on each employee’s menu. Thus the player 
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is steered much more than in other models and given significantly less freedom. While it 

may seem that a model like this would be too easy, the RUP model actually has quite a 

few challenges—challenges that lie mainly in other aspects of the game aside from 

deciding which steps to take next. These challenges will be brought forth as the model is 

described in the remainder of this section.  

There are two major lessons encoded in the RUP model. The first of these concerns 

the steps and overall flow of RUP which, as already mentioned, are taught through the 

allowable next steps a player can take at any point in the game. Figure 47 shows a state 

chart diagram depicting our RUP model’s general flow. (A link to an online version of 

this diagram is given to the player in the starting narrative of the RUP game.) As the 

player progresses through the four RUP phases of Inception, Elaboration, Construction, 

and Transition, their course through the game is as follows: The player starts a phase, 

assigns employees to that phase, starts an iteration, does some development work, and 

then either starts another iteration or assesses the phase. If the assessment is negative, 

they must go back, start another iteration, and do more development work. Otherwise, 

they may plan for the next phase and then end the phase. Going through the prescribed 

parts of these steps multiple times is designed to ingrain the RUP model in the player’s 

mind. The variability in this aspect lies in the number of iterations done per phase, a 

decision the player must make for themselves. If too few are done, time is wasted in 

performing phase assessments multiple times (a phase assessment will result in negative 

results if the work for the phase is incomplete, requiring that another phase assessment be 

performed after more work is done). If the player chooses to do too many iterations, their 

employees will find themselves assigned to work that is already done. The employees 
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Figure 47: State Chart Depiction of the SimSE RUP Model’s Overall Flow. 

will then have to come back to the player and announce to them that the work is already 

done. By this time, precious clock ticks will have been wasted in unnecessary 

communication. Thus, after multiple runs of the game the player will likely be able to 

come to some conclusions about how many iterations are appropriate in each phase. 

The second major lesson taught by the RUP model (and the central challenge of both 

our model and the IBM game that our model is based on) is efficient allocation of 

personnel. The player has 10 employees available, each with a skill set and a pay rate. 

There are five categories of skills: project management, architecture, requirements, 

design and development, and testing. Each employee has either “low” or “high” skill in 

each area. In order to enhance realism and add challenge to the model, an employee can 
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only have, at most, three “high” skills, and their pay rate depends on how many “high” 

skills they have—those with one skill are paid $300 per clock tick, those with two skills 

$400, and those with three skills $500. Thus, the player must make careful choices about 

who to assign to which phase, ensuring that the necessary skills are present to complete 

the work, but also taking care that they do not assign so many employees that they exceed 

their budget. Although efficient allocation of manpower is not a lesson unique to RUP, in 

this game it nevertheless serves as a tool with which to teach about what occurs in the 

different phases of RUP. Namely, the player must know which activities are performed in 

each phase so that they can accordingly assign the employees with the appropriate skills 

to the appropriate phase(s).  

In addition to these two major lessons, the RUP model also teaches a secondary 

lesson about prototyping. At the beginning of the Construction phase, the player is 

notified that the customer would like to see two intermediate prototypes during the phase. 

It is up to the player to decide when to submit each prototype—namely, which use cases 

should be completed and incorporated into each intermediate version. The customer will 

be “happy” with a first prototype that contains the five to eight most critical use cases 

(out of 20 use cases for the entire system), and “happy” with a second prototype that 

contains the eleven to fifteen most critical use cases. For each of these “happy” results, 

the player will also be rewarded with 5 bonus points (which will be added to their final 

score). The customer will also be “somewhat happy” with a prototype that contains more 

than the desired use cases, but will inform the player that they would liked to have seen it 

sooner with less functionality. These situations will penalize the player by 2 points. If a 
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prototype does not meet any of these conditions, the customer will be “unhappy”, and the 

player will lose 5 points. 

7.7 Discussion 

While the models presented in this chapter do teach a number of things about real-world 

software engineering processes, and accurately represent a number of real-world 

phenomena, no SimSE model is completely faithful to reality. In fact, due to the 

educational purpose of these models, we have deliberately designed parts of our models 

to be unfaithful to reality in two primary ways: simplification and exaggeration. 

First, we have simplified the real-world processes our models represent by leaving 

out several details and even some central aspects of the process at times. Including too 

many details would likely overwhelm the player and distract from the lessons the model 

is trying to teach. Including too many larger lessons would also confuse the player, as 

there would be so many interacting factors that they would detract from each other. Thus, 

for each of our models we have chosen to portray only a subset of the principles 

comprising the real-world process it represents. 

Second, and perhaps more importantly, we have also chosen to exaggerate some of 

the real-world effects demonstrated by our models. We discovered through 

experimentation that adhering too closely to reality causes some lessons to be expressed 

at an imperceptible level—they are not brought out obviously enough in the simulation to 

be educationally effective. At the expense of some realism, effects often needed to be 

somewhat obvious and “over the top” in order to effectively illustrate and enforce the 

concepts being taught. This can be seen, for example, in the sample implementation of 

the waterfall model we presented in Section 4.2: One rule was discussed that multiplied 
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by 10 the effect of errors in the requirements document on the number of errors being 

introduced into the design document. While it is unrealistic that every error in the 

requirements document would be carried over tenfold into the design document, when 

testing this rule in the resulting game, the effect was very hard to detect without this 

amplification. Similar exaggerations have been made in several parts of our six SimSE 

models. 

A potential ill-effect of these exaggerations could be that students will look for these 

types of amplified effects in the real world whereas in reality, they are often small and 

difficult to discern. However, the recommended complementary usage of SimSE with 

typical instructional techniques provides an ideal setting for counteracting this: as 

students learn through SimSE (and its occasional exaggerations) the effects and 

consequences of their actions, the lecturer can augment this with statements of caution 

that things in the real world are often not as readily discerned. 
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8. Explanatory Tool 

As mentioned in Section 3.2, one of the key decisions in designing our simulation 

approach was to include an explanatory tool to aid the player in discovering the rationale 

behind their score and in gaining insight into the cause and effect relationships 

underlying the simulated process. In this chapter we describe the explanatory tool we 

designed for use with SimSE. 

8.1 User Interface 

SimSE’s explanatory tool was designed as a feedback mechanism that goes above and 

beyond a simple numerical score given at the end of a game (and the revealing of 

previously hidden attributes). In particular, the purpose of the explanatory tool is to give a 

player deeper insight into where they might have gone right or wrong in the game, 

specifically by providing them with information such as which rules were triggered 

when, which events occurred at what times and how long they lasted, and the evolution 

of various attributes (e.g., correctness of the code) over time. These pieces of information 

are primarily given in the form of customized graphs, generated by the player. The user 

interface for creating these graphs—and the main user interface for the explanatory 

tool—is shown in Figure 48. As can be seen from the user interface, the explanatory tool 

allows a user to generate three types of graphs: object graphs, action graphs, and 

composite graphs. 
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Figure 48: Explanatory Tool Main User Interface. 

An object graph depicts how an object’s attribute values changed over time, and can 

be generated by choosing an object in the drop-down list labeled, “Object Graph”, 

choosing one or more of that object’s attributes in the list marked, “Show Attributes”, and 

then clicking the “Generate Object Graph” button. Figure 49 shows an object graph for 

an employee’s energy and mood. Time is represented by the horizontal axis and attribute 

value is represented by the vertical axis. The title of the graph indicates which object’s 

attributes are being graphed—in this case, a “SoftwareEngineer” Employee named 

“Andre.” The key below the graph explains which data points correspond to which 

attributes. Any data point in the graph can be moused over to reveal that point’s exact x- 

and y-values. In Figure 49, the data point for the energy attribute at clock tick 892 is 

being moused over, at which point the employee’s energy was 0.48.  

 

An action graph provides a trace of events or actions that occurred in the simulation, 

and is also customizable by the user. An action graph can be generated by choosing one 

or more actions to graph in the “Action Graph” list in the explanatory tool user interface 
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Figure 49: An Object Graph Generated by the Explanatory Tool. 

(see Figure 48), and then clicking the “Generate Action Graph” button. Figure 50 shows 

an example of an action graph that includes three different types of actions: 

“CreateRequirements”, “ReviewRequirements”, and “CorrectRequirements”, with one 

occurrence of “CreateRequirements” and two occurrences each of 

“ReviewRequirements” and “CorrectRequirements” (multiple occurrences are indicated 

by the number at the end of the action label, e.g., “ReviewRequirementsAction-2”). The 

x-axis indicates time progression, in clock ticks. The y-axis has no semantics, but only 

serves as a delineator for graphing actions—each action is graphed on a separate gridline 

on the y-axis. The key below the x-axis indicates which data points correspond to which 

actions. The data points for an action begin at the time that action was triggered and end 

at the time that action was destroyed. For example, in Figure 50 the 

“CreateRequirements” action, represented by the orange (bottom) line, began at clock 

tick 0 and ended around clock tick 230.  
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Figure 50: An Action Graph Generated by the Explanatory Tool. 

Mousing over a data point will display the name of the action and a reminder that the 

data point can be clicked on for more information, as shown for 

“CreateRequirementsAction-1” in Figure 50. When a data point in an action graph is 

clicked on, the details and effects of that action are displayed in the form of the screen 

shown in Figure 51. There are two tabs in this screen: Action Info and Rule Info. As their 

names indicate, the Action Info tab contains information about the action and the Rule 

Info tab contains information about the rules that are attached to that action.  

The Action Info tab is divided into three portions, one for each type of information 

provided about the action. The top portion contains a description of the action, which is 

specified by the modeler. In the example shown in Figure 51, the description says, 

“Software engineers review a requirements document to try to find errors.” The middle 

portion displays the participants that were involved in the action during the clock tick of 

 150



Figure 51: Detailed Action Information brought up by Clicking on an Action in an Action Graph, 
with the Action Info Tab in Focus. 

the selected data point (the point that was clicked on to bring up the action information). 

For instance, the screen shown in Figure 51 corresponds to clock tick 72, as indicated in 

the title bar of the window. For each participant, it shows which participant role they 

filled (indicated by the “Participant Name” column), which object filled the role 

(indicated by the “Participant” column), and whether they were active or inactive during 

that clock tick (indicated by the “Status” column). The bottom portion of the Action Info 

tab lists all triggers and destroyers for the action, so that the player can see exactly what 

could have caused the action to either stop or start. A user can click on any one of these 

triggers or destroyers to bring up a description in the field to the right. This description is 

automatically generated based on the type of trigger or destroyer and its conditions. In 

Figure 51, the trigger for the “ReviewRequirements” action is selected, and the 
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description for this trigger explains that it will occur when the user selects the menu 

choice, “Review requirements document” and four conditions are met: the employee 

participant must be healthy, they must not be on a break, and the requirements document 

has to have been started and have greater than 0 unknown errors. 

The Rule Info tab is shown in Figure 52. On the left are listed all of the rules that 

were fired during the selected clock tick. For instance, because the example shown in 

Figure 52 corresponds to clock tick 72, which was neither the beginning nor the end of 

the action, only the continuous rules (called “intermediate” here) are listed. If the data 

point that corresponds to the beginning of an action is selected, only the trigger rules are 

listed. Likewise, if the selected data point corresponds to the end of an action, only the 

destroyer rules appear. Any one of the rules in the list can be clicked on to bring up a 

description of that rule (written by the modeler) in the right hand pane. For example, the 

description for the rule in focus in Figure 52 explains how the unknown errors in the 

requirements document are decremented and the known errors are incremented—based 

on the requirements productivity of each employee participant tempered by the number of 

communication links between participants. 

The third and final type of graph that can be generated is a composite graph. A 

composite graph shows both an object graph and an action graph lined up on the same 

time axis. The purpose of a composite graph is to help the player discover the reasoning 

behind attribute behaviors shown in an object graph and, as a result, gain a better 

understanding of the cause and effect relationships underlying the simulated process. For 

example, Figure 53 shows a composite graph that contains an object graph for the 

“RequirementsDocument” artifact, including the two attributes “NumKnownErrors” and 
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Figure 52: Rule Info Tab of the Action Information Screen. 

“NumUnknownErrors”, and an action graph that includes the same three actions from the 

previous example in Figure 50 (“CreateRequirements”, “ReviewRequirements”, and 

“CorrectRequirements”).  Studying these two graphs on the same timeline can explain all 

of the spikes, dips, and slopes in the object graph. For instance, the number of unknown 

errors increased steadily as the requirements were being created, and then began to drop 

dramatically when the requirements document was completed and the only activity 

occurring was review of the requirements document. If the player clicked on the 

“ReviewRequirementsAction-2” both before and after requirements creation was 

complete, they would see that the magnitude of this decrease in unknown errors was due 

to the fact that they assigned all of the employees who had just finished creating the 

requirements document to join the requirements review activity, dramatically boosting 

the productivity of that task.  
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Figure 53: A Composite Graph Generated by the Explanatory Tool. 

As another example, let us look at the last upward slope in the unknown errors 

(approximately clock tick 330 to 580), an effect with a less intuitive cause. A player 

would probably first notice this effect by seeing the hidden attributes revealed at the end 

of the game and observing that, even though they did a thorough review of the 

requirements document and corrected all of the known errors, there were still 

undiscovered errors in the document at the end. Looking at this composite graph would 

provide them with the reasoning behind this: The final upward slope in unknown errors 

corresponds exactly to the second “CorrectRequirements” action, indicating that this 

action caused some more unknown errors to be introduced into the requirements 

document. Clicking on this action in the graph will then reveal why—employees 
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correcting requirements will introduce new errors into the document at a rate dependent 

on their requirements skill. Thus, a player may infer from this that it is just as important 

to have skilled personnel involved in requirements document correction as it is for 

requirements document creation, and will likely be more careful in assigning people to 

this task in the next game. 

All graphs can be further customized in terms of appearance—they can be zoomed in 

or out on, colors can be changed, and labels can be turned on or off. A user can also print 

a graph or save it as an image if they want to keep it for future reference. 

8.2 Design and Implementation 

The role of the explanatory tool in the overall design of the simulation environment is 

shown in Figure 54 (a duplicate of Figure 44 with the explanatory tool components 

highlighted). The link between the explanatory tool component and the rest of the 

environment lies primarily in the state’s logger component. The logger records the state 

every clock tick (when the state receives the notification to update itself) so that, at the 

end of the game, it has a full record of the entire simulation that can be used by the 

explanatory tool component. The explanatory tool component is primarily a user interface 

component. When a user makes a request to generate a graph, the explanatory tool 

component fetches the corresponding parts of the simulation record from the logger, and 

then formats and displays it for the user in the form of the requested type of graph. 

For graph generation and formatting, the explanatory tool uses JFreeChart [1], an 

open-source Java package for displaying charts and graphs in Java applications. The 

remainder of the explanatory tool component code, not including the JFreeChart 
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Figure 54: Place of Explanatory Tool in the Overall Simulation Environment Design. 
 

packages, ranges from about 2100 lines of code for our smallest model (inspection) to 

approximately 6500 lines of code for our largest model (RUP). 
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9. Evaluation 

To frame the discussion of SimSE’s evaluation, let us first revisit the research questions 

on which SimSE is based (from Chapter 1), and which have driven the design of our 

evaluation plan: 

1. Can a graphical, interactive, educational, customizable, game-based 

software engineering simulation environment be built?  

2. Can students actually learn software process concepts from using such an 

environment?  

3. If students can learn software process concepts from using such an 

environment, how does the environment facilitate the learning of these 

concepts? 

4. How can such an environment fit into a software engineering curriculum?  

The first question was conclusively addressed with the successful development of SimSE, 

hence we will forego discussion of that question here. The other questions can be further 

broken down into a series of specific evaluation questions, the answers to which can 

point collectively for or against the usefulness and educational effectiveness of SimSE. 

Due to the subjective nature of educational research, these research questions could not 

be conclusively tested, but through a series of evaluations, we have gathered subjective 

evidence to suggest answers to them: 

1. How do students feel about the learning experience playing SimSE (e.g., is 

it enjoyable, do they perceive it as an effective method of learning software 

process concepts)? Although not a direct indicator of learning, students’ 
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opinions and perceptions are important factors that, along with other data, can 

suggest how educationally effective SimSE is. 

2. How well does SimSE fit into the traditional software engineering 

curriculum as a complement to existing methods (which is its intended 

use)? Do students learn the concepts taught by the models? What are the 

implications for instructors? Is there anything difficult about using SimSE in a 

classroom setting?  

3. How well does SimSE teach the software process concepts that its models 

are designed to teach? As the primary goal of SimSE is to teach software 

process concepts, it is critical to determine how well it accomplishes this goal. 

4. How does SimSE compare to traditional methods of teaching software 

engineering process concepts such as reading and lectures? Discovering how 

they compare in both practical aspects such as time spent and subjective aspects 

such as student attitudes and motivation can inform decisions about whether 

SimSE is truly a more useful addition to a course than adding extra traditional 

assignments such as readings or lectures. 

5. Are the learning theories that SimSE was designed to employ actually being 

employed by students who play the game, and are there other, unexpected 

learning theories that are being employed by SimSE? Answering these 

questions can provide useful insight into the learning process SimSE (and 

perhaps educational simulation environments in general) facilitates. These 

insights can be used both to improve SimSE and to inform the design of other 

educational simulation environments. 
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6. Are the SimSE model-building approach and associated tools adequately 

expressive? To promote maximum applicability, a wide variety of 

educationally effective process models should be able to be built using SimSE.  

7. Does the SimSE explanatory tool help players of the game understand their 

score and the process better than using the game without the explanatory 

tool? Prior research has shown that a student’s experience with an educational 

simulation is significantly enhanced if it includes an explanatory tool to 

elucidate the cause and effect relationships underlying the simulated process. 

Thus, it is crucial to determine whether or not SimSE’s explanatory tool 

adequately fulfills this purpose. 

The remainder of this chapter describes the experiments we designed and conducted to 

discover answers to these questions. 

9.1 Pilot Experiment 

9.1.1 Setup 

For our first experiment with SimSE, our goal was to gain an overall understanding of the 

thoughts, attitudes, and reactions of students who play SimSE, all for the purpose of 

making an initial judgment about its potential as an educational tool. In addition, we 

aimed to determine the strengths and weaknesses of SimSE through the collective 

feedback of the students who play it.  

We recruited 30 undergraduate computer science students to participate in the 

experiment (although one student did not show up, leaving us with 29 total subjects). 

This number was chosen because we felt this was an appropriate size for a preliminary 
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feasibility study—one that would give us statistically meaningful results without 

overburdening us with an unnecessarily high number of subjects. Although SimSE is 

designed to be used as a complementary component to a software engineering course, we 

felt an informal, out-of-class setting was more appropriate for an initial pilot study. 

However, to ensure that the students had enough background knowledge to be able to 

understand the game, we required each subject to have passed ICS 52 (the one 

introductory software engineering course at UC Irvine at the time).  

The subjects first received instruction on how to play SimSE, and then played the 

waterfall model version of the game (see Section 7.1) for approximately two hours, 

completing one to two games. Following this, they completed a questionnaire stating 

their thoughts and feelings about the game in general, their opinions about the 

pedagogical effectiveness of the game in teaching software engineering process issues, 

and their educational and professional background in software engineering. Some of 

these questions asked for a numerical answer on a one to five scale, while others allowed 

them to write out their responses in free form. The questions from this questionnaire are 

listed in Appendix C. 

The version of SimSE used in this experiment was different in many ways from the 

version described in Chapter 6. Most notably, it did not include the explanatory tool. On 

top of that, the graphical user interface was less sophisticated than it is in SimSE’s 

current form: there was no ability to stop the clock, the user could not interact with the 

simulation while the clock was running, there were no ‘i’ (information/starting narrative) 

and ‘r’ (reset) buttons, and the quality of the graphics was inferior to what they are now. 
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9.1.2 Results 

In general, students’ feelings about the game were favorable, as summarized in Table 4. 

On average, students found the game enjoyable to play (3.5 rating out of 5) and relatively 

easy to play (3.2). They also felt that it was quite successful in reinforcing software 

engineering process issues taught in the introductory software engineering course they 

had taken (3.7) and equally successful in teaching software engineering process issues in 

general (3.6). For the most part, they agreed that SimSE would be helpful to teaching 

software engineering concepts if incorporated into the introductory software engineering 

course (3.5). 

Table 4: Questionnaire Results for Pilot Experiment. 
 

Question 1 1.5 2 2.5 3 3.5 4 4.5 5 Avg
How enjoyable is it to play? (1=least enjoyable, 5=most 
enjoyable) 

1 0 1 0 12 2 10 0 3 3.5

How difficult/easy is it to play? (1=most difficult, 
5=easiest) 

0 0 7 0 9 1 11 0 1 3.2

How well does it reinforce knowledge of SE process taught 
in class? (1=not at all, 5=definitely) 

0 0 2 1 9 1 8 2 6 3.7

How well does it teach new SE process knowledge? (1=not 
at all, 5=definitely) 

3 0 14 0 6 0 4 0 1 2.5

How well does it teach the SE process? (1=not at all, 
5=very much so) 

0 0 2 0 12 1 10 0 4 3.6

Incorporate it as standard part of SE course? (1=not at all, 
5=very much so) 

0 0 3 0 12 2 6 1 5 3.5

As an optional part? (1=not at all, 5=very much so) 0 0 6 1 8 1 7 0 6 3.4
As a mandatory part? (1=not at all, 5=very much so) 1 0 6 0 9 0 8 1 4 3.3

 

Students’ answers to the open-ended questions also reflected their positive feelings 

about SimSE. Regarding the enjoyability of the game, some students remarked: “It does 

a good job of reinforcing the process in a very fun way!”, “[It] makes [software 

engineering] seem more real and makes it more enjoyable.”, and “It is a unique way to 

learn and study software engineering.” Regarding how well the game teaches software 
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engineering process issues, students wrote: “[My favorite aspect of the game was] 

managing a team of employees. It is cool to see how they react to certain environments, 

and see how the project develops according to the selection of employees for different 

jobs.”, “[It taught me] delegating tasks and budgeting. In 52 we learned how to create 

but not manage.”, “52 teaches the intellectual level, overall view; the game illustrates 

this by feel and trial/error.”, and “[Having to deal with] pay, energy, and mood 

introduces more complex, real-life issues present in a workspace.” 

