

UNIVERSITY OF CALIFORNIA,
IRVINE

SimSE: A Software Engineering Simulation Environment
for Software Process Education

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Emily Navarro

Dissertation Committee:
Professor André van der Hoek, Chair

Professor David Redmiles
Professor Debra J. Richardson

2006

© 2006 Emily Navarro

This dissertation of Emily Navarro
is approved and is acceptable in quality and form for

publication on microfilm and digital formats:

Committee Chair

University of California, Irvine
2006

 ii

DEDICATION

To My Family.

 iii

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES xii

ACKNOWLEDGEMENTS xiii

CURRICULUM VITAE xv

ABSTRACT OF THE DISSERTATION xxi

CHAPTER 1 – INTRODUCTION 1

CHAPTER 2 – BACKGROUND 10

2.1 Software Engineering Educational Approaches 10
 2.1.1 Adding Realism to Class Projects 11
 2.1.2 Adding the “Missing Piece” 14
 2.1.3 Simulation 15

2.2 Learning Theories 17

2.3 Software Engineering Educational Approaches and Learning Theories 22

CHAPTER 3 – APPROACH 26

3.1 Research Questions 28

3.2 Key Decisions 29

3.3 Detailed Approach 35

CHAPTER 4 – MODELING/SIMULATION CAPABILITIES 38

4.1 Modeling Constructs 41
 4.1.1 Object Types 42
 4.1.2 Start State 46
 4.1.3 Actions 46
 4.1.4 Rules 53
 4.1.5 Graphics 59
 4.1.6 Modeling Sequence 63
 4.1.7 Summary of Modeling Constructs 64

4.2 Sample Implementation 66

4.3 Discussion 69

CHAPTER 5 – MODEL BUILDER 76

 iv

5.1 Object Types Tab 76

5.2 Start State Tab 78

5.3 Actions Tab 79

5.4 Rules Tab 85

5.5 Graphics Tab 94

5.6 Map Tab 95

5.7 Design and Implementation 97

5.8 Discussion 99

CHAPTER 6 – SIMSE 102

6.1 Game Play 102
 6.1.1 Game Play Example 107

6.2 Design and Implementation 112

CHAPTER 7 – MODELS 117

7.1 Waterfall Model 118

7.2 Inspection Model 123

7.3 Incremental Model 125

7.4 Extreme Programming Model 130

7.5 Rapid Prototyping Model 132

7.6 Rational Unified Process Model 139

7.7 Discussion 145

CHAPTER 8 – EXPLANATORY TOOL 147

8.1 User Interface 147

8.2 Design and Implementation 155

CHAPTER 9 – EVALUATION 157

9.1 Pilot Experiment 159
 9.1.1 Setup 159
 9.1.2 Results 161

9.2 In-Class Use 166
 9.2.1 Setup 166
 9.2.2 Results 169

 v

9.3 Comparative Experiment 177
 9.3.1 Setup 177
 9.3.2 Results 182

9.4 Observational Study 197
 9.4.1 Setup 197
 9.4.2 Results 204

9.5 Model Builder and Modeling Approach Evaluation 227

9.6 Summary 230

CHAPTER 10 – RELATED WORK 239

CHAPTER 11 – CONCLUSIONS 247

CHAPTER 12 – FUTURE WORK 249

REFERENCES 253

APPENDIX A: “THE FUNDAMENTAL RULES OF SOFTWARE
ENGINEERING 262

APPENDIX B: MODEL BUILDER “TIPS AND TRICKS” GUIDE 273

B.1 Starting a Model 273

B.2 Finishing a Model 274

B.3 Getting Around the Lack of If-Else Statements 275

B.4 Modeling Error Detection Activities 277

B.5 Calculating and Assigning a Score 278

B.6 Using Boolean Attributes in Numerical Calculations 278

B.7 Revealing Hidden Information during Game Play 279

B.8 Taming Random Periodic Events 280

B.9 Alternative Action Theming 280

B.10 Making Customers “Speak” 281

APPENDIX C: QUESTIONNAIRE USED IN PILOT EXPERIMENT 283

C.1 Game Play Questions 283

C.2 Software Engineering Education Questions 283

C.3 Background Information 284

 vi

APPENDIX D: QUESTIONNAIRE USED FOR IN-CLASS EXPERIMENTS 285

D.1 Use of the SimSE Game 285

D.2 Game Play Questions 285

D.3 Software Engineering Education Questions 286

D.4 Background Information 287

APPENDIX E: ASSIGNED QUESTIONS (WITH ANSWERS)
FOR IN-CLASS EXPERIMENTS 288

E.1 Inspection Model Questions 288

E.2 Waterfall Model Questions 288

E.3 Incremental Model Questions 289

APPENDIX F: PRE-TEST FOR COMPARATIVE EXPERIMENT 292

APPENDIX G: POST-TEST FOR COMPARATIVE EXPERIMENT 294

APPENDIX H: QUESTIONNAIRE USED FOR COMPARATIVE
EXPERIMENT 296

H.1 Learning Experience Questions 296

H.2 Background Information Questions 297

H.3 Lecture Group Questions 297

H.4 Reading Group Questions 298

H.5 SimSE Group Questions 298

 vii

LIST OF FIGURES

Figure 1 – Graphical User Interface of SimSE 32

Figure 2 – SimSE Architecture 36

Figure 3 – SimSE Non-Graphical Preliminary Prototype User Interface 41

Figure 4 – Relationships Between Modeling Constructs 42

Figure 5 – Programmer, Code, and Project Object Types 44

Figure 6 – Instantiated Programmer, Code, and Project Objects 47

Figure 7 – Sample “Coding” Action with Associated Triggers and Destroyers 48

Figure 8 – Sample “Break” Action with Associated Trigger and Destroyer 49

Figure 9 – Example Create Objects Rule and Example Effect Rules for the
“Coding” Action 55

Figure 10 – Example Effect Rules for the “Break” Action 56

Figure 11 – Example Effect Rule for the “GiveBonus” Action 60

Figure 12 – Sample Image Assignments to Objects in SimSE 62

Figure 13 – Sample Map Definition in SimSE 63

Figure 14 – Dependencies of Modeling Construct Development 64

Figure 15 – A UML-like Representation of SimSE’s Modeling Language 65

Figure 16 – Model Builder User Interface 77

Figure 17 – User Interface for Entering Attribute Information 77

Figure 18 – Start State Tab of the Model Builder 79

Figure 19 – Actions Tab of the Model Builder 80

Figure 20 – Action Participant Information Form 81

Figure 21a – Trigger Management Window 82

 viii

Figure 21b – Trigger Information Window 82

Figure 22 – Window for Entering Participant Trigger Conditions 83

Figure 23 – Participant Trigger Conditions Window for a Game-Ending Trigger 84

Figure 24 – Interface for Specifying an Action’s Visibility 85

Figure 25 – Rules Tab of the Model Builder 86

Figure 26 – Create Objects Rule Information Window 87

Figure 27 – Destroy Objects Rule Information Window 88

Figure 28 – Window for Entering Participant Conditions for a Destroy Objects Rule 89

Figure 29 – Effect Rule Information Window 90

Figure 30 – Button Pad for Entering Effect Rule Expressions 91

Figure 31 – Rule Input Information Form 94

Figure 32 – Graphics Tab of the Model Builder 95

Figure 33 – Map Tab of the Model Builder 96

Figure 34 – The “Prioritize” Menu 98

Figure 35 – The Continuous Rule Prioritizer 98

Figure 36 – Model Builder Design 99

Figure 37 – SimSE Introductory Information Screen 103

Figure 38 – SimSE Graphical User Interface (Duplicate of Figure 1) 104

Figure 39 – Right-click Menus on Employees 105

Figure 40 – At-a-glance View of Employees 107

Figure 41 – Requirements Creation and Review 110

Figure 42 – 194 Errors are Found When the Code is Inspected 112

Figure 43 – A Score is Given and Hidden Attributes are Revealed 113

 ix

Figure 44 – Simulation Environment Design 114

Figure 45 – Screenshot of the Conference Room Layout of the Inspection Game 124

Figure 46 – The Open Workspace Depicted in the Extreme Programming Model 133

Figure 47 – State Chart Depiction of the SimSE RUP Model’s Overall Flow 143

Figure 48 – Explanatory Tool Main User Interface 148

Figure 49 – An Object Graph Generated by the Explanatory Tool 149

Figure 50 – An Action Graph Generated by the Explanatory Tool 150

Figure 51 – Detailed Action Information Brought up by Clicking on an Action
in an Action Graph, with the Action Info Tab in Focus 151

Figure 52 – Rule Info Tab of the Action Information Screen 153

Figure 53 – A Composite Graph Generated by the Explanatory Tool 154

Figure 54 – Place of Explanatory Tool in the Overall Simulation Environment
Design 156

Figure 55 – Gender Differences in SimSE Questionnaire Results for Pilot
Experiment 163

Figure 56 – Industrial Experience Differences in SimSE Questionnaire Results
for Pilot Experiment 164

Figure 57 – Educational Experience Differences in SimSE Questionnaire Results
for Pilot Experiment 165

Figure 58 – Industrial Experience Differences in SimSE Questionnaire Results
for Class Use 175

Figure 59 – Gender Differences in SimSE Questionnaire Results for Class Use 176

Figure 60 – Test Score Results for All Questions Divided by Treatment Group 183

Figure 61 – Test Score Results for All Questions Divided by Treatment Group
and Educational Experience 184

Figure 62 – Test Score Results for Specific Questions Divided by Treatment Group 186

Figure 63 – Test Score Results for Insight Questions Divided by Treatment Group 187

 x

Figure 64 – Test Score Results for Insight Questions Divided by Treatment Group
and Educational Experience 187

Figure 65 – Test Score Results for Application Questions Divided by Treatment
Group 188

Figure 66 – Test Score Results for Application Questions Divided by Treatment
Group and Educational Experience 188

Figure 67 – Test Score Results for SimSE-Biased Questions Divided by Treatment
Group 189

Figure 68 – Test Score Results for SimSE-Biased Questions Divided by Treatment
Group and Educational Experience 191

Figure 69 – Test Score Results for Reading/Lecture-Biased Questions Divided
by Treatment Group 191

Figure 70 – Time Spent on Learning Exercise Versus Improvement from Pre- to
Post-Test 193

Figure 71 – A Graph Generated by the Explanatory Tool that Depicts the Relative
Lengths of Rational Unified Process Phases 229

 xi

LIST OF TABLES

Table 1 – Frequency and Breakdown of Each Software Engineering Educational
Approach 23

Table 2 – Learning Theories and Different Software Engineering Educational
Approaches 24

Table 3 – Timing of Execution of Each Different Type of Rule 58

Table 4 – Questionnaire Results for Pilot Experiment 161

Table 5 – Questionnaire Results from Class Use of SimSE, with Averages
Compared to Pilot Experiment 171

Table 6 – Summary of Rating/Reporting Questions on Comparative Experiment
Questionnaire 192

Table 7 – Summary of Learning Method Choice Questions on Questionnaire 195

Table 8 – Average Time Taken to Play Different SimSE Models 218

Table 9 – Average Scores Achieved for Different SimSE Models 218

Table A.1 – Average Number of Workdays Missed Per Year 272

 xii

ACKNOWLEDGEMENTS

I would first like to thank the person who has been the most direct help and support to me
throughout the process of getting my Ph.D., my advisor, André van der Hoek. You
always pushed me to do my best work and achieve my fullest potential. Even when it was
hard, I always looked back on the things we did together and was thankful for the extra
push—each time it turned out better because of it. You have always expressed the utmost
confidence and belief in me, and I sincerely appreciate it. You know how to temper your
push to succeed with the right amount of understanding, especially of the unique
circumstances that come with being a woman in this community. Somehow I was able to
plan a wedding, get married, have a baby, and get my Ph.D. in five years! I know this is
in large part because of your understanding and patience, which always motivated me to
give my research my best effort in spite of all these extenuating circumstances. I not only
value our advisor-student relationship, but also our friendship. We have had a lot of fun
together, and I look forward to more of that in the years to come.

I would also like to thank the other members of my committee, David Redmiles and
Debra Richardson, for their wise input that has helped shape my research for the better,
and for the time and effort that they have put into serving me and the research community
in this invaluable way. I especially appreciate the letters of support written for me during
these last five years, and the funding opportunities they have facilitated.

The ARCS foundation and the NSF have both provided financial support for my
education during these last five years, and for that I am extremely grateful.

Many thanks to my research group, who spent several hours playing and giving me
feedback about SimSE. Special thanks to Alex Baker for building one of the SimSE
models and for helping with some of the experiments. Extra special thanks to Anita
Sarma and Scott Hendrickson, who are not only my colleagues, but who have also
become very dear friends of mine during these last five years.

To my dear, sweet husband, thank you for putting up with me while I got my Ph.D. As
you know, I often had a level of stress that made life kind of miserable (for both of us) at
times, but you constantly amazed me with the patience and love you showed me in
return. I often feel I don’t deserve you! If I did not have the happiness and contentment
that have come from being married to you, I doubt I could have achieved this.

My precious daughter Mollie, you will not remember this past year that we have had
together, finishing Mommy’s research and writing her dissertation, but I will never forget
it. We make a great team, you and me! Your very existence fills my heart to overflowing.
Thank you for being such a good baby and a good napper so Mommy could get work
done!

Thank you to my parents for the many years of love and support that made my education
possible. Mommy, I cannot even begin to express how essential your friendship, support,

 xiii

prayers, daily phone calls, helping out with Mollie, and just always being there for me
have been to this process. My goal is to do as good a job of helping Mollie in her life’s
endeavors as you have done for me. You are my role model in so many ways. Daddy, I
doubt I ever would have even considered getting a Ph.D. if it wasn’t for you. Your
unwavering belief in me gave me the confidence to make it through, and knowing that
you are proud of me is one of my greatest joys.

Thank you to my dear sisters, Erica and Elizabeth, for playing school with me in my
toddler and preschool years so that I was able to read, add, subtract, multiply, and divide
before I started kindergarten. I credit you both with giving me a jumpstart on my
education that made it possible for me to go this far in school.

To my in-laws, Margie, Natalie, Danny, Dean, Gloria, Luisita, and Bob, thank you for
accepting me into your family as if I had always been part of it. The peace that comes
with knowing I have a strong, loving family around me helped to make this all possible.

To my Bible study group, the Bakers, the Chous, the Henrys, the Huffmans, the
Martinezes, and the Murrays, thank you for your love and support, and especially your
prayers. They lifted me up during some difficult times. I am so grateful for them.

My beloved dog, Roger, you should get your own diploma for being such a faithful,
loving companion all these years. From the time I started college until now, you have
always been right by my side while I worked, showing your support in the only way you
knew how—laying your head in my lap, keeping my feet warm, or just being there. I love
you and am so grateful for all the time we have had together throughout these years.

Ultimately, I thank my God for so abundantly blessing me with all of these people who
believed in me, and for His mercy and grace, which I so desperately need every day. I
truly believe that every talent, gift, and ability I have comes from my Creator, so to Him I
give the biggest “Thank You!” of all.

 xiv

CURRICULUM VITAE

Emily Navarro

EDUCATION

2001 – 2006 Doctor of Philosophy in Computer Science

University of California, Irvine
 Research Area: Software engineering education

2001 – 2003 Master of Science
 University of California, Irvine
 Area: Software engineering

1994 – 1998 Bachelor of Science
 University of California, Irvine
 Major: Biological Sciences

EMPLOYMENT

2000 – 2006 University of California, Irvine, Donald Bren School of

Information and Computer Sciences, Irvine, CA
Position (2000 – 2006): Graduate Research Assistant

 Position (2002 – 2005): Teaching Assistant

2005 Summer Google Inc., Santa Monica, CA
 Position: Software Engineering Intern

1999 – 2000 The Jesus Film Project, San Clemente, CA
 Position: Statistical Research Assistant

1998 – 1999 Arco Products Co., La Palma, CA
 Position: Help Desk Coordinator

REFEREED JOURNAL PUBLICATIONS

J.2 E. Oh Navarro and A. van der Hoek, Software Process Modeling for an

Educational Software Engineering Simulation Game, Software Process
Improvement and Practice special issue containing expanded best papers from the
Fifth International Workshop on Software Process Simulation and Modeling: 10
(3), pp. 311-325. 2004.

 xv

J.1 A. Baker, E. Oh Navarro, and A. van der Hoek, An Experimental Card Game for

Teaching Software Engineering Processes, Journal of Systems and Software
special issue containing invited and expanded best papers from the 2003
International Conference on Software Engineering & Training: 75 (1-2), pp. 3-16.
2005.

REFEREED CONFERENCE AND WORKSHOP PUBLICATIONS

C.13 T. Birkhoelzer, E. Oh Navarro, and A. van der Hoek. Teaching by Modeling

instead of by Models. Sixth International Workshop on Software Process
Simulation and Modeling, May 2005.

C.12 E. Oh Navarro and A. van der Hoek, Design and Evaluation of an Educational

Software Process Simulation Environment and Associated Model, Eighteenth
Conference on Software Engineering Education & Training, April 2005.

C.11 E. Oh Navarro and A. van der Hoek, Scaling up: How Thirty-two Students

Collaborated and
Succeeded in Developing a Prototype Software Design Environment, Eighteenth
Conference on Software Engineering Education & Training, April 2005.

C.10 E. Oh Navarro and A. van der Hoek, SimSE: An Interactive Simulation Game For

Software Engineering Education, IASTED Conference on Computers and
Advanced Technology in Education, August 2004, pages 12–17 (nominated for
best paper).

C.9 E. Oh Navarro and A. van der Hoek, SimSE: An Educational Simulation Game for

Teaching the Software Engineering Process, SIGCSE Conference on Innovation
and Technology in Computer Science Education, June 2004, page 233.

C.8 E. Oh Navarro and A. van der Hoek, Software Process Modeling for an

Interactive, Graphical, Educational Software Engineering Simulation Game, Fifth
International Workshop on Software Process Simulation and Modeling, May
2004, pages 171–176.

C.7 A. Baker, E. Oh Navarro, and A. van der Hoek, Teaching Software Engineering

using Simulation Games, International Conference on Simulation in Education,
January 2004, pages 9–14.

C.6 A. Baker, E. Oh Navarro, and A. van der Hoek, Problems and Programmers: An

Educational Software Engineering Card Game, Twenty-fifth International
Conference on Software Engineering, May 2003, pages 614–619.

 xvi

C.5 A. Baker, E. Oh Navarro, and A. van der Hoek, An Experimental Card Game for
Teaching Software Engineering, Sixteenth International Conference on Software
Engineering Education and Training, March 2003, pages 216–223 (selected as
one of best papers, leading to J.1).

C.4 E. Oh Navarro and A. van der Hoek, Towards Game-Based Simulation as a

Method of Teaching Software Engineering, Thirty-second ASEE/IEEE Frontiers
in Education Conference, November 2002, page S2G-13.

C.3 E. Oh, Teaching Software Engineering Through Simulation, Twenty-fourth

International Conference on Software Engineering Doctoral Symposium, May
2002, pages 38-40.

C.2 E. Oh and A. van der Hoek, Adapting Game Technology to Support Individual

and Organizational Learning, 2001 International Conference on Software
Engineering and Knowledge Engineering, June 2001, pages 347–354.

C.1 E. Oh and A. van der Hoek, Challenges in Using an Economic Cost Model for

Software Engineering Simulation, Third International Workshop on Economics-
Driven Software Engineering Research, May 2001, pages 45–49.

OTHER PUBLICATIONS

O.3 E. Oh Navarro, A Survey of Software Engineering Educational Delivery Methods

and Associated Learning Theories, UC Irvine, Institute for Software Research
Technical Report, UCI-ISR-05-5, April 2005.

O.2 A. Baker, E. Oh Navarro, and A. van der Hoek, Introducing Problems and

Programmers, an Educational Software Engineering Card Game, Software
Engineering Notes, March 2003, pages 7–8.

O.1 E. Oh and A. van der Hoek, Teaching Software Engineering through Simulation,

Online Proceedings of the Workshop on Education and Training, July 2001.

PRESENTATIONS

P.13 August 2005, Google Inc, Santa Monica, CA (Intern tech talk)

P.12 May 2005, International Workshop on Software Process Simulation and

Modeling, St. Louis, MO

 xvii

P.11 April 2005, Eighteenth International Conference on Software Engineering
Education and Training, Ottawa, Canada

P.10 November 2004, Twelfth ACM SIGSOFT Symposium on the Foundations of

Software Engineering, Newport Beach, CA (tutorial)

P.9 August, 2004, IASTED Conference on Computers and Advanced Technology in

Education, Kauai, HI

P.8 June 2004, SIGCSE Conference on Innovation and Technology in Computer

Science Education, Leeds, United Kingdom

P.7 May 2004, International Workshop on Software Process Simulation and

Modeling, Edinburgh, United Kingdom

P.6 March 2004, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

P.5 November 2002, Frontiers in Education Conference, Boston, MA

P.4 May 2002, International Conference on Software Engineering Doctoral

Symposium, Orlando, FL

P.3 July 2001, Workshop on Education and Training, Santa Barbara, CA

P.2 June 2001, International Conference on Software Engineering and Knowledge

Engineering, Buenos Aires, Argentina

P.1 May 2001, International Workshop on Economics-Driven Software Engineering

Research, Toronto, Canada

TEACHING

Teaching Assistant ICS 52 Introduction to Software Engineering
ICS 125 Project in Software System Design
ICS 127 Advanced Project in Software Design

UNDERGRADUATE STUDENTS ADVISED

Kuan Sung Lee B.S. 2004, Information and Computer Science, University of

California Irvine
Kenneth Shaw B.S. 2004, Information and Computer Science, University of

California Irvine

 xviii

Beverly Chan B.S. 2005, Information and Computer Science, University of
California Irvine

Barbara Chu B.S. 2005, Information and Computer Science, University of
California Irvine

Calvin Lee B.S. 2005, Information and Computer Science, University of
California Irvine

Terry Fog Senior, Information and Computer Science, University of
California Irvine

SERVICE TO THE RESEARCH COMMUNITY

Program Committee Member

Eighteenth International Conference on Software Engineering Education and Training
Nineteenth International Conference on Software Engineering Education and Training
Twentieth International Conference on Software Engineering Education and Training

Journal Reviews
IEEE Software (2006)
Software Process Improvement and Practice (2004)

Conference Reviews
Thirty-second ASEE/IEEE Frontiers in Education Conference (FIE 2003)
Thirty-third ASEE/IEEE Frontiers in Education Conference (FIE 2005)

Other

Chair of Student Participation, Nineteenth International Conference on Software
Engineering Education and Training (CSEE&T 2006)

TECHNICAL SKILLS

Languages Java, C++, OpenGL, HTML XML; familiar with LISP,

Prolog
Operating Systems Windows NT/XP/2000/9x, Unix (Solaris, Linux)
Tools Eclipse, Visual Café, JPad, MS Visual C++, MS Visual

J++, SPSS, XML-Spy, Dreamweaver, Subversion, CVS,
MS Office

 xix

HONORS

2006 UC Irvine Donald Bren School of Information and Computer Sciences

Dissertation Fellowship Recipient
2005 Session Chair at Eighteenth Conference on Software Engineering Education and

Training
2005 Google 2005 Anita Borg Scholarship Finalist
2004 Achievement Rewards for College Scientists (ARCS) Fellowship Recipient
2004 UC Irvine Donald Bren School of Information and Computer Sciences Fellowship

Recipient
2003 Achievement Rewards for College Scientists (ARCS) Fellowship Recipient
2003 UC Irvine Department of Information and Computer Science Departmental

Fellowship Recipient
2002 Graduate Assistance in Areas of National Need (GAANN) Fellowship Recipient
2002 National Science Foundation Graduate Research Fellowship Honorable Mention
2001 UC Irvine Department of Information and Computer Science Departmental

Fellowship Recipient
2001 Session Chair at Fourteenth Conference on Software Engineering Education and

Training
2001 UC Irvine Undergraduate Research Opportunities Grant Recipient
2001 Dean’s Honor List (June)
2001 Dean’s Honor List (March)
2000 Dean’s Honor List

 xx

ABSTRACT OF THE DISSERTATION

SimSE: A Software Engineering Simulation Environment

for Software Process Education

By

Emily Navarro

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2006

André van der Hoek, Chair

The typical software engineering education lacks a practical treatment of the processes of

software engineering—students are presented with relevant process theory in lectures, but

have only limited opportunity to put these concepts into practice in an associated class

project. Simulation is a powerful educational tool that is commonly used to teach

processes that are infeasible to practice in the real world. The work described in this

dissertation is based on the hypothesis that simulation can bring to software engineering

education the same kinds of benefits that it has brought to other domains. In particular,

we believe that software process education can be improved by allowing students to

practice, through a simulator, the activity of managing different kinds of quasi-realistic

software engineering processes.

 To investigate this hypothesis, we used a three-part approach: (1) design and build

SimSE, a graphical, interactive, educational, customizable, game-based simulation

environment for software processes, (2) develop a set of simulation models to be used in

seeding the environment, (3) evaluate the usage of the environment, both in actual

 xxi

software engineering courses, and in a series of formal, out-of-class experiments to gain

an understanding of its various educational aspects. Some of the educational aspects

explored in these experiments included how SimSE compares to traditional teaching

techniques, and which learning theories are employed by students who play SimSE.