Although responses were positive for the most part, it was clear from this experiment 

that some aspects of the game needed to be improved. The most negative response on the 

numerical questions was that students did not feel that the game taught them much new 

software process knowledge (2.5). While reinforcing the concepts taught in lecture is 

useful in and of itself, one of the primary goals of SimSE was to also teach new concepts 

that are either not taught in lectures at all, or do not come across well using other means. 

It is understandable, however, that this particular model did not teach much new 

knowledge, since it was based on the waterfall model, which is a well-known and 

straightforward model that is frequently talked about in lectures. This underscored the 

need to build more models of different sizes, scopes, and foci, and test them out with 

students (which we subsequently did, as we describe in the remainder of this chapter).  

Many of the students also wished that they were given more explanation as to why 

they received the score they did and felt that it was sometimes hard to tell where they 

went wrong. This was part of the impetus for the development of the explanatory tool 

(see Chapter 8), which was built for the primary purpose of allowing the player to see 

which of their decisions had good or bad effects. Aside from this, the other aspects of the 
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game that the students were unhappy with were mainly technical issues, such as the lack 

of a “stop” button when the clock was ticking, and the quality of the graphics. These 

issues were addressed in subsequent versions of SimSE. 

Interestingly, students’ attitudes about the game seemed to be correlated to some 

pieces of background information that they were asked about on the questionnaire. The 

first of these is gender. The differences in response between males and females are shown 

in Figure 55. Surprisingly, females rated nearly every question higher than males. The 

only issue they rated lower was SimSE’s ability to teach new process knowledge, and 

their perception of SimSE’s difficulty was equal to that of males. Because the realm of 

computer games is notorious for being male-dominated [49], this was definitely an 

unexpected result that suggests SimSE’s potential as an educational tool that is applicable 

to both genders. 
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Figure 55: Gender Differences in SimSE Questionnaire Results for Pilot Experiment. 
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There also seemed to be some correlation between the amount of industrial 

experience a student had and their opinions of SimSE, shown in Figure 56. In all 

questions except enjoyability and ease of play, students who had industrial experience 

(which ranged from one to two years) ranked SimSE higher than those who did not. In 

other words, while they felt it was somewhat more difficult and somewhat less enjoyable 

than the inexperienced students (though it is unclear why), they were also better able to 

see its value as an educational tool. Perhaps the real-world experience these students had 

under their belt gave them more insight into the need for the type of knowledge a tool 

like SimSE provides. This suggests that, at least in the waterfall model, SimSE is 

accurate in its portrayal of a realistic software engineering process, as these students who 

had actually experienced such a process were able to appreciate its value. 
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Figure 56: Industrial Experience Differences in SimSE Questionnaire Results for Pilot 

Experiment. 
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Similarly, those who had additional educational experience (at least one additional 

software engineering course on top of the introductory one) also seemed to have higher 

opinions of SimSE, as shown in Figure 57. This is also a positive outcome, again 

suggesting that those who have some extra software engineering experience to look back 

on can better see how SimSE can help students learn what they need to know to succeed 

in more advanced software engineering situations. 
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Figure 57: Educational Experience Differences in SimSE Questionnaire Results for Pilot 

Experiment. 

In sum, the following lessons were learned from this pilot experiment: 

• SimSE has the potential to be an educationally effective tool in teaching 

students software process concepts. The students who played SimSE in this 

experiment, especially those with significant industrial and/or educational 

experience, viewed it as a positive and reasonably educationally effective 
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experience and recommended its addition to an introductory software 

engineering course. 

• SimSE has applicability to females as well as males. The difficulty of getting 

females interested in computer science (and computer games) is well known. 

However, in this experiment females rated SimSE higher than males in most 

categories, suggesting that SimSE has the potential to help students of both 

genders learn software process concepts. 

• An explanatory tool is needed to provide students with more insight into their 

final score. A frequent complaint of students in this experiment was the lack of 

feedback given about their performance in the game, an issue that can be 

directly addressed with the addition of an explanatory tool.  

9.2 In-Class Use 

9.2.1 Setup 

The pilot experiment established that SimSE did indeed seem to have potential to be a 

useful tool in teaching software engineering. On top of that, the feedback given by the 

subjects in the pilot experiment also gave us valuable guidance about ways SimSE 

needed to be refined and enhanced to make it more effective. After addressing these 

issues and developing two more simulation models, the next step was to try SimSE in the 

setting for which it was designed: in conjunction with a software engineering course. Our 

chief goal in doing so was to assess how SimSE fits into such a setting, including whether 

the students actually learn from the experience, how they perceive and feel about the 
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experience in the context of a course, and how it fits in logistically as a course 

component. 

Because this was the first time SimSE was being used in the context of a course and 

we were unsure about how it would work in such a setting, we thought it appropriate to 

make it an extra-credit rather than compulsory exercise. Moreover, in the pilot 

experiment the students rated its inclusion as an optional exercise higher than its 

inclusion as a mandatory exercise. Hence, we made it a moderate to minimal extra-credit 

assignment, worth 7.5% of the final grade. 

The course in which we used SimSE was ICS 52 / Informatics 43, a one-quarter 

introductory software engineering course at UC Irvine. We used SimSE over two 

subsequent offerings of the course. In the beginning weeks of the quarter, we presented a 

short five to ten minute tutorial about how to play SimSE, and gave the students the 

assignment: by the end of the quarter, play three SimSE models (waterfall, incremental, 

and inspection) and answer a set of questions concerning the concepts the models are 

designed to teach (although partial credit could be given for partial completion of the 

assignment). In addition to the questions about the models, students were asked to 

complete a questionnaire about their experience with SimSE (the questions of which are 

listed in Appendix D), similar to the one used in the pilot experiment. 

The questions about the models the students were assigned are listed in Appendix E, 

along with the correct answers. The students were assigned five questions per model, and 

these questions were carefully designed to cover both concepts presented in the course 

and those that were only present in the models. This was done so that we could detect if 

students performed better on one of these types of questions over the other. Although we 
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could not ask questions about every single lesson built into each model, the questions we 

included were specifically chosen to cover both some major and some minor ones from 

each model. This would allow us to generalize from the results of these questions and 

come to some conclusions about how well SimSE as a whole communicates to its players 

the lessons its models are designed to teach. 

The questions were also specifically written in such a way that the students had to 

play the game in order to find out the answer. Some of these questions instructed the 

student to take a particular route through the simulation and note the results. For example, 

one of the waterfall model questions asked, “How is the outcome of the game affected if 

you fire André right at the beginning?” (a question designed to make the student aware of 

how crucial a skilled software designer is to a project). As another example, an 

incremental model question said, “Try skipping one or more of the documentation phases 

(requirements/design) on one or more modules. What effect does this have?” There were 

also questions that were more straightforward, but still required that the students play the 

game in order to find the answer, such as, “What is the ideal size of an inspection team?” 

and “Is it worth it to purchase software engineering tools?” Inclusion of these types of 

questions not only ensures that they put forth legitimate effort for their extra credit, but it 

also ensures that they get a thorough and meaningful experience of SimSE by playing the 

models thoughtfully, carefully, and, in all likelihood, multiple times to find out the 

answers to the different questions.  

Based on the results of the pilot experiment, the version of SimSE used in these 

instances included a new and improved user interface—the version presented in Chapter 

6, minus the explanatory tool.  
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9.2.2 Results 

In the end, 50% of the first class and 66% of the second class attempted the SimSE extra-

credit assignment, so the interest in the opportunity was significant, although the 

possibility of getting extra credit was likely a large part of the draw. The students’ scores 

on the assigned questions were quite high—the high scores were 99% and 98%, the 

average was 80%, and the low scores were 15%, 50%, 54%, and 55%, with a large jump 

after that. This seems to suggest that the majority of students were able to learn most of 

the concepts the models were designed to teach. 

In looking at the answers given by the low-scoring students, it is clear that most of 

their scores could be attributed to the students simply not spending the time playing that 

is needed to answer the questions—for example, many of these students simply skipped 

all of the questions pertaining to a particular model, suggesting that they probably did not 

even attempt to play that particular model at all. It was not often that a student who 

obviously at least attempted each model could not get a decent score (about 75% or 

above) on the questions. This seems to suggest that when enough time and effort are put 

forth, most students do learn the concepts the SimSE models are designed to teach. 

As mentioned previously, the assigned questions were carefully devised to cover both 

concepts presented in the course and concepts that were only present in the models. 

Students scored equally well on both types of questions. Hence, it is clear that students 

were not only reinforced in the knowledge they gained in their courses, but also did learn 

a number of lessons that were not present in their lectures. For instance, the students were 

asked to study the incremental model, an approach that involves incremental delivery of 

code to a customer. While the lecture covered one aspect of why one would want to 
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follow this approach (customer buy-in), students learned from playing the model that 

another reason is changeability: by delivering code early and often, code changes less 

frequently and the program core becomes stable faster. As other examples, students 

learned the ideal size of an inspection team as well as the reasons for this size (tradeoff 

among finding more bugs but having slower discussions), they understood that intrinsic 

factors such as not putting an employee on too many tasks was important, and discovered 

that inspection meetings lose their benefit if they run long. None of these items were 

explicitly covered in the lectures, all were encoded in the models, and all were discovered 

by the majority of the students during game play.  

We examined each student’s SimSE assignment scores in relation to their final grade 

in the class and found that there was no correlation between the two. In other words, both 

students who were doing well and those who were not doing well on other assignments in 

the class were able to provide quality answers on the SimSE assignments. This is 

important for two reasons: First, it suggests that SimSE is applicable across a broad range 

of students with different levels of academic performance, without biasing one group 

over another. Second, it suggests that SimSE has a strong potential to help students who 

are not doing well academically, because apparently this method of instruction is one that 

they can grasp. Of course, there is also the possibility that those who were not doing well 

in the class simply tried harder or spent more time on the assignment since they needed 

the extra credit more. Because we did not collect data about the time put forth by each 

student, however, we are unfortunately not able to investigate this possibility further. 

Looking at the students’ responses on the questionnaires provides even more insight. 

The results of the questionnaires are shown in Table 5, with the averages for each 
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Table 5: Questionnaire Results from Class Use of SimSE, with Averages Compared to Pilot 
Experiment. 

 

question compared with the pilot experiment’s average when applicable (some of the 

questions on the in-class questionnaire were not asked in the pilot experiment). First we 

note that the students who used SimSE in class rated it somewhat lower overall than 

those in the controlled, out-of-class setting of the pilot experiment. This was particularly 

true in the enjoyability aspect of the game: students using it in class ranked it an entire 

point lower (2.5) than those in the pilot experiment (3.5). We hypothesize that this can be 

attributed to two factors: First, course use of SimSE involved the added pressure to earn 

extra credit, required that they play three models instead of one, and required that they 

play enough to find answers to the assigned questions, all of which resulted in 

significantly more time invested than the two or three hours involved in the pilot 

experiment. These circumstances all made the experience decidedly less fun than 

participating in a novel experiment for a few hours through which they earn money. This 

was particularly noticeable when comparing the free-form answers on the questionnaires 

between the two groups—there was definitely a more positive attitude on the part of the 

Question 1 1.5 2 2.5 3 3.5 4 4.5 5 Avg Pilot 
How enjoyable? (1=least enjoyable, 5=most enjoyable) 5 1 19 0 14 1 5 0 1 2.5 3.5 
How difficult/easy? (1=most difficult, 5=easiest) 2 0 7 2 16 0 14 0 5 3.3 3.2 
Reinforces material taught in class? (1=no, 5=definitely) 2 0 7 0 20 0 13 1 3 3.2 3.7 
Teaches new process knowledge? (1=no, 5=definitely) 12 1 13 0 12 0 7 0 5 2.4 2.5 
Teaches SE process in general? (1=no, 5=definitely) 4 0 9 1 18 1 8 0 4 3.0 3.6 
Helps understand lecture concepts? (1=no, 5=definitely) 4 0 13 0 15 1 10 0 2 2.9 N/A 
Helpful as extra-credit? (1=no, 5=definitely) 1 0 8 0 13 0 6 0 18 3.7 N/A 
Helpful as required part? (1=no, 5=definitely) 1 0 15 0 13 1 8 0 3 2.8 N/A 
Incorporate into SE course? (1=no, 5=definitely) 9 0 9 2 8 0 12 0 4 2.8 3.5 
As a mandatory part? (1=no, 5=definitely) 16 0 12 0 13 0 5 0 0 2.2 3.3 
As an extra-credit part? (1=no, 5=definitely) 0 0 5 0 3 1 8 0 29 4.3 N/A 
As a voluntary part? (1=no, 5=definitely) 7 0 3 0 7 0 12 1 16 3.6 3.4 
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pilot experiment subjects, while the in-class students seemed to feel more pressure that 

this was something they “had to do”.  

We believe the second contributing factor to the lower in-class scores was the 

repetitive nature of playing models over and over again in order to master the game and 

discover the answers to the assigned questions—this was the most frequent complaint of 

the students on their questionnaires. Many reported that it was a frustrating, cumbersome 

experience to try to figure out how to succeed in the game, and suggested that SimSE 

provide more feedback about their performance in the game, help tips, and/or a more 

extensive manual. Although repetitiveness can be beneficial educationally, the extent to 

which it was necessary to get to the answers seemed to become a seriously detracting 

factor. As described in Chapter 8, the explanatory tool was specifically designed to 

remove this hurdle (see Section 9.4 for a description of the experiment conducted to 

determine the effectiveness of the explanatory tool in achieving this goal). However, on 

top of the addition of the explanatory tool, this experience may suggest that the way 

SimSE is introduced to students in class should be re-examined, as will be discussed in 

Section 9.6.  

There were only three questions on which the in-class group ranked approximately 

the same as the pilot experiment group: First, both groups believed that SimSE was 

equally difficult/easy to play (3.3 for the in-class group and 3.2 for the pilot experiment 

group). Second, both groups gave SimSE’s ability to teach new process knowledge a 

mediocre rating (2.4 for in-class, 2.5 for pilot). Finally, both groups also had similar 

feelings about SimSE being a voluntary part of the course (3.6 for the in-class group and 

3.4 for the pilot experiment group). The in-class students particularly liked the fact that it 
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was extra-credit, judging from the fact that they rated the question about whether it 

should be incorporated as an extra-credit exercise higher than any other question (4.3). 

This is not surprising—students are always going to appreciate the opportunity for extra 

points. However, this is telling for an instructor’s perspective: use of SimSE in the 

classroom must be rewarded with some form of credit, either as an integral assignment or 

as an extra-credit assignment (again, not surprising, since students are notorious for not 

doing optional elements in any kind of class). 

The students’ answers to the free form questions revealed even more insights, 

sometimes in conflict with their numerical ratings. Interestingly, although the most 

frequent complaint was that it took them too long to be able to “master” a game, when 

asked specifically about the appropriateness of the length of the game, only about half 

said that it lasted too long, while the majority of the rest said the length was just right. 

Also surprising were the answers to the question about whether SimSE taught them any 

concepts better than the lectures did: approximately half of them were able to come up 

with at least one thing they learned better in the game, despite their mediocre ratings of 

SimSE’s ability to help them understand the concepts taught in lecture (2.9) and its 

ability to teach new process knowledge (2.4). 

We were unable to correlate assignment scores to any other student data given in the 

questionnaire responses (such as male versus female) because the questionnaires were 

anonymous in this experiment and were in no way tied to the respondent’s assignment 

score. However, we were able to make correlations among different pieces of data given 

within the questionnaire. First, we compared the responses of students with industrial 

software engineering experience versus those with no experience. The results are shown 
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in Figure 58. The overall trend is that those without experience rated SimSE higher in all 

categories except enjoyability, for which both groups rated it equal. This was almost the 

complete opposite result from the pilot experiment, in which those with experience rated 

SimSE higher. Without further discussion with students in both groups, it is unclear why 

this is, but we can hypothesize that it must have something to do with the different 

environments in which each group was exposed to SimSE. In any case, the differences in 

ratings between the experienced and inexperienced students were not that great. If we 

take these results into consideration with the data from the pilot experiment in which the 

trends were opposite, we can conclude that there probably is no significant difference 

between those with industrial experience and those without, suggesting that SimSE is 

applicable for both types of students. 

The second trend we were able to notice in the questionnaire responses involved the 

differences between males and females, shown in Figure 59. Males ranked SimSE higher 

in all categories except difficulty (females thought it was slightly easier to play), its 

ability to teach new knowledge (equal to females) and its helpfulness to learning process 

concepts (also equal to females). Again, this is in direct conflict to the results in the pilot 

experiment, in which females rated SimSE higher in almost every category. Although we 

would ideally like SimSE to be equally applicable to both genders, these results from in-

class use are not surprising, as it is well-known that computer games are substantially 

more popular with males than females [49]. Nevertheless, the difference in ratings 

between males and females in this case was not that large compared to the known 

difference between the two groups in their affinity for computer games, suggesting that 
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Figure 58: Industrial Experience Differences in SimSE Questionnaire Results for Class Use. 

SimSE is still a promising way to educate both males and females nearly equally well in 

software process concepts. 

To summarize, our experience with class use of SimSE revealed the following 

insights: 

• Students who play SimSE in parallel with taking a software engineering course 

are able to learn from the game most of the concepts the models are designed to 

teach. These include both new concepts and reinforcement of concepts taught in 

lectures. When given a set of questions concerning these concepts, students are 

generally successful in finding the answers to them by playing SimSE. 
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Figure 59: Gender Differences in SimSE Questionnaire Results for Class Use. 

• Use of SimSE in the classroom should at least be rewarded with some form of 

credit. Offering SimSE as an extra-credit exercise seemed to work well, as 

many students attempted the assignment and felt favorably about the 

opportunity for extra credit. Of course, the next step, then, is to experiment with 

incorporating SimSE as a compulsory component, which we plan to do as part 

of our future work (see Chapter 12). 

• SimSE is applicable to a broad range of students along the academic 

performance spectrum. Both students who did well on other assignments and 

 176



those who did not were able to succeed in the SimSE extra-credit assignment, 

suggesting that it can be a useful tool for students of varying abilities.  

• SimSE is equally applicable for both males and females in terms of their 

attitudes and perceptions about the game. While males (not surprisingly) ranked 

SimSE slightly higher than females, the difference was quite minor, and not as 

great as one would expect, given the known attraction of males to computer 

games. Taken with the pilot experiment results in which females’ rankings were 

higher, we can conclude that there is probably no difference between the two 

groups’ opinions about SimSE. 

• Additional guidance and feedback in a SimSE game is needed to make the 

experience less frustrating, more enjoyable, and potentially more educationally 

effective. Because the main complaint of students was the lack of guidance and 

feedback, it is clear that more help is needed in order to create a more positive 

experience. 

9.3 Comparative Experiment 

9.3.1 Experiment Setup 

After establishing in the first two experiments that SimSE does indeed have significant 

potential as a teaching tool and that students who play it do seem to learn the concepts the 

models are designed to teach, the next step was to try and discover how it compares to 

traditional teaching methods (reading from a textbook and hearing lectures). In particular, 

we aimed to compare the effectiveness of each method in teaching a specific set of 

software process concepts, as well as other aspects underlying the learning process—both 
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practical aspects such as time spent and subjective aspects such as student attitudes and 

motivation. With this comparison we would be able to make some informed judgments 

about whether SimSE would truly be a useful addition to a course—an addition more 

useful than one that included extra traditional assignments such as readings or lectures.  

For this experiment we recruited 30 undergraduate students, 15 who had passed either 

ICS 52 or Informatics 43, and 15 who had not taken either of these courses (however, 

only 19 subjects total ended up completing the experiment, as is discussed in the next 

section). This particular mix of educational experience was chosen for the following 

reason: SimSE is meant to be used as a complement to existing teaching methods, so it 

assumes some background knowledge of basic software engineering concepts, and hence, 

the target population is those students who have taken at least one introductory software 

engineering course. However, students who have taken a software engineering course 

will have already been taught (through textbooks and lectures) much of the material that 

was taught in this experiment using textbooks and lectures. Hence, creating an equal mix 

of students from the two different experience levels creates a balance addressing both of 

these concerns, as well as helps provide some insight into how SimSE does as a teaching 

tool for those who have no software engineering experience. The number of subjects (30) 

was chosen based on the desire to have a high enough number of people in each of three 

treatment groups so that statistically significant statements could be made about the 

results. The students were randomly divided into three groups (SimSE, reading, and 

lecture) of approximately equal size, with the condition that in each group approximately 

half of the people had passed either ICS 52 or Informatics 43 while the other half had not. 
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The SimSE group was given the same version of SimSE that was used in the in-class 

experiments, along with three SimSE models to play, specifically, the waterfall, 

incremental, and inspection models. These were the three SimSE models that were most 

stable and had already been shown in the previous experiments to be potentially useful 

and effective in teaching the software process concepts they are designed to teach. The 

subjects in this group were instructed to play each model enough to be able to obtain a 

“good” score in each game (85 or above). This instruction was given to try to ensure that 

they would play each game enough to learn most of the concepts the games are designed 

to teach. 

The reading group was instructed to complete a set of readings that covered the 

software process concepts embodied in the SimSE models played by the SimSE group. 

The readings were taken from Ian Sommerville’s textbook, Software Engineering [134], 

since this is the most widely-used software engineering textbook, and the specific topics 

covered in the book matched well with the lessons in the SimSE models. 

The lecture group was required to attend two 50-minute lectures about the same 

software process concepts that were taught to the SimSE group (through SimSE) and the 

reading group (through readings). The slides used for the lectures were those that were 

created by Ian Sommerville to accompany his textbook [134]. A graduate student who 

was experienced in teaching software engineering classes gave the lectures. 

The experiment ran over a duration of five days. On day one, all subjects were given 

a pre-test (the questions of which are listed in Appendix F) that measured their 

knowledge in the software process concepts that were to be taught using the three 

methods. At the completion of the test, all subjects were then randomly assigned to a 
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treatment group and given instructions about the assignment to complete (SimSE, 

reading, or lectures). At this time, all subjects were also notified that on day five they 

would be given another test on the concepts they were to be taught in the learning 

exercise during the week. For the next four days, the SimSE group was expected to play 

SimSE, the reading group was expected to complete the readings, and the lecture group 

was expected to attend their two lectures, which took place on days two and four.  

On day five, the subjects were given a post-test (the questions of which are listed in 

Appendix G) which contained some of the same questions as those in the pre-test, but 

also included some different questions. This mix of questions was designed to both 

ensure some consistency between the two tests and, at the same time, mitigate the 

possible bias of students knowing the questions that will be asked ahead of time (in 

which case they might have looked up answers, or prepared for them in some other way). 

The pre- and post-tests, which were anonymized so that the grader did not know which 

group each subject was in, were then graded and each subject received a score on each 

test. 

The questions on the pre- and post-tests were of three main types: Specific questions 

asked students to recite explicit pieces of software process knowledge that were taught in 

the learning exercise. Insight questions asked students to abstract away general concepts 

from the material, and make comparisons between various concepts in the material. 

Application questions required students to apply their software process knowledge to a 

hypothetical real-world problem. These three different types of questions were included 

for three main reasons: (1) In order to cover a broad range of different types of 

knowledge; (2) To reflect the different types of questions that are normally asked on the 
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tests in ICS 52 / Informatics 43, (an existing standard designed to test software 

engineering knowledge); and (3) To provide insight into whether there is any difference 

in the types of questions that students from each group score high or low on, which may 

suggest something about what types of knowledge each method is better or worse at 

teaching than the others.  

Some of these questions were also designed with a deliberate bias toward either 

SimSE or the readings and lectures. (The readings and lectures taught exactly the same 

material, while some of the SimSE concepts were different. It was not possible to find a 

set of readings and lectures that matched perfectly the knowledge taught in the SimSE 

models, since the SimSE models were built using a variety of knowledge sources.) These 

questions asked about concepts that were not overlapping between the different treatment 

groups. For example, a SimSE-biased question asked about knowledge that was only 

taught through one of the SimSE models, but not through either the readings or the 

lectures. These few, select biased questions were included for another comparison point 

between the three methods, namely, in order to compare how well each method enables 

students to remember the specific knowledge taught, as well as how well each group can 

infer knowledge that was not taught in their treatment group.  

At the end of the experiment all subjects were also given a questionnaire (see 

Appendix H) that asked them to state their thoughts and feelings about the instructional 

method in which they participated. This questionnaire contained two main types of 

questions: The first type of question asked them about the teaching/learning method used, 

including how much time they spent on the exercise, how much they enjoyed it, how 

effective they felt it was, and whether they prefer it over other methods. These questions 
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allowed us to compare both practical aspects of the methods (such as time spent), as well 

as students’ attitudes about the various methods. The second type of question asked them 

to provide some background information, which allowed us to detect any correlations 

between such variables as experience level or gender and the subject’s performance on 

the learning exercise. Overall, the purpose of the questionnaire was to gain insight into 

how SimSE compares with the traditional teaching methods of reading and lectures in 

some of the fundamental aspects of learning such as students’ attitude and motivation.  

9.3.2 Experiment Results 

Due to the unfortunate facts that (1) several subjects who were scheduled for the 

experiment did not show up, and (2) some dropped out between day 1 and day 5 of the 

experiment, the number of subjects in each group and in the experiment as a whole was 

fewer than planned. The experiment ended up with only 19 subjects versus the 30 that 

were planned for, with seven in the SimSE group, six in the reading group, and six in the 

lecture group. As a result, there were very few trends in the data that can be considered 

truly statistically significant (all are p>0.05 unless otherwise stated). However, as a pilot 

comparative study, the data still hints at the probability of several trends that warrant 

further investigation in future studies, and points out critical issues that must be 

considered when conducting these studies. 

The overall results for the pre- and post-test scores are shown in Figure 60. In terms 

of measured gain in software process knowledge, while all groups improved somewhat, 

the reading group improved the most (5.08), followed by the lecture group (4.04), 

followed by the SimSE group (1.21). In the end, the reading group also seemed to end up 

with the greatest amount of software process knowledge, as the post-test scores followed 
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Figure 60: Test Score Results for All Questions Divided by Treatment Group. 

this same trend (reading group highest, followed by the lecture group, followed by the 

SimSE group). However, this data also shows that the SimSE group had significantly 

higher pre-test scores to begin with. This could be partially due to the fact that the SimSE 

group, because of the random distribution of experiment drop-outs, by chance happened 

to end up with the highest percentage of students who had taken ICS 52 / Informatics 43 

(5 out of  7), compared to the reading (3 out of 6) and lecture (4 out of 6) groups. (For 

simplicity, from here on we will refer to students who have taken ICS 52 / Informatics 43 

as “52/43 students”, and those who have not as “non-52/43 students”.)  

If we divide the subjects not only by treatment group, but also by whether or not they 

are 52/43 students (as shown in Figure 61), we can gain even more insight. First, it is 

probable that, as we hypothesized, the high pre-test score average of the SimSE group 

can be attributed to its 52/43 students, as these students’ pre-test scores were significantly 

higher than any other group (8.9). Their gain in knowledge, however, was significantly 

lower than any other group (0.6). One possible reason for this (and there are others, as 
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Figure 61: Test Score Results for All Questions Divided by Treatment Group and Educational 

Experience. 

will be discussed later) is that, since the SimSE group had the strongest students to begin 

with, they did not have much room for improvement—that is, most of the knowledge 

they stood to gain from the exercise they already possessed. 

If we look at the post-test scores in Figure 61, we can see that, although overall the 

SimSE group scored lowest, in actuality the SimSE 52/43 students had the second-

highest post-test score average of any group (9.5), and it was the especially poor 

performance of the non-52/43 SimSE students (5) that brought the overall group’s 

average down. In fact, the non-52/43 SimSE students had the lowest post-test scores of 

any group (although they still improved by 2.75 points on average). This suggests that 

using SimSE with students who have no background knowledge in software engineering 

is not very effective (as compared to reading and lectures, which seem to be equally, if 

not more effective for students with no background knowledge). From this data, it is hard 

to say whether it is effective for students who do have background knowledge, since the 
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52/43 SimSE students happened to be so well-versed in software process to begin with. 

However, it does show that even these students who knew a great deal already were able 

to improve somewhat (albeit modestly) by using SimSE. 

Looking at the data in this way also shows an unexpected trend that occurred in the 

reading group: On the post-tests, the non-52/43 students scored an entire three points 

higher than the 52/43 students on average. In all other groups across the board, the 52/43 

students scored noticeably higher on the post-tests than the non-52/43 students. This 

trend, however, can be easily explained by what many of the 52/43 reading students 

wrote on their questionnaires when asked if they did less than assigned, and why: they 

began reading the material, noticed that it was familiar to them since they had been 

exposed to it in class before, and, as a result, decided to either skip it or just skim it. The 

non-52/43 students, on the other hand, read the material more thoroughly, since they had 

not seen it before. To corroborate this, the 52/43 students also reported spending less time 

on the reading exercise (1.3 hours on average) than the non-52/43 students (1.7 hours on 

average). 

In general, the rest of the trends when split up by education level (in Figure 61) were 

as expected: in each group, the 52/43 students scored higher than the non-52/43 students 

on the pre-tests (suggesting that the pre-tests measured software process knowledge 

accurately); all students in all groups improved between the pre- and post-test; and the 

non-52/43 students improved more than the 52/43 students in all groups (since they had 

more to learn). 

We can also look at the data in terms of each groups’ scores on the type of question, 

whether specific, insight, or application. The trends for specific questions are shown in 
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Figure 62, and for the most part follow the same trends that we have seen already. 

Although for these questions the reading and lecture groups showed equal improvement 

(0.3), the SimSE group was, again, significantly behind the others (0.036). 
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Figure 62: Test Score Results for Specific Questions Divided by Treatment Group. 

 
If we look at the data for insight questions, however, there is an interesting trend to 

notice (see Figure 63). This was the only time that the SimSE group actually scored 

highest on the post-test. (Again, of course, their starting point was also higher.) Looking 

at the data for the insight questions split into 52/43 and non-52/43 students (see Figure 

64) shows that this was primarily due to the high scores of the 52/43 students, not the 

non-52/43 students. Perhaps this suggests that, for students with sufficient background 

knowledge, SimSE is more useful than reading or lectures for teaching the kind of skills 

needed to answer this type of question—specifically, the skills to abstract away general 

concepts from the material, and make comparisons between various concepts in the 

material. 
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Figure 63: Test Score Results for Insight Questions Divided by Treatment Group. 

 

Figure 64: Test Score Results for Insight Questions Divided by Treatment Group and 
Educational Experience. 

 
The averages for the application questions seem to follow the overall trends, as is 

seen in Figure 65. However, splitting each group into 52/43 and non-52/43 students, 

shown in Figure 66, yields a notable trend: Of the 52/43 students in all groups, the 52/43 
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Figure 65: Test Score Results for Application Questions Divided by Treatment Group. 

Figure 66: Test Score Results for Application Questions Divided by Treatment Group and 
Educational Experience. 

students in the SimSE group had the highest post-test scores for application questions. 

This may suggest that SimSE is also especially effective in teaching the type of skills 

needed to answer these types of questions, namely, skills in applying software process 
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knowledge to real-world problems (specifically the type of skills that SimSE is designed 

to teach), but, again, with the caveat that the students must first have sufficient 

background knowledge in software engineering. Of course, this trend is small and only 

shows that SimSE helped these 52/43 students perform better on these questions by a 

small amount. (This is not surprising since this group’s test scores started out high 

already.) 

Now let us take a look at the biased questions. Surprisingly, the SimSE group was 

only the second-most improved group in SimSE-biased questions, as shown in Figure 67. 

This apparently means that either the SimSE-biased questions were not truly SimSE-

biased, or else the SimSE group did not really learn the concepts meant to be taught by 

SimSE as well as they were expected to. The latter is probably true, judging from the rest 

of the data that indicates the SimSE students did not gain a great amount of new 

knowledge. 
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Figure 67: Test Score Results for SimSE-Biased Questions Divided by Treatment Group. 
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Breaking down the groups into 52/43 and non-52/43 students for the SimSE-biased 

questions reveals more interesting insights (see Figure 68): First, the 52/43 SimSE group 

scored much higher than the non-52/43 SimSE students on both the post-test (0.675 

versus 0.375), and in the difference between the pre- and post-test (0.183 versus -0.0435). 

In fact, the non-52/43 SimSE students actually worsened in their performance on SimSE-

biased questions from the pre- to the post-test. This was the only instance in the SimSE 

group in which students did not improve from pre-test to post-test (aside from the 52/43 

students with the reading/lecture-biased questions, probably simply because SimSE did 

not teach these particular concepts). Moreover, this was the only instance throughout the 

whole experiment in which the 52/43 students in a group improved more than non-52/43 

students (with the exception of the lecture students with the SimSE-biased questions, 

however, the haphazardness of the data and the fact that the lectures do not really address 

the SimSE-biased questions suggests that the lecture students may have been guessing on 

the questions). Again, these trends may indicate that in order for students to learn the 

concepts SimSE is designed to teach, it must be used only with students who have 

sufficient background knowledge in software engineering. 

Finally, the trends for the reading/lecture-biased questions are as expected: the 

reading and lecture groups improved about equally as well (0.5 and 0.48, respectively), 

and the SimSE group’s improvement was almost zero (0.018). This data is reflected in 

Figure 69. 

The students’ answers to the questionnaires provide us with more insight about the 

trends seen here, by capturing their attitudes, thoughts, and perceptions of the particular 

learning exercise in which they were involved. The first part of the questionnaire asked 
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Figure 68: Test Score Results for SimSE-Biased Questions Divided by Treatment Group and 
Educational Experience. 
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Figure 69: Test Score Results for SimSE-Biased Questions Divided by Treatment Group. 

 

the students to rate and report on various aspects of their experience. These are 

summarized in Table 6. 
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Table 6: Summary of Rating/Reporting Questions on Questionnaire. 
 

Group Time spent 
(average) 

More / less 
than / equal 
to assigned? 
(number of 

subjects 
reporting) 

Enjoyable? 
(average) 

Engaging? 
(average). 

Helpful in 
learning 
process 

concepts? 
(average) 

Effective 
lecturer? 
(average) 

Lecture 2 hours 6 all 3.7 3.9 3.9 4.3 
Reading 1.5 hours 1 more,  

4 less,  
1 all 

2.0 2.0 2.8 N/A 

SimSE 4.6 hours 7 less 3.7 4.0 3.2 N/A 
 

The SimSE group spent significantly longer on the exercise (4.6 hours) than either the 

lecture group (2 hours) or the reading group (1.5 hours). However, every subject in the 

SimSE group also played less than they were assigned (they did not play each model 

enough to get a score of 85 or above). When asked why, the answers of every SimSE 

subject indicated that the game was frustrating for them because it was too hard to get a 

good score, so they gave up. Some of them did not even attempt all of the models even 

once (one student only played the waterfall model, and never even started the other two 

models). All of them stated that they needed more guidance and/or background 

information in order to be able to succeed in the game.  

This was probably the biggest factor behind the SimSE group’s comparatively low 

test score improvement–if they did not complete the exercise, they are obviously not 

going to learn all of the lessons the exercise was meant to teach. Plotting the time spent 

on the learning exercise versus improvement from pre- to post-test (see Figure 70) 

underscores this. Although the reading group showed no correlation between time spent 

and improvement (and this analysis was irrelevant for lectures since all subjects spent the 

same amount of time), the SimSE group showed a strong and highly significant 
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correlation between the time spent and improvement (Pearson r=0.81, p<0.001)1. 

This suggests that even though the way in which SimSE was delivered in this case was 

less-than-ideal, the students were still learning something as they played, and it is likely 

that they would have learned more had they continued playing and not given up when 

they did. It is also evident from this data that the cost in time for using SimSE effectively 

is high. This is a potential drawback of SimSE, as it requires significantly more time 

invested on average than readings or lectures covering roughly equivalent material.  
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Figure 70: Time Spent on Learning Exercise Versus Improvement from Pre- to Post-Test. 

All of this is more evidence that SimSE needs to be used in conjunction with other 

teaching methods, but, since the 52/43 students also complained that they did not have 

enough guidance to succeed in the game, it is clear that more guidance needs to be given 

with the game, even with students who have background knowledge in software 

engineering. This corroborates the data from in-class use, in which students also 

                                                 
1 To be thorough, we also used the two main ordinal measures of association (Gamma and Spearman rho), 
and the results were similar (Gamma=0.789, p<0.001; Spearman rho=0.845, p<0.001). 
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expressed this same frustration at the lack of direction given with the game (although not 

with the same frequency or severity as in this experiment). 

Even though the SimSE students found the experience frustrating, they still gave it 

surprisingly high scores in enjoyability (3.7 out of 5, tied for first place with the lecture 

group) and level of engagement (4.0 out of 5, higher than both the lecture group (3.9) and 

the reading group (2.0) rated their experiences). They also still felt that SimSE, although 

frustrating, was helpful in teaching software process concepts (3.2 out of 5, compared 

with 3.9 for the lecture group and 2.8 for the reading group).  

The questionnaires also asked the students to state which method of learning about 

software process concepts they would choose if given a choice (along with a mention that 

playing the game would take twice as long as reading or hearing a lecture). The answers 

to these questions are summarized in Table 7. Again, even though the students found 

SimSE frustrating, the majority of them would still choose to learn software process 

concepts through SimSE instead of reading (57%) and instead of lectures (86%). And for 

those who had never been exposed to SimSE before, just the idea of a software 

engineering game is intriguing and attractive—100% of the reading group would choose 

a game over reading, and 50% of the lecture group would choose a game over lectures. 

This was also evidenced by the students’ observable attitudes during the experiment: on 

the first day of the experiment when they were assigned to their treatment groups, most of 

the students assigned to the reading and lecture groups were noticeably disappointed, and 

even angry, as they expected to get to play a game as part of the experiment! On top of 

that, several of these students asked for information about how to get a copy of the game, 

so they could play it on their own time after the experiment was over. 
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Table 7: Summary of Learning Method Choice Questions on Questionnaire. 
 

Group Reading or lectures? Reading or game? Lectures or game? 
Lecture 100% lectures N/A 50% lectures, 50% 

game 
Reading 60% reading, 40% 

lectures 
100% game N/A 

SimSE N/A 43% reading, 57% 
game 

14% lectures, 86% 
game 

 
What is interesting is that while the difficulty of figuring out how to get a good score 

was repeatedly listed as the most discouraging part of SimSE, it was also listed many 

times as one of the most enjoyable and attention-grabbing aspects of the exercise. 

Although the challenge posed by SimSE might have been too large in this particular 

setting, they still enjoyed the process of trying to tackle it. Other aspects of the game the 

students listed as most enjoyable were: the “gaming” aspects such as graphics and 

interactivity, the “fun” of being in control, managing employees, and getting to 

experience a hands-on approach to software engineering. 

All of these high ratings in an out-of-class context with little guidance suggest that, if 

used in the proper context (in conjunction with a software engineering course) and with 

an adequate amount of guidance, SimSE has tremendous potential to be a highly 

enjoyable, engaging, and effective method of teaching software process concepts in 

which students are excited to participate. 

Other questions on the questionnaire asked about each students’ amount of industrial 

experience in software engineering, how many software engineering classes they had 

taken, and whether they were male or female. However, since only one person had 

industrial experience, only one person had taken more than one class in software 

engineering, and there were only three females in the experiment (two in the lecture 

group and one in the SimSE group), there were no detectable trends involving this data. 
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To sum up, this experiment revealed the following insights about SimSE: 

• The idea of playing a game to learn software process concepts is intriguing and 

attractive to students. Both the fact that the SimSE group was noticeably the 

most desirable group to be in on day one of the experiment, and their stated 

preference on the questionnaire for learning software process concepts through 

a game over other teaching methods attest to this. 

• SimSE should only be used complementary to other teaching methods, and more 

guiding information than was given in this experiment must be provided when 

giving an assignment to play SimSE. This was suggested again and again in the 

data: The 52/43 SimSE students performed overwhelmingly better than the non-

52/43 students on the post-tests; the non-52/43 students performed 

overwhelmingly worse than any other group on the post-test, and only improved 

modestly between pre- and post-test; the 52/43 SimSE students seemed to learn 

the SimSE-biased concepts much better than the non-52/43 SimSE students; and 

all SimSE students repeatedly expressed that they needed more information and 

guidance to be able to succeed in the game. 

• The longer a student plays SimSE, the more they learn. The one strongly 

significant effect that was detected in this experiment was the positive 

correlation between time spent playing SimSE and the magnitude of 

improvement between pre- and post-test. Thus, proper investment of time is a 

critical factor in using SimSE effectively. 

• It requires significantly more time to play and learn from SimSE than it does to 

attend lectures or complete a reading assignment covering roughly the same 
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concepts. This high time commitment no doubt added to the frustration felt by 

SimSE players in this experiment. Although it is possible that the extra time 

actually pays off in additional learning that does not take place through readings 

or lectures, this was not suggested by the data from this experiment. 

• SimSE has tremendous potential to be an effective, engaging, and enjoyable tool 

for teaching software process concepts—if used in the context of a software 

engineering course, and if adequate instruction and guidance is provided to the 

students playing SimSE. Even without adequate background knowledge and 

guidance, students who played SimSE rated their experience remarkably high in 

several different areas. Moreover, even though none of them fulfilled the 

assignment to completion, they still improved between pre- and post-tests, 

indicating that they did learn something, and the data indicates that the more 

they played, the more they learned. 

9.4 Observational Study 

9.4.1 Setup 

Although the first three experiments provided us with much valuable data about SimSE 

and its ability to help students learn, the insight gained into an individual student’s 

learning process was limited to questionnaires and test results, due to the design of these 

experiments. Thus, for our final experiment we conducted an in-depth observational 

study in which we observed students playing SimSE and interviewed them about their 

experience. The primary purpose of this study was to investigate the learning processes 

students go through when playing SimSE—namely, how SimSE helps people learn 
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software engineering process concepts. We designed SimSE with a number of learning 

theories in mind (in particular, Learning by Doing, Situated Learning, Keller’s ARCS, 

Discovery Learning, and Learning through Failure), and student responses from the first 

three experiments hinted that some of these were being employed. Because these 

experiments focused on other aspects besides the in-depth learning process, these 

learning theories were not looked into any further. In this experiment, therefore, we 

specifically set out to detect which of these (and other) learning theories actually come 

into play in the learning process of a SimSE player. In so doing, we aimed to gain further 

insight into the way SimSE helps students learn, which can inform future work both in 

educational simulation in software engineering, and educational simulation environments 

in general. Moreover, this data can serve to help validate whether or not the learning 

theories simulation environments are thought to embody are actually employed by 

students who use them. 

The secondary purpose of this experiment was to evaluate how well the explanatory 

tool achieves its goals of aiding students in understanding their score, helping them 

recognize where they went wrong and/or right in the approach they took, and assisting 

them in planning a successful approach to the next run of the game. This was done by 

having some students play SimSE with the explanatory tool and some without, and noting 

the differences in their attitudes and opinions about the game, as well as their behavior in 

playing the game. 

For this experiment, we recruited 15 undergraduate computer science students who 

had passed either ICS 52 or Informatics 43 to participate (although only 11 actually 

completed the experiment—four students either cancelled or missed their appointment). 
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As in previous experiments, the requirement of passing either ICS 52 or Informatics 43 

was put in place because of the intended audience for SimSE: those who have some prior 

knowledge of basic software engineering concepts. The number of subjects (15) was 

chosen because this was a highly focused study that required a significant amount of time 

spent with each subject. Therefore, the focus was on getting an in-depth look at a few 

subjects, rather than an overall, shallower view of a larger number of students. 

This experiment occurred in a one-on-one setting—one subject and one observer. 

Each subject was first given approximately 10 to 15 minutes of instruction on how to 

play SimSE. They were then observed playing SimSE for around 2.5 hours. Eight 

subjects played with the explanatory tool and three played without. While they were 

playing, their game play and behavior were observed and noted. Following this, the 

subject was interviewed about their experience for about 30 minutes, and the audio of the 

interview was recorded. In addition to any spontaneous questions the observer formulated 

based on a particular subject’s actions or behavior during game play, all subjects were 

asked a set of standard questions. Several of these questions were designed to specifically 

detect the presence of one or more learning theories in the subject’s learning process. 