 Our evaluations strongly suggest that SimSE is a useful and educationally effective

approach to teaching software process concepts. Students who play SimSE tend to learn

the intended concepts, and find it a relatively enjoyable experience. These statements

apply to students of different genders, academic performance levels, and industrial

experience backgrounds. However, in order for SimSE to be used in the most effective

way possible, our experience has demonstrated that it is crucial that it be used

complementary to other educational techniques and accompanied by an adequate amount

of direction and guidance given to the student. Our evaluations also suggested a number

of promising directions for future research that can potentially increase the effectiveness

of SimSE and be applied to educational simulation environments in general.

 xxii

1. Introduction

While the software industry has had remarkable success in developing software that is of

an increasing scale and complexity, it has also experienced a steady and significant

stream of failures. Most of us are familiar with public disasters such as failed Mars

landings, rockets carrying satellites needing to be destroyed shortly after takeoff, or

unavailable telephone networks, but many more “private” problems occur that can be

equally disastrous or, at least, problematic and annoying to those involved. Examining

one of the prime forums documenting these failures, the Risks Forum [4], provides an

illuminating insight: a significant portion of documented failures can be attributed to

software engineering process breakdowns. Such breakdowns range from individuals not

following a prescribed process (e.g., not performing all required tests, not informing a

colleague of a changed module interface), to group coordination problems (e.g., not using

a configuration management system to coordinate mutual tasks, not being able to deliver

a subsystem in time), to organizations making strategic mistakes (e.g., choosing to follow

the waterfall process model where an incremental approach would be more appropriate,

not accounting for the complexity of the software in a budget estimate). As a result, it is

estimated that billions of dollars are wasted each year due to ineffective processes and

subsequent faulty software being delivered [79].

We believe the root cause of this problem lies in education: current software

engineering courses typically pay little to no attention to students being able to practice

issues surrounding the software engineering process. The typical software engineering

course consists of a series of lectures in which theories and concepts are communicated,

and, in an attempt to put this knowledge into practice, a small software engineering

 1

project that the students must develop. Although both of these components are

necessary—lectures as a source for the basic knowledge of software engineering and

projects as a way to gain hands-on experience with some of the techniques of software

engineering, this approach fails to adequately teach the overall software process, a key

part of software engineering.

The underlying issue is the constraints of the academic environment—while relevant

process theory can be and typically is presented in lectures, the opportunities for students

to practically and comprehensively experience the presented concepts are limited. There

are simply not enough time and resources for the students to work on a project of a large

enough size to exhibit many of the phenomena present in real-world software engineering

processes. In addition, the brevity of the quarter, semester, or even academic year leaves

little room for the student to try (and possibly fail at) different approaches in order to

learn which processes work best for which situation. Most course projects simply guide

students through a linear execution of the waterfall model (requirements, design,

implementation, testing) in which students are left with little discretion. Students cannot

decide which overall life cycle model to follow, whether or not to first build a rapid

prototype, or even when to set the milestones for their deliverables—these and other

decisions are usually made by the instructor. The focus strongly remains on creating

project deliverables such as requirements documents, design documents, source code, and

test cases, and little room is left to illustrate or experience the principles, pitfalls, and

dimensions of the software process. The overall result is that students are unable to build

a practical intuition and body of knowledge about the software process, and are ill-

equipped for choosing particular software processes, for recognizing potentially

 2

troublesome situations, and for identifying approaches with which to address such

troublesome situations.

This lack of process education is evident in the way industry repeatedly complains

that recent graduates of computer science programs are unprepared for tackling real-

world software engineering projects [27, 36, 98, 130]. Academia has also recognized this

deficiency and has attempted to remedy it with a wide range of innovations designed to

make class projects more closely resemble those in industry. These have included such

things as intentionally introducing real-world complications into a project, (e.g., causing

hardware and software to crash when a deadline is looming [45]), maintaining a large-

scale, ongoing project that different groups of students work on from semester to

semester [97], requiring students to work on a real-world project sponsored by an

industrial organization [66], incorporating multiple universities and disciplines into the

project [21], and many others. However, in each of these approaches, the time and scope

constraints imposed by the academic environment still remain, and prevent most of the

phenomena involved in real world software engineering processes from being exhibited

(although they do succeed in highlighting a few of these issues). So far, no single

approach (or set of approaches) has been accepted as a sufficient solution to the problem.

Simulation is a powerful educational tool that has been widely and successfully used

in a number of different domains. Before airline pilots fly an actual jet plane full of

passengers, they extensively train in simulators [118]. Military personnel practice their

decision-making and leadership abilities in virtual reality simulation environments [92].

Students in hardware design courses use simulators to practice designing new, state-of-

the-art CPU’s [33]. In all of these cases, simulation provides significant educational

 3

benefits: valuable hands-on experience is accumulated without incurring the high cost of

actual exercise and without the risk of dramatic consequences that may occur in case of

failure. Moreover, unknown situations can be introduced and practiced, experiences can

be repeated, alternatives can be explored, and often a general freedom of experimentation

is promoted in the training exercise, allowing the student to gain deeper insights with

each simulation run [90].

On top of these known benefits, educational simulations are also known to embody a

number of different well-known and well-understood learning

theories [5, 20, 34, 56, 110, 123], a characteristic that suggests it has a great deal of

educational potential that should be explored. In spite of this, simulation has been

significantly under-explored in the field of software process and software engineering in

general.

The goal of this work is to understand whether simulation can bring to software

engineering education the same kinds of benefits that it has brought to other domains. We

hypothesize that software engineering education can be improved, specifically in the

domain of software engineering processes, by using simulation. In particular, we believe

that this improvement can be brought about by allowing students to practice, through a

simulator, the activity of managing different kinds of quasi-realistic software engineering

processes. While we certainly do not anticipate nor claim that this will address all of the

educational deficiencies that typically lead to software process breakdowns, we have

carefully chosen the focus of this hypothesis to be on what we believe is one of the root

causes of these breakdowns: the lack of practice a student has in managing software

processes from a project manager’s perspective.

 4

To investigate this hypothesis, our approach was threefold: (1) build a graphical,

interactive, educational, customizable, game-based simulation environment for software

processes, (2) develop a set of simulation models to be used in seeding the environment,

(3) evaluate the usage of the environment, both in actual software engineering courses,

and in a series of formal, out-of-class experiments to gain understanding of its various

educational aspects.

Out of our technical development came SimSE, a computer-based environment that

facilitates the creation and simulation of software engineering processes. SimSE allows

students to virtually participate in realistic software engineering processes that involve

real-world components not present in typical class projects, such as large teams of

people, large-scale projects, critical decision-making, personnel issues, multiple

stakeholders, budgets, planning, and random, unexpected events. In so doing, it aims to

provide students with a platform through which they can experience many different

aspects of the software process in a practical manner without the overarching emphasis

on creating deliverables that is inherent in actual software development.

Along with the environment, we also developed a set of simulation models to be used

in SimSE. These models cover a number of different software engineering processes,

such as the waterfall model, Extreme Programming, and a code inspection process. In

each of these, the player is rewarded for following that process model’s “best practices”

and penalized for deviating from them.

We developed these models using SimSE’s model builder tool, a critical part of our

environment that we created with the express intent of allowing instructors to build

customized simulation models. Using this tool, instructors can encode the software

 5

process lessons they want their students to learn, and then generate a customized

simulation game based on those lessons. Because there exist a wide variety of different

software process models, several different schools of thought about what are software

process “best practices” [119], and numerous instructors with varied teaching objectives,

one of SimSE’s fundamental goals was the ability to support customization of the

software processes it simulates.

Because the purpose of this work is to improve software engineering education, the

third part of our approach started where learning primarily takes place: the classroom.

Namely, we investigated the potential for simulation’s incorporation into an actual

software engineering curriculum by putting SimSE into use in introductory software

engineering courses. As the students used SimSE, we tested how well they were able to

learn the software process concepts it was designed to teach, and carefully observed and

collected their reactions and attitudes about the experience.

We also evaluated SimSE in a series of formal, out-of-class experiments to look into

educational aspects that were independent of SimSE’s in-class usage. In particular, we

performed three such experiments: (1) A pilot experiment to evaluate the initial

educational potential of SimSE and its first simulation model by having undergraduate

computer science students play the game and provide us with their feedback; (2) A

comparative study between students who played SimSE, students who read from a

textbook, and students who listened to lectures (noting the differences in their attitudes,

observations, and gain in software process knowledge); and (3) An in-depth observational

study of the learning process students go through while playing SimSE that also served to

 6

evaluate the effectiveness of SimSE’s explanatory tool in providing students with insight

into their simulation runs, and hence, into the process being simulated as well.

To summarize, this work addresses the following set of incremental research

questions, each of which has driven the development, usage, and evaluation of SimSE:

1. Can a graphical, interactive, educational, customizable, game-based

software engineering simulation environment be built? We have

successfully built such an environment, although, by necessity, certain tradeoffs

had to be made between these qualities (graphics, interactivity, educational

factors, “fun factors”, customizability) to create a balance that could effectively

and feasibly be developed.

2. Can students actually learn software process concepts from using such an

environment? If given adequate background knowledge and guidance, which

has proven to be crucial, students who use such an environment do seem to

glean from the simulation models the concepts they are designed to teach.

3. If students can learn software process concepts from using such an

environment, how does the environment facilitate the learning of these

concepts? The most common learning theories employed by players of SimSE

are Discovery Learning, Learning through Failure, and Constructivism.

Learning by Doing and Situated Learning are also significant, but seen slightly

less. Certain aspects of Keller’s ARCS theory of motivation are employed

strongly (attention and satisfaction) while others are only moderately employed

(relevance and confidence).

 7

4. How can such an environment fit into a software engineering curriculum?

Simulation in a software engineering curriculum seems to fit best as a

complementary component to lectures, projects, and readings. One option that

has proven useful is to use simulation as an optional extra-credit assignment in a

course that provides the background knowledge required to understand the

simulation models. In our experience using SimSE in this manner, the majority

of students chose to complete the assignment, enjoyed it for the most part, and

seemed to learn the concepts the models are designed to teach. (Of course, this

is only one option. As part of the follow-on work to this dissertation we plan to

experiment with others, such as making it mandatory or optional. See Chapter

12 for further information.)

 Based on the answers to these research questions that have been suggested by our

experience and the data we have collected, the work described in this dissertation

provides the following contributions:

1. The insight that simulation can be beneficial to software engineering process

education, but with two crucial caveats: First, simulation needs to be used

complementary to other educational techniques (such as lectures, projects, and

readings) so that students will have adequate background knowledge to

successfully use the simulation in such a way that they will learn the lessons it is

designed to teach. Second, it is absolutely crucial that an adequate amount of

direction and guidance be given with a simulation assignment, in order for the

simulation to be used by the students correctly and effectively.

 8

2. An implementation of a graphical, interactive, educational, customizable, game-

based software engineering simulation environment, along with a set of

simulation models, that has been put through both in-class use and out-of-class

formal evaluations.

3. Insight into the role and potential of an explanatory tool in an educational

simulation, as well as an implementation of such a tool.

4. Experience with the use of simulation in software engineering education,

including the lessons learned and promising directions for future research.

 The remainder of this dissertation is organized as follows: Chapter 2 frames SimSE in

its research context by providing an overview of the background research areas from

which it stems. Chapter 3 presents the approach we took to addressing the problem our

work aims to tackle. In Chapter 4, we describe the modeling capabilities of our

simulation approach. Chapter 5 presents SimSE’s model builder tool. In Chapter 6, we

discuss SimSE, including details of its game play, design, and implementation. Chapter 7

details the various simulation models that have been built using the model builder tool.

Chapter 8 introduces SimSE’s explanatory tool. Chapter 9 describes our experience with

actual usage and evaluation of SimSE. In Chapter 10, we provide an overview of related

work. Chapter 11 presents the conclusions we can draw from this work and in Chapter 12

we describe our plans for future work.

 9

2. Background

In order to frame the context of our approach, this chapter will take a broad look at two

major research areas from which this work stems: software engineering education and

learning theories. First, we will present an overview of how other educators have

attempted to address the problem of under-preparedness on the part of graduates starting

their careers in industry. Then, we will survey the well-known learning theories that are

applicable to the discipline of software engineering education. Finally, we will present a

categorization of the surveyed approaches in terms of the learning theories they employ,

focusing in particular on what this can teach us about the potential for educational

software engineering simulation approaches.

2.1 Software Engineering Educational Approaches

In surveying the software engineering educational literature, it is clear that nearly every

approach to teaching the subject is based on the same two components: lectures, in which

software engineering theories and concepts are presented; and projects, in which students

must work in groups to develop a (generally small) piece of software. However, judging

from the dissatisfaction of industrial organizations that hire recent graduates (mentioned

previously), it is clear that this approach is not sufficiently preparing future software

engineers for jobs in the real world.

The academic community has recognized this problem and, in response to it, has

created a wealth of innovations that build on the standard lectures plus project approach.

These approaches fall into three major categories. The first involves attempts to make the

students’ project experience more closely resemble one they would encounter in the real

 10

world (“realism”). The second category includes approaches that teach one or more

specific subjects a particular instructor feels are currently missing (e.g., usability testing

or formal methods), and are crucial to effectively educating the students (“missing

piece”). The final category is simulation approaches, in which educators have students

practice software engineering processes in a (usually) computer-based simulated

environment. The remainder of this section describes these categories and their

approaches in greater detail.

2.1.1 Adding Realism to Class Projects

It is clear from looking at the software engineering literature that the most common

method of improving the educational experience involves modifying certain aspects of

the class project to make it more closely resemble the experience students will face in

their future software engineering careers. As the academic environment differs so greatly

from the industrial, there are numerous angles from which educators have approached

this issue in terms of aspects of the academic environment that they have tried to make

more realistic.

Some of these involve an industrial organization as a participant in the project, either

by modifying the organization’s existing software [57], using one of their representatives

in an advisory role [11], inviting one of their representatives to give guest lectures and/or

mentor the students [125, 147], using one of their projects to be examined as a case

study [60, 85], or by having an industrial participant actually function as a customer for

the students’ project [54, 65, 66]. Through the extra pressure of having a non-academic

party involved, these “industrial partnership” approaches aim to teach students a greater

 11

appreciation of quality, give them an opportunity to learn a real application domain, and

motivate them more thoroughly to do their best work.

Another approach uses only maintenance- or evolution-based projects instead of

building a system from scratch [7, 57, 97]. In some of these, the maintenance project is

ongoing over a number of semesters or quarters, and each class extends and builds on the

previous classes’ modifications [97, 126, 128, 146]. In others, the piece of software being

modified is unique to that particular class and/or semester [7, 57, 82, 107, 109]. These

approaches generally argue that, since the majority of real-world projects are

maintenance projects, students will be better prepared for the real world by becoming

familiar with these types of projects during their university education.

Other “realism” approaches focus on the nature and composition of the student teams

that work on the project, making them more closely mirror the team dynamics in real-

world software engineering situations so that students will learn the skills necessary to

work in teams when they enter their industrial careers. These approaches have done such

things as making the same people work together for multiple projects and/or

semesters [125], making the student teams very large [15], distributing the members of a

team across courses [132], majors [43], universities [21], or even countries [50], or

enforcing formal structure and communication protocols [140].

Some other “realism” approaches focus on non-technical skills such as

communication, group process, interpersonal competencies, project management, and

problem solving [62], rather than traditionally taught skills like design and coding. These

approaches identify such “soft” skills as what are most lacking in university graduates,

and hence argue that this kind of emphasis is crucial for their education.

 12

Others have tried to mimic common less-structured real-world software engineering

situations by making the project purposely open-ended and/or vague. This is done in two

main ways: either by allowing the students to define their own requirements (giving

students the pseudo-experience of new product development based on market

research) [100], or by allowing them to define their own process (giving students

experience in not only following a process, but in designing the process that they

follow) [63].

A somewhat radical approach that has been used is a “practice-driven” approach in

which the curriculum is largely lab- and project-based [67, 104, 140]. In these

approaches, lectures are used only as supporting activities. These approaches argue that

theory is something that cannot be taught in a lecture, but instead must be built in each

individual through experience and making mistakes.

Another approach that encourages learning through mistakes, although more

explicitly, is deliberate sabotage. In this approach, the instructor purposely sets the

students up for failure by introducing common real-world complications into projects, the

rationale being that students will then be prepared when these situations occur in their

future careers. Some of these sabotage tactics have included providing inadequate

specifications, instructing the customer to be purposely uncertain when describing their

needs, or purposely crashing the hardware just before a deadline [45].

Finally, in a somewhat different sort of sabotage, some have assigned projects that

had been known to fail in the past due to software process problems [12]. In all cases, the

students also failed, providing a perfect opportunity for the instructor to explain the

 13

rationale behind the best practices of software processes, as well as a way for the students

to learn the consequences of not following these practices firsthand.

2.1.2 Adding the “Missing Piece”

While the “realism” approaches all mainly focus on changing the manner in which

software engineering concepts are taught, there is another large school of thought that

concentrates instead on changing the content of what is taught—in particular, these

approaches believe that software engineering education is lacking in effectiveness due to

the omission of one (or a few) important subject(s). What this “missing piece” is varies

from approach to approach, but all generally believe that the addition of this subject to

the curriculum (either to an existing course or as an entirely new and separate course)

will make the students’ education much more complete, better preparing them for the real

world.

Some of these approaches believe that formality is underemphasized, and propose to

teach more formal methods [3] or to make traditional engineering education a larger part

of software engineering curriculum [40]. Others believe that students should be taught a

specific software process (such as the Personal Software Process (PSP) [69, 70], the

Team Software Process (TSP) [116, 138], the Rational Unified Process (RUP) [54, 64],

or Extreme Programming (XP) [67, 131]) and be required to follow that process in their

academic software engineering projects. Still others propose that students should not only

be required to follow a specific software process, but to also practice process engineering

and project management techniques to create their own software processes and use

process improvement techniques to improve upon them [24, 63, 77].

 14

Rather than focus on process as a whole, other “missing piece” approaches focus on

specific parts of the process (e.g., requirements analysis, testing), and specific techniques

for performing that part (e.g., scenario-based requirements engineering [39], usability

testing [143]). Other approaches, rather than teach software engineering in general, focus

on a specific type of software engineering, such as maintenance-based software

engineering [7, 133], component-based software engineering [53, 105], or software

engineering for real-time applications [84, 86]. Still others believe it is certain non-

technical aspects of software engineering that should be added to the software

engineering curriculum, such as communication [60, 62], interacting with

stakeholders [108], Human-Computer Interaction [68, 142], or the business aspects of

software engineering (e.g., intellectual property, product marketing, and financial

models) [126].

2.1.3 Simulation

While the majority of the software engineering educational approaches focus on adding

realism to class projects or critical topics to the curriculum, a number of others argue that

the only feasible way to provide students with the experience of realistic software

engineering processes within the academic environment is through simulation, as used in

conjunction with lectures and projects. While these approaches vary in terms of the

processes they simulate and their specific purposes, they are all designed to allow

students to practice and participate in software engineering processes on a larger scale

and in a more rapid manner than can be feasibly done through an actual project. Within

the realm of software engineering simulation, there are three varieties: industrial

 15

simulation brought to the classroom, group process simulations, and game-based

simulations.

 In industrial simulation brought to the classroom, a simulator that is used in industry

to predict the effects of process planning decisions is brought into the classroom for the

students to practice on [35, 106]. The models run in these simulators are generally based

strictly on empirical data. They also typically have a non-graphical interface (meaning

they display a set of gauges, graphs, and meters rather than characters and realistic

surroundings) and a relatively low level of interactivity, taking a set of inputs such as

person power, project size, and/or process plan, and outputting a set of results, such as

budget, time, and defect rate. Use of these highly-realistic simulations in the classroom is

designed to illustrate to students, using real-world data, the overall life cycle and project

planning phenomena of software engineering.

Group process simulations portray structured group discussion and interaction

processes that are typically present in real-world software engineering

situations [103, 136], such as code inspections and requirements analysis meetings. In

these cases, the student engages in a discussion in which some or all of the other

participants are simulated. Such simulations are designed to give students experience in

these kinds of discussions, which, these approaches argue, is one area in which new

graduates are typically unprepared.

 The final category is game-based simulation, in which software engineering processes

are practiced by “playing” them in a game-based environment [9, 44, 47, 78, 101, 129].

In these software engineering simulation games, the player is generally presented with a

task to complete in the simulated world (normally to complete a software engineering

 16

project within certain constraints), and must interact with the game to drive the

simulation in order to complete the task. Most of these simulation games have graphical

user interfaces in which the simulated physical surroundings are displayed, creating a fun,

game-like atmosphere. The general hope in the game-based approach is that the

additional enjoyment provided by the game features and dynamics will make learning

about the particular software engineering process being modeled more memorable, and

hence, more effective.

2.2 Learning Theories

When discussing and evaluating educational approaches, it is only appropriate that the

discussion is tied back to the roots of educational theory: learning theories. Learning

theories are theories that describe how people learn. One of the main purposes of learning

theories is their use as a guide in evaluating and modifying existing educational

approaches, as well as in creating new ones. In this section, we will present and describe

some of the most widely accepted and well-known learning theories that are relevant to

the domain of software engineering education. We chose the following set of learning

theories because of three criteria: wide acceptance across fields beyond software

engineering, orthogonality among the factors defining the theory, and relevancy to

software engineering. That is, we wanted theories that apply beyond software engineering

but still bore hands-on applicability in structuring our methods of teaching (thereby

ignoring general theories such as cognitive dissonance, which focus on conflict resolution

in the mind [52]), and we wanted to avoid listing numerous theories that vary ever so

slightly (those that are similar we implicitly grouped under a single “learning theory”).

 17

 One of the most well-known learning theories is Learning by Doing, a theory based

upon the premise that people learn a task best not only by hearing about it, but also by

actually doing it [8, 110, 117, 123, 124]. The implication of this theory for educational

approaches is the following: the learner should be provided with ample opportunity to

actually do what they are learning about, not simply absorb the knowledge through a

lecture, book, or some other medium. Furthermore, they should be encouraged to reflect

upon their actions through analysis, synthesis, and evaluation activities.

 Situated Learning [5, 23, 56, 115, 135, 137] is an educational theory that builds upon

the Learning by Doing approach. However, while Learning by Doing focuses on the

specific learning activities that the student performs, the Situated Learning theory is

concerned with the environment in which the learning by doing takes place. In particular,

Situated Learning is based on the belief that knowledge is situated, being in large part a

product of the activity, context, and culture in which it is developed and used. Therefore,

the environment in which the student practices their newly learned knowledge should

resemble, as closely as possible, the environment in which the knowledge will be used in

real life.

Like Situated Learning, Keller’s ARCS Motivation Theory [81] also focuses on

motivating students to learn. However, rather than focusing on the physical environment

in which they learn, Keller’s ARCS Motivation Theory concerns itself with promoting

certain feelings in the learner that motivate them to learn. In particular, these feelings are

attention, relevance, confidence, and satisfaction.

• Attention: The attention and interest of the learner must be engaged. Proposed

methods for doing so are: introducing unique and unexpected events; varying

 18

aspects of instruction; and arousing information-seeking behavior by having the

learner solve or generate questions or problems.

• Relevance: Learners must feel that the knowledge is relevant to their lives. The

theory suggests that knowledge be presented and practiced using examples and

concepts that are relevant to learners’ past, present, and future experiences.

• Confidence: Learners need to feel personal confidence in the learning material.

This should be done by presenting a non-trivial challenge and enabling them to

succeed at it, communicating positive expectations, and providing constructive

feedback.

• Satisfaction: A feeling of satisfaction must be promoted in the learning

experience. This can be done by providing students with opportunities to

practice their newly learned knowledge or skills in a real or simulated setting,

and providing positive reinforcements for success.

 Anchored Instruction [20] is another theory that deals with teaching techniques. In

particular, Anchored Instruction says educators should center all learning activities

around an “anchor”—a realistic situation, case study, or problem. Presentation of general

concepts and theories should be kept to a minimum. Instead, Anchored Instruction

believes that knowledge is best learned by exploration of these realistic case studies or

problems.

The Discovery Learning theory [5, 110] takes a similar approach to Anchored

Instruction in that it believes that an exploratory type of learning is best. Discovery

Learning is based on the idea that an individual learns a piece of knowledge most

effectively if they discover it on their own, rather than having it explicitly told to them.

 19

This theory encourages educational approaches that are rich in exploring, experimenting,

doing research, asking questions, and seeking answers.

Along the same lines as the Discovery Learning theory is the Learning Through

Failure theory [123]. This theory is based on the assumption that the most memorable

lessons are those that are learned as a result of failure. Learning through failure also

provides more motivation for students to learn, so as to avoid the adverse consequences

that they experience firsthand when they do not perform as taught. Failure can also

engage students, as they are motivated to try again in order to succeed. Proponents of the

theory argue that students should be allowed to (and even set up to) fail to encourage

maximal learning.

While most of the learning theories discussed so far focus mainly on the learner as an

independent being who is responsible for fostering their knowledge on their own (using

the proper learning materials/activities), the Learning through Dialogue theory [38] gives

the teacher a much more active and pivotal role in the learner’s education. Learning

through Dialogue suggests that dialogue between student and teacher is necessary for

effective learning and retention. According to the theory, this dialogue should consist of

the teacher encouraging reflection, assessing the student’s aptitudes and learning style,

and tailoring their teaching strategy accordingly.

 Like Learning through Dialogue, the Aptitude-Treatment Interaction [41] theory also

recommends that the instructor take an active role in assessing the characteristics of the

learner and modify their teaching style accordingly. Aptitude-Treatment Interaction

focuses primarily on the aptitude of the learner, and states that the learning environment

should be tailored to this particular characteristic. Specifically, low-ability learners need

 20

highly-structured learning environments that incorporate a high level of control by the

instructor, concrete and well-defined assignments, and specific sequences to follow for

completing them. High-ability learners, on the other hand, tend to be more independent,

which implies that a less structured approach is more effective for this type of student.

 Like the Aptitude-Treatment Interaction theory, the theory of Multiple

Intelligences [55] also deals with the diverse learning needs and styles of individuals.

However, rather than focusing on the aptitude of the learner, the Multiple Intelligences

theory is instead focused on the particular learning modalities that are unique to each

individual. In particular, the theory identifies seven different learning modalities:

linguistic, musical, logical-mathematical, spatial, body-kinesthetic, intrapersonal

(metacognition and insight), and interpersonal (social skills). Whenever possible,

instruction should be individually tailored to each student to target the particular learning

modalities that are most effective for them.