Some questions did not target a particular theory or set of theories, but were instead 

meant to evoke insightful comments from the subject from which various learning 

theories could be detected, and from which general insight into the learning process could 

be discovered. The standard set of questions is listed here, with the targeted learning 

theory (or theories) listed in parentheses afterwards when applicable. 

1. How would you summarize what happened in game 1/2/x?  
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2. How did your score change each time you played (did it improve, worsen, 

fluctuate, remain constant)? (Discovery Learning, Learning through Failure) 

3. To what do you attribute the change (or lack of) (improvement, worsening, 

fluctuation, steady state) of your score with each game? (Discovery Learning, 

Learning through Failure) 

4. How many times did you feel you “won”, or were successful at the game? What 

did you learn from each of these games? (Discovery Learning, Learning 

through Failure) 

5. How many times did you feel you “lost”, or were unsuccessful at the game? 

What did you learn from each of these games? (Discovery Learning, Learning 

through Failure) 

6. Do you feel you learned more when you “won” or when you “lost”? Why? 

(Discovery Learning, Learning through Failure) 

7. When you lost, did you feel motivated to try again or not? Why? (Learning 

through Failure) 

8. On a scale of 1 to 5, how much did playing SimSE engage your attention? Why? 

(Keller’s ARCS) 

9. How relevant do you feel this experience will be to your future experiences in 

software engineering? Why? (Keller’s ARCS) 

10. How much has your level of confidence changed in the learning material since 

completing this exercise? (Keller’s ARCS) 

11. How satisfied do you feel with your experience playing SimSE? (Keller’s 

ARCS) 
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12. Did you feel that you learned any new software process concepts from playing 

SimSE that you did not know before? If so, which ones?  

13. If you feel you learned from SimSE, what do you believe it is about SimSE that 

facilitated your learning?  

The next three questions were primarily designed for comparison between the 

subjects who used the explanatory tool and those who did not. These questions aim to 

discover how the player went about figuring out the reasoning behind their scores, as well 

as how well they understood this reasoning. 

14. Where do you think you went wrong in game 1/2/x? 

15. Please describe the process that you followed to figure out the reasoning behind 

your score, or where you went wrong/right. 

16. How would you alter your approach in the next game based on this 

information? 

The final four questions were only asked of those who used the explanatory tool, and 

were designed to determine how well the explanatory tool achieves its purpose. 

17. What was your strategy for using the explanatory tool to figure out where you 

went wrong/right? 

18. How helpful did you feel the explanatory tool was to figuring out where you 

went wrong, the reasoning behind your score, and how you could improve in the 

next game? 

19. Was there anything confusing about the explanatory tool? If so, what? 
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20. What changes would you make to the explanatory tool to make it more helpful 

for figuring out where you went wrong, the reasoning behind your score, and 

how to improve in the next game? 

Following the experiment, the interviewer’s observations and interview notes were 

analyzed to try to discover which learning theories were employed, and how, as well as to 

discover any other insights about SimSE as a teaching tool that could be gained from this 

data. We used different techniques for detecting different learning theories. Learning by 

Doing and Situated Learning are theories that are more difficult to detect than some of 

the others—any associations between the act of “doing” or realistic factors in the learning 

environment and the process of learning are not obvious through observation, and 

interview questions targeting these theories would be too suggestive (e.g., “Was it the act 

of doing something that helped you learn?”) Rather, we wanted to ask more general 

questions that would allow the subject to state their opinions and comments honestly and 

freely, without any subtle suggestions about what the “right” answer was (e.g., “If you 

feel you learned from SimSE, what do you believe it is about SimSE that facilitated your 

learning?”) We mainly used the subjects’ answers to questions like these, as well as any 

other relevant comments, to detect these two theories. Specifically, anything they said 

that indicated the usage of one of these theories was noted. For example, “SimSE helped 

me learn because I could actually put into practice what I learned in class” would be 

considered a comment indicative of Learning by Doing. An example of a comment 

hinting at the Situated Learning theory might be, “SimSE helped me learn because I 

could experience a software engineering process in a realistic setting.” 
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To measure the utilization of the Keller’s ARCS learning theory, we primarily looked 

at each subject’s answers to questions that specifically asked about their attention, 

(perceptions of) relevance, confidence, and satisfaction in relation to SimSE. In addition 

to this, we also used observations of their behavior during game play, as well as any other 

relevant comments they made, to make conclusions about the presence of this theory in 

their learning process. For example, we noted whenever a subject behaved in a way that 

suggested their attention was or was not engaged (e.g., leaning forward with an expectant 

look on their face, or letting out a sigh of boredom), or made a comment relating to 

attention, relevance, confidence, or satisfaction (e.g., “It was fun”, “It was repetitive”, or 

“It was frustrating”).  

The presence of the Learning through Failure theory was detected in a manner similar 

to that of Keller’s ARCS. Some of the interview questions were specifically targeted to 

discover how often subjects felt they failed and how much they learned through those 

failures. We analyzed answers to these questions, as well as other relevant comments and 

behavior (e.g., appearing defeated after a low score) to evaluate the utilization of this 

theory. 

We looked for the presence of the Discovery Learning theory by analyzing several 

parts of the interview, as well as observations of game play, to determine what each 

subject learned and how they learned it (i.e., through independent discovery or some 

other means). 

We also sought to detect if any other learning theories that we did not anticipate were 

employed by analyzing interviews and subject behavior to see if any additional theories 

became evident. Finally, we compared the answers and behaviors of those who used the 
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explanatory tool to those who did not, noting any differences that would suggest how 

well the explanatory tool achieves its purposes. 

The version of SimSE used in this experiment was the same as the one used in the 

previous two experiments, with the addition of the explanatory tool for eight of the 11 

subjects. To ensure that the results could be generalized for SimSE as a whole, and not 

for a particular simulation model, a variety of models were used—four subjects played 

the RUP model (three with the explanatory tool and one without), one subject played the 

waterfall model (with the explanatory tool), and six subjects played both the rapid 

prototyping and the inspection models (four with the explanatory tool and two without). 

The rapid prototype and inspection models did not take as long to play as the others, so 

they were always played together. The waterfall model was only played by one subject 

because it was deemed less appropriate for this experiment than the other models, as will 

be explained in Section 9.4.2. Two of the subjects had played SimSE before, so to make 

sure they did not have any prior experience with the model played, they were given the 

RUP model, which was newly built and not yet released at the time. 

9.4.2 Results 

General Learning. First and foremost, as corroborating with the previous experiments, it 

appears that all subjects in this experiment learned, at least to some degree, from playing 

SimSE. All subjects were able to recount software process lessons that they learned from 

SimSE, nine of the 11 subjects reported that their confidence in the subject matter 

(software process) had increased at least somewhat, and, for the most part, subjects 

tended to improve their scores from game to game as they successfully implemented the 

learned lessons in their game play. However, we found that scores alone are not accurate 
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indicators of learning—even subjects who were never able to improve their score 

reported that they still learned, and were able to list a number of specific lessons they 

could take away from the experience. This can partly be attributed to too-harsh scoring in 

some models (which will be discussed later in this section), but we also discovered 

through our observations that fluctuating scores can result from the way most subjects set 

about tackling the challenges of each model: isolate aspects of the process and 

experiment with them individually (or in small sets), while keeping the others constant. 

Thus, once they have mastered one aspect, they move on to another aspect, with their 

scores fluctuating with each round of experimentation as they likely attempt a few 

incorrect strategies before discovering a correct one. In the end however, with the 

exception of the model we determined used too-harsh scoring, nearly every subject was 

able to achieve their best score with each model the last time they played that model. 

This, along with each subject’s ability to describe lessons they learned, suggests that 

through the experience they gained a decent understanding of the lessons taught. 

Learning Theories. The learning theory that was most clearly implemented by every 

subject was Discovery Learning. All subjects were able to recount at least a few lessons 

they learned from SimSE, and none of these lessons were ever told to them explicitly 

during their experience. Rather, they discovered them independently through exploration 

and experimentation within the game. Interestingly, although all subjects that played a 

model seemed to discover the same lessons (for the most part), no two subjects 

discovered them in the same way. Every subject approached the game with a different 

strategy, but came away with similar new knowledge, suggesting that SimSE, and 

perhaps educational simulation in general, can be applicable to a wide range of students 
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that come from different backgrounds with different ideas. This is a central aspect of a 

learner-focused theory like Discovery Learning. Since learning depends primarily on the 

learner and not the instructor, the learner is free to use their own style and ideas in 

discovering the knowledge, rather than being forced to adhere to a rigid style of 

instruction. 

Learning through Failure also seemed to be widely utilized. As mentioned previously, 

every subject seemed to take a “divide and conquer” approach to playing SimSE, 

isolating aspects of the model and tackling them individually (or a few at a time). When 

subjects described the progression of their games in the interviews, it was clear that the 

way they conquered each aspect was by going through at least one or two rounds of 

failure in which they discovered what not to do, and from this discovering a correct 

approach that lead to success. When asked explicitly about learning through failure, every 

subject stated that they learned when they failed, but the amount of learning they reported 

varied. Five subjects said they learned more from failure than success, two subjects said 

they learned more when they succeeded, and four subjects said they learned equally as 

much from failure and success. All but one subject said that they were motivated to try 

again after they failed. This motivation was also evident in the behavior of several 

subjects, as some, after the completion of one failed game, hurriedly and eagerly started a 

new one. One subject even tried to start a new game when the time for the game play 

portion of the experiment was up and he was already informed that it would be the last 

game.  

Overall, the challenge of receiving a “failing” score and trying to improve it seemed 

to be a significant avenue of learning and a strong motivating factor of SimSE. We can 
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abstract away from this a broader lesson for educational simulation environments in 

general: Simulation models should be made challenging enough that students are set up 

to fail at times. It is these failures that provide some of the greatest opportunities for 

learning. 

The Learning by Doing theory seemed to be employed by most of the subjects. Eight 

out of the 11 subjects made comments about their experience playing SimSE that hinted 

at their usage of Learning by Doing. Some of their comments included: 

- “[SimSE helped me learn because it] puts you in charge of things. It’s a good 

way of applying your knowledge.” 

- “[SimSE helped me learn because it is] interactive, not just sitting down and 

listening to something.” 

- “[SimSE helped me learn because] you’re actually engaged in doing 

something.” 

- “[SimSE is] a good way of putting concepts into practice.” 

As can be seen, several of these comments mentioned the ability to put previously 

learned knowledge into practice as a learning-facilitating characteristic of SimSE. This 

again reinforces the principle that simulation should be used complementary to other 

teaching methods, so that it can fulfill this important role of being an avenue through 

which students can employ Learning by Doing as they apply concepts learned in class. 

Comments indicative of Situated Learning were also rather frequent, mentioned by 

seven out of the 11 subjects. Some of these included: 
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- “[SimSE helped me learn because] it was very realistic and helped me learn a 

lot of realistic elements of software engineering, such as employees, budget, 

time, and surprising events.” 

- “[One of the learning-facilitating characteristics of SimSE was] seeing a real-

life project in action with realistic factors like employee backgrounds and 

dialogues.” 

- “[One of the learning-facilitating characteristics of SimSE was] the real-life 

scenarios.” 

- “[SimSE is helpful to learning because] it would be good for students to apply 

what they learn in a pseudo-realistic setting.” 

The realistic elements in SimSE seem to add significantly to its educational effectiveness. 

Thus, it is important to include elements of the real world in any educational simulation, 

in order to situate students’ knowledge in a realistic environment. 

Keller’s ARCS Motivation Theory seemed to also be employed by the subjects, 

although certain aspects of the theory came out stronger than others. To explain, let us 

look at the four aspects of the theory (attention, relevance, confidence, and satisfaction) 

individually. 

First, the attention of the subjects seemed to be quite engaged with SimSE. This was 

evident in their body language, the comments made both during game play and the 

interview, and their ratings of SimSE’s level of engagement. Many of them spent the 

majority of their time during game play sitting on the edge of their seats, leaning forward 

and fixing their eyes on the screen. There were head nods, chuckles in response to 

random events and character descriptions, shouts of “Woo hoo!” after achieving a high 
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score in a game, shaking of the head when things were not going so well for a player, and 

requests of, “Can I try this one more time?” when the experiment’s allotted time for game 

play was coming to an end. Words some subjects used to describe SimSE in the interview 

were “challenging”, “fun”, “interesting”, “addictive”, and “amusing.” When explicitly 

asked how much SimSE engaged their attention, the students rated it quite high—4.1 on 

average out of five.  

Second, relevance was rated moderately high, but not as high as level of engagement. 

Five of the subjects rated SimSE’s relevance to their future experiences as “pretty 

relevant” or “very relevant”, five described it as “somewhat” or “partially” relevant and 

one said it was not relevant at all. Some of the positive comments about relevance 

included: 

- “It will definitely help in decision-making.” 

-  “It will be very relevant for my ICS 121 midterm next week.” 

- “What it’s simulating I expect I’ll be doing eventually.”  

- “It will be pretty relevant because I kind of want to do some software 

engineering in the future if I get a job in that area.” 

Some of the subjects who rated relevance less positively had the following comments: 

- “It didn’t help that much compared to what I already know.” 

- “I definitely don’t want to go into software engineering so it’s probably not too 

relevant for the future, but for classes it could be useful.” 

- “[I do not consider it relevant to my future experiences because] I don’t really 

see myself as the type of person who would govern those processes, I see myself 

as the guy that follows the orders.”   
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Although not explicitly asked about SimSE’s relevance to their past experiences, 

nearly all of the subjects mentioned that they used some of the knowledge they had 

learned in software engineering courses to come up with their strategies for playing the 

game, suggesting that there is also a relevance between their past experiences (learning 

the concepts in class) and their learning experience with SimSE.  

Third, most subjects felt their level of confidence in the learning material had 

increased at least somewhat since playing SimSE. Four subjects reported their level of 

confidence had changed “a lot” or “very much”, five said it had changed “somewhat”, 

and two said it had not changed at all. Some of their comments included: 

- “[I now have] a better understanding of how [the processes] work.” 

- “It enhanced my level of knowledge of the process.” 

Interestingly, subjects’ confidence ratings seemed to be unassociated with their 

performance in the game. For instance, several people who never improved their score 

still reported that their confidence in the subject matter had increased as a result of 

playing SimSE. This suggests, again, that game scores alone are not an accurate indicator 

of learning. It is the experience of going through the simulated process, rather than the 

eventual result, that seems to be the central avenue of learning. 

 Fourth, satisfaction was rated quite high by the subjects. Nine out of the 11 subjects 

reported that they were “quite satisfied”, “very satisfied”, “fully satisfied”, or “pretty 

satisfied”, and three subjects stated they were “somewhat satisfied.” Most of the reported 

factors that contributed to a feeling of satisfaction pertained to a subject’s increasing 

success from game to game, although some also mentioned that the fun and challenge of 

SimSE contributed to their satisfaction as well. 
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 In reviewing and analyzing the interview transcripts, one unanticipated learning 

theory became evident: Constructivism [25]. The basis of this theory is that learners 

construct new concepts or ideas based on their past knowledge and current experience. 

As already mentioned, when asked how they came up with their strategies for playing 

SimSE, nearly all of the subjects reported that it was a combination of knowledge they 

had learned in their software engineering course(s) and the experience of playing the 

game to figure out how to succeed. This is another piece of evidence suggesting that 

simulation should be used complementary to other teaching methods, so that learners can 

employ Constructivism as their new knowledge is built and framed on their existing 

knowledge.  

Explanatory Tool. Most of the subjects that had access to the explanatory tool did 

make use of it, using it for, on average, five to 25 minutes after most games. It was 

obvious that the subjects who did not have the explanatory tool (to whom we will 

henceforth refer as “non-explanatory subjects”) were significantly more confused and 

unconfident about the reasoning behind their scores than those who did have the 

explanatory tool (to whom we will henceforth refer as “explanatory subjects”). All of the 

non-explanatory subjects expressed this, while only one explanatory subject stated such 

an opinion. The following are some of the comments made by the non-explanatory 

subjects: 

- “I still don’t really understand what the score is based on.” 

- “I’m not really sure exactly what the scoring criteria are.” 

- “I was trying to guess what I was doing wrong, so I probably chose the wrong 

areas that I was doing wrong, and then I tried to switch back to my original way 
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and then I kind of forgot what that was and once I started trying to improve it, 

all of my little details started changing and I didn’t know what parts were 

causing my score to go lower.” 

- “I felt like I knew, oh, that’s where I went wrong sometimes, like I should spend 

a little less time there, but a lot of times I was wrong about where it was I went 

wrong.”   

- “I thought maybe afterwards [SimSE should] kind of give you a description of 

here’s where you went wrong, or a little hint or something, not exactly the 

actual solution, or little warning signs like you forgot to do this.” 

- “[I wish SimSE had] more descriptions of what each task does.” 

Interestingly, the last two comments even seem to describe some aspects of the 

explanatory tool, indicating that the addition of this tool fills a real need of SimSE. 

There was no noticeable difference in the other aspects of each subject’s experience 

(such as learning theories employed, ratings of SimSE, game scores, etc.) between the 

two groups, suggesting that even when a player doesn’t fully understand the reasoning 

behind their score, they can still have an overall successful learning experience. And 

again, while scoring does play an important part, it is not the most important part—it is 

the overall experience of going through game play that seems to be the most influential 

factor. 

The helpfulness of the explanatory tool as expressed by the explanatory subjects was 

only moderate. Of the eight explanatory subjects, three said it was “very helpful” or 

“pretty helpful”, two said it was “somewhat helpful”, and three said it was not helpful at 

all. What is interesting, however, is that these ratings of helpfulness were strongly 
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correlated to whether or not the subject made use of the rule descriptions in the 

explanatory tool (which are brought up by clicking on an action graph to find out more 

information about the action). Four of the eight explanatory subjects read the rule 

descriptions, and four did not. Of those that read the rule descriptions, three of them rated 

the explanatory tool as either “very helpful” or “pretty helpful”, and one rated it 

“somewhat helpful.” This is in stark contrast to the four subjects who did not read the 

rule descriptions: three of them said the explanatory tool was not helpful, and one said it 

was only somewhat helpful. Furthermore, most of the positive comments made about the 

explanatory tool pertained to the rules in some way: 

- “Rules were a major help.” 

- “[What was helpful about SimSE was that] it’s a combination of being able to 

read the rules and apply them and go through the process.” 

- “The rules are really helpful—even if someone doesn’t know anything about 

software engineering I think the rules can teach you how to play the game.” 

Only two of the eight explanatory subjects reported that they got any useful information 

out of the graphs. Thus, it seems that the usefulness of the explanatory tool as it currently 

stands lies primarily in the rule descriptions. 

Even when subjects did use the graphs, very few of them used the composite graphs, 

tending to focus mainly on the object and action graphs. This was surprising, as we 

anticipated that the composite graphs would be the most useful part of the explanatory 

tool. However, based on our observations it seems that this lack of use can be attributed 

to the difficulty of formulating a meaningful object and action graph combination that 

will produce an insightful composite graph. Based on the number of possible 
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combinations, this seems to be too overwhelming a task for the average student. To 

address this, we plan to add functionality that will point the user to useful composite 

graphs for each model. Whether this is something that will be specifiable in the model 

builder, or something that can be automatically detected by the explanatory tool per 

individual game remains to be seen. In our future work we will experiment with both 

options to determine which is most feasible and effective. 

An additional way to make the graphing mechanism of the explanatory tool more 

useful would be to add some attributes to each model that are meant specifically for 

explanatory graphing purposes. For example, in the RUP model we could add project 

attributes representing suggested budget for each phase and suggested time for each 

phase. (These attributes would be hidden in the game interface but visible in the 

explanatory tool.) The player could graph these attributes against the actual budget or 

time for each phase to see where they need to adjust. As another example, the inspection 

model could include a “meeting productivity” attribute that shows how productive the 

inspection meeting as a whole was over time, so the player could see, in one attribute, 

how effective their approach was at each point in the game. In our future work we plan to 

add explanatory attributes such as these to each model (see Chapter 12). 

The overwhelming importance of the rule descriptions leads us to a critical question: 

If the rule descriptions were so useful, why did only half of the explanatory subjects use 

them? We specifically asked those who did not use them why they did not use them and 

for all of them the answer was the same: they forgot they were there. After subject #1 

failed to use the rule descriptions, we started being more careful about emphasizing their 

presence when instructing the students on how to play SimSE and use the explanatory 
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tool. However, subject #2 also did not look at the rule descriptions. We continued to 

emphasize the rule descriptions more and more in our instructions, including showing 

specific examples of how they can be useful, along with reminding subjects that “this is 

one of the most useful parts of the explanatory tool and everyone forgets to look at 

them!” Finally, subject #4 was the first to read the rules. The remainder of the 

explanatory subjects after subject #4 (with the exception of #5) also used the rule 

descriptions. Although placing strong emphasis on rule descriptions in the instructions 

seemed to eventually help, there is obviously more that needs to be done to get students 

to take advantage of this valuable resource. We anticipate that making the rule 

descriptions more accessible will help significantly. At the moment, in order to get to the 

rule descriptions one has to first generate either an action or a composite graph, click on a 

point on the graph, and then click on the Rule Info tab. This is a somewhat cumbersome 

and non-intuitive process to go through. Some of the subjects, even though they 

remembered that the rules were there somewhere, had to ask to be reminded of how to 

access them. We plan to experiment with making rule descriptions directly accessible 

from the main explanatory tool user interface to see if this increases their visibility and 

thus, their usage. This could take the form of an added drop-down list of actions from 

which the player could choose to automatically bring up the rule descriptions for that 

action. 

One additional insight discovered from this experiment was that students wanted the 

explanatory tool accessible during the game. Some of them even assumed it was 

accessible during the game and asked how to access it. As mentioned in Chapter 8, this is 

something that we plan to do. Whether or not having it accessible during the game will 
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“give too much away” and take away too much of the challenge remains to be seen. 

Additional experiments after this change is made will be necessary to determine this. 

The importance of instruction. As we already saw in the way subjects tended to 

forget about the rule descriptions, the instruction one receives in playing SimSE is 

crucial. The explanatory tool instructions were one example, but it was equally apparent 

that the instructions given about how to play the game in general make an enormous 

difference as well. The first subject failed to take advantage of several informational 

resources in SimSE that are designed to guide a player and help them succeed in the 

game. For example, the subject only skimmed over the starting narrative, seemed to 

ignore the text in the speech bubbles, and failed to monitor the status of any artifacts 

during development (even though these features were pointed out during the instruction 

period). This subject’s opinions of SimSE and the experience in general were lower than 

average, perhaps as a direct result of these oversights. After subject #1, therefore, we 

altered the instructions given to place more emphasis on these overlooked sources of 

information, including giving specific examples of why and how they can be helpful. As 

the experiment went on, we discovered more aspects of SimSE that could be helpful to 

players, but that were not being taken advantage of, and we accordingly altered the 

instructions to emphasize these as well. By about midway through the experiment, 

subjects were giving most of these aspects the proper attention, and their overall opinions 

of the experience seemed to be significantly more positive as a result. 

The obvious lesson we can learn from this is that the instructions given to a player of 

SimSE must include certain specific pieces of information about components they must 

pay attention to in order to promote a maximally effective educational experience. It is 
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not safe to assume that students will figure these things out on their own. Our first step in 

addressing this issue will be to rewrite SimSE’s instruction manual (included 

electronically with a download of a SimSE game) to include these commonly overlooked 

features. However, given that users are notorious for not reading instruction manuals, it is 

necessary to take this a step further, especially for in-class usage of SimSE. Students 

could be given paper-based handouts along with the electronic version, and the instructor 

could emphasize the importance of reading them carefully. Even more effective would be 

holding a training session in class under the leadership of a teaching assistant or 

instructor, in which students are also given verbal instructions, with live examples, to 

underscore and illustrate the information provided in the textual instructions. 

Another issue that needs to be explored is whether SimSE can be altered so that a 

player’s success is less dependent on their attention to these details, and more on the 

integral game play. Perhaps some of the crucial information contained in textual 

components such as the starting narrative and speech bubbles can be incorporated into 

game play in a non-textual way. It is unclear how this could be done, but it is definitely 

an avenue that warrants investigation. Another possible way to address this is by making 

the models simpler so that less attention to detail is needed. However, this would take 

some of the challenge of SimSE away, so this is something that also must be carefully 

experimented with.  

Models. The data revealed a number of insights about the SimSE models used in this 

experiment, both individually and as a whole. One of these insights was the average time 

it takes to play each model. These averages are shown in Table 8. The inspection model, 

being our only model in the “specific” category (see Chapter 7), was the one that took the 
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Table 8: Average Time Taken to Play Different SimSE Models. 
 

Model Average Time to Play (in 
Minutes) with Explanatory Tool 

Average Time to Play (in 
Minutes) without Explanatory 

Tool 
Inspection 7 2 

Rapid Prototyping 13 8 
Waterfall 34 N/A 

RUP 47 21 

shortest amount of time to play. The rapid prototyping model took approximately twice 

as long to play, and the waterfall model was almost three times as long as the rapid 

prototyping model. The RUP model was the most time-consuming model to play.   

From this data we were also able to compare the relative difficulty of each game in 

terms of scores subjects were able to achieve. Table 9 shows two types of average scores 

for each model: the average score for all times that model was played (“average overall 

score”), and the average high score for each subject who played that model (“average 

high score”). Subjects had the easiest time achieving a high score in the rapid prototyping 

model, and a somewhat more difficult time mastering the inspection model. The waterfall 

model was the next most difficult in terms of scoring, and the RUP model was by far the 

most difficult of all the models. 

Table 9: Average Scores Achieved for Different SimSE Models. 
 

Model Average Overall Score Average High Score 
Rapid Prototyping 78 96 

Inspection 54 90 
Waterfall 35 68 

RUP 8 32 
 

As mentioned previously, we purposely designed the rapid prototyping model with 

more lenient scoring than the other models. Our observations of subjects who played this 

model suggest that the scoring is perhaps too lenient. For instance, one subject went 

through the model with only one round of prototyping and received a score of 85 with a 
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resulting system that was 13% erroneous and implemented only 70% of the customer’s 

requirements. The subject felt satisfied with the score of 85 and assumed they were not 

going to play that model anymore since they had “mastered” it. As a result, the subject 

did not even know that their resulting system lacked in these areas since they did not 

bother to look at any artifact statistics to try to find out why 15 points were deducted 

(until the observer stated that they would be playing the model again to try to get a higher 

score). This is obviously a dangerous situation—a student could come away from playing 

this model thinking that one round of prototyping is sufficient for completing a successful 

rapid prototyping approach. Accordingly, we plan to adjust the scoring for this model to 

make the penalization for such situations harsher.  

The RUP model fell on the other end of the scoring spectrum—it seemed to be too 

harsh. 24 RUP games total were played in this experiment, and only four of them resulted 

in non-zero scores. Three of the five subjects who played RUP never achieved a score 

greater than zero, even though their performance was improving from game to game. 

Therefore we also plan to adjust the RUP model scoring to make it more lenient. 

Although the scoring for the inspection model did not seem to be overly harsh, it was 

clear from interviewing subjects who played it that the majority of them missed some of 

its most central lessons. Even when a subject figured out an approach that would lead to a 

high score, they would sometimes translate it incorrectly into real-world concepts. For 

instance, a number of subjects thought that the size of the code and the size of the 

checklist should correlate to each other (e.g., a small checklist should accompany a small 

piece of code, a large checklist should accompany a large piece of code, etc.), whereas 

the model is actually trying to teach that there is a certain size of checklist (approximately 
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one page) and a certain sized piece of code (less than or equal to 200 lines) that are ideal 

for all code inspection situations (see Section 7.2). A complicating factor that likely 

detracted from this lesson is the fact that, with three different pieces of code and three 

different checklists, there are nine possible combinations that a player could choose, and 

only one of them is maximally rewarded by the model. (This is in addition to the 

numerous combinations of employees that can also be chosen.) Players often tended to 

stumble upon the correct combination of checklist and piece of code only by luck.  

We can address these problematic issues by both simplifying the search process and 

simultaneously providing more guidance to the player in finding the correct combination 

and inferring the correct real-world lessons. To do this, we will first remove the smallest 

checklist choice and the largest piece of code choice (or vice-versa) so that it will be 

more obvious that there is no dependency between the two. At the same time, this will 

reduce the search space that the player must go through. Additionally, we will include 

with the inspection model carefully-worded questions for the player to answer that 

suggest the proper real-world translations (e.g., “What is the ideal size of checklist (in 

number of pages) that should be used in a code inspection?”) This is precisely what we 

did in the in-class usage of SimSE with the questions that each student had to answer in 

order to receive their extra-credit points (see Section 9.2). The students that played the 

inspection model in class, with the questions, answered them correctly for the most part, 

which seems to indicate that they did make the proper real-world interpretations 

(although it would require actually interviewing these students to determine whether this 

is actually true). This observational experiment has suggested that these questions may be 
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necessary to always include with certain models (such as inspection) that have lessons 

which sometimes tend to get interpreted incorrectly. 

Another model that seems to necessitate the inclusion of a set of guiding questions is 

the waterfall model. As mentioned previously, only one subject in this experiment 

(subject #2) played this model. This is because it became clear from observing and 

interviewing this subject that the waterfall model was too large and complex for the 

setting of this experiment. The subject seemed somewhat lost and confused, was unable 

to achieve a good score, and only reported one new concept that they had learned from 

playing SimSE. We believe this can be attributed to the fact that the waterfall model 

contains too many variables, interactions between these variables, and possible actions a 

player can take at any given time (this model steers the player very little, allowing them 

to perform almost any action at any time). On top of the waterfall activities in the model, 

there are also several non-software engineering specific aspects—employees have energy 

and mood levels (in addition to their experience levels and pay rates), and they can get 

sick, take breaks, and quit their jobs. A player can fire an employee, give them bonuses, 

and give them pay raises (aside from assigning them regular software engineering tasks). 

Because of this complexity, it is hard for a player to isolate and experiment with variables 

to find a successful approach to the game. If given a set of guiding questions, however, 

we expect that the lessons contained in the model will be more readily noticed and 

learned by a player, as this seemed to be the case with the in-class usage of the waterfall 

model (see Section 9.2). 

The overarching lesson this experiment taught us about models is that it is difficult to 

create good game-based educational simulation models. There are a number of crucial 
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choices that must be made to develop an educationally effective model. Namely, the 

following critical issues must be carefully considered: 

• The number of lessons/variables. As we saw with the waterfall model, 

including too many effects results in an overly complex model that students find 

difficult to play and learn from. Including too few effects would likely make a 

model that is not challenging enough to keep the student engaged. 

• How lessons are communicated. There are numerous different ways a lesson 

can be taught through a SimSE model. Sometimes it becomes apparent that a 

lesson is not getting picked up on (as in the inspection model), indicating that 

something about the way it is communicated must be changed. Alternatively, a 

set of guiding questions can be made to accompany the model, to point the 

player in the direction of lessons that are difficult to pick up on. 

• Explicit versus implicit information. A modeler can put all of the information 

a player needs to know in the instructions, starting narrative, speech bubbles, 

and rule descriptions of the model, but there is no guarantee the player will 

actually read these sources of information. Therefore, removing the need for this 

information by making the model simpler or using other, non-textual ways to 

communicate this information should be explored. 

• Scoring. Although students who play a model with overly-harsh scoring can 

still learn from the experience (as we saw with the RUP model), it is still a 

frustrating experience to be unable to achieve a high score. A greater danger, as 

we saw with the rapid prototyping model, is overly-lenient scoring, which can 
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lead to the player coming away from the experience with the wrong lessons 

being learned. A careful balance between the two must be achieved. 

• User testing. In our experience, often the only way to discover the weaknesses 

of a model is through user testing. As with any software, the developer always 

holds misconceptions in their minds about such things as what will be obvious 

to players versus what must be pointed out to them, how people are going to 

play the model, and how difficult a model will be, among others. These 

misconceptions will only be brought to light by allowing others to play a model 

and collecting their feedback. 

From our own experience, it seems that the most effective way to learn the proper 

balance of all these factors and create good models is through practice. This experiment 

revealed that our later models (rapid prototyping and RUP) are noticeably better than our 

earlier models (waterfall and inspection) at getting their lessons across effectively. 

(Despite the scoring issues with rapid prototyping and RUP, players nevertheless seemed 

to learn a significant amount from these models, based on their interviews.) We plan to 

include this lesson, plus the critical considerations mentioned above, in our model builder 

“tips and tricks” guide (see Appendix B). 

Implications for Class Use. Two of the subjects in this experiment had played 

SimSE previously, one in the pilot experiment and one in class. Both subjects were asked 

if they learned more playing SimSE during this experiment or during their previous 

time(s) playing it, and both reported they learned more during this experiment. They also 

provided the same reason for this, which is best summed up by a direct quote from one of 

these subjects: “When you have somebody watching and checking up on you, you work 
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harder and I guess, in the end learn more.” Because the presence of an observer seems to 

have a positive effect on learning in SimSE, it would be ideal if students using it in 

conjunction with a class could be observed one-on-one, although this is obviously 

infeasible. However, a possible way to simulate this “observer presence” would be to 

instrument SimSE with a logging mechanism that records traces of the games and sends 

this information to the instructor in a format that can be quickly and easily viewed and 

assessed. (The students would, of course, be told that this information is being sent so 

that they feel the added pressure of an observer’s presence.) Another option is to use a 

“pair programming” approach in which students play SimSE in groups of two, so that 

each can be the observer of their partner. Whether or not these options would take too 

much fun out of the experience and obviate the extra motivation that seems to come from 

an observer presence would need to be determined through actual experimentation. 

Applicability for Varying Academic Abilities. With any instructional method, there 

will always be some students who “just don’t get it.” There was one subject in this 

experiment that seemed to fit this description with SimSE. This subject was unable to 

make much progress in either of the two models he played, mainly because he missed 

some things that were very obvious to all of the other subjects (e.g., more than one round 

of prototyping should be done). The subject also tended to simply repeat the same 

approaches over and over even though they continually resulted in less-than-ideal scores. 

Surprisingly, however, this subject still seemed to learn a significant amount (although 

probably somewhat less than other subjects who “got it”), judging from the interview. 

This corroborates the findings of our in-class use that suggested SimSE is equally 

applicable for both students with high and low academic performance levels. From this 
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experiment, however, we can sum this up in a slightly different way: even students who 

seem to largely “miss the mark” when playing SimSE can still learn from the experience. 

Summary. To summarize, this observational study revealed the following insights 

about SimSE:  

• Discovery Learning, Learning through Failure, and Constructivism are the 

learning theories most central to SimSE, being employed by all subjects. 

Learning by Doing and Situated Learning were employed by most subjects, but 

not all. Keller’s ARCS theory was moderately evident, as some of its aspects 

(attention and satisfaction) were more seen more strongly than others 

(relevance and confidence). All of the theories we used in the design of SimSE 

(plus one unanticipated theory—Constructivism) were observed to be employed 

by the subjects, although some to a greater extent than others. Thus, educational 

simulations should be designed with these theories in mind, aiming to maximize 

the characteristics that are known to promote each one. 

• SimSE’s explanatory tool is a useful resource for helping players understand 

their score, but its value lays primarily in its rule descriptions. To make the 

graph generation feature more helpful, the explanatory tool and/or the models 

will need to be enhanced to provide a larger set of useful graphs, along with 

ways to point the player to these graphs. In addition, the rule descriptions, 

which are currently somewhat hidden in the user interface, must be made more 

directly accessible to the player.  

• The instruction one receives in playing SimSE is crucial. Subjects tend to miss 

important information if it is not adequately emphasized in the instructions. 
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Thus, instruction must be a carefully and deliberately planned part of SimSE 

use, either with paper-based handouts, training sessions, or some other means. 

• It is difficult to create educationally effective SimSE models. A modeler must 

make a careful balance of such aspects as achieving the proper scope, giving the 

player adequate guidance, communicating the model’s lessons in an effective 

way, and making scoring neither too difficult nor too hard. Achieving this 

balance requires both practice in building models and collection of user 

feedback. 

• Models that are unusually large and models containing lessons that are difficult 

for students to translate into real-world concepts require the accompaniment of 

a set of guiding questions to adequately communicate these lessons to the 

player. There are certain lessons that almost all players picked up on, but others 

that seemed to be either hidden among other lessons, or difficult to pick up on 

for some other reason. Based on the fact that students who used SimSE in class 

and were given a set of questions to answer about the material seemed to pick 

up on these lessons, this approach should always be used with models 

containing these less perceptible lessons. 

• An observer presence can be educationally beneficial to players of SimSE. 

Students who played SimSE both with and without the presence of a one-on-one 

observer reported that they learned significantly more when being observed. 

Thus, use of SimSE in class may be more effective if an observer presence is 

simulated either through automatic logging and reporting of students’ games, or 

playing SimSE in pairs. 
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• Even students who have unusual difficulty succeeding in SimSE can still learn 

from the experience. The one subject who seemed to miss many of the lessons 

picked up on easily by other subjects still seemed to employ several learning 

theories and was able to report several things he had learned from the 

experience. 

9.5 Model Builder and Modeling Approach Evaluation 

We informally evaluated SimSE’s model builder tool and associated modeling approach 

in terms of its expressiveness, or its ability to model a wide variety of different software 

processes of different scales, purposes, and teaching objectives. As evidenced by the six 

models we built spanning the three different categories (classic, modern, and specific), 

overall, SimSE seems to have achieved a relatively high level of expressivity. These 

models vary rather widely in several different aspects such as scope, scoring difficulty, 

intermediate feedback, and guidance, but all of the ones we have used with students (five 

out of 6—we have not used the XP model with students) appear to help students learn the 

concepts they are designed to teach. 

We have already mentioned that building a successful SimSE model is a difficult 

task. This was especially evident in the performance of undergraduate students we 

recruited to build models. One of these students spent three quarters trying to build an 

inspection model, the efforts of which ended in failure—the resulting model consisted of 

a static, linear set of steps of an inspection process. Another student spent two quarters 

trying to build a RUP model, and this also resulted in an unusable model with very little 

dynamics. (Both the inspection and RUP models were then rebuilt, resulting in the ones 

described in Chapter 7.) Our third attempt at having an undergraduate build a SimSE 
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model was slightly more successful, resulting in the XP model described in Section 7.4. 

However, although this model is playable, it is flawed in some ways. Its most significant 

problem is that it tries to teach all of its lessons through the same effect—the slow-down 

of activities. Specifically, failing to follow any of the XP practices taught by the model 

(e.g., pair-programming, frequent releases, rapid prototyping, using coding standards) all 

result in the same consequence—slow-down of development. Therefore, because so 

many factors contribute to the same effect, it would be quite difficult for a player to 

detect which one(s) are responsible for the effect. Thus, part of our future work will entail 

rebuilding this model to use different effects to illustrate different consequences, in order 

to make the lessons clearer. 

The only successful model that we did not build ourselves was the incremental model. 

This model was built by a graduate student well-versed in software process and game 

development. It took him approximately one week to build this model, and in our class 

use it appeared to be effective at communicating the lessons it contains. Thus, it seems a 

certain level of knowledge is required to be able to build an effective SimSE model, a 

level normally not possessed by undergraduate computer science students. 

The one-week development time of this graduate student seemed to be the standard 

for our model development as well. All of our models took, on average, one week (7 

days) of full-time work to develop, with the last day or two usually being devoted to play 

testing and adjustment. Larger models, such as the RUP model, took longer than this, 

while shorter models, such as inspection, took less than a week. 

SimSE’s model building process was unexpectedly enhanced by the addition of the 

explanatory tool. Because this tool provides direct insight into a model’s internal 
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workings, it has proven to be a useful aid in building models. An illustrative example is 

the following: in the RUP model, one of the published “rules” of this process is that the 

four phases of the process (Inception, Elaboration, Construction and Transition) take 

approximately 10%, 30%, 50%, and 10% of the total cycle time, respectively [87]. To 

test the implementation of this rule in a model prior to the inclusion of the explanatory 

tool, one would have to write down the time it takes for each phase and then calculate the 

relative percentages. With the explanatory tool, however, a quick glance at a graph like 

the one shown in Figure 71 will yield the same results. 

Figure 71: A Graph Generated by the Explanatory Tool that Depicts the Relative Lengths of 
Rational Unified Process Phases. 
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9.6 Summary 

This chapter has described the five different parts of our approach’s evaluation. Each of 

these was designed to assess a different aspect of SimSE—the pilot experiment focused 

on SimSE’s initial potential as a teaching tool, the in-class use focused on how SimSE 

could fit into a software engineering course, the comparative experiment focused on 

discovering the differences between SimSE and traditional instructional approaches, the 

observational study focused on the learning process SimSE promotes, and the model 

builder evaluation focused on the expressiveness of SimSE’s modeling approach. The 

collective results from these can be distilled into a summative list of valuable lessons and 

insights about our approach. The first three lessons pertain to the effectiveness of SimSE 

in helping students learn software process concepts: 

• Students who play SimSE seem to successfully learn the concepts it is designed 

to teach. We have seen this clearly, in students’ ability to answer questions 

correctly about these concepts (in class), the strong correlation between time 

spent playing SimSE and increase in software process knowledge (in the 

comparative experiment), and players’ ability to recount learned concepts and 

improve their game scores (in the observational experiment). 

• Students find playing SimSE a relatively enjoyable experience. Students in all 

experiments enjoyed playing SimSE for the most part, although the enjoyment 

of those who used it in class was noticeably lower than the others (likely due to 

the added pressure to perform for extra credit, and perhaps the absence of the 

explanatory tool).  
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• Students find SimSE repetitive when played for extended periods of time. 

Although it was clear from the comparative experiment that the longer a student 

plays SimSE, the more they learn, both the comparative experiment and the in-

class usage revealed that a longer playing time also contributes to a feeling of 

repetitiveness. Because the version of SimSE used in these experiments 

included neither the explanatory tool nor adequate instructions, it is anticipated 

that the addition of these two factors will lessen the need for so many repetitions 

of the same model when used in classes in the future. 

• Students learn through playing SimSE by employing the theories of Discovery 

Learning, Learning through Failure, Constructivism, Learning by Doing, 

Situated Learning, and Keller’s ARCS. Educational simulations should therefore 

be designed with these theories in mind, aiming to maximize the characteristics 

that are known to promote each one. 

• SimSE is most educationally effective when used as a complementary 

component to other teaching methods. All four experiments strongly suggested 

that a certain level of existing software process knowledge must be possessed 

by a student in order for maximal learning to be promoted. Thus, SimSE should 

be used with other teaching methods that provide this required knowledge, and 

not be used as a standalone tool. 

The next set of lessons concern in-class usage of SimSE, and the critical 

considerations that must be made when such an approach is taken: 

• Provide students with adequate and proper instruction in playing SimSE. This 

was clearly evident in the frustration and confusion felt by the subjects in the in-
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class usage and the comparative experiment, who did not feel they received 

enough guidance to succeed in SimSE. The results from the observational 

experiment corroborated this, as it was observed that subjects tended to miss 

important information if it was not sufficiently emphasized in the instructions. 

Thus, instruction must be a carefully planned part of SimSE’s use, and should 

include such measures as holding training sessions and/or providing paper-

based handouts. 

• Students should be assigned a set of questions to answer about each model they 

play. Comparing the in-class usage and the observational experiment results 

revealed that such questions help guide the student in discovering less 

discernable lessons. Moreover, questions such as these provide the instructor 

with a way to assess how much the student learned from the exercise. 

• In-class usage of SimSE may benefit from the addition of an observer presence. 

As we saw in the observational experiment, the presence of an observer seemed 

to motivate students to more effective learning. This could be simulated in 

classroom usage by either instrumenting SimSE with mechanisms for automatic 

logging of simulation runs and reporting of these runs back to the instructor, or 

having students play SimSE in pairs. 

We also gained important insights about SimSE’s applicability to different types of 

students: 

• SimSE has applicability to females as well as males. The opinions of females in 

these experiments were comparable to those of males. In the pilot experiment 

female opinions were even higher, on average, than those of males. Thus, 
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SimSE has the potential to help students of both genders learn software process 

concepts. 