The theory of Learning through Reflection is primarily based on Donald Schön’s

work suggesting the importance of reflection activities in the learning process [127]. In

particular, Learning through Reflection emphasizes the need for students to reflect on

their learning experience in order to make the learning material more explicit, concrete,

and memorable. Some common reflection activities include discussions, journaling, or

dialogue with an instructor [83].

While Learning Through Reflection is primarily concerned with what individuals do

with knowledge once they have received it, the theory of Elaboration [113] is focused on

how that information is presented to the learner in the first place. In particular, it states

that, for optimal learning, instruction should be organized in order of complexity, from

 21

least complex to most complex. Simplest versions of tasks should be taught first,

followed by more complicated versions.

The Lateral Thinking theory [46] is concerned with how students are encouraged to

think about the information presented. Specifically, Lateral Thinking states that

knowledge is best learned when students are presented with problems that require them to

take on different perspectives than they are used to and practice “out of the box” thinking.

The theory suggests that students be challenged to search for new and unique ways of

looking at things, and in particular, these views should involve low-probability ideas that

are unlikely to occur in the normal course of events. It is only through this type of

relaxed, exploratory thinking that one can obtain a firm grasp on a problem or piece of

knowledge.

2.3 Software Engineering Educational Approaches and Learning

Theories

Table 1 presents the frequency of each software engineering educational approach

discussed here, including a breakdown of each approach’s subcategories. Looking at the

number of approaches that fall into the “Projects Plus Realism” category (53 out of 109

total) and the “Missing Piece” category (48 out of 109), it is obvious that these are the

two most popular approaches to addressing the problem of adequately preparing students

for their future careers in software engineering. Simulation is by far the category of

approach that is least often used.

 If we then compare these teaching strategies with the set of learning theories

discussed previously, the results are shown in Table 2. An ‘X’ in the table indicates that

there have been approaches within that category that have embodied that theory (either

 22

Table 1: Frequency and Breakdown of Each Software Engineering Educational Approach.

Realism 53 Simulation 8 Missing Piece 48
Industrial Partnerships 16 Industrial 2 Formality 3

Game-Based 4 - Modify real software 1 - Formal methods 2
Group Process 2 - Industrial advisor 1 - Engineering 1

Process (Specific) 21 - Industrial mentor/lecturer 2
- Case study 5 - Personal Software Process 14
- Real project / customer 7 - Team Software Process 2
Maintenance/Evolution 9 - Rational Unified Process 3
- Multi-semester 4 - Extreme Programming 2

Process (General) 6 - Single-semester 5
Team Composition 13 - Process engineering 3
- Long-term teams 1 - Project management 3

Parts of Process 3 - Large teams 3
- Different C.S. classes 1 - Scenario-based requirements 1
- Different majors 2 - Code reviews 1
- Different universities 2 - Usability testing 1

Types of Software Eng. 8 - Different countries 1
- Team structure 3 - Maintenance/Evolution 3
Non-Technical Skills 2 - Component-based SE 2
Open-Endedness 7 - Real-time SE 3

Non-Technical Skills 7 - Requirements 2
- Process 5 - Social/logistical skills 3
Practice-Driven 3 - Interact w/ stakeholders 1
Sabotage 2 - Human-Computer

Interaction
2

Project Failures 1 - Business aspects 1

accidentally or deliberately), and a ‘P’ represents that there is an obvious potential for

that particular type of approach to employ that learning theory (in and of itself, not

combined with any other approach), but there have been no known cases of it. The

presence of both an ‘X’ and a ‘P’ indicates that perhaps one or two approaches in the

category have taken advantage of the theory, but most have not, so there is significant

potential for further exploitation. (See [99] for a more thorough explanation of this

categorization).

The first eight rows of results illustrate the correlation between learning theories and

advances in the eight subcategories of the “realism” category. It should be clear that,

although all learning theories are covered, each approach only covers a subset of the

 23

Table 2. Learning Theories and Different Software Engineering Educational Approaches.

surveyed learning theories. Approaches of the “missing piece” variety are worse off (and

therefore grouped together). Because these approaches tend to focus on exposing students

to a particular technology or topic, little time is spent in framing such exposures in

learning theories. Exposure itself is typically considered a sufficient advance in and of

itself.

What is interesting to this dissertation, however, is the relationship between

simulation and learning theories: all of the theories considered apply in some way or

another. While it certainly is not the case that any teaching method that addresses more

learning theories than another is better than that other method (consider a haphazard

combination of strategies put together in some teaching method versus one well-thought-

out and tightly-focused method cleverly leveraging one very good strategy), an approach

that naturally addresses factors and considerations of multiple learning theories is one

that is most definitely worth exploring. Simulation is such an approach, but one that, as

Le
ar

ni
ng

 b
y

D
oi

ng

(a
nd

 si
m

ila
r)

 [1
17

]
Si

tu
at

ed
 L

ea
rn

in
g

(a
nd

 si
m

ila
r)

 [2
3]

K
el

le
r’

s A
R

C
S

[8
1]

A
nc

ho
re

d
In

st
ru

ct
io

n
[2

0]

D
is

co
ve

ry
 L

ea
rn

in
g

[5
]

Le
ar

ni
ng

 T
hr

ou
gh

F

ai
lu

re
 [1

23
]

Le
ar

ni
ng

 T
hr

ou
gh

D

ia
lo

gu
e

[3
8]

A

pt
itu

de
-T

re
at

m
en

t
In

te
ra

ct
io

n
[4

1]

Le
ar

ni
ng

 T
hr

ou
gh

R

ef
le

ct
io

n
[1

27
]

E
la

bo
ra

tio
n

[1
13

]

La
te

ra
l T

hi
nk

in
g

[4
6]

Industrial Partnerships X X X X/P X/P P
Maintenance / Evolution X X P P P
Team Composition X X P P X/P P
Open-Endedness X X X X X P P
Non-Technical Skills X X P P P
Practice-Driven X X X X X/P P X/P P
Sabotage X X X P P P
Project Failures X X X P P P
Missing Piece X
Simulation X X X P X X X/P P X/P X/P X/P

 24

we have seen, has been significantly under-explored in the field of software process and

software engineering in general—something that our approach aims to correct.

 25

3. Approach

This dissertation is based on the hypothesis that simulation can bring to software

engineering education many of the same benefits it has brought to other educational

domains. Specifically, we believe that software engineering process education can be

improved by using simulation to allow students to practice managing different kinds of

“realistic” software engineering processes. As discussed in Chapter 1, software process is

a key part of software engineering that is not adequately addressed in typical software

engineering educational approaches. The constraints of the academic environment

prevent students from having the opportunity to practice many issues surrounding the

software engineering process. Accordingly, our approach focuses on providing this

opportunity through the use of a new educational software engineering simulation

environment, SimSE.

As simulation environments have become widely recognized as educationally

beneficial and thus, have become a standard part of many curricula, there is a significant

body of experience that can be drawn from in developing a new educational simulation

approach. Rather than focusing on individual projects, we discuss collective lessons

learned from these projects—lessons that identify some of the critical success factors for

educational simulations, and thus, have driven the development SimSE:

• Simulation must be used complementary to existing teaching methods. It is

important to introduce topics in class lectures first in order to create a basic set

of knowledge and skills that students use during simulations. Similarly, it is

important to carry out class projects for the sake of Learning by Doing [117],

since having hands-on confirmation of at least a few of the lessons learned

 26

during simulation make these lessons that much more powerful and

believable [51].

• Simulation must provide students with a clear goal. Precisely defined objectives

not only guide students through a simulation, but also pose a challenge that

many students find hard to resist. Achieving the goal becomes a priority and

Discovery Learning [110] is employed as creative thinking is sparked in coming

to an approach that eventually achieves that goal [93, 112].

• Simulation must start with simple tasks and gradually move towards more

difficult ones. In line with the Elaboration learning theory [113], in order for

simulation to be effective over multiple sessions, students first must become

familiar with a simulation environment and achieve some early and successful

results. Otherwise, they quickly become disenchanted and are not likely to

complete any kind of larger simulation task [51].

• Simulation must be engaging. In order to retain the attention of students, a

simulation should provide them with interesting situations to be addressed that

are adequately challenging (making it likely that they learn through failure at

times) but not impossible, promoting eventual success that leads to confidence

in the learning material and satisfaction in the experience. Moreover, it should

sometimes provide surprising twists and turns, and have a visually interesting

user interface that grabs the student’s attention [51]. As stated in the Keller’s

ARCS learning theory [81], combining all of these qualities results in a learning

experience that is highly motivating for the student.

 27

• Simulation must provide useful feedback on a regular basis. One of the common

mistakes in using simulation for educational purposes is to not provide feedback

until the end of a simulation. Research has demonstrated that intermediate

feedback is at least as important in contributing to an effective learning

experience [6, 51, 96].

• Simulation must be accompanied by explanatory tools. Simulation relies heavily

on independent learning: students draw their own conclusions regarding the

relationship between their inputs and the resulting outputs. To aid in this

process, explanatory tools must help illustrate and elucidate the cause and effect

relationships triggered by student input [32].

Adherence to these six guidelines establishes simulation environments and broader

educational approaches that promote effective learning, enhance a student’s knowledge

and skills in a fun way [112], and are known to increase the interest, education, and

retention rate of students [29, 76].

3.1 Research Questions

It was these lessons for successful educational simulations that drove and helped shape

our approach to using simulation in the domain of software engineering education. In

particular, we applied these lessons to our particular domain (software engineering

education) to formulate the following research questions, which have guided the

development of our approach:

1. Can an educational software engineering simulation environment that is

rooted in principles for effective educational simulations be built? In other

words, can we successfully apply these principles to the domain of software

 28

engineering education to create a simulation environment that follows these

principles? Is it possible to create a maximal combination of all of the desired

qualities, or are there tradeoffs that must be made between them?

2. Can students actually learn software process concepts from using such an

environment? As the ultimate goal of such a simulation environment is for

students to learn certain lessons from it, it is crucial to determine whether this

goal is achieved.

3. If students can learn software process concepts from using such an

environment, how does the environment facilitate the learning of these

concepts? Answering this question can provide insights into the learning

process students undergo when using such an environment, which can inform

future work in educational simulation in software engineering, as well as in

educational simulation environments in general. Moreover, it can validate

whether or not the learning theories that simulation environments are thought to

embody are actually employed by students who use them.

4. How can such an environment fit into a software engineering curriculum?

Does it work well as a voluntary, extra-credit, or mandatory exercise? How

much guidance is needed, both by the game itself and by the instructor, and how

much should the students be required to figure out by themselves through

independent learning?

3.2 Key Decisions

To answer these research questions, we studied the domain of software engineering

education to discover what its unique needs are, and combined these with the principles

 29

for successful educational simulations. Through this combination we designed a new

educational simulation approach that relies on the following key decisions, which

characterize it and set it apart from existing approaches:

1. Construct our simulation approach as a game. We could have chosen to base

our simulation approach on the industrial simulation or group process

simulation paradigms described in Section 2.1.3, but instead we chose the game

paradigm. As one of the successful educational simulation principles states,

there is a clear link between the level of engagement of an educational exercise

and its effectiveness [51]. We deliberately chose to capitalize on this and the

interest in computer games that is typical of college-age students by giving our

simulation approach a distinct game-like feel. In designing our simulation

environment and its simulation models, we made liberal use of graphics,

interactivity, interesting, life-like challenges, and other game-like elements such

as humorous employee descriptions and dialogues, and surprising random

events. Moreover, the game paradigm allows us to naturally follow the principle

of providing students with a clear goal: a game is, in essence, a set of precisely

defined objectives that a player is asked to achieve in a game world.

2. Create our simulation approach with a fully graphical user interface. To

further adhere to the principle that educational simulations must be engaging,

we chose to design a fully graphical, rather than textual interface. The focal

point of this interface is a typical office layout in which the simulated process is

“taking place”, including cubicles, desks, chairs, computers, and employees

who “talk” to the player through pop-up speech bubbles over their heads (see

 30

Figure 1). In addition, graphical representations of all artifacts, tools, customers,

and projects along with the status of each of these objects are visible. Besides

holding the attention of the learner, being able to see simulated software

engineering situations portrayed graphically also leverages the theory of

Situated Learning—the learner is provided with a visual context that

corresponds to the real world situations in which the learned knowledge would

typically be used [23].

3. Make our simulation approach highly interactive. Keeping the interest of the

learner engaged is not only done by making a user interface visually appealing,

but also by involving the learner continually throughout the simulation. Thus,

rather than designing our simulation approach as a continuous simulation that

simply takes an initial set of inputs and produces some predictive results, we

have designed it in such a way that the player must make decisions and steer the

simulation accordingly throughout the entire simulated process. Our simulation

approach operates on a step-by-step, clock tick basis, and every clock tick the

player has the opportunity to perform actions that affect the simulation. Not

only does this continuous interaction with the simulation keep the player

engaged, but it allows us to follow another educational simulation principle:

provide useful feedback on a regular basis. Every clock tick, the player has the

opportunity to receive feedback about their performance through specialized

feedback mechanisms we have built into our simulation environment.

4. Create a simulation approach with customizable simulation models. This

feature was primarily necessitated by the unique needs of the domain of

 31

Figure 1: Graphical User Interface of SimSE.

software engineering education. Multiple software process models exist and are

regularly taught in software engineering courses. Thus, one of our chief goals in

the design of our simulation approach was to facilitate the modeling and

simulation of different software process models. Having a customization feature

also allows for models of different complexities to be built so that the principle

of starting with simple simulation tasks and gradually moving towards more

difficult ones can be followed. This customization was accomplished through

the inclusion of a model builder tool and associated modeling approach that

allow an instructor to build simulation models and generate customized games

based on these models.

 32

5. Create a new modeling approach for creating graphical, interactive, game-

based software process models. Developing a game-based simulation

approach that was also customizable required us to create a new modeling

approach that was specifically tailored to the needs of our environment. In

particular, our approach had to support the modeling of game-based, graphical,

interactive models that are both predictive (i.e., can predict and execute the

effects of player actions) and prescriptive (i.e., can specify a set of allowable

next steps that the player can take), a combination that has not been achieved by

other software process modeling approaches to date.

6. Design a modeling approach that is deliberately more specific than other

general-purpose software process modeling approaches for the sake of a

simpler and more straightforward model building process. A careful

balance between flexibility and specificity was orchestrated to create a

modeling approach that adequately meets the needs of our particular domain

and targeted audience—software engineering instructors.

7. Root our simulation models in results from the research literature. We

collected the rules and lessons we have encoded into our simulation models by

scouring the research literature to discover what is commonly believed and

taught about software engineering processes. Although most of this does not

include hard numbers that are able to be directly encoded into a simulation (e.g.,

“integration is 65% faster when there is a design document” versus simply,

“integration is faster when there is a design document”), we were able to

incorporate rules such as these into our models by experimenting with different

 33

values to come up with ones that are effective enough at conveying each

particular lesson in the simulation (see Section 4.2).

8. Construct simulation models that teach by rewarding good software

engineering practices and penalizing bad ones. Because our simulation

approach is a game, the goal of the player is to “win” the game by attaining a

good score. Although it depends to a large degree on the simulation model

being used, our environment is designed with the intent that players receive a

good score when they follow proper software engineering practices and a bad

score when they deviate from them. In this way the player can discover the

lessons being taught by associating their (high or low) score with the actions

they took and infer which ones are good practices and which ones are not. In

addition to the score received at the end of the game, players are also rewarded

or penalized throughout the game through various forms of intermediate

feedback. For example, a player who skips requirements and goes straight to

design will immediately see that design is slow and the design document is full

of errors, hinting that skipping requirements was not the proper thing to do.

9. Include an explanatory tool as part of the simulation environment. We have

directly implemented the principle for successful educational simulations which

states that simulation must be accompanied by explanatory tools. An integral

part of SimSE is its novel explanatory tool that provides players with a visual

representation of how the simulated process progressed over time and

explanations of the rules underlying the game.

 34

10. Use and evaluate our simulation approach in a classroom setting. Because

one of the educational simulation principles states that simulation should be

used complementary to existing teaching methods, a fundamental part of our

approach is to use our simulation environment in conjunction with actual

courses, so that it can be evaluated in the context of its ideal and intended usage.

3.3 Detailed Approach

These key decisions translate into the following three-part approach: (1) building a

graphical, interactive, educational, customizable, game-based simulation environment for

software processes (SimSE), (2) developing a set of simulation models to be used in

seeding the environment, (3) evaluating the usage of the environment, both in actual

software engineering courses, and in formal out-of-class experiments to gain

understanding of its various educational aspects.

The first part of our approach is SimSE, an educational software engineering

simulation environment. SimSE is a single-player game in which the player takes on the

role of project manager of a team of developers. The player is given a software

engineering task to complete, which is generally a particular (aspect of a) software

engineering project. In order to complete this task, they must perform various

management activities such as hiring and firing, assigning tasks, monitoring progress,

purchasing tools, and responding to (sometimes random) events, all through a graphical

user interface that visually portrays all of the employees and the office in which they

work (see Figure 1). In general, following good software engineering practices will lead

to positive results while ignoring these practices will lead to failure in completing the

project.

 35

As stated in Section 3.2, one of the fundamental goals of SimSE is to allow

customization of the software processes it simulates. Thus, its architecture was designed

to support this customization, as can be seen in Figure 2. An instructor uses the model

builder tool to create a simulation model that embodies the process and lessons they wish

to teach their students. The generator component interprets this model and automatically

generates Java code for a state management component, a rule execution component, a

simulation engine, an explanatory tool, and the graphical user interface, which comprise

the simulation environment. A student uses this custom-generated environment to

practice the situations captured by the model.

Model
Builder

Generator

Model Create Read

Instructor

Generate

Figure 2: SimSE Architecture.

In order to aid students in understanding the process being simulated and how their

actions during the game affect it, a critical part of this simulation environment is the

Student

Simulation
Environment (Game)

State
Mgmt.

Rule
Execution

Standard

Variable

User
Interface

Engine

Explana-
tory
Tool

 36

explanatory tool. This is a tool that the student can run at the end of a game to view a

trace of events, rules, and attribute values that were recorded during the game.

To provide a set of models to be used in the simulation environment, as well as to test

and refine the environment’s model-building capacities, the second part of our approach

is a set of six simulation models that each portray a different software engineering

process (or sub-process). Together, these models represent a wide spectrum of different

software processes that vary in size, scope, and purpose. They comprise a library of

models that can be either used as-is, or modified to meet the needs of a particular

situation and/or instructor.

The third and final part of our approach is a set of evaluations designed to determine

the educational effectiveness of SimSE from various angles. These include both usage of

SimSE in conjunction with a software engineering course, and a series of formal

experiments done in controlled settings. Each evaluation was designed to assess a

different aspect of our approach so that collectively, the results could be used to make

conclusions about the overall educational effectiveness of SimSE.

 37

4. Modeling/Simulation Capabilities

Motivated by our key decision to make SimSE’s simulation models customizable, the

first step in designing SimSE was determining exactly what kinds of things it should be

able to model. Therefore, before going into detail on the game play aspects and inner

workings of SimSE in later chapters, we will first present the modeling and simulation

capabilities of SimSE.

As a first step in determining what an educational software engineering simulation

environment would have to model and simulate, we performed a survey of existing

software engineering literature, talked to software engineering professionals, perused the

lecture notes and textbooks for the introductory software engineering classes at UC

Irvine, and looked at other software engineering simulations to see what kinds of

phenomena they model. The result of these activities is a compendium of 86

“fundamental rules of software engineering” (see Appendix A) that have driven the

design of SimSE’s modeling and simulation capabilities. The following is a

representative sample of the breadth of lessons that comprise these rules.

1. In a waterfall model of software development, do requirements, followed by

design, followed by implementation, followed by integration, followed by

testing [134].

2. At the end of each phase in the waterfall model, perform quality assurance

activities (e.g., reviews, inspections), followed by correction of any discovered

errors. Otherwise, errors from one artifact will be carried over into

subsequently developed artifacts [134].

3. If you do not create a high quality design, integration will be problematic [134].

 38

4. Developers’ productivity varies greatly depending on their individual skills, and

matching the tasks to the skills and motivation of the people available increases

productivity [18, 26, 121].

5. The greater the number of developers working on a task simultaneously, the

faster that task is finished, but more overall effort is required due to the growing

need for communication among developers [22].

6. Software inspections find a high percentage of errors early in the development

life cycle [141].

7. The better a test is prepared, the higher the amount of detected errors [134].

8. The use of software engineering tools leads to increased productivity [134].

9. The average assimilation delay, the period of time it takes for a new employee

to become fully productive, is 80 days [2].

10. In the absence of schedule pressure, a full-time employee allocates, on average,

60% of his working hours to the project (the rest is slack time: reading mail,

personal activities, non-project related company business, etc.) [2].

The compendium as a whole covers a broad variety of rules—rules that agree with each

other, rules that conflict with each other, rules that are precise, rules that are imprecise,

rules that cover issues specific to software engineering, and rules that apply to a wide

range of business processes. While this is certainly not a comprehensive set of all

existing software engineering rules and processes, together they form a representative set

that can be selected from as necessary to form different software process simulation

models.

 39

Our next step in designing a modeling approach was choosing several of these rules

to incorporate into a preliminary prototype version of SimSE. These rules were selected

based on a desire to cover several of the different dimensions present in the compendium,

as well as the need to form a cohesive model of a software engineering process. The

resulting version of SimSE was highly simplified compared to the current version in two

major ways: First, it was non-graphical, using only tables, text boxes, and drop-down lists

to portray the process to the player (see Figure 3). Second, it was non-customizable. The

set of rules that we incorporated into this version were hard-coded and could not be

modified except through changing the source code of the simulation. Moreover, the

number of rules included in this version was smaller than many of our current models—

enough to demonstrate the feasibility of the approach but not so many as to require a

large amount of unnecessary effort in programming this preliminary prototype. Basically,

this model was a simplified version of our current waterfall model (see Section 7.1),

including only its core set of rules and simplified versions of its objects and actions.

After completing development of this non-graphical prototype, we then informally

tested it out by observing a group of graduate students playing it. From this we gathered

useful feedback that gave us good ideas to incorporate into the current version of SimSE

(and also gave us confidence that this prototype was playable).

After determining that building an educational software engineering simulation based

on the types of rules we collected was feasible, we proceeded to abstract away from the

hard-coded model the generic constructs that would be needed to model this and other

software processes—constructs that would allow a user to choose and build different sets

of rules into different models. These constructs are described in detail in the following.

 40

Figure 3: SimSE Non-graphical Preliminary Prototype User Interface.

4.1 Modeling Constructs

A SimSE model consists of five parts. Object types define templates for all objects that

participate in the simulation. The start state of a model is the collection of objects present

at the beginning of the simulation. Each object in the start state instantiates an object

type. Start state objects participate in actions, which are the activities represented in the

simulated process. Each action has one or more rules that define the effects that action

has on the rest of the simulation. Each object in the simulation is represented by graphics,

which also provide visualizations of the relevant actions occurring in the simulation.

Figure 4 illustrates the relationships between the different parts of a model. The following

subsections discuss each of these parts of the overall modeling approach in further detail.

 41

Figure 4: Relationships Between Modeling Constructs.

4.1.1 Object Types

The core of a SimSE model is the set of object types to be used in the model. Each major

entity participating in the simulation is an instantiation of an object type. Every object

type defined must descend from one of five meta-types: Employee, Artifact, Tool,

Project, or Customer. Each of these meta-types has very limited semantics in and of

itself, except for where objects of each type are displayed in the GUI of the simulation,

and how the player can interact with each type of object. Specifically, only objects

descending from Employee will display overhead pop-up messages during the game and

have right-click menus associated with them so the player can command their activities.

An object type consists of a name and a set of typed attributes. For each attribute, in

addition to the name and type (String, Double, Integer, or Boolean), the following

metadata must be specified:

 42

• Meta-type: whether this object type is an Employee, Artifact, Tool, Project, or

Customer.

• Key: a Boolean value indicating whether or not this attribute is the key attribute

for the object type.

• Visible: a Boolean value denoting whether this attribute should be visible to the

player throughout the game.

• VisibleAtEnd: a Boolean value indicating whether or not this attribute should be

visible at the end of the game. An attribute that was hidden throughout the game

but revealed at the end can give further insight to the player about why they

received their particular score.

• MinVal: the minimum value for this attribute (for Double and Integer attributes

only).

• MaxVal: the maximum value for this attribute (also for Double and Integer

attributes only).

• MinDigits: the minimum number of digits after the decimal point to display for

this attribute’s value (for Double attributes only).

• MaxDigits: the maximum number of digits to display (also for Double attributes

only).