• SimSE has applicability for students of varying abilities. We saw in our in-class 

usage of SimSE that both students who did well on other assignments and those 

who did poorly were able to succeed in the SimSE exercise. Both the pilot and 

in-class experiments showed that a student’s amount of industrial experience 

also does not seem to have an effect on SimSE’s applicability to them. The 

observational study revealed that students who have unusual difficulty 

succeeding in SimSE can nonetheless come away from the experience having 

learned several lessons. Together, these results suggest that SimSE can be an 

effective teaching tool for students of different backgrounds and aptitudes. 

The results of our experiments also revealed important lessons about the role and 

effectiveness of SimSE’s explanatory tool: 

• The explanatory tool is a needed and useful part of SimSE that helps players 

understand the reasoning behind their score. The most frequent complaint of 

the students who played SimSE without the explanatory tool (in all four 

experiments) was the lack of feedback given about their performance in the 

game. Students who played SimSE with the explanatory tool (in the 

observational experiment) overall found it to be a helpful resource for 

understanding their score and the simulated process. 

• The value of SimSE’s explanatory tool as it currently stands lies primarily in its 

rule descriptions. Students who used the explanatory tool found rule 

descriptions to be the most useful part and the graphs to be only marginally 
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useful. Mechanisms for providing more useful graphs (and pointing players to 

them) should be added to the explanatory tool and/or the models. 

Finally, our experiences also taught the following overarching lesson about SimSE’s 

model builder and modeling approach: 

• SimSE’s model builder and modeling approach are adequately expressive for 

creating a wide variety of software process simulation models, but designing 

these models in such a way for them to be maximally educationally effective is a 

difficult task. We were able to build a representative set of simulation models 

that differed in several fundamental aspects and seemed to communicate their 

software process lessons effectively. However, our experience with building 

models and using them with students revealed that the task of creating good 

models is nontrivial, requiring critical and difficult choices to be made about 

such issues as scope, guidance, lessons, and scoring. Making the proper choices 

about these issues can only be learned through practice and user testing. 

If we revisit the evaluation questions posed at the beginning of this chapter, we can 

see that the results of the experiments described in this chapter have provided answers to 

each one: 

1. How do students feel about the learning experience playing SimSE (e.g., is 

it enjoyable, do they perceive it as an effective method of learning software 

process concepts)? Students enjoy and get excited about playing SimSE, 

although when it is not used in the context for which it was designed (as a 

complement to a software engineering course) and/or not used with the 

explanatory tool, students at times find it frustrating. For the most part, students 
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feel that it is a reasonably effective tool for learning software process concepts. 

These opinions seem to be shared by a wide range of students, including males 

and females, high-achieving and low-achieving students, and students with and 

without industrial experience. 

2. How well does SimSE fit into the traditional software engineering 

curriculum as a complement to existing methods (which is its intended 

use)? SimSE has been shown to integrate relatively well as an optional extra-

credit assignment in a course that provides the background knowledge required 

to understand the simulation models. In our experience with this type of setting, 

the majority of students chose to complete the assignment, and seemed to learn 

the concepts the models are designed to teach. However, even though they were 

learning some of the same concepts in class lectures and readings, many of them 

still felt that their experience with SimSE was frustrating, and felt that it would 

have been significantly improved had more guidance and background 

information about the concepts embodied in the models been given. 

3. How well does SimSE teach the software process concepts that its models 

are designed to teach? If given adequate instruction and background 

knowledge, students who play SimSE do seem to glean from the simulation 

models the concepts they are created to teach, regardless of gender or academic 

performance. 

4. How does SimSE compare to traditional methods of teaching software 

engineering process concepts such as reading and lectures? In a setting that 

used SimSE as a standalone teaching tool rather than a complementary one, 
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SimSE was enjoyed as much as lectures and more than reading, perceived to be 

more educationally effective than reading but less than lectures, and measured 

(using pre- and post-tests) to be less effective than both reading and lectures. 

The time investment required to play and learn from SimSE was significantly 

higher than both reading and lectures. Use of SimSE in this setting revealed that 

the proper amount of guidance and instruction must accompany SimSE’s use, 

and it must be used complementary to other teaching methods, in order for it to 

fulfill its educational potential. 

5. Are the learning theories that SimSE was designed to employ actually being 

employed by students who play the game, and are there other, unexpected 

learning theories that are being employed by SimSE? Discovery Learning, 

Learning through Failure, and Constructivism (an unanticipated theory) are the 

learning theories most often seen to be employed by players of SimSE. Learning 

by Doing and Situated Learning seem to be employed by most players of 

SimSE. Keller’s ARCS theory is a moderately employed theory of SimSE, and 

some of its aspects—attention and satisfaction—are exhibited more strongly 

than others—relevance and confidence. 

6. Are the SimSE model-building approach and associated tools adequately 

expressive? The tools and approach were found to be adequate in expressing a 

wide range of different software process models. However, building an effective 

SimSE model is a difficult endeavor that requires the careful balance of several 

critical issues. This task can be made less difficult through practice and user 

testing. 
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7. Does the SimSE explanatory tool help players of the game understand their 

score and the process better than using the game without the explanatory 

tool? The explanatory tool does seem to help players understand their score, but 

it primarily does so through its rule descriptions. The explanatory tool can likely 

be made to fulfill its purpose even more effectively if more useful graphs are 

created and highlighted to the user, and the rule description feature is made 

more accessible. 

Though our experiment results have provided answered to these questions, they have 

also raised new questions—questions that can only be answered through further 

experimentation. Our evaluations showed that there are a number of adjustments and 

enhancements to our approach that need to be experimented with. Specifically, the 

following future evaluations must be conducted: 

• In-class usage with modifications. Four modifications must be made to our 

approach for further in-class usage: First, we will make SimSE a mandatory, 

rather than optional, exercise. Second, we will use SimSE with the explanatory 

tool in class, as the only version used in class to date has not included the 

explanatory tool. Third, we will increase the level of instruction students receive 

in learning to play SimSE, by providing them with paper-based handouts that 

contains detailed instructions, and requiring them to attend a training session in 

which an instructor illustrates these instructions and shows them how to play 

SimSE through live examples. Fourth, to try to further motivate students 

through an observer presence, we will add an automatic logging and reporting 

mechanism to SimSE that records a student’s game and sends a trace of the 
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game back to the instructor. We will also place students in groups of pairs to 

play SimSE. The perceptions, opinions, and learning of students who use 

SimSE in class with these modifications will be carefully studied and compared 

to previous in-class usage to try to determine the effects these modifications 

have on the effectiveness of our approach. Of particular interest will be whether 

or not these alterations reduce the repetitiveness of SimSE reported by students 

in the comparative and in-class experiments. 

• Observational experiments with new and revised models. Our observational 

experiment proved invaluable for revealing flaws in our existing models. Thus, 

we plan to continue these types of experiments with models we will build in the 

future, as well as with revisions of existing models (which will be revised based 

on the results of our observational experiment). 

• Observational experiments with a revised explanatory tool. Our 

observational experiment also revealed the need for more useful graphing 

mechanisms and more accessible rule descriptions in the explanatory tool. We 

plan to make these enhancements and then assess them with further 

observational experiments. 

Overall, our evaluations revealed that SimSE can be an effective, engaging, and 

enjoyable tool for teaching software process concepts when used correctly with the 

proper critical considerations taken into account. However, some hurdles remain. The 

enhancements and evaluations described here are designed specifically to address these 

hurdles in order to help SimSE achieve its full educational potential.  
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10. Related Work 

One notable piece of work that has used similar principles to ours in developing their 

approach is represented by AgentSheets [114], an educational simulation environment 

focused on the simulation-building activity as the primary learning experience. 

AgentSheets has been used at multiple educational levels, and has been shown in 

numerous evaluations to be very effective. AgentSheets is relevant to our approach in that 

it concerns simulation and roots itself in learning theories, both from design and 

evaluation standpoints. Our approach has aspired to achieve the same kinds of favorable 

results, but in a different domain with somewhat different concerns. The first difference 

is that our approach models only software engineering processes, while AgentSheets is a 

general purpose simulation environment that can simulate a wide variety of different 

processes. Our modeling and simulation approach was deliberately designed to be less 

flexible than AgentSheets, focusing specifically on software engineering processes. As a 

result, SimSE is more powerful and appropriate for modeling software engineering 

processes, and not able to model other types of processes. 

The second difference between our approach and AgentSheets is that AgentSheets 

focuses on the simulation-building activity as the primarily learning experience, while 

our approach instead focuses on the simulation-playing aspect. Because our model-

building process is geared toward the software engineering instructor rather than the 

student, building a model in SimSE is not as straightforward as in AgentSheets, and 

therefore we have chosen not to focus on the model building process as a learning 

activity (although it is certainly possible to use it as a learning exercise for advanced 

students, and our approach has been used successfully in such a situation [13]). Despite 
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these differences in focus, AgentSheets and other simulations like it have provided us 

with examples of rigorous, learning theory-centric evaluation methodologies that we have 

adopted in our evaluation approach. 

In addition to general educational simulations such as AgentSheets, there also exist a 

number of other educational simulations that focus specifically on the domain of software 

engineering. Because these educational software engineering simulations relate directly 

to our approach, we will focus on making direct comparisons to them in the remainder of 

this chapter. As described in Section 2.1.3, these approaches fall into three main 

categories: industrial simulation brought to the classroom, group process simulation, and 

game-based simulation. Our approach falls into the game-based simulation category, 

which shares the same general focus of the industrial simulation category—the overall 

processes of software engineering. Because group process simulations have a different 

focus—namely, group discussion and interaction processes [103, 136]—we will omit this 

category of approach from this discussion. 

 As described in Section 2.1.3, industrial software engineering simulations brought to 

the classroom involve the use of highly-realistic simulators to illustrate to students, using 

real-world data, the overall life cycle and project planning phenomena of software 

engineering [35, 106]. These approaches differ from ours in four major ways.  

 First, because the original purpose of industrial simulations is prediction, their 

simulation models are based strictly on empirical data. SimSE’s primary focus is on 

education, not prediction. Accordingly, some portions of our simulation models are 

deliberately unfaithful to reality to make them more appropriate for educational purposes 

(see Section 7.7).  
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 Second, industrial simulations have a low level of interactivity, generally running in 

the following overall manner: Obtain a set of inputs from the user (e.g., project 

complexity, time allocated to inspections, person power), run the simulation, and output a 

set of results (e.g., cost, time, defects). In contrast to this, because SimSE is designed as 

an educational game, we aimed to make its game play as interactive as possible. We 

designed SimSE to operate on a clock-tick basis to give the student an active role in the 

simulation and allow them to drive the simulation continuously throughout the game, 

making adjustments and steering the process as necessary.  

 Third, industrial simulations are strongly focused on prediction (as this is their 

primary purpose), but not prescription—specifying the allowable next steps a user can 

take at any given point in the process. Because of our focus on interactivity, engagement, 

and educational effectiveness, SimSE makes ample use of both predictive and 

prescriptive aspects in its game play in order to maximally promote these qualities (see 

Section 4.3). 

 Fourth, in contrast to SimSE’s fully graphical user interface, industrial simulations 

have non-graphical user interfaces that generally display a set of gauges, graphs, and 

meters rather than characters and realistic surroundings. Again, this is motivated by the 

purpose of industrial simulations—tools meant to be used in industrial environments for 

the purpose of prediction do not necessitate entertaining graphical user interfaces.  

 Finally, industrial simulations are non-customizable. Because they are typically 

created to predict the effects of process changes on a particular real-world process, they 

are built upon a precise model of that real-world process with no need for simulating 

 241



other processes. SimSE’s educational purposes, on the other hand, require the ability to 

demonstrate a wide variety of software processes, hence its customizability. 

There have also been a handful of approaches that, like SimSE, fall into the game-

based educational software engineering simulation category. Unlike industrial 

simulations, these game-based simulations share the same underlying purpose of our 

approach: allowing students to practice “virtual” software engineering processes in an 

interactive, fun environment that engages the student, making learning more effective. 

However, the existing approaches differ from our approach in some fundamental ways. 

OSS [129] is a game-based software engineering simulation environment that allows 

a user to take a “virtual tour” of a software engineering company. Although OSS includes 

audio, animations, and more extensive graphics than SimSE, the user’s role is rather 

limited in comparison—the player takes more of a passive “observer” role rather than 

that of an active participant in a software engineering process. The user can look at 

sample documents, “listen in” on meetings, and hear explanations of tasks, but they 

cannot actually effect change on the state of the simulation. Thus, OSS is adequate as 

more of a software engineering tutorial program than an actual interactive game. 

Moreover, it is static, containing only one underlying model, without any facilities for 

customization. 

The Incredible Manager [44] is a simulation game designed specifically to train 

software project managers. Consequently, its focus is different from SimSE’s, and is 

concentrated more on project management than on software processes. In essence, it is 

much like an industrial simulator with an added graphical, game-like user interface. The 

interactivity of the game is similar to industrial simulations in that the player creates a 
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project plan, runs the simulation, and receives a result (but can intermediately stop the 

simulation, make adjustments, and restart again). Rather than viewing only a series of 

gauges, graphs, and meters, however, they can see employees working, getting tired, 

going home for the evening, and coming back the next day. The Incredible Manager also 

allows for customization of its simulation models through a textual interface, but requires 

that these models be built on a system dynamics paradigm—a paradigm that is generally 

used by real-world industrial simulation models.  

SimVBSE [78] is a game-based simulation specifically designed to teach students the 

theory of value-based software engineering [16]. SimVBSE has a relatively high level of 

interactivity—players can visit different “rooms” in a software engineering company 

where they can perform such activities as changing project parameters, obtaining 

feedback from stakeholders, undergoing tutorials on relevant topics, and analyzing 

project metrics, risks, and investments. The user interface is fully graphical and includes 

animations and audio. The simulation portrays one real-world case study, and does not 

include facilities for customization. Thus, the primary difference between SimVBSE and 

SimSE is that SimVBSE focuses only on value-based software engineering while SimSE 

instead focuses on simulating a variety of different software engineering processes. 

Problems and Programmers [9] is also a game-based simulation, but it is a card game 

rather than a computer game. It is a two player game designed to simulate a waterfall 

software development process from conception to completion. Players in the game 

compete against each other to finish their projects while avoiding the potential pitfalls of 

software engineering. Being a competitive, multi-player card game, Problems and 

Programmers is highly interactive. However, it only simulates one process (waterfall) 
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and, being a simulation that involves physical objects (cards), it is significantly more 

difficult to customize than a computer-based simulation. 

SESAM [47] is the approach that is perhaps most similar to SimSE. It is a game-

based simulation environment that allows for the modeling and simulation of different 

software engineering processes. It also operates on a clock tick basis, allowing the 

student to drive the simulation throughout the game by performing such actions as hiring 

and firing employees, assigning them tasks, and asking them about their progress and 

state of the project. It also includes an explanatory tool that is similar to ours, and is the 

only approach besides SimSE that does so. However, SESAM differs from our approach 

in three major ways. First, it lacks a visually interesting graphical user interface, which is 

considered essential to any successful educational simulation [51]. Players must type in 

commands textually, and can only “view” the process through the form of textual 

feedback. The second difference lies in the modeling language. SESAM represents a first 

example of a software process modeling language that is prescriptive, predictive, and 

interactive (but not graphical). It is also a highly flexible and expressive language, but its 

model building process is learning- and labor-intensive and requires writing code in a text 

editor. There has only been one SESAM model developed to date, which does not give an 

instructor many examples with which to work when trying to build a new model, and is 

also perhaps evidence that, despite SESAM’s powerful language, the need to actually 

textually program a model is a significant challenge that few wish to tackle. Third, 

SESAM has only been evaluated in one small out-of-class experiment. We build on 

SESAM’s approach in four major ways: First, we simplify the modeling process by 

providing our model builder tool, eliminating the need for writing source code in an 

 244



explicit modeling language. Second, we provide support for including graphics in the 

simulation models. Third, we have chosen to sacrifice some of the flexibility and 

expressivity that SESAM has by making a number of simplifications to our modeling 

approach (e.g., limiting all objects to five meta-types). Fourth, we make evaluation and 

actual class use an integral part of our approach, both so that we can make conclusions 

about SimSE’s effectiveness that are thoroughly rooted in actual experience, and provide 

insights about educational software engineering simulations and educational simulations 

in general that can be used by others in the research community. 

To summarize, we can generalize four fundamental differences between our approach 

and the existing educational software engineering simulations: 

• Existing software engineering simulations are not adequately flexible. Judging 

from the wide variety of software processes that exist, it is obvious that 

educational software engineering simulations must be easily configurable to 

model different processes. Although two of the existing approaches (The 

Incredible Manager [44] and SESAM [47]) are configurable, SimSE has gone 

above and beyond their level of configurability through two major features: its 

graphical model builder tool that removes some of the difficulties of an explicit 

process modeling language; and a set of pre-existing models that can be easily 

used off-the-shelf, and/or configured to fit different educational goals. 

• Existing software engineering simulations have not been adequately used and 

evaluated in a classroom setting. As mentioned in Chapter 3, one of the 

guidelines for a successful educational simulation is that it is used 

complementary to the other components of a course. Although a few of the 
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existing simulations have been used in conjunction with a class [28, 35, 129], 

these instances have only been anecdotally observed and reported on. Other 

approaches that have performed more formal studies have done so with out-of-

class experiments [47, 106]. Although useful as initial evaluations, neither 

approach gives much thorough insight into how simulation can effectively be 

incorporated into an existing course. One of the fundamental components of our 

approach is carefully planned in-class use with objective measurements of 

students’ learning, opinions, and attitudes.  

• Existing software engineering simulations have not been robustly verified. 

Either in-class or out-of-class, there have been relatively few studies that have 

definitively affirmed the effectiveness of simulation in software engineering 

education. Again, with the exception of [106], all of the other experiments 

involving educational software engineering simulations, although mostly 

favorable, have been preliminary and informal in nature. Our set of four 

experiments was a central component of our approach, and these experiments 

were carefully designed to provide a thorough, well-rounded assessment of 

SimSE’s value as an educational tool.  

• Existing software engineering simulations do not adhere to well-known 

principles for educational simulations. The guidelines for successful 

educational simulations that our approach has been built on (see Chapter 3) 

have not all been followed in any of these approaches: several of them are only 

minimally engaging and challenging, many are not used complementary to other 

teaching methods, and most do not provide feedback and/or explanatory tools.  
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11. Conclusions 

This dissertation has presented a new approach to educating students in software process 

concepts—an approach consisting of three parts: (1) an implementation of a graphical, 

interactive, educational, customizable, game-based simulation environment for 

simulating software processes (SimSE), (2) a set of simulation models to be used in 

seeding the environment, and (3) evaluation of the environment and models, both in 

actual software engineering courses and in out-of-class experiments.  

 Our experience with SimSE has provided a number of important contributions to both 

the field of software engineering education and education in general. The most tangible 

contribution is the implementation of SimSE, along with its set of simulation models, 

which have been put through both in-class use and out-of-class formal evaluations. 

 We have also established through our experience the insight that a graphical, 

interactive, educational, customizable, game-based simulation environment such as 

SimSE can be beneficial to software engineering process education. Students who play 

SimSE tend to learn the intended concepts, and find it a relatively enjoyable experience. 

These statements apply to students of different genders, academic performance levels, 

and industrial experience backgrounds. However, in order for SimSE to be used in the 

most effective way possible, we have demonstrated that it is crucial that it be used 

complementary to other educational techniques and accompanied by an adequate amount 

of direction and guidance given to the student. 

Our experience has also provided as a contributed insight the role and potential of an 

explanatory tool in an educational simulation, as well as an implementation of such a 

tool. In particular, despite the needed enhancements of our explanatory tool, we have 

 247



found that it is a much needed and useful part of our simulation approach that 

significantly aids students in understanding the underlying simulated process and their 

performance in the simulation. 

Our evaluations strongly suggest that SimSE is a useful and educationally effective 

approach that has the potential to be even more effective if certain modifications are 

made to its implementation and usage. As it currently stands, some difficulties with our 

approach exist, most notably the feeling of frustration frequently reported by students 

who played SimSE in class, the minimal usefulness of the graph generation feature in the 

explanatory tool, and a certain amount of awkwardness in our modeling approach. We 

have plans for addressing each of these difficulties in our future work (see Chapter 12). 

Beyond these observed hurdles, we have also identified a number of promising directions 

for future research that will potentially add to the effectiveness of SimSE and, in turn, 

provide even more insights that the research community can utilize. These future research 

plans are also discussed in the next chapter. 

In sum, this dissertation has contributed an approach to addressing some of the 

difficulties with software engineering education—particularly software process 

education—by allowing students to practice, through SimSE, the activity of managing 

different kinds of quasi-realistic software engineering processes. Our usage and 

evaluation of SimSE has demonstrated that this approach does help students learn 

software process concepts, and has highlighted the crucial considerations that must be 

made when using such an approach. It is our hope that the lessons learned from our 

experience can be utilized by the larger research community and eventually contribute to 

a new generation of software engineers that are better versed in software processes. 
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12. Future Work 

Our experience with SimSE, both in its development and its usage, have highlighted a 

number of areas that can be improved, enhanced, and/or modified to help SimSE better 

fulfill its goal of providing an engaging, interactive, and effective way for students to 

learn software process concepts.  

Some of these concern features of the environment itself. First, we want to reduce 

some of the difficulties in our modeling approach that at times require non-intuitive, 

roundabout solutions (described in Section 4.3). To do this, we will explore ways of 

adding new constructs to our modeling approach that achieve the needed expressiveness 

without causing it to degenerate into a full-fledged process modeling language. For 

instance, we will add the ability to specify in an effect rule specific actions to activate or 

deactivate, rather than the “all or nothing” approach that currently exists. 