Three sample object types, a “Programmer” of type Employee, a “Code” of type

Artifact, and an “SEProject” of type Project are shown in Figure 5. If we take a closer

look at one of these, the Code object type, we can see how this metadata is used in

practice. A Code artifact has a name, which is its key value, to distinguish it from other

Code objects. It also has two types of error attributes: unknown errors

 43

Programmer Employee Code Artifact SEProject Project
{ { {
 name: name: description:
 type: String type: String type: String
 key: true key: true key: true
 visible: true visible: true visible: true
 visibleAtEnd: true visibleAtEnd: true visibleAtEnd: true
 energy: numUnknownErrors: requiredSizeOfCode:
 type: Double type: Double type: Double
 key: false key: false key: false
 visible: true visible: false visible: true
 visibleAtEnd: true visibleAtEnd: true visibleAtEnd: true
 minVal: 0.0 minVal: 0.0 minVal: 0.0
 maxVal: 1.0 maxVal: boundless maxVal: boundless
 minDigits: 1 minDigits: 0 minDigits: 0
 maxDigits: 2 maxDigits: 0 maxDigits: 0
 productivity: numKnownErrors: budget:
 type: Double type: Double type: Double
 key: false key: false key: false
 visible: true visible: true visible: true
 visibleAtEnd: true visibleAtEnd: true visibleAtEnd: true
 minVal: 0.0 minVal: 0.0 minVal: 0.0
 maxVal: 1.0 maxVal: boundless maxVal: boundless
 minDigits: 1 minDigits: 0 minDigits: 0
 maxDigits: 2 maxDigits: 0 maxDigits: 2
 errorRate: size: allottedTime:
 type: Double type: Double type: Integer
 key: false key: false key: false
 visible: true visible: true visible: true
 visibleAtEnd: true visibleAtEnd: true visibleAtEnd: true
 minVal: 0.0 minVal: 0.0 minVal: 0.0
 maxVal: 1.0 maxVal: boundless maxVal: boundless
 minDigits: 1 minDigits: 1 score:
 maxDigits: 2 maxDigits: 1 type: Integer
 hired: percentComplete: key: false
 type: Boolean type: Double visible: false
 key: false key: false visibleAtEnd: true
 visible: true visible: true minVal: 0
 visibleAtEnd: true visibleAtEnd: true maxVal: 100
 payRate: minVal: 0.0 }
 type: Double maxVal: 100.0
 key: false minDigits: 1
 visible: true maxDigits: 1
 visibleAtEnd: true }
 minVal: 0.0
 maxVal: boundless
 minDigits: 2
 maxDigits: 2
}

Figure 5: Programmer, Code, and Project Object Types.

(“numUnknownErrors”), which are those that the developers have not discovered, and

known errors (“numKnownErrors”), which are those that the developers have discovered.

 44

The known errors are visible during the game, while the unknown errors are hidden

during the game, since this is a value that would not be known in a real life software

engineering situation. However, to give the player some insight into where they might

have gone wrong in the process, the unknown errors are revealed at the end of the game

(visibleAtEnd is equal to true). Both the unknown errors and the known errors are stored

as Doubles but displayed to the player as Integers, as both have a maxDigits value of 0

(meaning no digits after the decimal place are shown). This is done so that errors can be

added, “discovered”, and removed fractionally behind the scenes, but appear to the player

as if these values are changing as they would in a real-life situation, by whole numbers.

For example, if developers are inspecting a Code artifact, their productivities might

dictate that they only discover ¼ of an error per clock tick. Thus, one whole error would

be discovered after four clock ticks, at which point the player would see the number of

known errors increase by one (hidden digits are truncated and resulting digits are not

rounded off).

In addition to these attributes, the Code artifact in Figure 5 also has a size attribute

and a percent complete attribute, which are both visible to the player throughout the

simulation. The percent complete attribute has a minimum value of 0 and a maximum

value of 100 to enforce the standard percentage values of 0 to 100.

It should be noted that the format of this example and the examples throughout this

chapter are shown in a “shorthand” version of the actual SimSE modeling language

format, which is XML-like and difficult to read. However, since this language is

completely hidden from the user by our model building tool, we have accordingly

 45

omitted it from this dissertation. (See Chapter 5 for a presentation of the model builder

tool.)

4.1.2 Start State

The start state refers to the set of objects that are present when the simulation begins.

Each one of these objects must be an instantiation of one of the object types defined for

the model, and starting values for all attributes must be assigned—no default values are

automatically given. Figure 6 shows sample instantiated objects for the “Programmer”,

“Code”, and “SEProject” object types from Figure 5. The first object is a high-energy

(0.9 out of 1.0) Programmer Employee named Roger, with moderate productivity (0.6 out

of 1.0) and a relatively low error rate (0.3 out of 1.0), who makes $100 per clock tick and

is currently hired. The second object is a Code Artifact named “My Code” that seems to

have already been developed some. It has 18 unknown errors, 7 known errors, a size of

25,600, and a completeness level of 10%. The final object is an “SEProject” Project

described as “Rocket Launcher Software”, with a required code size of 256,000 (hence

the 10% completeness of the code with a size of 25,600), a budget of $2,500,000, no

money spent, an allotted time of 692, no time used, and score (which represents the

current score for the player of the game) of 0.

4.1.3 Actions

The actions in a SimSE model represent the set of activities in which the objects in the

simulation can participate. For example, to model a situation in which programmers are

building a piece of code using an integrated development environment (IDE), one would

create a “Coding” action, in which the participants include a “Code” Artifact, one or

 46

Object Code Artifact Object Project
SEProject

Object Programmer
Employee {

 name = “My Code” { {
 numUnknownErrors = description = name = “Roger”
 18 “Rocket Launcher energy = 0.9
 numKnownErrors = 7 Software” productivity =
 size = 25600.0 requiredSizeOfCode = 0.6
 percentComplete = 256000 error rate = 0.3
 10.0 budget = 2500000.00 hired = true
} moneySpent = 0.00 payRate = 100.00

} allottedTime = 692
timeUsed = 0
score = 0

}

Figure 6: Instantiated Programmer, Code, and SEProject Objects.

more “Programmer” Employees and one or more “IDE” Tools. As another example, an

Employee of any type could participate in a “Break” action, referring to the activity of

taking a break, during which he or she rests and does not work. These two examples are

shown in Figures 7 and 8, respectively, and will be referred to throughout the remainder

of this subsection.

For each action, the following information is specified:

• Name: name of the action (e.g., “Coding” or “Break”).

• VisibleInSimulation: whether or not the player should be able to see that the

action is occurring during the simulation (in the “Current Activities” pane on

the right-hand side of the user interface), and, if true, a short textual description

of that action to display in the game’s user interface. This value is true for both

the “Coding” and “Break” actions, as these are actions that, in a real-life

situation, situation, would be visible to a project manager. An example of an

action that would typically not be visible would be an

“UpdateProjectAttributes” action that occurs every clock tick and simply

updates the time used and money spent. Obviously seeing that this sort of action

 47

Action Coding Destroyer autoDestroyer
{ {
 VisibileInSimulation: true type: Autonomous
 SimulationDescription: “Creating code” overheadText: “I’m finished
 VisibleInExplanatoryTool: true coding!”
 ExplanatoryDescription: “Software game-ending: false
 engineers create a piece of code.” priority: 10
 conditions
 Participant Coder {
 { percentComplete == 100
 quantity: at least 1 }
 allowableTypes: Programmer, Tester }
 }
 Destroyer userDestroyer
 Participant CodeDoc {
 { type: User-initiated
 quantity: exactly 1 menuText: “Stop coding”
 allowableTypes: Code overheadText: “I’ve
 } stopped coding.”
 game-ending: false
 Participant IDE priority: 11
 { conditions {}
 quantity: at most 1 }
 allowableTypes: Eclipse, JPad }
 }

 Trigger userTrigger
 {
 type: User-initiated
 menuText: “Start coding”
 overheadText: “I’m coding now!”
 game-ending: false
 priority: 8
 conditions
 {
 Coder:
 Programmer:
 hired == true
 Tester:
 hired == true
 health >= 0.7

 IDE:
 Eclipse:
 purchased == true
 JPad:
 purchased == true
 }
}

Figure 7: Sample “Coding” Action with Associated Triggers and Destroyers.

is taking place would take away from the realism of the environment and would

not be of any use to the player so it would be best to keep it invisible.

 48

Action Break Destroyer autoDestroyer
{ {
 VisibileInSimulation: true type: Autonomous
 SimulationDescription: “On a Break” overheadText: “I’m going
 VisibleInExplanatoryTool: true back to work now!”
 ExplanatoryDescription: “The employee game-ending: false
 rests and does no work in order to priority: 1
 regain his/her energy.” conditions
 {
 Participant Breaker Coder:
 { Programmer:
 quantity: exactly 1 energy == 1.0
 allowableTypes: Programmer, Tester Tester:
 } energy == 1.0
 }
 Trigger autoTrigger }
 { }
 type: Autonomous
 overheadText: “I’m taking a break now!”
 game-ending: false
 priority: 2
 conditions
 {
 Coder:
 Programmer:
 hired == true
 energy <= 0.2
 Tester:
 hired == true
 energy <= 0.2
 }
}

 Figure 8: Sample “Break” Action with Associated Trigger and Destroyer.

• VisiblelnExplanatoryTool: whether or not the player should be able to see

occurrences of the action when running the explanatory tool, and, if true, a more

detailed description of that action to display in the explanatory tool user

interface. Both the “Coding” and “Break” actions are denoted as visible in the

explanatory tool since it would be useful for the player to view these actions in

the context of the explanatory tool. At first glance it may seem that any action

that is visible in the simulation should be visible in the explanatory tool and

vice-versa. However, there are some cases where it is useful to make an action

invisible in the simulation and visible in the explanatory tool, typically when it

 49

is an action that would not necessarily be visible to a project manager in real-

life, but is appropriate for the player to see for educational reasons. An example

of this is an action named “DoubleProductivity” in our code inspection model

(see Section 7.6). This action is triggered autonomously whenever the ideal

number of people (four) are participating in a code inspection [145], and has the

effect of doubling the productivity of the inspection, causing bugs to be found

twice as fast. So as not to give too much away during game play and maintain

the realism of the simulation, this action is hidden during the simulation but

revealed in the explanatory tool.

• Participant(s): roles in the action that can be filled by one or more objects of

one or more possible object types. In the “Coding” action there are three

participants: (1) “Coder” (the person(s) working on the code), which can be

filled by one or more Programmer and/or Tester Employees; (2) “CodeDoc”

(the code artifact being worked on), which must be filled by exactly one Code

Artifact; and (3) “IDE” (the integrated development environment being used for

coding), which can be filled by at most one Eclipse or JPad tool. The “Break”

action consists of only one participant: the “Breaker”, exactly one employee of

type Programmer or Tester that is taking the break.

• Trigger(s): what causes the action to begin to occur in the simulation. Three

distinct classes of triggers exist: autonomous, user-initiated, and random.

Autonomous triggers specify a set of conditions (based on the attributes of the

participants in the action) that cause the action to automatically begin, with no

user intervention. For instance, in the “Break” action, the employee

 50

automatically takes a break when his or her energy level drops to 0.2 or below.

User-initiated triggers also specify a set of conditions, but include a menu item

text string, which will appear on the right-click menu for an Employee when

these conditions are met. This menu item corresponds to this action, and when

the menu item is selected, the action begins. For example, in the “Coding”

action, a menu item with the text “Start coding” will appear on the menus of all

“Programmer” and “Tester” Employees who meet the specified conditions

(hired and, for testers, health level greater than or equal to 0.7). When this menu

item is selected by the player, the action will begin. Random triggers provide

the opportunity to introduce some chance into the model, specifying both a set

of conditions and a frequency that indicates the likelihood of the action

occurring whenever the specified conditions are met. For instance, a “Quit”

action might have a 75% chance of occurring every clock tick that an

Employee’s energy level is below 0.1, meaning that employees are likely to quit

when they have been worked too hard, but may not always do so. As another

example, a random trigger with a very small frequency (e.g., 0.5%) might be

attached to an action that causes a rare disastrous event to occur, such as a

catastrophic system failure that results in a significant portion of the project

being lost. Finally, for every trigger that has one or more Employee participants,

the modeler can specify overhead text that will appear to come from the

employees participating in the action when the trigger executes. For the

“Coding” action this text is “I’m coding now!” and for the “Break” action the

employee will announce, “I’m taking a break now!”

 51

• Destroyer(s): An action destroyer works in a manner similar to an action trigger,

but has the opposite effect: whereas a trigger starts an action, a destroyer stops

an action. Destroyers can be of the same types as triggers (autonomous, random,

or user-initiated), but have one additional type: timed. A timed destroyer

specifies a “time to live” value for an action—once an action starts, it exists for

a number of simulation clock ticks equal to this value, and is then automatically

destroyed. The “Coding” action has associated with it two destroyers: an

autonomous one that will cause the action to stop when the code is 100%

complete, and a user-initiated one that allows the player to make the action

cease at any time they wish, by choosing the “Stop coding” menu option. These

destroyers have different overhead text associated with them to distinguish the

different scenarios—“I’m finished coding!” indicates that the code is complete

and “I’ve stopped coding” indicates that they have simply stopped the activity

but have not necessarily completed the task. The “Break” action has only one

destroyer—an autonomous one that causes the break to end when the

employee’s energy level is back up to its maximum value (1.0), at which point

the employee will announce, “I’m going back to work now!”

Triggers and destroyers have two additional pieces of information associated with

them: priority and game-ending. The priorities of triggers and destroyers determine the

order in which each trigger/destroyer will be checked, and, if all conditions are met,

executed. All triggers in a model are prioritized in relation to all other triggers, and are

checked in ascending order of priorities, e.g., one is the highest priority. Analogously, all

destroyers are prioritized in relation to all other destroyers, and are also checked in

 52

ascending order. So that the order of execution is always deterministic, no two triggers or

destroyers can have the same priority. It is not required that triggers and destroyers be

prioritized—non-prioritized triggers/destroyers will execute in an undetermined order,

after all of the prioritized triggers/destroyers have executed in their specified ordering.

In the “Coding” action, the autonomous destroyer (“autoDestroyer”) has priority 10,

while the user-initiated destroyer (“userDestroyer”) has priority 11, indicating that when

a “Coding” action is occurring, the conditions for the autonomous destroyer will be

checked first. This sequence is specified so that if the code is 100% complete, the action

will cease (as a result of the autonomous destroyer) before the user-initiated destroyer is

checked and the “Stop coding” choice is put on an Employee’s menu. The “Break”

trigger has priority 1 so that if an employee is tired, they will go on a break before they

can get involved in any other task (by being triggered into another action).

Any trigger or destroyer can also be designated as game-ending, meaning that when

that trigger or destroyer occurs, the game will be over. A game-ending trigger or

destroyer must have exactly one of its participant’s attributes specified as the score

attribute, indicating that the value of that attribute at the time that trigger or destroyer is

executed will be given as the player’s score. A typical game-ending trigger might be

attached to a user-initiated “DeliverProductToCustomer” action in which the score is

designated as the “score” attribute of an “SEProject” participant.

4.1.4 Rules

Each action can have attached to it one or more rules that define the effects of that

action—how the simulation is affected when the action is active. Three example rules

 53

attached to the “Coding” action are shown in Figure 9 and will be referred to in the

remainder of this subsection.

We distinguish three types of rules in a SimSE model: create objects rules, destroy

objects rules, and effect rules. As its name indicates, a create objects rule causes new

objects to be created in the game. For example, the “Coding” action has associated with it

a create objects rule that creates a new “Code” Artifact object with its size and number of

errors equal to zero. This indicates that a new piece of code comes into existence as a

result of programmers participating in a “Coding” action.

In contrast to a create objects rule, the firing of a destroy objects rule results in the

destruction of existing objects. For instance, a “Fire” action might have associated with it

a destroy objects rule that removes an Employee from the game, indicating that they have

been fired.

An effect rule is the most powerful and expressive type of rule in SimSE. Rules of

this type specify the complex effects of an action on its participants’ states, including the

values of their attributes and their participation in other actions. For instance, the first

effect rule attached to the “Coding” action decreases the energy and productivity levels of

the coders as they work, and adjusts their error rates based on their current energy levels.

The second effect rule in this action: (a) causes the size of the code to increase by the

additive productivity levels of all of the programmers currently working on it; (b) causes

the number of unknown errors in the code to increase based on the error rates of the

currently active coders; and (c) updates the completeness level of the code. As another

example, shown in Figure 10, a “Break” action has one effect rule attached to it that

deactivates the employee from all other actions in which he or she is currently

 54

Rules
{
 Action: Coding // action that these rules are attached to
 CreateObjectsRule
 {
 timing: trigger
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “A new piece of code is created.”
 priority: 1
 createdObjects
 {
 Object Code Artifact
 {
 name =“My Code”
 numUnknownErrors = 0
 numKnownErrors = 0
 size = 0.0
 percentComplete = 0.0
 }
 }
 }

 EffectRule
 {
 timing: continuous
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “Each employee’s energy is decreased as
 they expend energy working. As a result, their productivity
 accordingly decreases and their error rate increases.”
 priority: 13
 Coder:
 Programmer/Tester:
 energy = this.energy – 0.05
 productivity = this.productivity – 0.0375
 errorRate = (1 - this.energy) * 0.4
 }

 EffectRule
 {
 timing: continuous
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “The size of the code is incremented by
 the employees’ productivities in coding, and the number of
 unknown errors is incremented by their error rates in coding.”
 priority: 14
 CodeDoc:
 Code:
 size = this.size + allActiveProgrammerCoders.productivity
 numUnknownErrors = this.numUnknownErrors +
 allActiveProgrammerCoders.errorRate
 percentComplete = (this.size /
 allSEProjectProjects.targetCodeSize) * 100
 }
}

Figure 9: Example Create Objects Rule and Example Effect Rules for the “Coding” Action.

 55

Rules
{
 Action: Break // action that these rules are attached to

 EffectRule
 {
 timing: trigger
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “As the employee goes on a break,

they are deactivated from all of their other actions.”
 priority: 1
 Breaker:
 Programmer/Tester:
 effectOnOtherActions: deactivate All
 }

 EffectRule
 {
 timing: continuous
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “The energy of the employee is

increased as they enjoy their break.”
 priority: 3
 Breaker:
 Programmer/Tester:
 energy = this.energy + 0.1
 }

 EffectRule
 {
 timing: destroyer
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “As the employee returns to work from

their break, they are reactivated into all of their previous
actions.”

 priority: 1
 Breaker:
 Programmer/Tester:
 effectOnOtherActions: activate All
 }
}

Figure 10: Example Effect Rules for the “Break” Action.

participating for the duration of the “Break” action, one that increases the energy of an

employee while they are on a break, and one that reactivates them into all of their other

actions when the break is over.

In specifying an effect rule, the modeler can use a number of different constructs as

parameters in an effect’s expression. These include participant attribute values, the

 56

number of participants in an action, the number of other actions in which a participant is

involved, the time elapsed in the simulation, random values, numbers, user inputs, and

mathematical operators.

In addition to a rule’s general type (create objects, destroy objects, or effect), each

rule is also assigned a timing type, indicating when and how often that rule will be

executed. There are three possible timing types: trigger, destroyer, or continuous. A

trigger rule will execute only once, at the time the action is triggered, while a destroyer

rule will also execute only once, but at the time the action is destroyed. A continuous

rule, on the other hand, will fire every clock tick that the action is active. Only effect rules

can be continuous, since there is no need to create the same object multiple times (using a

create objects rule), or destroy the same object multiple times (using a destroy objects

rule). Table 3 summarizes these various combinations. In the “Coding” rules shown in

Figure 9, the new Code Artifact is created once, at the time the action is triggered, since

the create objects rule is assigned a trigger timing. Because the effect rules in this action

are assigned continuous timings, however, their expressions are evaluated every clock

tick that the action is active, and the “Coder” and “CodeDoc” attributes are updated

accordingly. In the “Break” action’s rules shown in Figure 10, each of the different rule

timings is represented: a trigger rule deactivates the employee from all of their other

actions when their break starts, a continuous rule increases their energy level each clock

tick during the break, and a destroyer rule reactivates them into all of their previous

actions when the break ends.

Like action triggers and destroyers, each rule may also be assigned a priority in order

to specify the order in which it should be executed in relation to other rules. The

 57

Table 3: Timing of Execution of Each Different Type of Rule.
Rule Type

Create Objects Destroy Objects Effect
Trigger Once, at trigger time Once, at trigger time Once, at trigger time

mechanism of prioritization varies depending on the timing of the rule. A trigger rule is

prioritized in relation to the other trigger rules attached to the same action. A destroyer

rule is prioritized in relation to the other destroyer rules attached to the same action. A

continuous rule is prioritized in relation to all other continuous rules in the simulation.

Like triggers and destroyers, all rules in a prioritization must have unique priorities to

ensure a predictable ordering. Also like triggers and destroyers, the prioritization of a rule

is optional. All prioritized rules will execute first (in their specified ordering), after which

the non-prioritized rules will execute in an undetermined order.

For example, the first continuous effect rule attached to the “Coding” action (the one

that decreases employee energy and productivity) has a priority of 13 while the second

one (the one that updates the progress on the code based on the employees’ productivity)

has a priority of 14. This means that the employees’ productivities will be correctly

updated before these productivity values are used to calculate the current progress on the

code.

Finally, for each rule it must also be specified whether or not the rule should be

visible in the explanatory tool—whether the user should be able to see that this rule was

executed during the game. If this value is true, a textual description of the rule must also

be given, to be displayed in the user interface of the explanatory tool.

Destroyer Once, at destroyer
time

Once, at destroyer
time

Once, at destroyer
time

R
ul

e
T

im
in

g
T

yp
e

Continuous
N/A N/A

Once every clock
tick that the action is

active

 58

4.1.5 Graphics

Because the user interface of SimSE is fully graphical, graphics are an integral part of our

modeling approach, and are woven throughout the different parts of a model. For

instance, as mentioned previously, each action trigger and destroyer can have associated

with it a string of text to appear in pop-up bubbles over the heads of that action’s

employee participants when the action either begins (trigger) or ends (destroyer).

Additionally, effect rules can have specified with them rule inputs that cause a dialog to

appear during the simulation, prompting the user for input. Figure 11 shows an effect rule

for a “GiveBonus” action that takes a rule input. As can be seen from the figure, each rule

input has associated with it the following metadata:

• Name: A name for the input (“BonusAmount”).

• Type: Whether the input is a String, a Boolean, an Integer, or a Double. The

“BonusAmount” input for the “GiveBonus” action is a Double, since it

represents a monetary quantity.

• Condition: If the type is either Integer or Double, this field can specify a

condition on the input. For the “BonusAmount” input, the condition is that it

must be greater than 0.0, since logically, an amount of money cannot be 0 or

negative.

• Prompt: The text that will appear when the player is prompted to enter the

input. For instance, the player who is giving the bonus to their employee will be

prompted with the text, “Please enter bonus amount”.

A rule input can be used as a parameter in any of that effect rule’s expressions. In the

“GiveBonus” action, the “BonusAmount” input is used to recalculate the employee’s

 59

Rules
{
 Action: GiveBonus // action that this rule is attached to

 EffectRule
 {
 timing: trigger
 visibleInExplanatoryTool: true
 explanatoryToolDescription: “The employee's energy is increased

by an amount that is proportional to the amount of the bonus
compared to the employee's pay rate (larger bonus -> larger
energy increase).

 Recipient:
 Programmer/Tester:
 energy = this.energy + (input-BonusAmount / this.payRate)

 ProjectWithBudget:
 SEProject:
 moneySpent = this.moneySpent + input-BonusAmount

 Rule Input:
 Name: “BonusAmount”
 Type: Double
 Condition: > 0.0
 Prompt: “Please enter bonus amount”
 }
}

Figure 11: Example Effect Rule for the “GiveBonus” Action.

energy, increasing it by an amount dependent on the magnitude of the bonus in relation to

the employee’s pay rate. For example, a bonus amount that is 10% of the employee’s pay

rate will increase the employee’s energy by 10% of their maximum energy (0.1). In this

same rule, the “BonusAmount” input is also used to add the amount of the bonus to the

project’s “moneySpent” value.

In addition to these graphical aspects woven throughout the model, there are two

distinct parts of a model that are purely graphical. The first part is the assignment of

specific images to each object in the start state, shown in Figure 12. Each model must

have associated with it one directory that contains all of the icons that are to be used for

representing objects in the simulation (denoted by the “iconDirectoryPath” field in Figure

12). Each object in the start state, as well as each object created by a create objects rule,

 60

must be assigned an image file contained in this directory. In addition, each Employee

object must also be assigned an x, y location in the map of the simulated office in which

the process takes place. For example, in Figure 12, the Programmer Employee named

Roger will be represented by the image contained in the file “roger.gif” and will appear in

tile 0, 5 in the office; the Code Artifact named “My Code” will be represented by the

image named “code.gif”; and the SEProject Project with the description “Rocket

Launcher Software” will be represented by the image “project.gif.”

The second distinctly graphical part of a SimSE model is the map, which defines the

layout of the simulated office that makes up the main portion of the user interface. In

particular, the map specifies locations for all of the surroundings of the employees such

as desks, walls, computers, and chairs. The images for all of these surroundings are

predefined by SimSE, while, as already mentioned, the images for simulation objects are

defined by the modeler (although a download of SimSE includes a set of icons that can be

used for this purpose).

The map is a 16 x 10 grid of tiles, a size that was chosen based on its fit into the rest

of the SimSE graphical user interface. We considered making the map larger, or else

customizable per model, but in the models we have built thus far, a larger map has not

been needed. Moreover, making the map larger than 16 x 10 would require that the map

be either scrollable (which might make user interaction more awkward) or the tiles be

made smaller (which might make the images harder to see). Still, in future work we plan

to experiment with making the map size customizable per model to see if this adds any

benefit to SimSE (see Chapter 12).

 61

Images
{
 iconDirectoryPath = “C:\SimSE\Models\SampleModel\Icons”

 Object Programmer Employee
 {
 keyAttributeValue: “Roger”
 imageFilename: “roger.gif”
 x-Position: 0
 y-Position: 5
 }

 Object Code Artifact
 {
 keyAttributeValue: “My Code”
 imageFilename: “code.gif”
 }

 Object SEProject Project
 {
 keyAttributeValue: “Rocket Launcher Software”
 imageFilename: “project.gif”
 }
}

Figure 12: Sample Image Assignments to Objects in SimSE.

For each tile in the map, two pieces of data may be specified: a base image and a

fringe image. The base image is what appears as the bottom-most image in the tile and

the fringe is what appears directly above the base image. (If a tile is designated as the

location for an employee, that employee’s image will appear above the fringe, in the

object layer.) SimSE designates some of its predefined office surrounding images as base

images (walls, doors, tables, and floor tiles) and some as fringe images (computers,

chairs, trash cans, and papers).

Figure 13 shows a portion of a sample map definition, for tiles 0, 0 through 0, 5. In

this example, the first tile will display a floor tile, the second tile will display the left

portion of a table with a computer sitting on top of it, the third tile will display the right

portion of a table with papers on top of it, the fourth tile will display an empty trash can

on the floor, the fifth tile will display only a floor tile, and the sixth tile will display a

 62

Map
{
 0,0:
 base: FLOOR
 fringe: // none
 0, 1:
 base: TABLE_TOP_LEFT
 fringe: COMPUTER
 0, 2:
 base: TABLE_TOP_RIGHT
 fringe: PAPERS
 0, 3:
 base: FLOOR
 fringe: TRASH_CAN_EMPTY
 0, 4:
 base: FLOOR
 fringe: // none
 0, 5:
 base: FLOOR
 fringe: CHAIR

 // etc…
}

Figure 13: Sample Map Definition in SimSE.

chair on the floor. Per the example shown in Figure 12, the Programmer Employee

“Roger” will also appear in this tile, on top of the chair.

4.1.6 Modeling Sequence

The order in which the constructs of a model must be defined is partially variable and

partially constrained. Object types are the core of the model and therefore must be

defined first, before any other construct can be created (except the map). This is not to

say that all object types must be defined before moving on to define any other

constructs—it is fully expected that models are developed iteratively. A few object types

are generally created first, followed by the start state objects, actions, rules, and graphics

that involve those object types. This sequence is then repeated as model development

progresses.

 63

Similarly, because rules are attached to actions, an action must be defined before the

rule(s) attached to that action are defined. A start state object must, of course, also be

created before the graphical counterpart of the object (the image representing the object

and, if it is an employee, its location in the map) is assigned. Figure 14 summarizes the

dependencies between modeling constructs in terms of order of development.

Figure 14: Dependencies of Modeling Construct Development.

4.1.7 Summary of Modeling Constructs

To summarize our presentation of SimSE’s modeling language constructs, a UML-like

diagram representing the language is shown in Figure 15. Modeling constructs are

denoted as rectangles, with the name of the construct in bold in the top part of the

rectangle and its attributes listed below. Attributes that are either optional or only present

for certain types of that particular construct (e.g., minVal is only present for Integer or

Double object types) are shown in parentheses. Relationships between two constructs are

indicated by an arrow drawn between them, and each arrow is labeled with the type of

relationship it represents. The cardinality of a relationship is specified at each end of the

corresponding arrow (with the exception of the “type of” relationship, which has no

 64

Figure 15: A UML-like Representation of SimSE’s Modeling Language.

cardinality). As an example, let us consider the object type and start state object

constructs and their relationships, shown in the top part of the diagram. An object type

 65

has the mandatory attributes Name, Meta-type, Key, Visible, and VisibleAtEnd, and the

optional attributes MinVal, MaxVal, MinDigits, and MaxDigits. Each object type also has

one or more attributes. Zero or more start state objects can instantiate each object type.

Each start state object has one or more instantiated attributes, each of which have one

attribute, Value. One or more instantiated attributes can instantiate one attribute. One or

more start state objects can participate in an action, etc. etc.

4.2 Sample Implementation

In order to more thoroughly demonstrate the modeling constructs of SimSE, we now

present a few implemented SimSE rules from some of our completed simulation models.

These rules represent some of the “fundamental rules of software engineering” discussed

at the beginning of this chapter and listed in Appendix A. The first rule is a continuous

effect rule attached to the “CreateDesign” action that modifies the “size” attribute of the

design document artifact being created:

1 DesignDoc:
2 Design:
3 size = this.size +
4 (allActiveSoftwareEngineerDesigners.productivityInDesign
5 * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))
6 * (1 + this.completenessDiffRequirementsDoc)
7 * (1 +
8 allActiveDesignEnvironmentTools.productivityIncreaseFactor))

In short, this rule says that as a design is being created, the size will increase by an

amount dependent on the additive productivity of the designers (line 4), the

communication overhead of the number of designers working on it (line 5), the difference

in completeness between the requirements document and the design document (line 6),

and the productivity increase factor of any design environment tool used (lines 7 and 8).

The amount of increase is primarily based on the additive productivity of the designers,

 66

and each of the other factors serve as multipliers to either raise or lower this amount. We

can see in this rule the implementation of a number of the software engineering rules

presented in the beginning of this chapter. In the first multiplier, listed on line 4, we can

see the implementation of rule 5 (the greater the number of developers working on a task

simultaneously, the faster that task is finished, but more overall effort is required due to

the growing need for communication among developers). The amount of increase is

reduced by 1% for each communication link between two people who are working on the

design. (Note that because there exists no empirical data for this value, we assigned it to

1% after trying several different values and playing the game repeatedly in order to

determine which value produced the most educationally effective result. As mentioned in

Section 3.2, this same process was used to formulate many of the rules in our models for

which there exists no empirical data.) In the second multiplier (line 6) we can see the

implementation of rule 1, which enforces the sequential nature of the waterfall model.

The design document’s “completenessDiffRequirementsDoc” attribute is an integer

attribute with minimum value 0 and maximum value 1 (hence, it must be either 0 or 1).

This value is set in another effect rule that is executed before the one shown here, which

sets it to 0 if the requirements document is less complete than the design document, or 1

otherwise. Hence, the amount of increase in the size of the design document is doubled if

the features the developers are designing have been specified first. Otherwise, there is no

effect. Again, no empirical data was available regarding the exact magnitude of this

effect (how much faster design should be if requirements are done first) and so the

multiplier was set at this particular value (100% speed increase) through experimentation

and play-testing.

 67

In the third multiplier (line 8), we can see the implementation of rule 8, which states

that tools increase productivity. The amount of increase in the size of the design

document is increased according to the productivity increase factor of the design

environment tool (which, in this particular model, was set to 0.5).

The next rule is also a continuous effect rule attached to the “CreateDesign” action,

but this one modifies the design document’s “numUnknownErrors” attribute:

1 Design Doc:
2 Design:
3 numUnknownErrors = this.numUnknownErrors +
4 (allActiveSoftwareEngineerDesigners.errorRateInDesign
5 * (1 – (.01 * (numDesigners * (numDesigners – 1) / 2)))
6 * (1 + (allActiveRequirementsDocuments.PercentErroneous / 100
7 * 10))
8 * (1 + (1 – this.completenessDiffRequirementsDoc))
9 * (1 –
10 allActiveDesignEnvironmentTools.errorRateDecreaseFactor))

This rule represents the effect that, as the design is being created, a number of unknown

errors are being introduced into the design document. This number is primarily based on

the designers’ additive error rate in design (line 4), and is affected by the communication

overhead between the designers (line 5), the number of errors in the requirements

document (lines 6 and 7), the completeness of the requirements document (line 8), and

the error rate decrease factor of any design environment tool used (lines 9 and 10). In this

rule, we can again see rule 5 implemented (the cost of communication overhead) in line

5—the amount of errors the designers can introduce is tempered by the communication

overhead (as the rate at which the designers work slows down, the rate at which they can

introduce errors slows down as well). The next multiplier (lines 6 and 7) illustrates rule 2,

which states that any errors that are not corrected in one artifact will be carried over into

the next artifact. In this expression, the amount by which the design document’s unknown

 68

errors will increase will be (x * 10)% higher, where x is the percentage of the

requirements document that is erroneous. (This multiplication by ten is obviously an

exaggeration—See Section 7.7 for a discussion on the tradeoff between accuracy and

educational effectiveness.)

The next multiplier (line 8) again illustrates the sequential nature of the waterfall

model stated in rule 1. It represents that the number of unknown errors introduced into

the design document will be doubled if the requirements document is less complete than

the design document (completenessDiffRequirementsDoc = 0), but will otherwise have

no effect (completenessDiffRequirementsDoc = 1).

Finally, the last multiplier (lines 9 and 10) again implements rule 8 (tools increase

productivity), but affects the artifact’s errors rather than the artifact’s size, as in the

previous rule. This expression represents that the number of unknown errors introduced

into the design document will be decreased according to the error rate decrease factor of

the design environment tool.

4.3 Discussion

The unique educational, interactive, game-based, and graphical nature of SimSE required

that we design a new process modeling language that fit our particular needs, rather than

adopt an existing one. Specifically, these four goals and characteristics of SimSE

(educational, interactive, game-based, and graphical) impose three unique requirements

upon its process modeling language.

First, it must be simultaneously predictive—allow the modeler (instructor) to specify

causal effects that the player’s actions will have on the simulation, and prescriptive—

support the specification of the allowable next steps the player can take at any given time.

 69

Being both predictive and prescriptive serves three purposes in terms of the objectives of

SimSE:

1. Interactivity is maximized in that the player is able to both affect how the

process plays out and be guided in their enacting of the process, rather than

simply one or the other.

2. A game-like feel is promoted, as computer games are typically both predictive

and prescriptive.

3. Educational effectiveness is maximized by providing two different avenues

through which the simulation can teach the player: the player learns how their

actions affect the process as they see them played out in the simulation, and the

player learns the flow of the process from the actions that are allowed at each

point in the simulation.

The second unique requirement imposed upon SimSE’s process modeling language is

that it must be interactive, meaning that it should operate on a step-by-step basis,

accepting user input and providing feedback constantly throughout the simulation. The

player should feel that they are an active and constantly involved participant in the

simulated process, rather than simply an observer of the simulation. Such a quality is

known to strongly engage the player and hence, increase educational effectiveness [51].

Finally, because SimSE is a fully graphical simulation, the third requirement for its

underlying modeling language is that it must allow the modeler to specify the graphical

representations of the elements in the model. Our survey of existing process modeling

approaches revealed that most are either predictive [2, 17, 88] or prescriptive [30, 102],

but not both; few are interactive [30, 102]; few support graphics [71, 94]; and none fulfill

 70

all of these requirements. Therefore, since no existing process modeling language fit our

unique needs, we needed to develop our own approach to incorporate predictive,

prescriptive, interactive, and graphical facilities into one language.

In designing SimSE’s software process modeling approach however, it became

apparent that some tradeoffs would have to be made. First and foremost, we acknowledge

that it is not as generic or flexible as some general purpose modeling and simulation

approaches [14, 71], or even domain-specific languages designed specifically for

modeling software processes [30, 48, 80]. For instance, our approach requires that every

object being modeled be an employee, artifact, project, customer, or tool. However, aside

from the fact that none of these existing approaches met the unique needs of our

educational game domain, we felt that such a level of generality and flexibility was

unnecessary for our purposes. The process by which we designed our modeling approach

underscores this: As mentioned previously, we surveyed the software engineering

literature and extracted the widely accepted process lessons and rules that would

conceivably go into a SimSE model, and then designed the modeling approach with these

rules in mind. Although they include a wide range of different types of phenomena, from

management issues, to organizational behavior theories, to corporate culture, to the

traditional software engineering theories, all of the rules that we have collected thus far

can be modeled and simulated using SimSE’s modeling approach.

The chief limitations of our modeling approach lie mainly in the fact that it lacks

many common programming language constructs, such as if-else statements, explicit data

structures, loops, and predicates. Because the intended user of SimSE’s model building

facilities is the instructor, we have chosen to focus on the simplicity and rapidity of the

 71

model building process over the flexibility and expressivity of the approach. Namely,

rather than a textual process modeling language, we have chosen to provide a model

builder tool that abstracts away the textual representation of a modeling language (see

Chapter 5).

The lack of language features makes it necessary at times to use some non-intuitive,

roundabout techniques to achieve the desired effect. One example of this is in the

existence of the “completenessDiffRequirementsDoc” attribute attached to a design

document object, discussed in the sample implementation presented in Section 4.2. In any

programming language, such an attribute would be unnecessary—an if-else statement

with a predicate could simply be used to check whether the completeness of the

requirements document was greater than or equal to the completeness of the design

document, and, if so, adjust the multiplier in question accordingly. Instead, in our

approach, we have to first create this hidden attribute, specify that it can only be equal to

either 0 or 1 by making it an integer with minimum value 0 and maximum value 1, and

then create a rule that sets it to the correct value using additional mathematical

manipulations.

Another instance of this sort of limitation was revealed when we attempted to model

the following software engineering rule: Error correction is done most efficiently by the

document’s author [47]. In a full-fledged modeling language this might be modeled by

keeping an array of employee names or IDs with the document/artifact object, indicating

that those people had been authors of that document. When an employee would then go

to correct that document, this array would simply be searched for that employee’s

name/ID, and, if found, correction would speed up accordingly. In our approach,

 72

however, there is not a simple way to perform such a task, due to the absence of arrays,

loops, and if-else statements. Another roundabout workaround could accomplish the

same effect, however: Each employee could have an integer attribute called,

“authorOfDocument” (where “Document” is replaced by the name of the document in

question) that must be either 0 or 1. Each employee’s “authorOfDocument” attribute is

set to 0 to begin with, but when an employee authors the document, this attribute is set to

1. Then, when that document is being corrected, the progress in correction made each

clock tick can be multiplied by the sum of all the correctors’ “authorOfDocument” values

plus 1. In this way, if none of the correctors were authors there would be no effect

(progress would simply be multiplied by 1), but each corrector that was also an author

would cause progress to increase by 100% (or some other value as desired). For example,

if there are three employees correcting the document, and two of them were also authors

of that document (meaning their “authorOfDocument” value is 1), the progress in

correction made each tick would be multiplied by 3, increasing progress by 200%.

Another example of an effect that is difficult to model in SimSE is the influence of

the work environment on productivity. For instance, [141] states that improving the work

environment by doing such things as giving employees enclosed offices and providing

common areas where employees can participate in “water cooler” conversations increases

productivity. Because our modeling approach currently uses graphics mainly for

decorative purposes, it does not directly support this kind of phenomenon. However, a

“quick and dirty” workaround could be that the modeler assigns each employee start state

object their productivity value based on their location in the office. For instance, the

modeler could assign a high productivity to someone who has a large, comfortable,

 73

enclosed office adjacent to a water cooler, and a low productivity to someone whose

office is simply a desk and a chair in the middle of a hallway, far away from any water

cooler. Although this is not an ideal approach in which the simulation itself could

calculate productivity modifiers based on employee surroundings, this workaround would

probably still communicate the effect somewhat.

So, while we are aware that the specificity of our modeling approach results in certain

effects being difficult to model in SimSE, we also consider this an acceptable tradeoff, as

most of the rules we collected, and especially those that we consider the most

fundamental principles of software engineering, can be modeled in SimSE. Many of the

effects that seemed to be infeasible to model in SimSE could be modeled, but required

somewhat of a different mode of thinking—in terms of the SimSE modeling constructs

provided, rather than the programming language constructs to which most people are

used. In order to assist with these difficulties, we have provided a “tips and tricks” guide

(see Appendix B) along with the model builder’s documentation. This document,

compiled from lessons we have learned in building our models, provides guidelines for

how common effects can be modeled that might not be intuitive at first, as well as

generally helpful hints on the model-building process. Based on the number of simulation

models that have been successfully developed and used, we believe that the added

simplicity of the model builder tool, along with its documentation, offsets most of the

drawbacks of the absence of programming language constructs.

Another fundamental tradeoff we have made in designing our modeling approach is

one between graphics and customizability. Namely, we have chosen to forego much of

the sophistication typical of commercial computer game graphics for the sake of having

 74

easily customizable models. Currently, the graphical extent of our approach is a simple

icon attached to each object, a two-dimensional grid-based map, and textual pop-up

messages. Using a more complex graphical model that includes such things as three-

dimensional graphics, animation, and sound would undoubtedly make SimSE more

appealing to students, but would also make it significantly more difficult to build a

model, as all of these graphical components would need to be customized as well.

Because the purpose of SimSE is education, and the intended users of the modeling

approach are software engineering instructors, we concluded that this was an acceptable

tradeoff to make. However, in our usage of SimSE with students, we found that many of

them did express their desire for more sophisticated graphics to make the game more

interesting. Therefore, we plan to investigate possible ways of adding some simple

animation capabilities without too much added complexity in the modeling approach (see

Chapter 12).

 75

5. Model Builder

Motivated by our key decision to make SimSE’s simulation models customizable, we

have developed a model builder tool to facilitate the model building process. The model

builder completely hides the underlying textual representation of the modeling language

from the modeler, and provides a graphical user interface for specifying the object types,

start state, actions, rules, and graphics for a model. Figure 16 shows the user interface for

the model builder, with the tab for defining object types in focus. The tabs for the other

parts of the model builder are not shown in this figure, but they are similar in appearance

to the object builder in that they all facilitate building a model using buttons, drop-down

lists, menus, and dialog boxes—no programming is required. Once a model is specified,

the model builder then generates Java code for a complete, customized simulation game

based on the given model. The following sections detail each part of the model builder, as

corresponding to the five parts of a SimSE model.

5.1 Object Types Tab

The object types tab, shown in Figure 16, allows the user to create new object types and

edit existing ones. A new object type can be defined by first choosing a meta-type

(employee, artifact, tool, project, or customer) for the object using the drop-down list in

the upper portion of the user interface, and then clicking on “OK”. The user will then be

prompted to enter a unique name for the object type (e.g., “Code”). Attributes can then be

added to the object type by clicking the “Add New Attribute” button. For each new

attribute created, the user will be prompted to enter the attribute information detailed in

Section 4.1.1, using the interface shown in Figure 17. After each new attribute is added, it

 76

Figure 16: Model Builder User Interface.

Figure 17: User Interface for Entering Attribute Information.

will appear in the table of attributes in the middle of the object tab user interface, with its

detailed information shown in the columns of the table. Attributes can be edited by

double-clicking on them or by clicking the “Edit Attribute” button, and attributes can be

deleted by clicking the “Remove Attribute” button.

 77

All of the object types that have been defined in the model appear in the list at the

bottom of the object tab. Any of these object types can be brought into focus by clicking

on them, and an object type can be renamed or removed using the “Rename” and

“Remove” buttons.

5.2 Start State Tab

The start state tab, shown in Figure 18, is the portion of the model builder that facilitates

the creation of start state objects—those objects with which the simulation begins. A new

start state object can be created by first choosing an object type for the object from the

drop-down list at the top of the interface. Each item in this list refers to an object type

that was created in the object types tab for this model. Once an object type is chosen, the

user will be prompted to enter a value for that object’s key attribute (e.g., a name for a

software engineer employee). The new object is then created and its attributes appear in

the table in the upper half of the start state tab. The last column in this table, titled

“Value”, lists the starting value for each attribute. A value for each attribute can be

entered by either double-clicking on the row (attribute) or by using the “Edit Starting

Value” button.

All of the objects created in the start state for the model are displayed in a list in the

middle part of the interface. An object from this list can be brought into focus by clicking

on it, and an object can be removed by using the “Remove” button.

Finally, the bottom portion of the start state tab will list any warnings about

inconsistencies in the model that involve the start state objects. In particular, these

warnings notify the user if any of the object types on which the start state objects are

based have changed, causing some part of the start state objects to be invalidated (e.g., a

 78

Figure 18: Start State Tab of the Model Builder.

string attribute changed to an integer attribute after a string starting value has already

been assigned to that attribute; an object type being removed after start state objects that

are based on that object type have already been created). Such inconsistencies are

checked every time the focus is switched to a different tab, or when an attempt is made to

save the model (a model with inconsistencies can be saved, but the warnings will re-

appear to the user the next time they open the model).

5.3 Actions Tab

The actions tab allows the user to define the actions in a model, and can be seen in Figure

19. A new action can be created using the “Create New Action Type” button, at which

point the user will be asked to give the action a unique name (e.g., “CreateCode”).

 79

Figure 19: Actions Tab of the Model Builder.

Participants can then be added to the action using the “Add Participant” button, which

will result in prompting the user to provide the necessary information about the

participant, including its name, quantity restrictions, and allowable types through the

form shown in Figure 20. Once a participant is added, it will appear in the participant

table in the upper half of the interface. A participant can be edited or removed using the

“Edit Participant” and “Remove Participant” buttons, respectively.

Once all of the participants have been added to an action type, the next step is to

define one or more triggers for the action. A trigger can be defined by clicking the

“View/Edit Triggers” button, which will cause a trigger management window to appear

(see Figure 21a). All of the triggers that are attached to the action will appear here, and

 80

Figure 20: Action Participant Information Form.

any one of them can be viewed and/or edited using the “View/Edit” button, or removed

using the “Remove” button. A new trigger can be added using the “Add New Trigger”

button, after which a “Trigger Information” window will appear, as shown in Figure 21b.

First, the trigger type can be chosen from the “Choose the trigger type” drop-down list. If

the random trigger type is chosen, it will prompt for a frequency to be entered, which

must be a number between 0 and 100, denoting the percent chance this action has of

occurring when all of the specified conditions are met. If the user-initiated trigger type is

chosen, as in Figure 21b, it will prompt for menu text to be entered. The text that is

entered here will be displayed on the menus of all possible participants in this action that

are of meta-type Employee (when the trigger conditions are met). If at least one of the

participants in the action is of meta-type Employee, there will be a prompt for entering

“overhead text”, referring to the text that will be displayed in a pop-up bubble over the

head of all Employee participants when this action begins in the simulation. Checking the

“Game-ending trigger” box indicates that, when this trigger occurs in the game, the game

will end and a score will be given to the player.

 81

Figure 21a: Trigger management window. Figure 21b: Trigger information window.

The trigger conditions can be specified using the “View/Edit Trigger Conditions”

button. This will bring up a new window in which these conditions or constraints can be

entered, as shown in Figure 22. All of the allowable object types that this participant can

be are listed in the “Allowable Types” list in the upper part of the window. In the

example shown in Figure 22, this particular participant can only be of type

“SoftwareEngineer”, so only that type is shown in the list. If other types, such as

“Manager” and “Tester” had been chosen when defining this participant, they would also

appear on the list. The bottom half of the window allows entry of the constraints for each

attribute of the object type currently selected in the “Allowable Types” list. The

comparison operator (>, <, >=, <=, =) can be selected, and a value entered for each

 82

Figure 22: Window for Entering Participant Trigger Conditions.

attribute. In the example shown in Figure 22, the only condition for this participant is that

the employee’s health must be greater than or equal to 0.7.

If the trigger is a game-ending trigger, an additional column of radio buttons, marked

“Score?” will appear to the left of each attribute, as shown in Figure 23. Choosing one of

these indicates that the corresponding attribute’s value will be given as the score to the

player when the game ends.

The interfaces for defining an action destroyer are exactly identical to defining an

action trigger, aside from the additional capability to define a “timed” destroyer by

specifying a time to live value.

The visibility for an action can be specified using the “View/Edit Visibility” button in

the center portion of the actions tab (see Figure 19). This will bring up a form for entering

 83

Figure 23: Participant Trigger Conditions Window for a Game-Ending Trigger.

both the simulation visibility and the explanatory tool visibility of the action, including

optional descriptions for each (see Figure 24).

All actions that have already been defined for the model are displayed in the list in the

middle portion of the actions tab. Actions can be brought into focus by clicking on them,

and can be renamed or removed using the “Rename” and “Remove” buttons.

Like the start state tab, the actions tab also has an area to display warnings. Warnings

will be shown here if a change was made to an object type that invalidated some part of a

defined action. For instance, if a trigger condition of “size=85.5” was specified, and then

the size attribute was changed to an integer, a warning would appear notifying the user

that this trigger condition is no longer valid, since the value of 85.5 is not an integer.

 84

Figure 24: Interface for Specifying an Action’s Visibility.

5.4 Rules Tab

The rules tab of the model builder is the tool that allows the creation of SimSE rules, and

is shown in Figure 25. All of the actions for the model are listed in the “Actions” list in

the middle portion of the user interface. When one of these actions is selected, the rules

attached to that action (if any) appear in the table in the upper portion of the interface.

These rules can be viewed, edited, renamed, or removed using the buttons to the right of

the table. Like the start state and actions tab, the rules tab also has an area at the bottom

for warnings that will appear if a change was made to another part of the model that

creates an inconsistency with a defined rule.

The rules tab allows the creation of the three types of rules in SimSE: create objects

rules, destroy objects rules, and effect rules (see Chapter 4.1.4). A create objects rule can

be created by first choosing an action to which the rule will be attached, and then using

 85

Figure 25: Rules Tab of the Model Builder.

the “Add New Create Objects Rule” button. The user will first be prompted to specify a

name for the rule, and then a form will appear through which the specifics of this create

objects rule can be defined (see Figure 26).

The timing for the rule (continuous, trigger, or destroyer, discussed in Chapter 4.1.4)

can be chosen through the “Timing of Rule:” radio buttons. The object type for an object

to be created must first be chosen from the drop-down list at the top of the window, and

the “OK” button must be clicked. A form will then appear in which valid starting values

for each of this attribute’s values must be entered (attribute types and min/max values are

enforced), and when the “OK” button is clicked, the object is added to this rule. Once an

object is added to the rule, it will appear in the “Created Objects” list (see Figure 26).

 86

Figure 26: Create Objects Rule Information Window.

Any of these objects can then be clicked on and then viewed and edited using the

“View/Edit Starting Values” button or removed using the “Remove Object” button.

A destroy objects rule can be created using the “Add New Destroy Objects Rule”

button, which will cause the user to be prompted to enter a name for the rule, followed by

the appearance of the form shown in Figure 27, which displays all of the participants in

the rule’s associated action. A set of conditions that must be met by an object’s attributes

in order for that object to be destroyed by the destroy objects rule can be specified using

the “View/Edit Participant Conditions” button. This will bring up a new window in which

these conditions can be entered, as shown in Figure 28. All of the allowable object types

for this participant are listed in the “Allowable Types” list in the upper part of the

window. The bottom half of the window allows entry of the conditions/constraints for

each attribute of the object type currently selected in the “Allowable Types” list. The

comparison operator (>, <, >=, <=, =) can be selected, and a value entered for each

 87

Figure 27: Destroy Objects Rule Information Window.

attribute. In the example shown in Figure 28, the “SoftwareEngineer” object will be

destroyed if its energy is less than or equal to 0.5.