We also plan to modify the explanatory tool to address the deficiencies brought forth 

in the observational experiment—the marginal usefulness of the graph generation feature 

and the inaccessibility of the rule descriptions (see Section 9.4). To make the graph 

generation feature more useful, we will augment the simulation models with attributes 

that are expressly for explanatory graphing purposes (e.g., “suggested budget for phase 

X” and “actual budget for phase X” that can be graphed against each other). We will also 

experiment with either adding functionality to the model builder that allows a modeler to 

specify potentially useful graphs that can be generated for that model, or adding 

functionality to the explanatory tool that automatically makes graph generation 

suggestions based on a particular simulation run. To increase the accessibility of the rule 

descriptions, we plan to add a component to the main explanatory tool user interface 
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through which they can be viewed. We will also make the explanatory tool accessible 

during a simulation run, rather than only at the end of one, and conduct further 

experiments to determine how helpful to learning this may or may not be. 

Because a frequent request of students who played SimSE was for better graphics, we 

will also attempt to enhance the game’s graphical sophistication to make it more 

appealing and engaging. One of the main ways we plan to do this is by adding some 

simple animation capabilities to the model builder. Specifically, we will add functionality 

that will allow a modeler to specify different graphics for different states of an object 

(e.g., an employee with low energy will appear to be sleeping; a highly erroneous piece 

of code will appear red and flashing). 

We also plan to enhance SimSE’s graphics by adding semantics to the layout of the 

office. Currently, the position of an employee is meaningless and their surrounding 

images are merely for decoration. We will experiment with allowing both employee 

position and surrounding graphical components to come in to play when specifying 

effects. For instance, the productivity of an employee working in an XP process could be 

increased if they are in close proximity to another employee with whom they are pair 

programming. As another example, an employee’s mood could be raised if they have 

their own large, nicely-decorated, corner office near a window, or lowered if they are 

stuck in a tiny, dark cubicle with three other people. Including such graphical semantics 

will also require that we add more standard office surrounding images, such as windows, 

plants, and pictures. 

A more semantically-enhanced map may also require a larger map size, to take full 

advantage of these enhancements. Currently, the map is limited to 16 x 10 tiles. We will 
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experiment with making the map size customizable per model to see if this extra 

flexibility will increase the graphical attractiveness and interaction of SimSE in any way. 

In addition to these environment enhancements, we also plan to enhance our 

repertoire of simulation models by developing a number of new models. In particular, we 

plan to build a Personal Software Process [74] model, a Team Software Process [75] 

model, and a model of a component-based software engineering process. We will also 

explore the possibility of building “mixed” models that illustrate relative strengths and 

weaknesses of different models, and focus on honing students’ skills in recognizing 

situations in which one approach is better than another, and vice-versa. For instance, we 

will attempt to build a model that teaches the balance between unit, integration, and 

acceptance testing, and another model that illustrates the tradeoffs between choosing a 

particular high-level process approach such as XP or waterfall. We also plan to 

experiment with building more models of varying complexity. One of the principles for 

successful educational simulations presented in Chapter 3 states that simulation must start 

with simple tasks and gradually move towards more difficult ones. Our model-building 

work to date has been focused on testing and demonstrating the feasibility and 

applicability of our modeling approach, and has therefore resulted in a comprehensive set 

of mostly large models. To better apply this principle of moving from the simple to the 

more complex, we will attempt to create scaled-down versions of our existing models that 

can be used for introducing students to SimSE before they tackle the more complex 

models. 

As described in Section 9.6, there are also three additional types of experiments with 

SimSE that need to be conducted. The first of these is further class use with three 
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modifications: incorporation of SimSE as a mandatory (rather than optional) exercise, 

class use of SimSE with the explanatory tool, and either an added automatic game 

logging and reporting mechanism, or placement of students in pairs to play SimSE. The 

other two types of experiments are both observational in nature: one assessing the 

modified explanatory tool, and another set of experiments evaluating the future 

simulation models we will build and the modified versions of our existing ones. 

Finally, we will use all of our experience and lessons learned to create SimSE course 

modules that will help guide instructors in adopting SimSE in their courses. These course 

modules will include such things as the understandings and/or skills that the module 

intends to teach, the time it will take, lecture-wise, discussion-wise, and homework-wise, 

the relevant simulation models to be used, class materials for the instructor to present and 

discuss, instructions for the students, guidelines on how to hold a SimSE training session 

for the students, and test questions to be answered with the corresponding correct 

answers. 
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Appendix A: “The Fundamental Rules of Software 

Engineering” 

1. If you don’t do a system architectural design with well-defined interfaces, 

integration will be a big mess [134]. 

2. Design before coding [134]. 

3. If a project is late and you add more people, the project will be even later [22]. 

4. Team members that are new to a project are less productive (1/3 to 2/3 less) 

than the adequately trained people [18]. 

5. The average newly hired employee is about half as productive as an experienced 

employee [2]. 

6. Two factors that affect productivity are work force experience level and level of 

project familiarity due to learning-curve effects [2]. 

7. Developers’ productivity varies greatly depending on their individual skills 

(experience concerning a development activity, knowledge of the tools, 

methods, and notations used, etc.) [18, 26, 121]. 

8. Using better and fewer people is more productive than using more less qualified 

people [18]. 

9. The greater the number of developers working on a task simultaneously, the 

faster that task is finished, but more overall effort is required due to the growing 

need for communication among developers. Thus, the productivity of the 

individual developer decreases [22]. 

10. The earlier problems are discovered, the less the overall cost will be [47]. 
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11. The error detection effectiveness of reviews depends greatly on the 

qualifications and preparations of the reviewers and the completeness and 

correctness of the documents used as a reference [145]. 

12. Reviews of non-technical documents (e.g., requirements specification, user 

manual) are more effective if the customer is involved [111]. 

13. Develop tests before doing the coding [10]. 

14. Extreme time pressure leads to decreased productivity [47]. 

15. Extreme time pressure leads to a faster rate at which errors are made, which 

leads to a further delay in the completion date [91]. 

16. Error correction is most efficiently done by the document’s author(s) [47]. 

17. The more errors a document from a previous phase contains, the more errors 

will be passed on to the next document [47]. 

18. Always test everything [134]. 

19. Talk to users, not to customers to verify the prototype [134]. 

20. Inspection is the most cost-effective measure of finding problems in 

software [134]. 

21. Software inspections find a high percentage of errors early in the development 

life cycle [141]. 

22. The use of inspections can lead to defect prevention, because developers get 

early feedback with respect to the types of mistakes they are making [141]. 

23. Every group has one programmer that is 10 times more productive than 

everyone else [121]. 

24. If you disable Internet surfing, productivity will go down [141]. 
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25. The structure of the software reflects the structure of the organization that 

developed it [37]. 

26. Changing requirements are inevitable. Anticipating change with open 

architectures, adaptable designs, and flexible planning can help to mediate some 

of the ill effects of these changes [45]. 

27. Design for change/variability [45]. 

28. Use defensive programming [31]. 

29. Configuration management is good [134]. 

30. Successful software is designed by people who understand the application of the 

software (e.g., a well-designed missile control program was designed by 

someone who understood missiles) [72]. 

31. Software development requires a substantial time commitment to learning the 

application domain [42]. 

32. Broad application knowledge is acquired more through relevant experience than 

through training [42]. 

33. The more bugs you find, the more buggy the rest of your program will likely 

be [95]. 

34. Tests reveal errors in the code.  The better a test is prepared for, the higher 

amount of detected errors [134]. 

35. Sticking with a too-tight schedule increases cost due to a large work force [2]. 

36. Motivation is increased through monetary incentives (profit sharing, pay for 

performance, merit pay, work measurement with incentives, and morale 

measurement), creating a positive frame of mind at work (employee 
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involvement in wellness programs and creating fun at work), encouraging a 

feeling of commitment and responsibility (worker participation in decision-

making, getting employees to think like owners, self-managing work teams, 

commitment to productivity breakthroughs, and providing an environment with 

more freedom and less restrictions), and increasing schedule pressure (using 

visible milestones and setting individual goals.) Increased motivation leads to 

increased productivity which reduces cycle time [141]. 

37. Improving the work environment is done by making ergonomic considerations, 

giving employees enclosed offices to reduce background noise and 

interruptions, and giving employees access to required resources, such as 

computers, software tools, support staff, and information. Improving the work 

environment leads to increased productivity, which reduces cycle time [141]. 

38. Getting the most out of employees can be done by utilizing experts, employee 

training, skills assessment and job matching, and reducing turnover. Getting the 

most out of employees leads to increased productivity, which leads to decreased 

cycle time [141]. 

39. Improving the software development process can be done by formalizing the 

process, controlling quality, and taking advantage of tools. Improving the 

software process increases employees’ motivation, which also increases their 

productivity [141]. 

40. Rework is usually due to customer requirements, product flaws, and 

communication breakdown between project members. Improving the process to 

reduce rework can be done by using prototyping and evolutionary development 
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and by using formal specification methods, modern programming practices, and 

inspections. Reducing rework increases productivity [141]. 

41. Design complexity can be reduced by using object-oriented design techniques. 

Reducing design complexity reduces product complexity, which increases 

productivity [141]. 

42. Code complexity can be reduced by using modularization and object-oriented 

programming techniques. Reducing code complexity reduces product 

complexity, which increases productivity [141]. 

43. Cognitive complexity can be reduced by modularization, multiple levels of 

abstraction, simulation, and prototyping. Reducing cognitive complexity 

reduces product complexity, which increases productivity [141]. 

44. Test complexity can be reduced by using testing tools, building the product with 

testing in mind, and testing for the type of environment a product will be used 

in. Reducing test complexity reduces product complexity, which increases 

productivity [141]. 

45. Management complexity can be reduced by using project management planning 

tools and methods. Reducing management complexity reduces product 

complexity, which increases productivity [141]. 

46. Tasks can be eliminated or simplified by using automation of tasks (e.g., code 

generators, automated testing) and eliminating non-value added activities and 

low-priority tasks. This leads to increased productivity [141]. 

47. Nine ways to reduce cycle time are: increase productivity, reduce rework, 

maximize software reuse, reduce product complexity, eliminate or simplify 
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tasks, maximize task concurrency, reduce undiscovered work, reduce risk, and 

use process models aimed at cycle time reduction [141]. 

48. Productivity is increased by increasing motivation, improving the work 

environment, getting the best people for the job, improving the process, and 

maximizing reuse [141]. 

49. Product complexity can be reduced by reducing code complexity, design 

complexity, cognitive complexity, test complexity, and management 

complexity [141]. 

50. Decisions made in the upstream portion of the software development process 

(requirements and design) impact productivity, quality, and costs throughout the 

life cycle more than the other portions [42]. 

51. The thin spread of application domain knowledge is a major phenomenon that 

greatly reduces software productivity and quality [42]. 

52. Specification mistakes often occur when designers do not have sufficient 

application knowledge to interpret the customer’s intentions from the 

requirements document [42]. 

53. Requirements will appear to fluctuate when the development team lacks 

application knowledge and performs an incomplete analysis of the 

requirements [42]. 

54. Coordinating understanding of an application and its environment requires 

constant communication between customers and developers [42]. 

55. Specifications are almost always incomplete and fraught with ambiguities.  

Constant contact with the customer is required to obtain the correct 

 267



requirements. Without this communication, the developers tend to make 

incorrect assumptions about what the customer wants [45]. 

56. Fluctuating and conflicting requirements is a major phenomenon that greatly 

reduces software productivity and quality [42]. 

57. Communication and coordination breakdown is a major phenomenon that 

greatly reduces software productivity and quality [42]. 

58. Truly exceptional designers that are extremely familiar with the application 

domain, skilled at communicating their technical vision to other project 

members, possess an exceptional ability to map between the behavior required 

of the application system and the computational structures that implement the 

behavior, and are recognized as the “intellectual core” of the project are a scarce 

resource [42]. 

59. New requirements frequently emerge during development since they could not 

be identified until portions of the system had been designed or 

implemented [42]. 

60. Besides a developer’s ability to design and implement programs, his skills in 

resolving conflicting requirements, negotiating with the customer, ensuring that 

the development staff shares a consistent understanding of the design, and 

providing communications between two contending groups are crucial to project 

performance [42]. 

61. Undiscovered work (work that was not considered in initial planning estimates) 

can be reduced by using formal methods, analysis of PERT sizing metrics, the 
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Spiral life cycle model, and prototyping.  Reducing undiscovered work leads to 

increased productivity [141]. 

62. Risk can be reduced by using risk management techniques. Reducing risk leads 

to increased productivity [141]. 

63. Inspections should be thought of as part of the development process, and time 

must be set aside accordingly.  Once this is done, inspections can have a 

significant improvement in the development organization’s ability to meet 

internal schedules [141]. 

64. Proper use of inspections can even shorten life cycle [141]. 

65. Participants in the inspection team get a high degree of product knowledge, 

which leads to higher productivity [141]. 

66. Slower programmers show a great deal of improvement when using 

inspections [141]. 

67. A new project assignee does not become productive until six months to a year 

into the project [42].  

68. Collaborators use hand gestures to uniquely communicate significant 

information [139]. 

69. Employers often limit the number of hours employees can work, resulting in 

further pressure to finish a project as quickly as possible [45]. 

70. The customer often changes deadlines to be earlier than originally agreed-upon, 

requiring negotiation with the customer for either allowing some deliverables to 

be delivered at the earlier date, with the rest being delivered later, or dropping 

some deliverables or requirements altogether [45]. 
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71. Code comments and documentation are often produced at the end of a project, 

creating major problems when a team member is lost at short notice, leaving 

others to continue their work. This can be alleviated by having quality auditors 

require inspections at very short notice [45]. 

72. Teams often change during projects (members are added and/or removed.) [45]. 

73. Sometimes the software used for development is upgraded to a new version 

during development, and despite claims that it is fully backward-compatible and 

won’t affect their work, it usually introduces new problems [45]. 

74. Hardware crashes, and customers are often unsympathetic to this kind of 

delay [45]. 

75. When a project is in its later stages of development, the development hardware 

and software tend to be under the greatest demand, and performance starts to 

suffer with lengthy compilations, builds, and test runs [45]. 

76. Matching the tasks to the skills and motivation of the people available increases 

productivity [18]. 

77. Employee motivation is the strongest influence of productivity [18]. 

78. Above a certain threshold, work conditions are not a powerful motivator, but 

below that threshold, they are a powerful de-motivator [18]. 

79. The training of new employees is usually done by the “old-timers,” which 

results in a reduced level of productivity on the “old-timer’s” part. Specifically, 

on the average, each new employee consumes in training overhead 20% of an 

experienced employee’s time for the duration of the training or assimilation 

period [2]. 
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80. The average assimilation delay, the period of time it takes for a new employee 

to become fully productive, is 80 days [2]. 

81. As schedule pressure increases, quality assurance activities (especially walk-

throughs and inspections) are often relaxed or suspended altogether [2]. 

82. In the absence of schedule pressure, a full-time employee allocates, on average, 

60% of his working hours to the project (the rest is slack time: reading mail, 

personal activities, non-project related company business, etc.) [2]. 

83. Under schedule pressure, people tend to increase their percentage of working 

hours spent on the project by as much as 100%, due to spending less time on 

off-project activities, such as personal business and non-project communication, 

and/or working overtime [2]. 

84. The three “resource-type” variables that have the greatest impact on 

programmer productivity are the availability of programming tools, the 

availability of programming practices, and programmer experience [2]. 

85. The two “task-type” variables that have the greatest impact on programmer 

productivity are the programming language and the quality of external 

documentation [2]. 

86. The average full-time employee misses 13 – 15 days of work per year (not 

counting vacation time). Reasons are broken down in Table A.1. 
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Table A.1: Average Number of Workdays Missed Per Year (Taken from [61]). 

Reasons for 
Missed Work 
Day 

All 
Employees 

Employees with Dependents 

Stress 1.1 1.1 
Personal 
Matters 

1.4 1.5 

Sick Child 1.2 2.1 
Day Care 
Availability 
Issue 

0.4 0.8 

Elder Parent 
Care 

0.6 0.9 

Other Family 
Matters 

4.4 4.6 

Sick/Illness 4.5 4.2 
Total Annual 
Downtime 
(days) 

13.6 15.2 
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Appendix B: Model Builder “Tips and Tricks” Guide 

This guide will provide solutions to some common problems people have run into while 

using the SimSE model builder. Specifically, these are problems that exist because there 

are phenomena that people want to model but think the model builder does not support it, 

when in actuality it does, but in a non-intuitive way. If you have such a problem that is 

not addressed here, please send an email to emilyo@ics.uci.edu. Furthermore, if you have 

solved such a problem yourself, or found a solution to one of these problems that is 

different from the ones listed here, please also let us know. 

B.1 Starting a Model 

Getting started building a model can be difficult, but it helps if you first list out the 

specific lessons that you want your model to teach, and work on each of them 

incrementally, specifically thinking of how you want to penalize the player for violating 

the lesson and/or reward them for adhering to it. For instance, in the waterfall model, 

some of the lessons are: 

• Do requirements, followed by design, followed by implementation, followed by 

integration, followed by testing. 

• At the end of each phase, perform quality assurance activities (e.g., reviews, 

inspections), followed by correction of any discovered errors 

• If you do not create a high quality design, integration will be slower and many 

more integration errors will be introduced. 

• Software inspections are more effective the earlier they are performed. 

• The better a test is prepared for, the higher the amount of detected errors.  
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• The use of software engineering tools leads to increased productivity. 

Each of these lessons were isolated and built into the model one by one, and the model 

generated and tested after each lesson was added. Let us take, for example, the last 

lesson, “the use of software engineering tools leads to increased productivity.” What we 

would first need to do is add some tool object types, such as a requirements tool, a design 

tool, and a coding tool. We would then instantiate these as start state objects. Then, in 

order to allow players to purchase tools, we would create a “purchase tools” action that 

would set each tool’s “purchased” attribute to true. Then, in order to increase 

productivity, we would need to add some of these tools as participants to the actions of 

creating requirements, creating design, creating code, etc. (Specifically, we would make 

them optional participants (quantity = at most one), and have a trigger condition that 

purchased must equal true.) Following this, in order to create the effect of increasing 

productivity, we would need to modify one of the rules involved in these actions, namely, 

the one that increases the size of the artifact (e.g., requirements document) while that 

action (e.g., creating requirements) is active. We would modify the rule by multiplying 

the amount by which the size is increased by some factor that is dependent on the tool 

used – this could be a tool attribute called, for example, productivity increase factor. 

B.2 Finishing a Model 

Finishing a model can be a task that is more time-consuming than expected. This is 

because much play-testing is required to ensure that the model teaches what you designed 

it to teach. We have found that the best way to do this is to isolate each lesson that you 

defined when starting to build the model (as discussed in Section B.1), and test each one 

separately, then collectively with others. What this entails is deliberately violating each 
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lesson during gameplay (do it the “wrong” way), and see if the outcome is appropriate. 

For instance, to test the lesson “The use of software engineering tools leads to increased 

productivity”, play the game without using software engineering tools and see what the 

penalty is (probably a lower score and/or in slower development). Do this for all of the 

lessons and make a table that lists each approach (i.e., which lesson is violated) and the 

score (and optionally, any other effects perceived). Then combine some of these 

approaches/violations and note the additive effects to see if they are appropriate. 

Continue this process, making adjustments as necessary, until you are confident that all 

of the lessons are effectively communicated. 

B.3 Getting Around the Lack of If-Else Statements 

A common programming language construct is the if-else statement. In SimSE, no such 

construct explicitly exists. However, a similar effect can be achieved using trigger 

conditions and rules. As an example, take the following simple if statement: 

1 if (employee.sleeping == true) 
2   employee.productivity = 0; 

This same effect can be modeled in SimSE using an action, an autonomous trigger, and 

an effect rule. The action we must create is one that is responsible for executing the 

statement under the if-clause (employee.productivity = 0;). Let’s call this 

“employeeSleepingModProductivity.” We transfer the if-statement predicate 

(employee.sleeping == true) directly to this action’s trigger—we will make an 

autonomous trigger with one condition: employee.sleeping == true. Finally, in order 

to execute the statement (employee.productivity = 0;), we will attach an effect rule 

to this new action that simply sets productivity of the employee to 0. 
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Although this is a simple example, this same technique can usually be applied to 

more complicated ones. However, in some more complicated cases, using this technique 

might result in too many different actions and rules. To describe another workaround, we 

use the following example that enforces the principle in the waterfall model that says you 

must have the requirements document at least as complete as the design document, or 

else productivity when working on the design will suffer (in this case, it will be half as 

productive). Suppose this statement is executed every clock tick during the CreateDesign 

action: 

1 if (designDocument.completeness <= requirementsDocument.completeness) 
2   designDocument.size = designDocument.size + (some_factor * 2); 
3 else // requirements document is less complete than design 
4   designDocument.size = designDocument.size + some_factor  

Of course, because the effect rules do not support if-else statements, this cannot be 

directly put into an effect rule. However, we can do the following: 

1. Add an attribute to the designDocument object type called 

“completenessDiffReqDoc” that is an integer attribute with minimum value 0 

and maximum value 1. Eventually, this attribute will be 0 if the requirements 

document is less complete than the design document, or 1 otherwise.  

2. Create the following two effect rules, attached to the CreateDesign action (these 

rules must be executed in the following order): 

a. designDocument.completenessDiffReqDoc = 

(((requirementsDocument.percentComplete – 

designDocument.percentComplete) / 100) + .001) * 100000 

b. designDocument.size = designDocument.size + (some_factor * (1 + 

designDocument.completenessDiffReqDoc) 
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What the first rule does is set the attribute’s value correctly. Note that it takes adding a 

very small number to ensure that there is no division by 0, and multiplying by a very 

large number to ensure that the value will be large enough to be rounded up to 1 if that is 

the case. This example is taken directly from the CreateDesign action in the waterfall 

model. 

B.4 Modeling Error Detection Activities 

A common activity in software engineering is, of course, detecting errors in an artifact, 

either through reviews, tests, inspections, or some other method. Although this seems like 

a relatively straightforward activity, it is actually non-trivial to model in SimSE.  

The main idea is to take errors that are unknown to the player and make them known. 