Effect rules can be created and added to an action using the “Add New Effect Rule”

button, which prompts the user to enter a name for the rule, followed by the appearance

of the window shown in Figure 29. The middle part of this window contains a list of all

of the participants in the action for which this rule is being created, along with all of the

possible object types for each. An effect for one of these participants can be specified by

bringing into focus one of the object types for the participant, and then using the

“View/Edit Effects” button. The effects for each attribute of that object type (if any) will

then appear in the top part of the window, as is the case in Figure 29 for the “Code”

participant.

Once a participant object type (e.g., “CodeDoc” Code Artifact) is brought into focus,

two types of effects for this participant object type can be defined: (1) the effect on the

participant’s other actions; and (2) the effects on each of this object type’s attributes. The

 88

Figure 28: Window for Entering Participant Conditions for a Destroy Objects Rule.

effect on the participant’s other actions can be specified by selecting one of the choices

next to the text: “Effect on Participant’s Other Actions”. This refers to what will happen

every time this effect rule is fired. Every participant in an action at run-time is either

active or inactive. The first choice, “Activate all other actions,” causes this participant to

become active in all of their actions (besides the one that this rule is attached to) in which

they were previously inactive. The second choice, “Deactivate all other actions,” has the

opposite effect. The “none” indicates that there is to be no effect on the participant’s

other actions. The modeler is currently limited to these two choices (activate/deactivate

 89

Figure 29: Effect Rule Information Window.

all or none), but our future plans include adding the ability to choose specific actions to

activate or deactivate (see Chapter 12).

The effects on each of the participant object type’s attributes can be specified as

follows: In the top part of the effect rule information window, next to each of the

attributes, there is a text box in which expressions can be entered that specify what the

values of each of these attributes will be set to each clock tick that the action is active. As

shown in Figure 29, both “CompletenessDiffReqDoc” and “CompletenessDiffDesDoc”

attributes for the “CodeDoc” Code Artifact will be set to the evaluated value of the

expression in the text box next to it.

The button pad, shown in Figure 30, is the interface through which the user can

specify an effect rule expression. In order to specify an expression, the text box can be

 90

Figure 30: Button Pad for Entering Effect Rule Expressions.

double-clicked or the “Button Pad” button can be used, at which point the button pad will

appear. Each click of the button pad will result in text being inserted into the effect rule

expression. Aside from the digit (0 through 9) buttons, the operator (+, -, *, /) buttons,

and the backspace button, which are self-explanatory, the meaning and use of the other

buttons are as follows, from left to right, top to bottom on the button pad:

• Rule Input: One of the rule inputs (see Chapter 4.1.5) that have been defined in

this effect rule can be chosen to be inserted, and when this rule fires, the current

value of the rule input will be evaluated in this expression.

• Attributes – this participant: One of the attributes in this participant object

type can be chosen to be inserted (including the attribute for which the effect is

being edited), and when this rule fires, the current value of that attribute will be

evaluated in this expression.

• Attributes – other participants: This refers to the attributes of the other

participants in this action. Upon clicking this button, it will prompt for three

 91

selections: status, participant, and attribute. Status refers to whether active,

inactive, or all (both active and inactive) participants’ attribute values should be

included. Participant refers to the name of the participant whose attribute is

being chosen. Attribute simply refers to the attribute being chosen.

• Num participants in action: This button will insert a value that refers to how

many participants are in this action. Once again, an all/active/inactive status can

be chosen, as well as a participant.

• Num actions – this participant: This button corresponds to the number of

actions that this participant is in. An all/active/inactive status must be chosen,

along with either an action type or the “*” choice, the latter indicating that all

actions should be included regardless of type. For example, if “All Inactive” and

“Designing” are chosen, and the participant is currently inactive in two

“Designing” actions, the number 2 would be inserted at run-time.

• Num actions – other participants: This button is similar to the “Num actions –

this participant” button, but instead of the number of actions that this participant

is in, it corresponds to the number of actions that another participant in this

action is in. The all/active/inactive status must be selected, along with the

participant and the action (or “*”).

• totalTimeElapsed: This is equal to the total number of clock ticks that have

executed in the simulation.

• actionTimeElapsed: This is equal to the total number of clock ticks that have

executed since this action began.

 92

• Random(min, max): When a min and a max are entered, this will generate a

random number at runtime that is between min (inclusive) and max (exclusive).

• String: A literal string value can be entered.

• Boolean: A Boolean value can be entered.

We aimed to augment the simplicity of the button pad and provide some guidance to

the user by designing it so that buttons are enabled or disabled depending on what input is

allowed at any given time. For example, once one mathematical operator is inserted, the

buttons for the other mathematical operators become disabled (except for the ‘-‘ button,

which can be used as a negative sign as well). As another example, if the attribute for

which an expression is being created is a non-numerical attribute, the buttons that result

in a number being inserted into the expression are disabled. Once an expression is

entered, the user will also receive a warning if that expression is not valid, such as in the

case of a missing closing parenthesis or an expression ending with an operator. For the

user who wishes to learn the syntax or wants to quickly insert a simple expression

parameter, the text fields can also be directly edited.

The area below the participant list in the effect rule information window (see Figure

29) deals with rule inputs. A new rule input can be defined using the “Add new rule

input”, after which it will prompt for a name for the rule input. Following this, a rule

input information form will appear, as shown in Figure 31. The type (String, Boolean,

Double, or Integer) of the input must be chosen, a condition can be specified on the input

if it is of type Double or Integer, and a prompt must be entered. The prompt will be the

text the user of the simulation will see when they are asked to enter the input (e.g., the

amount of a bonus an employee is to be given). Whether or not the rule input can be

 93

Figure 31: Rule Input Information Form.

cancelled by the player must also be specified. After clicking “OK”, the rule input will be

added to the rule, and it will then be accessible through the button pad for use in the effect

rule expressions.

Below the rule input area in the effect rule information window (see Figure 29) is the

area that allows the selection of the rule timing (either continuous, trigger, or destroyer)

through the “Timing of Rule” radio buttons. Finally, the visibility of the rule, along with

a textual description of the rule can be entered using the checkbox and the button below

the rule input area.

5.5 Graphics Tab

The graphics tab, shown in Figure 32, is used to assign an image to each object in the

start state, as well as each object that is created by a create objects rule. The image

assigned will be used to represent the object in the graphical user interface of the

simulation.

Operation of the graphics tab is straightforward. The first step to assigning graphics is

to specify the directory that contains the icons to be used, using the “Icon Directory”

button in the upper portion of the graphics tab. This directory must contain the images

(50 x 50 pixels or smaller) to be matched to objects. Once the directory is chosen, the

 94

Figure 32: Graphics Tab of the Model Builder.

images appear in the grid in the middle part of the interface. Images can then be matched

to objects by simply choosing an object from the list and choosing an image, and then

clicking the “Match” button.

Again, like the other tabs, the graphics tab also contains a warning area that will

display warnings about any inconsistencies between the objects assigned to images and

the rest of the simulation (e.g., if the object type for an object that was assigned to an

image is deleted).

5.6 Map Tab

The map tab of the model builder is used to specify the layout of the office in the

generated game, and is also quite straightforward in operation. The map is represented as

 95

a 16 x 10 grid, and each square in the grid may be assigned an image using a right-click

menu (see Figure 33). Using this menu, the user can place office furniture, doors, walls,

floor tiles, and employees (both those in the start state and those created by create objects

rules) in the office. Employees created by create objects rules will appear inside a pink

box with a blue hue around them, to differentiate them from employees in the start state.

For instance, the employee in the lower left-hand corner of the map in Figure 33 is an

employee created by a create objects rule. Of course, both types of employees will look

the same at run-time, in the game’s user interface.

Figure 33: Map Tab of the Model Builder.

As discussed in Section 4.1.5, there are three allowable image layers per tile: base

(bottom), fringe (middle), and object (top). The right-click menu is accordingly organized

 96

in terms of these layers: The topmost section, listed in blue, contains all of the base

images. The section below this, listed in green, contains all of the fringe images. Below

this are the employees, which are placed in the object layer. Start state employees are

listed first, followed by employees created by create objects rules, which are listed in red

in their own section of the menu. Finally, the bottommost option in the menu is “Delete”,

which clears all images from a tile.

5.7 Menu Items

There are four menu items in the menu bar of the model builder: “File”, “Narratives”,

“Prioritize”, and “Generate”. The “File” menu allows the user to perform the standard file

management functions of opening, closing, saving, and creating new models. The

“Narratives” menu allows the user to enter the starting narrative for a model (the text that

will appear to the player of the simulation at the start of the game). The “Prioritize”

menu, shown in Figure 34, lets the user specify the order in which they want their

model’s trigger, destroyers, and rules to be executed. This menu is organized into sub-

menus according to the following rules: triggers are prioritized in relation to other

triggers, destroyers are prioritized in relation to other destroyers, continuous rules are

prioritized in relation to other continuous rules, trigger rules are prioritized in relation to

other trigger rules attached to the same trigger, and destroyer rules are prioritized in

relation to other destroyer rules attached to the same destroyer. When any of these menu

items are selected, a window similar to the one shown in Figure 35 (the one for

continuous rules) appears. The user can move a rule/trigger/destroyer from the non-

prioritized list to the prioritized list (or vice-versa) using the arrow buttons in the middle.

 97

Figure 34: The “Prioritize” Menu.

Figure 35: The Continuous Rule Prioritizer.

The order of the prioritized list can also be changed by selecting a list item and using the

“Move Up” and “Move Down” buttons.

Finally, the “Generate” menu allows the user to generate a simulation game from a

model. When this menu item is selected, the user will be prompted to specify a

destination directory for the generated code. They will then be either notified that the

simulation was successfully generated, or else shown an error message explaining any

problems that might have occurred during code generation.

 98

5.8 Design and Implementation

The model builder is comprised of approximately 50,000 lines of Java code. Its design is

shown in Figure 36, and consists of two main components: the builder and the code

generator. The builder is the component that facilitates the creation of a model. Within

the builder, there are eight sub-components. The GUI houses all of the components of the

user interface. The six sub-components in the middle row of the builder each correspond

to a part of a SimSE model (object types, start state, actions, rules, graphics, map) and a

tab in the model builder user interface. Each one of these sub-components is responsible

for handling the creation of its corresponding model part, using the model/file

manipulation component, which creates and manages the actual model in memory and on

the file system.

Figure 36: Model Builder Design.

 99

When the user commands the model builder to generate a simulation game from a

model, the builder passes this command to the code generator component. When the code

generator receives this command, it reads the model and uses its sub-components to

generate code for a simulation game based on this model. The code generator contains

five sub-components, each corresponding to a component in the generated simulation

environment (see Chapter 6.2). Each one of these sub-components is responsible for

generating the code for its corresponding part of the simulation environment (e.g., the

state generator generates the state component of the simulation environment, the logic

generator generates the logic component, etc.)

5.9 Discussion

Although the model builder removes many of the inherent difficulties of a programming

language (e.g., syntax and text manipulation), we recognize that building a model in

SimSE is still not a trivial matter. Most notably, the difficulty of collecting software

engineering phenomena and rules and translating these into SimSE actions and rules still

remains. This was one of the chief purposes of building our collection of six different

simulation models and making them freely available with SimSE (see Chapter 7). These

models embody some of the most commonly taught software processes, and can readily

be used by instructors who wish to either adapt them for their own purposes or use them

directly. Our hope is that any instructor who wishes to create a new SimSE model will be

able to, at minimum, either use our models as examples to follow or else take bits and

pieces from them and reuse them. Although doing so would not necessarily make the

process “quick and easy”, it would at least give the instructor something to work with,

rather than require that they build a model from scratch.

 100

As another resource for the model-building instructor, we have also written a 50-page

user guide to accompany the model builder. This guide explains, in detail, how to use the

tool, and also includes the “tips and tricks” guide presented in Appendix B. As mentioned

in Section 4.3, this document includes (among other topics) suggested steps for starting a

model, finishing a model, and working around the lack of common programming

language constructs (e.g., if-else statements).

It is important to note that use of the model builder also does not guarantee the model

is a “good” model. Rather, a strongly iterative development cycle is required. In our

experience, building a model involves a significant amount of time aside from the initial

construction of the model in which the model is repeatedly played and refined in order to

ensure that the desired lessons and effects are illustrated, as well as to achieve the proper

balance between educational effectiveness and realism (see Section 7.7 for further

discussion on this issue).

 101

6. SimSE

Now that we have established what a SimSE can model and simulate and how a SimSE

model can be built, in this chapter we focus on how a SimSE model actually works.

Specifically, we detail what the game play of a model is like and how the simulation

environment is designed and implemented.

6.1 Game Play

SimSE is a single-player game in which the player takes on the role of project manager

and must manage a team of developers in order to successfully complete an assigned

software engineering task. This task may comprise an entire life cycle of a software

product from inception to delivery, a small, specific activity within a software process

(such as a code review), or some other aspect of a software engineering process.

 At the beginning of the game, the player is presented with a description of the

software engineering task they are expected to perform. This description usually includes

what the goal of the game is, how much time and/or money the player is allowed, how

the final score will be calculated, and perhaps some helpful hints to guide the player

along the way (see Figure 37 for an example). The player then drives the process by,

among other things, hiring and firing employees, assigning tasks, monitoring progress,

and purchasing tools. At the end of the game the player receives a score indicating how

well they performed, and additional information that was hidden throughout the game is

revealed to give the player some insight into why they were given their particular score.

The player can also run the explanatory tool at the conclusion of a game to gain further

insight about their simulation run.

 102

Figure 37: SimSE Introductory Information Screen.

Motivated by our key decision to make extensive use of graphics in our approach, the

user interface of SimSE is fully graphical, as shown in Figure 38. The center part of the

interface displays a virtual office in which the software engineering process is taking

place, including typical office surroundings and employees. Employees “communicate”

with the manager (player) through speech bubbles over their heads. Through these, they

inform the player of important information, such as when they have started or completed

a task, when a random event has occurred, or to express a response to one of the player’s

actions. In addition, depending on the particular simulation model being used, the text in

these speech bubbles can also serve as a mechanism for providing the player with subtle

guidance and feedback as they play the game. For instance, an employee could make a

recommendation about what the next action should be after they inform the player that

 103

Figure 38: SimSE Graphical User Interface (Duplicate of Figure 1).

they have completed a task (e.g., “We just finished the requirements document. We

should move onto design now.”). As another example, an employee could notify the

player of a mistake they made and suggest a remedy (e.g., “We ended up with a number

of errors in the design because the people you assigned to create it did not have design

expertise. You should now assign experienced designers to review and correct the design

so we can get it into better shape.”). In all cases, these “comments” by the employees

provide valuable information that the player can use to make decisions and take action,

steering the simulation accordingly.

 SimSE has a variety of control mechanisms for playing the game. One of these is the

simulation clock, the controls of which are located in the lower right corner of the user

 104

interface, and through which the user drives the simulation. Because one of our key

decisions was to make SimSE as interactive as possible, we designed SimSE to operate

on a clock-tick basis, rather than as a continuous simulation in which the user provides a

set of inputs, commands the simulation to run, and obtains a set of outputs such as cost

and schedule. The SimSE player has two choices about how to advance through time:

They can either choose to advance the clock a particular number of ticks, or advance until

the next time an event occurs (when one of the employees has something to say).

 The player can interact with the employees through right-click menus on each

employee (see Figure 39). Using these menus, they can assign software engineering tasks

(e.g., write code, review the design document), or perform other managerial activities in

relation to an employee, such as firing, giving bonuses, or changing an employee’s pay

rate. They can also perform “global” managerial actions such as purchasing software

engineering tools for the whole company, or delivering the final product to the customer.

Figure 39: Right-click Menus on Employees.

 105

 Detailed information about each object (artifacts, customers, employees, projects, and

tools) can be obtained by clicking on the corresponding tab for the object’s type in the

upper left hand corner of the interface, and then choosing the image representing the

desired object. (In addition, to promote consistency and intuitiveness, any employee icon

appearing in the office or in the panel on the right-hand side of the interface can also be

clicked on to bring up their information.) Doing so brings the object’s icon and all of its

attributes into view in the bottom of the user interface. In Figure 38, the requirements

document object is in focus with its attributes of name, number of known errors, and

percent complete all shown.

 As can be seen in Figure 38, for each group of objects appearing in the upper right

hand side of the user interface, there is also a button labeled “ALL”. This button brings

 on the right side of the interface that lists all of the activities

up an at-a-glance, tabular view of all objects in that group. For instance, when the

employees are in focus, the “ALL” button brings up a view of all of the employees and

their attributes, as shown in Figure 40. By right-clicking on a column, the table can be

customized by hiding and un-hiding columns to focus only on the attributes that are

relevant to the current task. The at-a-glance view was designed particularly for situations

in which the objects need to be compared quickly, such as the activity of allocating

employees to tasks. A player can use this view to gain a rapid overview of which

employees possess which strengths, and assign them to tasks accordingly.

 We also included a panel

in which each employee is currently participating. This is provided so that the player can

be continuously aware of what everyone is doing and have this important information at

hand to assist them in making decisions about their next steps.

 106

Figure 40: At-a-glance View of Employees.

 During game play, the player also has access to the “information” and “restart”

buttons in the upper left hand corner (labeled with an “i” and an “r” respectively). The

“information” button brings up the starting narrative again, so that the player is always

able to review the simulation’s goals and success criteria, as well as any guidance that is

given in the narrative to help the player along the way. The “restart” button, as its name

indicates, restarts the game.

 The “Analyze” menu in the upper left-hand corner launches the explan

atory tool (see

to see intermediate traces

6.1.1 Game Play Example

To provide an example of what a SimSE simulation game is like, we will use a brief

scenario of how a student may use SimSE in completing the task of developing a

Chapter 8). (Currently, this menu is only enabled once a game has been finished and the

score has been revealed, as the current version of the explanatory tool is designed as an

end-of-game tool. However, in the future we plan to make it accessible at any point

during the game so that the player can use the explanatory tool

of their game in progress, as will be discussed in Chapter 12.) While the explanatory tool

is running, the player can also navigate around the game to view any information needed

(although the clock and the employee right-click menus are disabled at this point).

 107

software product from requirements specification to product delivery. In addition, this

example will illustrate how some software engineering lessons are exhibited during game

play and demonstrate our key decision to make SimSE teach by rewarding good software

engineering practices and penalizing deviant ones. This particular scenario is based on

SimSE’s waterfall model, presented in Section 7.1.

When the game begins, the player sees a starting narrative that describes to them the

goals of the simulation. In this example, the starting narrative is the following (taken

from Figure 37):

”Welcome to SimSE! Your task is to create Groceries@Home, a Web-

based system that will allow people to place orders over the Internet for

for groceries solely by telephone, but now wants to step into the

to complete the project. However, you should keep checking your project

error-free your code is, whether your code is integrated or not, and how

The first step this player takes is to go

what they have to work with. The player br

groceries to be delivered to their homes. The customer is the Grocery

Home Delivery Service, a company who, up until now, has taken orders

information age. Your budget is $280,000, and you have 1,350 clock ticks

info to monitor this information – the customer has the tendency to

introduce new requirements, and will sometimes give you more time

and/or money along with those new requirements. Your final score will be

out of 100 points, and it will be calculated based on how complete and

well you stick to your budget and schedule. Good luck!”

through some of their resources and assess

ings into focus the at-a-glance view of all

 108

employ t the

differen wo of

the too ro, so

they im

Sin their

employ Anita,

Calvin, these

are the steps

the sim that the requirements

doc

is going a bit slower than they would like, so

they

ees and views their skill levels in each area, noting who is good and bad a

t tasks. They then look at each tool and note its cost. The player sees that t

ls, the JUnit automated testing tool and the Eclipse IDE, have a cost of ze

mediately “purchase” those two.

ce this is the waterfall model, the player decides to start out having

ees specify the requirements for the product. Because the employees

 Pedro, and Andre (see Figure 40) have the most experience in requirements,

 ones the player assigns to start creating the requirements. The player then

ulation forward 20 clock ticks, after which they see

ument is 7% complete. Now that some requirements have been specified, some of the

other employees can start reviewing them. The player assigns the rest of the employees,

Mimi, Roger, and Emily, to review the requirements document. The player steps forward

20 more clock ticks, and sees that the requirements document is now 14% complete, and

the reviewers have discovered three errors (see Figure 41). At this point the player is

thinking that requirements specification

 decide that it might be worth the $10,000 to purchase the requirements capture tool,

which they do. They then step forward another 20 clock ticks, and see that the

requirements document is now 25% complete, and are pleased that their purchase seems

to have sped things up by a factor of about 1.5.

We now fast forward a bit, and assume that the employees finished the requirements

document, reviewed it, and the player has their requirements experts, Anita, Calvin,

Pedro, and Andre correcting it. The player now decides to move on to the design phase.

Since the requirements tool seemed to be so helpful, the player also purchases a design

 109

environment tool for $5,000. Unfortunately, two of the three experts in design (Andre and

Anita) are also requirements experts, so they are already engaged in correcting the

requirements document. As a result, the player assigns only one employee who is

experienced in design (Emily) along with two less-experienced designers, Roger and

Mimi, to start creating the design document. They continue this until the other employees

are finished correcting the requirements document. At this point, the designers have been

designing for 33 clock ticks, and they are only 4% finished. Now that the other two

expert designers, Andre and Anita, are freed up, the player adds them to the designing

task, and has all of the other employees start reviewing the design. The player then steps

Figure 41: Requirements Creation and Review.

 110

forward 20 clock ticks and is pleased to see that this reallocation of tasks has sped up

design tremendously—the design document is now 10% complete.

The player continues like this until the design document is 100% complete. They then

(unwisely) figure that since they had such qualified people working on the design, and

they would like to try to finish the project as quickly as possible, they stop the design

review process and have all of the employees correct the design errors that have already

been found. They move on to the coding phase, assigning all of the coding experts to

coding, and they complete the code. Once the player begins inspection, however, they

realize that they have made a bad decision somewhere, because inspection seems to be

endless, taking 230 clock ticks and finding 194 errors (see Figure 42). (Many of these are

errors that were carried over from the design document, which the player will find out

later.)

The player has their employees correct all of these errors, and then integrate the code

(which also seems to be awfully slow). They then prepare the system test plan, test the

system, which reveals 108 errors, and correct these errors. Due to all of the errors in the

code, which required extra time spent on inspection, testing and correction, the project is

now slightly late (145 more clock ticks than allotted) and $20,580 over budget. As can be

seen in Figure 43, the player delivers the product to the customer, and receives a score of

81 out of 100—not a bad score, but it could have been better.

When the hidden attributes are revealed, the player discovers that there were 149

unknown errors in the design document (see Figure 43), indicating that they probably

should have had the employees review and correct the design before moving on to

coding. (Use of the explanatory tool would underscore this lesson, as well as provide

 111

Figure 42: 194 Errors are Found When the Code is Inspected.

further insight—See Chapter 8.) Most likely, this player would engage in multiple

simulation runs of this same model (along with use of the explanatory tool) in order to try

to c

6.2 Design and Implementation

erated from a simulation

model. The internal design of the simulation environment is shown in Figure 44, and

orrect their mistakes, explore different approaches, and gain a thorough understanding

of the lessons and the process being taught.

The overall architecture of SimSE was shown in Figure 2. In this section, we will focus

on the part of the architecture that corresponds to SimSE’s game play, namely the

simulation environment that embodies a custom game gen

 112

Figure 43: A Score is Given and Hidden Attributes are Revealed.

contains five major components: the GUI, the engine, the logic component, the state, and

the explanatory tool.

The GUI is a simple component that contains all of the game’s user interface

components and main functions.

to update itself accordingly.

The logic component is the heart of the simulation, and contains five major

components: the trigger checker, the destroyer checker, the rule executor, the menu input

handles user actions. The engine component has two

First, when the game begins, it runs a startup script that creates the start state objects and

adds them to the proper repositories in the state component. Second, during the

simulation, the engine drives the simulation by responding to clock events sent by the

GUI and notifying the rest of the simulation

 113

Figure 44: Simulation Environment Design.

manager, and a miscellaneous updater. The trigger checker knows the conditions that

contains all of the rules embodied in the simulation model. Every

cloc

correspond to each trigger in the simulation, and is responsible for checking if these

conditions are met by querying the state component. The trigger conditions are checked

at every clock tick, as well as when an action is started, stopped, or when a rule is fired. If

a trigger condition is met, that trigger is fired. In a similar manner, the destroyer checker

checks which destroyers should be fired.

The rule executor

k tick, it queries the state to check which actions are currently occurring. For each

action that is occurring, it executes the appropriate rule(s). For instance, it would be

responsible for causing the size of a code artifact to increase (by the additive productivity

 114

levels of all the employees working on it) every clock tick that a “create code” action is

occurring.

The menu input manager receives from the GUI all of the user actions performed

through employee right-click menus. This component knows which menu commands

correspond to which action triggers and destroyers, and causes the corresponding trigger

or destroyer to fire (sometimes after asking the user for more information, such as which

other participants they would like to participate in an action). Finally, the miscellaneous

updater performs various maintenance and cleanup activities every clock tick, such as

clearing employee overhead text and menus and telling the action state repository to

update the elapsed time of each action.

The state component, as its name indicates, holds the current state of the simulation at

any given time by keeping track of the state of all objects and actions. It does this by

storing these objects and actions in “repositories”. Each object meta-type (employee,

artifact, tool, project, and customer) has a corresponding repository (employee state

repository, artifact state repository, tool state repository, project state repository, and

customer state repository, respectively) where all objects of that meta-type are stored, and

which can be queried at any time to find out the current attribute values of a particular

object. There also exists an action state repository, which contains all of the actions that

are occurring at a given time. This repository can be queried to obtain information about

an action, such as who its participants are, how long the action has been occurring, and

which participants are active or inactive.

The state also contains a clock, which simply keeps track of the time—the current

clock tick of the simulation. The logger component (inside the state) and the explanatory

 115

tool component both function for the express purpose of the explanatory tool, so they will

be explained in Chapter 8 (the chapter that presents the explanatory tool).

date itself (at which point it increments the time) and the logger to update

itse

model) lines of code (not including the generated

exp

The overall loop the environment performs during game play is as follows: The user

drives the simulation through the GUI by commanding the clock to step forward in time.

This command is passed to the engine, which responds to clock events by informing the

state and logic components that time is stepping forward and that they should update

themselves accordingly. When the state receives this notification to update, it tells the

clock to up

lf (see Chapter 8). When the logic receives the command to update, it tells the trigger

checker, destroyer checker, rule executor, and miscellaneous updater components to

perform their various updating functions—the trigger checker to check triggers, the

destroyer checker to check destroyers, the rule executor to execute rules, and the

miscellaneous updater to perform its updates.

The generated simulation environment code is in Java, and for the models built to

date, the size of each generated package ranges from about 12,000 (inspection model) to

about 47,000 (Rational Unified Process

lanatory tool code).

 116

7. Models

A SimSE model embodies the lessons a model developer (generally a software

engineering instructor) wishes to teach to the players of the resulting generated game

(generally software engineering students). We have developed a base set of models and

made them available with SimSE. Doing so serves three main purposes for the research:

First, these models are necessary in order for educators to be able to use SimSE with

students. Second, having a set of models available to instructors who wish to use SimSE

makes it easier for them to use it: Pre-existing models will provide examples that

modelers can either look at to help them in building their own models, or extend and/or

modify for their own purposes. Additionally, instructors who do not wish to build their

own models will have a variety of ready-made ones from which to choose. Third,

building a variety of different models has demonstrated the capabilities of the modeling

approach and provided us with a significant amount of data about the strengths and

limitations of the model builder and modeling approach, as well as possible

improvements that could be made to each (see Sections 4.3 and 9.5).

 To maximize SimSE’s applicability and evaluate its modeling approach, it is

important to not only build a significant number of models, but to also ensure that these

models cover a wide variety of different processes. Hence, we have built models that fall

into three distinct categories:

• Classic approaches: This category consists of those process models that are

well-known and embody an entire software lifecycle. These include a waterfall

model, an incremental model, and a rapid prototyping model.

 117

• Modern approaches: These are full life cycle models that have been developed

in recent years and are less traditional. Modern approaches that we have

modeled are Extreme Programming and the Rational Unified Process.

• Specific models: In contrast to the models that embody an entire software life

cycle, specific models are on a smaller scale and portray only a specific sub-

process within the life cycle. We have developed one model within this

category—one of a code inspection process.

The remainder of this chapter describes each of the models we have developed in detail.

Because of our key decision to base SimSE’s models on research literature, a model is

essentially a series of lessons taken from this literature and encoded in a game. Therefore,

for the most part, we will largely describe each model in terms of the lessons it teaches

and how those lessons are expressed during game play.

7.1 Waterfall Model

The waterfall model was our initial attempt at building a SimSE model. Although the

waterfall is not the most interesting or challenging life cycle model that exists, it is

probably the most well-known process, and its simplicity allowed us to evaluate and

demonstrate the principles of the environment. Moreover, because the waterfall model is

a relatively simple and straightforward process, we were able to also include in this

model several general, non-waterfall-specific software engineering lessons.

Since this particular model was purposed to emulate a waterfall process, we

developed the model to reward the player for following the proper steps and practices of

the waterfall model and penalize them for doing otherwise. In parallel, we aimed to teach

a number of overall lessons about the software engineering process in general. These

 118

lessons were taken from our compendium of 86 “fundamental rules of software

engineering”, mentioned in Chapter 4 (and listed in Appendix A). The following two

waterfall-specific lessons were implemented in this model:

• Do requirements, followed by design, followed by implementation, followed by

integration, followed by testing. The player must adhere to this sequence,

although they can do some activities in parallel, as long as they are not

performing a later development activity for a requirement that has not been

worked on in an earlier phase. For instance, a player may have their employees

work on coding at the same time they are working on design, as long as the code

is not more complete than the design document, in which case the player would

incur a penalty—namely, development of the later artifact becomes slower than

usual, and more errors are introduced. This enforces that while each complete

phase does not have to be entirely finished by the time the next phase begins,

each feature must be specified before it is designed, designed before it is coded,

coded before it is integrated, and integrated before it is tested. Furthermore, if

the player goes back to a previous phase and works on, say, the design

document after they have already worked on the code to a completeness level

greater than that of the design document (e.g., the code is 90% complete

whereas the design document is only 60% complete), some new errors will

appear in the code. This represents to the player that they implemented some

features for which there was no design, and now that they have gone back and

properly designed those features, they have found that much of this un-designed

code was erroneous.

 119

• At the end of each phase, perform quality assurance activities (e.g., reviews,

inspections), followed by correction of any discovered errors. Although

working on two phases in parallel is acceptable in certain situations (as

mentioned previously), any uncorrected errors in an artifact (e.g., requirements

document) will be carried over into the next phase’s artifact (e.g., design

document) if they are not discovered and corrected before work on the next

phase begins.

In addition to these waterfall-specific lessons, the SimSE waterfall model also aims to

teach the following lessons that are general to most software engineering processes:

• If you do not create a high quality design, integration will be slower and many

more integration errors will be introduced. The speed of integration and the

number of errors that are introduced into the code during integration are directly

dependent on the completeness and correctness of the design. If the player

spends an adequate amount of effort and resources on the design phase, they

will be rewarded with a faster integration and a more correct system.

• Developers’ productivity varies greatly depending on their individual skills, and

matching the tasks to the skills and motivation of the people available increases

productivity [18, 26, 121]. The employees that the player is given to manage

each have different skill levels in requirements, design, coding, and testing. In

any given development activity, this skill level is the greatest influencing factor

on their productivity, as well as on the rate at which they introduce errors into

the artifact on which they are working. Hence, when a player assigns tasks only

 120

to employees that are skilled at those tasks, the project will be finished faster,

and fewer errors will be introduced.

• The greater the number of developers working on a task simultaneously, the

faster that task is finished, but more overall effort is required due to the growing

need for communication among developers (Brooks’ Law) [22]. For each

development activity, the productivity of each developer is decreased by a small

factor for each additional employee working on that same activity.

• Software inspections are more effective the earlier they are performed [141]. To

demonstrate the fact that software inspections are more effective the earlier they

are done during development, the more integrated the code is, the less effective

an inspection will be at finding errors in the code.

• The better a test is prepared for, the higher the amount of detected errors.

Before doing system testing, the player should ensure that their employees have

developed a system test plan. The more complete and correct that test plan is,

the more efficient testing will be.

• Monetary incentives increase motivation, which leads to increased productivity

(but faster expenditures) [141]. The player can give their employees pay raises

and bonuses, which will increase their mood by an amount proportional to the

amount of the raise or bonus. As a result, the employee’s productivity will also

increase. Bonuses have a short-term effect on productivity, while pay raises

have a longer one. Both pay raises and bonuses are taken out of the project

budget, so players must use caution in how they dole out such incentives.

 121

• The use of software engineering tools leads to increased productivity [141]. The

waterfall model allows the player to obtain up to four different tools: a

requirements capture tool, a design environment, an integrated development

environment (IDE), and an automated testing tool. Some of these tools have a

cost associated with them, while others are free (in accordance with the

common practice of downloading free software engineering tools off of the

Internet), so the player must also balance the potential benefit of the tool with

the monetary cost. Each tool has a productivity increase factor and an error rate

decrease factor, both of which are hidden from the player (until the end of the

game). When a tool is used in a development task, the productivity of the

developers involved in that task is increased accordingly, and at the same time

the error rate is decreased.

• New requirements frequently emerge during development since they could not

be identified until portions of the system had been designed or

implemented [42]. During game play, the customer introduces new requirements

at random. In some cases, they will also give the player more time and/or

money to finish the project. Introducing new requirements increases the

required size of the artifacts, so if the player has time it is in their best interest to

go back and work these new requirements into each artifact.

In addition to these, there are a number of other general workplace issues not specific to

software engineering that are included in the model to add realism and make things more

interesting. For instance, employees sometimes get sick, take breaks when they are tired,

 122

become less productive when they are tired, and quit when they are upset about

something significant (e.g., a pay cut).

7.2 Inspection Model

After building the large waterfall model that depicted an entire software life cycle from

requirements analysis to product delivery and contained numerous parallel and

interacting effects, we decided to take the opposite approach with our next model. The

inspection model was our initial attempt at building a model of a small, specific process

within the software life cycle that teaches only a few, very focused lessons. We chose

code inspection as the subject of this model because there exists real-world data in the

literature regarding the best practices of this process. Because of this data, and because

the process simulated in this model was so small compared to the other models, we were

able to teach a small set of very well-defined lessons related to code inspections. To keep

the model small and specific, we chose to concentrate only on these lessons and ignore

other details of the inspection process, such as the different roles and the detailed steps

involved in the process. Thus, a player of this model has three main concerns: choosing

the right number of people with the right qualifications, choosing the right size of code to

inspect, and choosing the right size of inspection checklist to use. These decisions are

based on the following lessons, which are collectively taken from [59], [73], and [145]:

• A code inspection takes place in a group setting. While the office layout of the

other models all portray employees working alone (for the most part) in their

cubicles, this model’s layout shows a large conference room with several people

sitting around a table (see Figure 45).

 123

Figure 45: Screenshot of the Conference Room Layout of the Inspection Game.

• The productivity of an inspector depends equally on their familiarity with the

product and their inspection experience. Each employee in this model has a

project experience attribute and an inspection experience attribute. Both of these

values contribute equally to the employee’s effectiveness in finding bugs.

• A four-person inspection team is ideal, and is twice as effective as a three-

person team. The player will find that the most bugs are discovered in the

shortest period of time if they use four people, and only half as many are found

in the same period of time if they use three people.

• A larger inspection team does not necessarily equal a more productive

inspection team. After each bug is found, the employees discuss it. As the

 124

number of people in an inspection team increases, it takes the group a shorter

time to find each bug, but an exponentially longer time to discuss each one, as

the number of communication links (and opinions) also increases.

• A code inspection checklist should be no larger than one page. When the player

starts the inspection meeting, they must choose one of three different sized

checklists to use: a quarter-page list, a one-page list, or a five-page list. Using

the one-page checklist causes the inspectors to find bugs the fastest, while both

the quarter-page checklist and the five-page checklist have a speed-up effect

that is one-half as fast as the one-page list.

• The piece of code being inspected should be less than or equal to 300 lines, but

less than or equal to 200 lines is ideal. At the start of the inspection meeting,

the player also must choose from three different pieces of code to inspect, each

with a different size (20, 150, and 1500 lines of code, respectively). Inspecting

the 150-line piece of code will yield the most productive inspection meeting in

terms of the speed with which bugs are found, while the productivity of

inspecting the 20- and 1500-line pieces of code is only half as much.

• An inspection meeting should last no more than 2 hours. In the starting

narrative, the player is notified that in this model, one clock tick is equal to one

real-world minute. Thus, after 120 clock ticks the developers declare, “I’m so

tired…” and their productivity wanes significantly.

7.3 Incremental Model

With our incremental SimSE model we returned to portraying an entire life cycle, but

aimed to simulate a different approach, although one that is still well-known and

 125

considered “classic.” This model was designed to embody an iterative development

process that values regularly providing the customer with incremental versions of the

software throughout the life cycle. We accomplished this using a module-based approach

that accommodated the partial submissions of a project throughout the process. In this

model, a module represents an anonymous part of the project that can be worked on and

developed independently of the other parts. Development actions, such as risk analysis,

requirements analysis, design, and implementation are performed on each module

separately. We specifically designed the attributes of a module to facilitate teaching about

incremental software process approaches. In particular, a module in this model has the

following attributes (none of which are visible to the player at the beginning of the game,

but instead are only revealed through various analysis activities performed on each

module):

• Value: This represents the priority of this module to the customer, which in turn

controls how much the completion of that module will help the player’s final

score. Discovering this value through risk analysis can help the player to

prioritize the completion of each module if time constraints prevent a complete

submission.

• Inflexibility: This value signifies the degree to which the customer will be

unwilling to accept deviations from their ideal concept of the module. The

higher the inflexibility of a module, the more the player’s score will be hurt if

that module is implemented incorrectly. Once again, using risk analysis to

discover this value will help to guide the player in prioritizing modules.

 126

• Changeability: This value corresponds to how often the module is likely to be

changed by the customer and, like value and inflexibility, is also discovered

using risk analysis. This value is very important to determining how the player

should proceed. Overcoming frequent customer changes is one of the primary

challenges of this model, so knowing which modules are most likely to change

is one of the most important pieces of information that should be used when

devising a strategy for playing the game.

• Accuracy: This represents how well the developed module corresponds to the

customer’s expectations for that module. Accuracy is improved by working on a

module’s requirements, and it is eroded whenever the customer makes changes

to the module. Even if a module is complete, if its accuracy is too low, it might

represent no value at all to the customer in terms of the final project. This is

especially true in modules with high inflexibility values.

• Phase difficulties: Each module contains a difficulty value for each

development action that can be performed on it (requirements, design, and

implementation). These values can help a player to determine which modules

might make good candidates for the basis of early, rapid prototypes. Performing

difficulty analysis on a module reveals that module’s difficulty values.

The central challenge in this model lies in the player dedicating time to performing

various analysis activities in order to reveal these attribute values and gather the

information necessary to guide their decisions in completing the process. Careful

consideration of each module’s attribute values to determine which tasks to perform on

which modules in which order should be a player’s main concern.

 127

While there are a number of specific software process models that can be classified as

incremental processes (Extreme Programming, rapid prototyping, Rational Unified

Process), rather than focusing on one of these, in this model we instead endeavored to

teach a number of lessons about incremental software processes in general. Surveying

several publications about incremental processes [10, 19, 58, 89, 120, 122] revealed the

following overarching principles which are inherent to nearly any incremental software

process:

• Software versions should be created early and often. The player will have a

much higher chance of achieving a good score each time they submit a partial

build of their project to the customer during development. When a module is

submitted to the user, the player gains many benefits. First, many of its hidden

attributes are either revealed or clarified, as customer feedback provides insight

into their valuation of, and inflexibility about, the module in question. Second,

the difficulty of all other actions on a module is reduced when that module is

submitted. Requirements is foremost among these, as insight from the customer

feedback guides the creation of related documents. Third, the changeability of

the module is reduced, helping to overcome the problems related to customer

changes described previously. Fourth, all of these benefits are conferred, albeit

to a lesser degree, onto other modules in the game that were not submitted. This

represents the insight gained into the system as a whole via the discussion of

one of its parts. When a player submits a multiple, rather than a single-module,

build, even greater benefits are reaped, in terms of both the submitted modules

and the other modules in the project.

 128

• Early versions can be used to gather information about how to develop later

versions. As we have discussed already, a partial build submitted to the

customer causes some of each module’s hidden attributes to be revealed for the

first time (if no risk analysis or difficulty analysis was done) or clarified (if

these values were previously estimated through risk analysis or difficulty

analysis). This represents that incremental versions of the software can provide

useful aids for discussion with the customer about their desires for the project,

which can help to steer development of subsequent versions to the customer’s

liking.

• Risk analysis should be used liberally to shape the process. As mentioned

previously, performing risk analysis on a module causes its value, inflexibility,

and changeability to be revealed, all of which are the most important factors in

determining which modules should be developed in which order.

• Frequent iterations should be used to ease the difficulties of changing

requirements. To encourage an incremental approach, this model simulates a

customer that makes frequent changes to their concept of the product. This

frequency is lessened significantly each time the player submits an intermediate

version to the customer (and hence, completes an iteration).

• Do requirements before design. Although this is a general best practice of

software engineering not specific to incremental models, this simulation model

enforces it in a way that demonstrates the role of requirements in incremental

processes in particular. First, working on the requirements for a module

increases the accuracy of the module, and is the primary means of doing so.

 129

Thus, implementing a module without thoroughly working on its requirements

will leave the player with a fully implemented module that most likely does not

meet the customer’s needs. In the case of a high-inflexibility module, this can be

catastrophic. Second, working on requirements for a module reduces the

changeability of that module, representing that engaging in requirements

discussions with the customer helps to settle any uncertain issues that may be

present. On top of these incremental-specific effects, the value of requirements

in general is illustrated in that the design of a module will be sped up if its

requirements have been specified beforehand.

• Do design before implementation. Again, while this is a well-known theme of

software engineering in general, our model illustrates it in a way that is unique

to an incremental process in which the requirements are likely to change. In

particular, the design greatly determines the difficulty of evolving the code.

Thus, while a player may be able to implement their code without a design, if

the customer makes changes to their desires for the module, adjusting the code

to restore its accuracy to the customer’s demands will be nearly impossible

without a design. In addition, creating a design for a module also increases the

ease of implementation and integration of that module.

7.4 Extreme Programming Model

After successfully completing one “specific” and two “classic” software process

simulation models, we decided to stretch the modeling capabilities of SimSE in a

different direction by modeling a modern, agile process: Extreme Programming (XP). XP

has numerous facets and dimensions, too many to go inside a single SimSE model.

 130

Hence, we chose a subset of XP lessons that covers some of the most central tenets of the

process, resulting in a model that encourages employees working in pairs using test-

driven development to create small, frequent releases that are continuously tested,

refactored, and integrated. Specifically, this model embodies the following lessons (all

taken from [144]):

• Pair programming delivers more efficient results than programming

individually or in small groups. If the player instructs their employees to “pair

up” with each other, development will be much faster. The higher the

percentage of team members that are paired up, the faster development will be.

• System development should consist of small, frequent releases. The model

rewards an approach in which code is developed incrementally and releases are

made at increments of about 20% completion (i.e., a release at 20% completion,

a release at 40% completion, etc.) Increments significantly larger or smaller

than this will decrease the efficiency of testing, refactoring, and integration of

the code.

• Testing, refactoring, and integration should be done frequently. Testing,

refactoring, and integration should all be done (in that order) after the

implementation of each increment. Otherwise implementation will become

increasingly slower as it progresses, indicating that the system is getting clunky,

buggy, and difficult to evolve. The order of test, refactor, integrate is enforced

in that if the preceding step (e.g., refactoring) is not completed, the subsequent

step (e.g., integration) will be slowed down.

 131

• Test cases should be created before implementation. Both implementation and

testing will be significantly slowed down if test cases are not created first,

demonstrating the value of test cases as a guide for both activities.

• Development of a rapid prototype should be the first step before any

implementation of the actual system. The more complete the rapid prototype, the

faster implementation of the actual system will be.

• Coding standards should be created and used for development. If the player has

their employees invest time to create coding standards at the start of

development, implementation, testing, refactoring, and integration will go much

faster, representing that having a standard to follow will help make all

development activities more efficient.

• Provide an open workspace in which there is a central area where pairs can

collaborate surrounded by private spaces for encouraging focus. As can be seen

in Figure 46, the office layout for this model fits this description of a workspace

conducive to XP. Enclosed, “private” spaces are lined up along the top part of

the office, while the bottom part houses the open areas for collaboration.

7.5 Rapid Prototyping Model

With our rapid prototyping model we set out to do a number of things differently than we

had done in the other models, both to test the different aspects and capabilities of our

modeling approach, and to create more variety in our set of models. First, although the

rapid prototyping model, like the waterfall and incremental models, depicts an entire

software life cycle, we made it much more focused and did not include some of the

effects that were included in the other models. For instance, this model ignores budget,

 132

Figure 46: The Open Workspace Depicted in the Extreme Programming Model.

considers all employees to be equally skillful at every task, and omits explicit review,

inspection, testing, and correction activities (the starting narrative states that these

activities are implied in the development of each artifact). These simplifications were

made in order to put the focus strongly on the prototyping process and create a model that

depicts an entire software life cycle but focuses on one particular aspect of that life cycle.

The second difference in this model concerned the use of the employee speech

bubbles. In the first three models, we had mainly used the speech bubbles for making

simple statements that gave very little insight, such as, “I’ve finished coding!” or “I’m

reviewing the requirements document now!” In this model we attempted to make the

statements appearing in these speech bubbles more meaningful by using them to provide

 133

guidance to the player in taking a successful route through the simulation. For instance,

when the player has spent too long on the prototype, the employees will announce that

the customer has called and complained about not seeing a prototype yet. As another

example, once the employees are told to start the initial meeting with the customer to

outline the requirements, they declare, “We’re off to meet with the customer to get an

idea of what they want for their software. Monitor the requirements document to see how

requirements discovery is progressing.” Likewise, when the employees are told to have

the customer evaluate the prototype, they state, “We’re off to the customer now to see

what they think of the prototype! Monitor the requirements document and the prototype

to see the progress of this meeting.” Comments such as these are designed to both

provide some more explanation about what the employees are actually doing while

completing these tasks and inform the player about how they can find out what the results

of the task are. For example, when a player follows the directions to “monitor the

requirements document and the prototype to see the progress of [the prototype

evaluation] meeting,” they will see that this task results in new requirements being

discovered, communicating to them that a prototype can be a good tool for eliciting

requirements from the customer.

Finally, in this model we experimented with making the scoring easier. In previous

models, players were penalized severely for deviations from an “ideal” approach, making

it difficult to obtain a good score. In this model, we made this less severe, making it

easier to achieve a good score.

Our rapid prototyping model depicts a “throw-away” prototyping process in which a

rapid prototype is iteratively developed with customer input, and then thrown away, after

 134

which a final version of the software is built. (This is in contrast to an evolutionary

prototyping process in which the rapid prototype is evolved to become the final version

of the software.) The rapid prototype is basically used as a requirements analysis tool in

this model, as the process of developing the prototype and subsequently discussing the

prototype with the customer is the primary means of discovering the requirements for the

system. The basic process that the model enforces and rewards is the following:

(1) Outline the requirements for the system with the customer, (2) develop a prototype,

(3) have the customer evaluate the prototype, (4) continue re-developing the prototype

and having the customer re-evaluate the prototype until the player decides that it is time

to move on, and (5) follow the waterfall model for development of the final system.

(Although we could have built any one of a number of different life cycle models to

follow after the rapid prototyping cycle, we chose the waterfall model because its

simplicity allows us to keep this simulation model focused on the rapid prototyping

process, in which the model’s central challenges lie.) Aside from this overall process, our

rapid prototyping simulation model also teaches the following lessons (all taken

from [134]):

• A rapid prototyping approach is appropriate for situations in which the

requirements are unclear or not well-known to begin with. In the starting

narrative of this model, after describing what the project is, the player is told,

“Your customer is not entirely sure what they want the system to do or to look

like, so unearthing their requirements might take a little bit of work and

creativity.” This piece of text was included specifically to hint to the player that

a rapid prototyping approach should be considered in situations such as this one.

 135

When the customer is unsure of their requirements, a rapid prototype can serve

as a tangible tool with which to transform vague requirements into concrete

ones.

• A rapid prototype can be an effective means of eliciting requirements from the

customer. As mentioned previously, discussing a prototype with the customer is

the primary means of discovering requirements in this model. Each time the

developers bring a revised prototype to the customer for evaluation and they

spend time engaging with the customer in a discussion about it, new

requirements are discovered as the ability to look at and play with an executable

prototype of the system gives the customer more ideas about what they want.

However, there does come a point when all of the requirements that are going to

be discovered are discovered, and in this model that occurs after three rounds of

prototype development and customer evaluation.

• Rapid prototyping can make the rest of development go more smoothly. The

more complete the prototype, the faster requirements specification, design, and

implementation will go. This signifies that having a prototype: (1) helps make

the requirements clear and (2) gives the developers a head start on design and

implementation, as they have already at least experimented with some of the

design and implementation issues they will likely encounter in the development

of the final system.

• Rapid prototyping can have a positive impact on the quality of the resulting

system. The completeness of the prototype also has a positive effect on the

correctness of the subsequent artifacts (requirements document, design, and

 136

code), representing that prototyping can help to ensure that what the developers

are specifying, designing, and implementing matches what the customer wants.

• Too much or too little prototyping can be detrimental to the project. Despite a

lengthy literature search to determine what the “right amount” of prototyping is,

we found no real-world data suggesting a value—only the general consensus

that too little prototyping can result in a product that does not fully meet the

customer’s needs, and too much prototyping can be an unnecessary waste of

time, as the return on the investment into prototyping starts to dwindle at a

certain point. As a result, we set this “right amount” around 60%, meaning that

the player is rewarded for developing the prototype to include about 60% of the

total discovered requirements at any given point. We experimented with

different numbers and found that this value did well at communicating to the

player that there is a balance that must be achieved between too much and too

little prototyping, and this balance falls somewhere in the middle region of the

spectrum from prototyping no requirements to prototyping all of the

requirements. This is enforced in the model in three ways. First, as development

of the prototype begins to go past the 60% mark (indicating that they are

probably spending too much time on it), the developers will announce to the

player, “The customer called – he’s anxious for the prototype and wants to

know what the hold up is!” This is designed to give the player a hint about what

the right stopping point for prototype development is in the game. Second, the

factor by which the completeness of the prototype speeds up development of

subsequent artifacts (requirements, design, code) is maximized at a prototype

 137

completeness level of about 60% (meaning more than 60% of the total

discovered requirements are incorporated into the prototype), and significantly

levels off shortly thereafter. This is designed to illustrate that the most important

requirements should be prototyped so that they can become well-understood,

but if less important requirements that the customer is not too particular about

begin to be included, precious time that could be spent implementing those

requirements into the final system is being wasted. Third, this effect of

diminishing return on investment is also present in the prototype’s effect on the

correctness of subsequent artifacts. The difference between the correctness of,

say, a design for which a prototype is 100% complete and the correctness of one

for which a prototype is 60% complete is miniscule—about 1%.