This is done by subtracting errors from an artifact’s (e.g.,) numUnknownErrors attribute 

and adding them to its numKnownErrors attribute. However, this cycle is not so 

straightforward in SimSE. The first thing that must be done is the artifact must be given a 

hidden attribute that holds a temporary value during the activity. We will call this 

attribute numUnknownErrorsTemp. The following three effect rules must be executed, in 

the following order, to achieve the effect of error detection: 

1. artifact.numUnknownErrorsTemp = artifact.numUnknownErrors 

2. artifact.numUnknownErrors = artifact.numUnknownErrors – 

(whatever_factor_in_your_model_affects_how_quickly_errors_are_detected) 

3. artifact.numKnownErrors = artifact.numKnownErrors + 

(artifact.numUnknownErrorsTemp – artifact.numUnknownErrors) 
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What this sequence does is, in effect, take some errors from the unknown errors and adds 

them to the known errors. See the waterfall model’s ReviewRequirements action and 

associated rules for a good example of this. 

B.5 Calculating and Assigning a Score 

All SimSE games end by giving the player a score. Although any attribute of any object 

can be designated as the score, for simplicity one of the easiest things to do is to make an 

explicit attribute called “score” attached to your project object. Assigning a score can 

then be done in the following way: 

1. Designate the trigger(s) or destroyer(s) you want to end the game as game-

ending trigger(s)/destroyer(s) (see Section 3.1.1 of the model builder 

documentation). 

2. Designate the attribute (e.g., “project.score”) that represents the final score. 

3. Attach an effect rule to the action for the trigger/destroyer in step 1, e.g., 

“Calculate Score.” In this rule, set the project.score attribute to the correct 

value. The timing of this rule will depend on whether this is a game-ending 

trigger (in which case you would make it a trigger rule) or a game-ending 

destroyer (in which case you would make it a destroyer rule). 

For a good example of this, see the action DeliverProduct and its associated rules in the 

waterfall model. 

B.6 Using Boolean Attributes in Numerical Calculations 

As was seen in Section B.1 with the designDocument.completenessDiffReqDoc attribute, 

a Boolean attribute can be assigned a numerical value so it can be used in numerical 
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calculations by making it an integer attribute with a minimum value of 0 and a maximum 

value of 1. This attribute can then be set correctly using mathematical manipulations in 

an effect rule, as in the example in Section B.1. 

B.7 Revealing Hidden Information During Gameplay 

There may come a time where you want to model some aspect of a project that is hidden 

from the player at the beginning of the game, but that can be revealed when the player 

takes a certain action, or under certain conditions. For example, the number of bugs in a 

piece of software might be hidden, but the player might have the option to discover this 

number via an inspection action. SimSE allows you to have hidden attributes and reveal 

them at the end of the game, but if you wish to reveal values mid-game, there is a trick 

you can use. 

First, make two attributes, one that is hidden and one that is not hidden. These might 

be called “bugs_actual” and “bugs_known”. To start the game, the known value is set to 

a default value, such as 0, representing the fact that this value is not yet known. Then, 

when the player takes the necessary action to reveal the value, an event can be used to 

copy the actual value to the known value, revealing the value to the player. 

An interesting offshoot of this trick is that it can be used to represent uncertainty in 

values, by introducing a random variance to the operation that copies the value from the 

hidden to the known field. For example, you might create a formula that reads 

bugs_known = bugs_actual - 10 + random(0,20), introducing a potentially inaccurate 

value to the player. The player then has a rough idea of the actual value, but cannot know 

exactly how the random factor has thrown off the result. This trick allows for 

time/accuracy tradeoffs to be considered. For example, you might create a quick 
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inspection option which includes a random variation, as well as a thorough inspection 

option which does not. 

B.8 Taming Random Periodic Events 

SimSE allows for there to be a chance that a random event occurs on any given tick. 

Thus, if you wish for an event to happen every 100 ticks, allowing it to have a 1% chance 

to happen on each tick will roughly do the job. But what if you are modeling an effect 

and do not want to take the chance that it could occur in very rapid succession, or 

otherwise want to smooth out the distribution of the event? 

One way is to create a counter, which has a random chance to be incremented, as well 

as an event that triggers when the event reaches a certain total. So, suppose you want to 

ensure that it is extremely statistically unlikely that customer changes occur too often, but 

that they tend to occur about once every 100 ticks. You could create a hidden value called 

“change_counter”, which is initialized to 0. Then you have a random event that has a 

10% chance of occurring, and which increments change_counter by 1. Finally, an event 

would be created which causes a customer change to occur when change_counter reaches 

10. This final event would handle the customer change event and would reset the counter 

to 0. In this way, you can help ensure that overly frequent random events do not throw off 

your simulation. 

B.9 Alternative Action Theming 

Only employees may perform actions, but if you are willing to force your player to bend 

their metaphor for the system a little bit, you can allow things that are not strictly 

employees to act as if they were. For example, if you have several customer stakeholders 

 280



and wish to allow the player to question each of them, you could create one employee 

action for questioning each stakeholder. In some cases though, it may be more 

appropriate to create a stakeholder employee type, place stakeholders in the SimSE 

environment and allow the customer to run actions “on” them. This would mean that the 

customer could click on the stakeholder they wished to interact with and perform an 

action involving them. If you think that it is important enough, and if you think it will be 

worth the potential confusion of calling such objects “employees”, you could even create 

documents, tools or abstract concepts as employee subtypes and allow the player to 

interact through them. 

This is a trick you should use at your discretion, but may help you to simulate certain 

types of behavior when performing an action “on” a given entity makes more sense by 

clicking on it, rather than selecting the option from an employee’s menu. 

B.10 Making Customers “Speak” 

Although in SimSE the employees are the only objects that can “speak” to the player 

through pop-up bubbles over their heads, sometimes it is desirable to have customers give 

their input as well. While it is not possible to do this directly, one way to get around this 

is to have the employees “say” things for the customer, in the form of a report on 

something the customer has done or said (e.g., “The customer says he is very unhappy 

right now.”) In order to do this, you can simply add an employee participant to whatever 

action you want this trigger or destroyer text to be attached to, and then specify this text 

as the trigger or destroyer’s overhead text. You can give the employee participant a 

quantity of exactly one if you want only one employee to say the message, or give it no 
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maximum and a minimum of one if you want all employees to say the message 

simultaneously. 
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Appendix C: Questionnaire Used in Pilot Experiment 

C.1 Game Play Questions 

1. On a scale of 1-5, how enjoyable is playing SimSE (1 least enjoyable, 5 most 

enjoyable)? 

2. On a scale of 1-5, is it difficult or easy to play SimSE (1 most difficult, 5 

easiest)? 

3. Concerning the length of game play, do you think playing one game lasts too 

long, too short, or just right? 

4. What is your most favorite part/aspect of the game? Why? 

5. What is your least favorite part/aspect of the game? Why? 

6. Is there anything confusing about the game?  If so, what (more than one 

suggestion allowed)? 

7. What changes would you make to improve the game? 

C.2 Software Engineering Education Questions 

8. On a scale of 1-5, did playing SimSE reinforce your knowledge of the software 

engineering process as taught in ICS 52 (1 not at all, 5 definitely)? 

9. On a scale of 1-5, did playing SimSE teach you some new knowledge regarding 

the software engineering process that you did not learn in ICS 52 (1 not at all, 5 

definitely)? 

10. Are there any software engineering process issues you feel you learned better in 

this game than in ICS 52? If so, which ones? 
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11. Are there any software engineering process issues you feel you learned better in 

ICS 52 than in this game? If so, which ones? 

12. On a scale of 1-5, how helpful do you feel SimSE is to learning software 

engineering process issues (1 not at all, 5 very much so)? 

13. On a scale of 1-5, how helpful to learning software engineering concepts do you 

think it would have been if you had been given the opportunity to voluntarily 

play SimSE while taking ICS 52 (1 not at all, 5 very much so)? 

14. On a scale of 1-5, how helpful to learning software engineering concepts do you 

think it would have been if you had been required to play SimSE while taking 

ICS 52 (1 not at all, 5 very much so)? 

15. On a scale of 1-5, would you recommend incorporating SimSE as a standard 

part of the teaching materials of ICS 52 (1 not at all, 5 very much so)? 

C.3 Background Information 

16. What was your score in game 1? 

17. What was your score in game 2? 

18. In addition to ICS 52, did you take any other software engineering classes? 

19. Have you practiced software engineering in an industrial (outside of ICS) 

setting?  If so, for how many years? 

20. Are you male or female? 
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Appendix D: Questionnaire Used for In-Class 

Experiments 

D.1 Use of the SimSE Game 

1. Did you or did you not play SimSE? If so, why? If not, why not? (If you 

answered “yes” to this question, proceed to the rest of the questionnaire. 

Otherwise, you should not answer any more questions.) 

D.2 Game Play Questions 

2. On a scale of 1-5, how enjoyable is playing SimSE (1 least enjoyable, 5 most 

enjoyable)? 

3. On a scale of 1-5, is it difficult or easy to play SimSE (1 most difficult, 5 

easiest)? 

4. Concerning the length of game play, do you think playing one game lasts too 

long, too short, or just right? 

5. What is your most favorite part/aspect of the game? Why? 

6. What is your least favorite part/aspect of the game? Why? 

7. Is there anything confusing about the game?  If so, what (more than one 

suggestion allowed)? 

8. What changes would you make to improve the game? 
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D.3 Software Engineering Education Questions 

9. On a scale of 1-5, did playing SimSE reinforce your knowledge of software 

engineering process concepts as taught in the lectures of Informatics 43 (1 not at 

all, 5 definitely)? 

10. On a scale of 1-5, did playing SimSE teach you some new knowledge regarding 

software engineering process concepts that you did not learn in the lectures of 

Informatics 43 (1 not at all, 5 definitely)? 

11. Are there any software engineering process issues you feel you learned better in 

this game than in the lectures of Informatics 43? If so, which ones? 

12. Are there any software engineering process issues you feel you learned better in 

Informatics 43 lectures than in this game? If so, which ones? 

13. On a scale of 1-5, how helpful do you feel SimSE is to learning software 

engineering process issues (1 not at all, 5 very much so)? 

14. On a scale of 1-5, how helpful to learning software engineering concepts do you 

think it has been to be able to have the opportunity play SimSE as an extra-

credit assignment while taking Informatics 43 (1 not at all, 5 very much so)? 

15. On a scale of 1-5, how helpful to learning software engineering concepts do you 

think it would have been if you had been required to play SimSE while taking 

Informatics 43 (1 not at all, 5 very much so)? 

16. On a scale of 1-5, would you recommend incorporating SimSE as a standard 

part of the teaching materials of Informatics 43 (1 not at all, 5 very much so)? 

17. On a scale of 1-5, would you recommend incorporating SimSE as a mandatory 

exercise in Informatics 43 (1 not at all, 5 very much so)? 
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18. On a scale of 1-5, would you recommend incorporating SimSE as an extra-

credit exercise in Informatics 43 (1 not at all, 5 very much so)? 

19. On a scale of 1-5, would you recommend incorporating SimSE as a voluntary 

exercise in Informatics 43 (1 not at all, 5 very much so)? 

20. On a scale of 1-5, how well did playing SimSE help you understand the material 

that was taught in the lectures of Informatics 43? 

21. On a scale of 1-5, how well did playing SimSE help you answer questions on 

the final exam? 

D.4 Background Information 

22. Have you practiced software engineering in an industrial (outside of ICS) 

setting?  If so, for how many years? 

23. Are you male or female? 
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Appendix E: Assigned Questions (With Answers) for In-

Class Experiments 

E.1 Inspection Model Questions 

1. What seems to be the ideal size of an inspection team? 4 people 

2. How long should an inspection typically last? 2 hours 

3. What is the ideal size(s) of checklist that should be used in an inspection? 1 

page 

4. What is the ideal size(s) of code that should be inspected? 150 lines 

5. What are the effects of putting more as opposed to fewer people on an 

inspection team? They find bugs faster but take longer to discuss, which 

delays them in moving on to finding more bugs. 

E.2 Waterfall Model Questions 

1. Describe in detail the process (in terms of the sequence of possible steps that 

you can take in the game) that this game rewards. Create requirements; 

review requirements; correct requirements; create design; review design; 

correct design; create code; inspect code; correct code; integrate code; 

create, review & correct system test plan (although this step can come 

anywhere after requirements are done or partway done); do system test, 

correct code, deliver product. 

2. What is the effect of giving an employee a bonus? A short-term increase in 

productivity/mood. 
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3. What is the effect of giving an employee a pay raise? A longer-term increase 

in productivity/mood. 

4. Is it worth it to purchase tools? Yes. 

5. How is the outcome of the game affected if you fire Andre right at the 

beginning? This is going to severely hinder the game, because Andre is 

probably the best all-around employee, good at requirements, design, and 

coding. Without him you are left with only 2 good designers, and 3 good 

coders, which is not enough to get a good score. Without him, you are 

forced to either use too few people on these tasks, or use people who aren’t 

very good at these tasks, which will slow things down and introduce more 

errors.  

E.3 Incremental Model Questions 

1. Which artifact attribute seemed to be most important and most strongly affect 

the outcome of the game (e.g., inflexibility, difficulty, changeability, etc.)? 

There are multiple possible answers here, though the most obviously 

correct answer is its changeability, which determines how often customer 

changes occur, since customer changes are so damaging. It could be argued 

that the difficulty was the most important, since that determines how long 

implementation takes, but it would be sort of missing the point. Anything 

well-justified should be accepted, but if they just write “inflexibility” that is 

insufficient for full credit. 

2. Try skipping one or more of the documentation phases (requirements/design) on 

one or more modules. What effect does this have? If the requirements phase is 
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skipped, a very low accuracy rating will result, which will lower the overall 

score or require a great deal of redesign. If the design phase is skipped, 

they will have a very hard time redesigning any changes, and 

implementation will be slowed. Skipping both will mean an inaccurate 

module, impossibly hard redesign, and a terrible score, in most cases. This 

is, once again, a reasonably open-ended question. Most any well-justified 

answer that demonstrates they actually explored each approach should be 

accepted. 

3. How does the early submission of a partially complete project affect your work 

on the remainder of the project? This will reduce changeability, and the 

difficulty of some tasks, for each module, especially the submitted module. 

In general, this means there will be less customer changes, and an easier 

project lifespan. Also, some of the module’s hidden attributes are revealed. 

4. Describe your approach to the game in terms of the lifecycle models we 

discussed in class. In what ways did you follow a given lifecycle model? 

Possible answers include: 

- Following the waterfall model by performing requirements on each 

module, design on each module, etc. 

- Following the spiral model by doing risk analysis of each module, 

implementing one, re-analyzing, working on more modules, etc. 

- Following the rapid prototyping model by quickly building one 

module and submitting it. 

 290



- Following the XP model by forgoing most documentation and 

implementing modules quickly, reworking them as necessary. 

- In general, incremental approaches can be followed by early 

submission of modules. 

5. Is there any situation where it might be valuable to use the “start over” action? 

The most obvious case is after you have submitted a module without doing 

any requirements work on it, to obtain the partial submission benefits. 

Sometimes it is better to start over than to try to fix that module. Also, if 

you have done a complete requirements document but over time your 

module accuracy has fallen, it is often quite hard to get that accuracy back 

up. Starting over may be necessary. There could be other well-reasoned 

answers revolving around having skimped on documentation and needing 

the chance to do it right. Again, any that are well-justified should be 

accepted. 
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Appendix F: Pre-Test for Comparative Experiment 

1. Describe three of the major principles behind the waterfall model of software 

engineering. (specific, non-biased) 

2. Name two effective ways to increase a software engineer’s 

motivation/productivity. (specific, SimSE-biased) 

3. Describe three of the major principles behind iterative/incremental software 

development models. (specific, non-biased) 

4. In an iterative software process, how does the early submission to the customer 

of a partially complete project affect your work on the remainder of the project? 

(specific, SimSE-biased) 

5. In an incremental/iterative model of software development, how are increments 

planned (i.e., what is the criteria for determining which features/modules go into 

which increment)? (specific, reading/lecture-biased) 

6. What is the purpose of a code inspection? (specific, non-biased) 

7. What is the maximum amount of time that should be spent on a code inspection 

(in hours/minutes)? (specific, non-biased) 

8. What is the ideal size of a code inspection team? (specific, non-biased) 

9. What is the purpose of a checklist in a code inspection? (specific, 

reading/lecture-biased) 

10. What is the ideal size of checklist (in number of pages) that should be used in a 

code inspection? (specific, SimSE-biased) 

11. Name two strengths of the incremental life cycle model of software engineering. 

(insight, non-biased) 
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12. Name two strengths of the waterfall life cycle model of software engineering. 

(insight, non-biased) 

13. Discuss the difference, in terms of the software life cycle, between the waterfall 

model and incremental/iterative models. (insight, non-biased) 

14. Suppose you encounter a situation in which you really would like to have “the 

best of both worlds” by combining the incremental and waterfall life cycle 

models of software engineering. Draw the resulting model, and discuss the 

strengths and weaknesses of this particular combination. (application, non-

biased) 

15. You have just been named the chief executive officer of a newly established 

software company. Your first customer is NASA, who has contracted your 

company to build the software that will launch their newest space shuttle, which 

has recently been built. Currently, the entire infrastructure for launch is in place 

except for your launching software. Which software life cycle model will you 

choose to build this product, and why? (application, non-biased) 
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Appendix G: Post-Test for Comparative Experiment 

1. List the phases of the waterfall model of software development. (specific, non-

biased) 

2. Name two effective ways to increase a software engineer’s 

motivation/productivity. (specific, SimSE-biased) 

3. Explain the role of risk analysis in the software process. (specific, non-biased) 

4. In an iterative software process, how does the early submission to the customer 

of a partially complete project affect your work on the remainder of the project? 

(specific, SimSE-biased) 

5. In an incremental/iterative model of software development, how are increments 

planned (i.e., what is the criteria for determining which features/modules go into 

which increment)? (specific, reading/lecture-biased) 

6. What is the purpose of a code inspection? (specific, non-biased) 

7. Name and describe three of the typical steps in a code inspection process. 

(specific, reading/lecture-biased) 

8. What is the maximum amount of time that should be spent on a code inspection 

(in hours/minutes)? (specific, non-biased) 

9. What is the purpose of a checklist in a code inspection? (specific, 

reading/lecture-biased) 

10. What is the ideal size of checklist (in number of pages) that should be used in a 

code inspection? (specific, SimSE-biased) 

11. Describe the pros and cons of a software life cycle model in which increasingly 

complete versions of the product are delivered each week, versus a model in 
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which only one, fully complete product is delivered at the end. (insight, non-

biased) 

12. What is the biggest weakness of the waterfall model of software development? 

(insight, reading/lecture-biased) 

13. What are the effects of putting more as opposed to fewer people on a code 

inspection team? (insight, SimSE-biased) 

14. Suppose you encounter a situation in which you really would like to have “the 

best of both worlds” by combining the incremental and waterfall life cycle 

models of software engineering. Draw the resulting model, and discuss the 

strengths and weaknesses of this particular combination. (application, non-

biased) 

15. You have just been named the chief executive officer of a newly established 

software company. Your first customer is Disney, who has contracted your 

company to build the “coolest new kids’ computer game” based on their latest 

animated feature film. Beyond this, they are unsure what they want the game to 

do or look like, but one of their top priorities is to release the game quickly, by 

the time the film comes out on DVD. Which software life cycle model will you 

choose to build this product, and why? (application, non-biased) 
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Appendix H: Questionnaire Used for Comparative 

Experiment 

H.1 Learning Experience Questions 

 
1. Which learning exercise did you participate in (SimSE, reading, or lectures)? 

2. Approximately how much total time did you spend on the learning exercise? 

3. Did you spend any time looking up any further information about the concepts 

being taught in the learning exercise? If so, why did you do this, how much time 

did you spend doing this, and which resources did you use to look them up? 

4. On a scale of 1-5, how enjoyable was the learning exercise (1 least enjoyable, 5 

most enjoyable)?  

5. What were the most enjoyable aspects of the learning exercise? 

6. What were the least enjoyable aspects of the learning exercise? 

7. On a scale of 1 to 5, how much did the learning exercise engage your attention 

(1 least engaging, 5 most engaging)? 

8. What were the most attention-grabbing aspects of the exercise? 

9. What were the least attention-grabbing aspects of the exercise? 

10. On a scale of 1-5, how effective did you feel the learning exercise was in 

helping you learn software process concepts (1 least effective, 5 most 

effective)? 

11. In your opinion, which characteristics of the learning exercise were most helpful 

to learning software process concepts? 
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12. In your opinion, which characteristics of the learning exercise were least helpful 

to learning software process concepts? 

H.2 Background Information Questions 

13. Have you practiced software engineering in an industrial (outside of ICS) 

setting?  If so, for how many years? 

14. Which software engineering classes (if any) have you taken? 

15. Are you male or female? 

H.3 Lecture Group Questions 

16. On a scale of 1-5, how effective did you feel the lecturer was in teaching the 

concepts to you (1 least effective, 5 most effective)? 

17. Did you spend any time reviewing the slides outside of the lecture sessions? If 

so, why did you do this, and how much time did you spend? 

18. If you could choose between learning software process concepts through 

spending two hours hearing lectures about the subject versus spending two 

hours reading about the subject, which would you choose and why? 

19. If you could choose between learning software process concepts through 

spending two hours hearing lectures about the subject versus spending four 

hours playing a simulation game that teaches the same concepts, which would 

you choose and why? 
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H.4 Reading Group Questions 

20. Did you read any more or less than what was assigned? (Please be honest – you 

will get paid regardless of your answer!) If you read more, what extra did you 

read? If you read less, why didn’t you read all that was assigned? 

21. If you could choose between learning software process concepts through 

spending two hours reading about the subject versus spending two hours 

hearing lectures about the subject, which would you choose and why? 

22. If you could choose between learning software process concepts through 

spending two hours reading about the subject versus spending four hours 

playing a simulation game that teaches the same concepts, which would you 

choose and why? 

H.5 SimSE Group Questions 

23. Did you play each game less than, as much as, or more than you were instructed 

(in order to get a score of 85 or above)? (Please be honest – you will get paid 

regardless of your answer!) Why did you play less than, as much as, or more 

than you were instructed?  

24. Would you prefer to learn software process concepts through four hours of 

playing SimSE, or through two hours of reading about software process 

concepts? Why?  

25. Would you prefer to learn software process concepts through four hours of 

playing SimSE, or through two hours of listening to lectures about software 

process concepts? Why? 
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