• Certain programming languages are more appropriate for prototyping than for

implementation, some more appropriate for implementation than prototyping,

and some are appropriate for both. The player must choose both a prototyping

language and an implementation language from three choices: Visual Basic,

Java, and C++. In our model, we have made the generalization that Visual Basic

is the one most appropriate for prototyping, C++ is the one most appropriate for

implementation, and Java falls somewhere in the middle and can be used for

either one. Choosing C++ for prototyping will make development of the

prototype go awfully slow. Choosing Visual Basic for implementation will

make implementation go fast, but will result in decreased correctness,

illustrating that a prototyping language generally does not have the capacity to

implement all of the requirements for the system. Choosing Java for either

 138

activity influences the speed and correctness by an amount that is somewhere in

between the two other languages.

7.6 Rational Unified Process Model

Our second attempt at building a simulation model of a “modern” approach was our

Rational Unified Process (RUP) [87] model. We roughly based our model on a non-

computerized RUP simulation game that IBM uses to train their employees in the RUP

process, but also added and removed some elements to make it more appropriate and

fitting for SimSE. For instance, in the IBM game the player could “progress” through

development by answering a series of questions about RUP correctly. In SimSE,

development progresses by having employees work on artifacts.

Like the rapid prototyping model, the RUP model also makes extensive use of the

employee speech bubbles for conveying important information to the player, even more

so than in the rapid prototyping game. Most importantly, in this model frequent

intermediate feedback is given to the player through the text in the speech bubbles. This

is done in two major ways: through phase assessments and through prototype

submissions. Before attempting to end a development phase, the player must have their

employees assess the phase. When they are finished with their assessment, the employees

let the player know what their determination is—whether all of the work that should have

been done during the phase was actually completed, and whether they are on track in

terms of budget and schedule. At this time they also suggest to the player what their next

step should be: either start planning for the next phase, go back and do some more work

in the current phase, or, in the most severe circumstances, quit and abandon the project.

 139

Likewise, when the player has their employees submit a prototype to the customer,

the employees report what the customer’s reaction was through their speech bubbles.

There are three possible reactions that the customer may have: (1) They are happy with

the prototype because it covers all of the use cases they had hoped to see there, (2) they

are unhappy with the prototype because it does not include all of the critical use cases

they had hoped to see, or (3) they feel the prototype is too complete and wish it would

have been delivered sooner with less functionality.

The RUP model also makes frequent use of the speech bubbles to provide guidance

and hints to the player about how to proceed successfully through the simulation. We

have already seen, in the phase assessments example, a case in which explicit next steps

are suggested. In addition to cases like these, we also used the speech bubbles to give the

player more subtle guidance. For instance, after the player begins a new phase, they must

first assign employees to a phase and then assign them tasks before any progress can be

made. In order to hint at this and try to ensure that the player does not think that starting a

new phase automatically causes some activities to occur (in which case they would likely

waste time stepping the clock forward with an idle staff), an employee will say something

to the effect of, “We are now officially in the Inception phase—which of us do you want

to work on this phase?” Likewise, in order to ensure that the player also knows that they

must assign a task to an employee after assigning them to a phase, an employee who just

got assigned to, say, the Inception phase says, “I am assigned to the Inception phase and

am ready to work. Let me know what to do.”

In the RUP model we also tried to make more realistic use of random events than we

have done in any other model. So far the only model that has any random events is the

 140

waterfall model, which has only relatively simple ones, such as the customer introducing

new requirements and employees getting sick. The IBM game that this model is based on

included numerous slightly more complex and realistic “surprise” events that either set

the player back or move the player ahead in progress. We incorporated some of these into

our RUP model. For instance, sometimes the employees will discover a component from

a previous project that implements one of the use cases for the current project, so they

can reuse it. As a result, that particular use case in the current project gets automatically

set to100% completion. In another random event, the player is notified that the customer

has changed the contact person for the project—this new contact person decides to

rework some of the requirements, which results in the player losing all progress for one

of their implemented use cases.

Probably the most distinguishing factor about the RUP model is its use of the

prescriptive aspects of SimSE. In particular, a significant portion of what this model

teaches is communicated through the allowable actions a player can take at each point in

the process. This is partly by necessity: RUP is a highly dense process with numerous

prescribed steps. If we were to make them all available at every point throughout the

game, the player would undoubtedly be lost and overwhelmed by all the choices. Instead

we limit the choices available at each step, depending on what part of the process the

player is in. For example, a player can only develop the architecture when in the

Elaboration phase and can only develop code when in the Construction phase. As another

example, a player may only plan for one phase after they have completed all of the work

required in the preceding phase. This is even taken so far so that, at several points

throughout the game, only one choice appears on each employee’s menu. Thus the player

 141

is steered much more than in other models and given significantly less freedom. While it

may seem that a model like this would be too easy, the RUP model actually has quite a

few challenges—challenges that lie mainly in other aspects of the game aside from

deciding which steps to take next. These challenges will be brought forth as the model is

described in the remainder of this section.

There are two major lessons encoded in the RUP model. The first of these concerns

the steps and overall flow of RUP which, as already mentioned, are taught through the

allowable next steps a player can take at any point in the game. Figure 47 shows a state

chart diagram depicting our RUP model’s general flow. (A link to an online version of

this diagram is given to the player in the starting narrative of the RUP game.) As the

player progresses through the four RUP phases of Inception, Elaboration, Construction,

and Transition, their course through the game is as follows: The player starts a phase,

assigns employees to that phase, starts an iteration, does some development work, and

then either starts another iteration or assesses the phase. If the assessment is negative,

they must go back, start another iteration, and do more development work. Otherwise,

they may plan for the next phase and then end the phase. Going through the prescribed

parts of these steps multiple times is designed to ingrain the RUP model in the player’s

mind. The variability in this aspect lies in the number of iterations done per phase, a

decision the player must make for themselves. If too few are done, time is wasted in

performing phase assessments multiple times (a phase assessment will result in negative

results if the work for the phase is incomplete, requiring that another phase assessment be

performed after more work is done). If the player chooses to do too many iterations, their

employees will find themselves assigned to work that is already done. The employees

 142

Figure 47: State Chart Depiction of the SimSE RUP Model’s Overall Flow.

will then have to come back to the player and announce to them that the work is already

done. By this time, precious clock ticks will have been wasted in unnecessary

communication. Thus, after multiple runs of the game the player will likely be able to

come to some conclusions about how many iterations are appropriate in each phase.

The second major lesson taught by the RUP model (and the central challenge of both

our model and the IBM game that our model is based on) is efficient allocation of

personnel. The player has 10 employees available, each with a skill set and a pay rate.

There are five categories of skills: project management, architecture, requirements,

design and development, and testing. Each employee has either “low” or “high” skill in

each area. In order to enhance realism and add challenge to the model, an employee can

 143

only have, at most, three “high” skills, and their pay rate depends on how many “high”

skills they have—those with one skill are paid $300 per clock tick, those with two skills

$400, and those with three skills $500. Thus, the player must make careful choices about

who to assign to which phase, ensuring that the necessary skills are present to complete

the work, but also taking care that they do not assign so many employees that they exceed

their budget. Although efficient allocation of manpower is not a lesson unique to RUP, in

this game it nevertheless serves as a tool with which to teach about what occurs in the

different phases of RUP. Namely, the player must know which activities are performed in

each phase so that they can accordingly assign the employees with the appropriate skills

to the appropriate phase(s).

In addition to these two major lessons, the RUP model also teaches a secondary

lesson about prototyping. At the beginning of the Construction phase, the player is

notified that the customer would like to see two intermediate prototypes during the phase.

It is up to the player to decide when to submit each prototype—namely, which use cases

should be completed and incorporated into each intermediate version. The customer will

be “happy” with a first prototype that contains the five to eight most critical use cases

(out of 20 use cases for the entire system), and “happy” with a second prototype that

contains the eleven to fifteen most critical use cases. For each of these “happy” results,

the player will also be rewarded with 5 bonus points (which will be added to their final

score). The customer will also be “somewhat happy” with a prototype that contains more

than the desired use cases, but will inform the player that they would liked to have seen it

sooner with less functionality. These situations will penalize the player by 2 points. If a

 144

prototype does not meet any of these conditions, the customer will be “unhappy”, and the

player will lose 5 points.

7.7 Discussion

While the models presented in this chapter do teach a number of things about real-world

software engineering processes, and accurately represent a number of real-world

phenomena, no SimSE model is completely faithful to reality. In fact, due to the

educational purpose of these models, we have deliberately designed parts of our models

to be unfaithful to reality in two primary ways: simplification and exaggeration.

First, we have simplified the real-world processes our models represent by leaving

out several details and even some central aspects of the process at times. Including too

many details would likely overwhelm the player and distract from the lessons the model

is trying to teach. Including too many larger lessons would also confuse the player, as

there would be so many interacting factors that they would detract from each other. Thus,

for each of our models we have chosen to portray only a subset of the principles

comprising the real-world process it represents.

Second, and perhaps more importantly, we have also chosen to exaggerate some of

the real-world effects demonstrated by our models. We discovered through

experimentation that adhering too closely to reality causes some lessons to be expressed

at an imperceptible level—they are not brought out obviously enough in the simulation to

be educationally effective. At the expense of some realism, effects often needed to be

somewhat obvious and “over the top” in order to effectively illustrate and enforce the

concepts being taught. This can be seen, for example, in the sample implementation of

the waterfall model we presented in Section 4.2: One rule was discussed that multiplied

 145

by 10 the effect of errors in the requirements document on the number of errors being

introduced into the design document. While it is unrealistic that every error in the

requirements document would be carried over tenfold into the design document, when

testing this rule in the resulting game, the effect was very hard to detect without this

amplification. Similar exaggerations have been made in several parts of our six SimSE

models.

A potential ill-effect of these exaggerations could be that students will look for these

types of amplified effects in the real world whereas in reality, they are often small and

difficult to discern. However, the recommended complementary usage of SimSE with

typical instructional techniques provides an ideal setting for counteracting this: as

students learn through SimSE (and its occasional exaggerations) the effects and

consequences of their actions, the lecturer can augment this with statements of caution

that things in the real world are often not as readily discerned.

 146

8. Explanatory Tool

As mentioned in Section 3.2, one of the key decisions in designing our simulation

approach was to include an explanatory tool to aid the player in discovering the rationale

behind their score and in gaining insight into the cause and effect relationships

underlying the simulated process. In this chapter we describe the explanatory tool we

designed for use with SimSE.

8.1 User Interface

SimSE’s explanatory tool was designed as a feedback mechanism that goes above and

beyond a simple numerical score given at the end of a game (and the revealing of

previously hidden attributes). In particular, the purpose of the explanatory tool is to give a

player deeper insight into where they might have gone right or wrong in the game,

specifically by providing them with information such as which rules were triggered

when, which events occurred at what times and how long they lasted, and the evolution

of various attributes (e.g., correctness of the code) over time. These pieces of information

are primarily given in the form of customized graphs, generated by the player. The user

interface for creating these graphs—and the main user interface for the explanatory

tool—is shown in Figure 48. As can be seen from the user interface, the explanatory tool

allows a user to generate three types of graphs: object graphs, action graphs, and

composite graphs.

 147

Figure 48: Explanatory Tool Main User Interface.

An object graph depicts how an object’s attribute values changed over time, and can

be generated by choosing an object in the drop-down list labeled, “Object Graph”,

choosing one or more of that object’s attributes in the list marked, “Show Attributes”, and

then clicking the “Generate Object Graph” button. Figure 49 shows an object graph for

an employee’s energy and mood. Time is represented by the horizontal axis and attribute

value is represented by the vertical axis. The title of the graph indicates which object’s

attributes are being graphed—in this case, a “SoftwareEngineer” Employee named

“Andre.” The key below the graph explains which data points correspond to which

attributes. Any data point in the graph can be moused over to reveal that point’s exact x-

and y-values. In Figure 49, the data point for the energy attribute at clock tick 892 is

being moused over, at which point the employee’s energy was 0.48.

An action graph provides a trace of events or actions that occurred in the simulation,

and is also customizable by the user. An action graph can be generated by choosing one

or more actions to graph in the “Action Graph” list in the explanatory tool user interface

 148

Figure 49: An Object Graph Generated by the Explanatory Tool.

(see Figure 48), and then clicking the “Generate Action Graph” button. Figure 50 shows

an example of an action graph that includes three different types of actions:

“CreateRequirements”, “ReviewRequirements”, and “CorrectRequirements”, with one

occurrence of “CreateRequirements” and two occurrences each of

“ReviewRequirements” and “CorrectRequirements” (multiple occurrences are indicated

by the number at the end of the action label, e.g., “ReviewRequirementsAction-2”). The

x-axis indicates time progression, in clock ticks. The y-axis has no semantics, but only

serves as a delineator for graphing actions—each action is graphed on a separate gridline

on the y-axis. The key below the x-axis indicates which data points correspond to which

actions. The data points for an action begin at the time that action was triggered and end

at the time that action was destroyed. For example, in Figure 50 the

“CreateRequirements” action, represented by the orange (bottom) line, began at clock

tick 0 and ended around clock tick 230.

 149

Figure 50: An Action Graph Generated by the Explanatory Tool.

Mousing over a data point will display the name of the action and a reminder that the

data point can be clicked on for more information, as shown for

“CreateRequirementsAction-1” in Figure 50. When a data point in an action graph is

clicked on, the details and effects of that action are displayed in the form of the screen

shown in Figure 51. There are two tabs in this screen: Action Info and Rule Info. As their

names indicate, the Action Info tab contains information about the action and the Rule

Info tab contains information about the rules that are attached to that action.

The Action Info tab is divided into three portions, one for each type of information

provided about the action. The top portion contains a description of the action, which is

specified by the modeler. In the example shown in Figure 51, the description says,

“Software engineers review a requirements document to try to find errors.” The middle

portion displays the participants that were involved in the action during the clock tick of

 150

Figure 51: Detailed Action Information brought up by Clicking on an Action in an Action Graph,
with the Action Info Tab in Focus.

the selected data point (the point that was clicked on to bring up the action information).

For instance, the screen shown in Figure 51 corresponds to clock tick 72, as indicated in

the title bar of the window. For each participant, it shows which participant role they

filled (indicated by the “Participant Name” column), which object filled the role

(indicated by the “Participant” column), and whether they were active or inactive during

that clock tick (indicated by the “Status” column). The bottom portion of the Action Info

tab lists all triggers and destroyers for the action, so that the player can see exactly what

could have caused the action to either stop or start. A user can click on any one of these

triggers or destroyers to bring up a description in the field to the right. This description is

automatically generated based on the type of trigger or destroyer and its conditions. In

Figure 51, the trigger for the “ReviewRequirements” action is selected, and the

 151

description for this trigger explains that it will occur when the user selects the menu

choice, “Review requirements document” and four conditions are met: the employee

participant must be healthy, they must not be on a break, and the requirements document

has to have been started and have greater than 0 unknown errors.

The Rule Info tab is shown in Figure 52. On the left are listed all of the rules that

were fired during the selected clock tick. For instance, because the example shown in

Figure 52 corresponds to clock tick 72, which was neither the beginning nor the end of

the action, only the continuous rules (called “intermediate” here) are listed. If the data

point that corresponds to the beginning of an action is selected, only the trigger rules are

listed. Likewise, if the selected data point corresponds to the end of an action, only the

destroyer rules appear. Any one of the rules in the list can be clicked on to bring up a

description of that rule (written by the modeler) in the right hand pane. For example, the

description for the rule in focus in Figure 52 explains how the unknown errors in the

requirements document are decremented and the known errors are incremented—based

on the requirements productivity of each employee participant tempered by the number of

communication links between participants.

The third and final type of graph that can be generated is a composite graph. A

composite graph shows both an object graph and an action graph lined up on the same

time axis. The purpose of a composite graph is to help the player discover the reasoning

behind attribute behaviors shown in an object graph and, as a result, gain a better

understanding of the cause and effect relationships underlying the simulated process. For

example, Figure 53 shows a composite graph that contains an object graph for the

“RequirementsDocument” artifact, including the two attributes “NumKnownErrors” and

 152

Figure 52: Rule Info Tab of the Action Information Screen.

“NumUnknownErrors”, and an action graph that includes the same three actions from the

previous example in Figure 50 (“CreateRequirements”, “ReviewRequirements”, and

“CorrectRequirements”). Studying these two graphs on the same timeline can explain all

of the spikes, dips, and slopes in the object graph. For instance, the number of unknown

errors increased steadily as the requirements were being created, and then began to drop

dramatically when the requirements document was completed and the only activity

occurring was review of the requirements document. If the player clicked on the

“ReviewRequirementsAction-2” both before and after requirements creation was

complete, they would see that the magnitude of this decrease in unknown errors was due

to the fact that they assigned all of the employees who had just finished creating the

requirements document to join the requirements review activity, dramatically boosting

the productivity of that task.

 153

Figure 53: A Composite Graph Generated by the Explanatory Tool.

As another example, let us look at the last upward slope in the unknown errors

(approximately clock tick 330 to 580), an effect with a less intuitive cause. A player

would probably first notice this effect by seeing the hidden attributes revealed at the end

of the game and observing that, even though they did a thorough review of the

requirements document and corrected all of the known errors, there were still

undiscovered errors in the document at the end. Looking at this composite graph would

provide them with the reasoning behind this: The final upward slope in unknown errors

corresponds exactly to the second “CorrectRequirements” action, indicating that this

action caused some more unknown errors to be introduced into the requirements

document. Clicking on this action in the graph will then reveal why—employees

 154

correcting requirements will introduce new errors into the document at a rate dependent

on their requirements skill. Thus, a player may infer from this that it is just as important

to have skilled personnel involved in requirements document correction as it is for

requirements document creation, and will likely be more careful in assigning people to

this task in the next game.

All graphs can be further customized in terms of appearance—they can be zoomed in

or out on, colors can be changed, and labels can be turned on or off. A user can also print

a graph or save it as an image if they want to keep it for future reference.

8.2 Design and Implementation

The role of the explanatory tool in the overall design of the simulation environment is

shown in Figure 54 (a duplicate of Figure 44 with the explanatory tool components

highlighted). The link between the explanatory tool component and the rest of the

environment lies primarily in the state’s logger component. The logger records the state

every clock tick (when the state receives the notification to update itself) so that, at the

end of the game, it has a full record of the entire simulation that can be used by the

explanatory tool component. The explanatory tool component is primarily a user interface

component. When a user makes a request to generate a graph, the explanatory tool

component fetches the corresponding parts of the simulation record from the logger, and

then formats and displays it for the user in the form of the requested type of graph.

For graph generation and formatting, the explanatory tool uses JFreeChart [1], an

open-source Java package for displaying charts and graphs in Java applications. The

remainder of the explanatory tool component code, not including the JFreeChart

 155

Figure 54: Place of Explanatory Tool in the Overall Simulation Environment Design.

packages, ranges from about 2100 lines of code for our smallest model (inspection) to

approximately 6500 lines of code for our largest model (RUP).

 156

9. Evaluation

To frame the discussion of SimSE’s evaluation, let us first revisit the research questions

on which SimSE is based (from Chapter 1), and which have driven the design of our

evaluation plan:

1. Can a graphical, interactive, educational, customizable, game-based

software engineering simulation environment be built?

2. Can students actually learn software process concepts from using such an

environment?

3. If students can learn software process concepts from using such an

environment, how does the environment facilitate the learning of these

concepts?

4. How can such an environment fit into a software engineering curriculum?

The first question was conclusively addressed with the successful development of SimSE,

hence we will forego discussion of that question here. The other questions can be further

broken down into a series of specific evaluation questions, the answers to which can

point collectively for or against the usefulness and educational effectiveness of SimSE.

Due to the subjective nature of educational research, these research questions could not

be conclusively tested, but through a series of evaluations, we have gathered subjective

evidence to suggest answers to them:

1. How do students feel about the learning experience playing SimSE (e.g., is

it enjoyable, do they perceive it as an effective method of learning software

process concepts)? Although not a direct indicator of learning, students’

 157

opinions and perceptions are important factors that, along with other data, can

suggest how educationally effective SimSE is.

2. How well does SimSE fit into the traditional software engineering

curriculum as a complement to existing methods (which is its intended

use)? Do students learn the concepts taught by the models? What are the

implications for instructors? Is there anything difficult about using SimSE in a

classroom setting?

3. How well does SimSE teach the software process concepts that its models

are designed to teach? As the primary goal of SimSE is to teach software

process concepts, it is critical to determine how well it accomplishes this goal.

4. How does SimSE compare to traditional methods of teaching software

engineering process concepts such as reading and lectures? Discovering how

they compare in both practical aspects such as time spent and subjective aspects

such as student attitudes and motivation can inform decisions about whether

SimSE is truly a more useful addition to a course than adding extra traditional

assignments such as readings or lectures.

5. Are the learning theories that SimSE was designed to employ actually being

employed by students who play the game, and are there other, unexpected

learning theories that are being employed by SimSE? Answering these

questions can provide useful insight into the learning process SimSE (and

perhaps educational simulation environments in general) facilitates. These

insights can be used both to improve SimSE and to inform the design of other

educational simulation environments.

 158

6. Are the SimSE model-building approach and associated tools adequately

expressive? To promote maximum applicability, a wide variety of

educationally effective process models should be able to be built using SimSE.

7. Does the SimSE explanatory tool help players of the game understand their

score and the process better than using the game without the explanatory

tool? Prior research has shown that a student’s experience with an educational

simulation is significantly enhanced if it includes an explanatory tool to

elucidate the cause and effect relationships underlying the simulated process.

Thus, it is crucial to determine whether or not SimSE’s explanatory tool

adequately fulfills this purpose.

The remainder of this chapter describes the experiments we designed and conducted to

discover answers to these questions.

9.1 Pilot Experiment

9.1.1 Setup

For our first experiment with SimSE, our goal was to gain an overall understanding of the

thoughts, attitudes, and reactions of students who play SimSE, all for the purpose of

making an initial judgment about its potential as an educational tool. In addition, we

aimed to determine the strengths and weaknesses of SimSE through the collective

feedback of the students who play it.

We recruited 30 undergraduate computer science students to participate in the

experiment (although one student did not show up, leaving us with 29 total subjects).

This number was chosen because we felt this was an appropriate size for a preliminary

 159

feasibility study—one that would give us statistically meaningful results without

overburdening us with an unnecessarily high number of subjects. Although SimSE is

designed to be used as a complementary component to a software engineering course, we

felt an informal, out-of-class setting was more appropriate for an initial pilot study.

However, to ensure that the students had enough background knowledge to be able to

understand the game, we required each subject to have passed ICS 52 (the one

introductory software engineering course at UC Irvine at the time).

The subjects first received instruction on how to play SimSE, and then played the

waterfall model version of the game (see Section 7.1) for approximately two hours,

completing one to two games. Following this, they completed a questionnaire stating

their thoughts and feelings about the game in general, their opinions about the

pedagogical effectiveness of the game in teaching software engineering process issues,

and their educational and professional background in software engineering. Some of

these questions asked for a numerical answer on a one to five scale, while others allowed

them to write out their responses in free form. The questions from this questionnaire are

listed in Appendix C.

The version of SimSE used in this experiment was different in many ways from the

version described in Chapter 6. Most notably, it did not include the explanatory tool. On

top of that, the graphical user interface was less sophisticated than it is in SimSE’s

current form: there was no ability to stop the clock, the user could not interact with the

simulation while the clock was running, there were no ‘i’ (information/starting narrative)

and ‘r’ (reset) buttons, and the quality of the graphics was inferior to what they are now.

 160

9.1.2 Results

In general, students’ feelings about the game were favorable, as summarized in Table 4.

On average, students found the game enjoyable to play (3.5 rating out of 5) and relatively

easy to play (3.2). They also felt that it was quite successful in reinforcing software

engineering process issues taught in the introductory software engineering course they

had taken (3.7) and equally successful in teaching software engineering process issues in

general (3.6). For the most part, they agreed that SimSE would be helpful to teaching

software engineering concepts if incorporated into the introductory software engineering

course (3.5).

Table 4: Questionnaire Results for Pilot Experiment.

Question 1 1.5 2 2.5 3 3.5 4 4.5 5 Avg
How enjoyable is it to play? (1=least enjoyable, 5=most
enjoyable)

1 0 1 0 12 2 10 0 3 3.5

How difficult/easy is it to play? (1=most difficult,
5=easiest)

0 0 7 0 9 1 11 0 1 3.2

How well does it reinforce knowledge of SE process taught
in class? (1=not at all, 5=definitely)

0 0 2 1 9 1 8 2 6 3.7

How well does it teach new SE process knowledge? (1=not
at all, 5=definitely)

3 0 14 0 6 0 4 0 1 2.5

How well does it teach the SE process? (1=not at all,
5=very much so)

0 0 2 0 12 1 10 0 4 3.6

Incorporate it as standard part of SE course? (1=not at all,
5=very much so)

0 0 3 0 12 2 6 1 5 3.5

As an optional part? (1=not at all, 5=very much so) 0 0 6 1 8 1 7 0 6 3.4
As a mandatory part? (1=not at all, 5=very much so) 1 0 6 0 9 0 8 1 4 3.3

Students’ answers to the open-ended questions also reflected their positive feelings

about SimSE. Regarding the enjoyability of the game, some students remarked: “It does

a good job of reinforcing the process in a very fun way!”, “[It] makes [software

engineering] seem more real and makes it more enjoyable.”, and “It is a unique way to

learn and study software engineering.” Regarding how well the game teaches software

 161

engineering process issues, students wrote: “[My favorite aspect of the game was]

managing a team of employees. It is cool to see how they react to certain environments,

and see how the project develops according to the selection of employees for different

jobs.”, “[It taught me] delegating tasks and budgeting. In 52 we learned how to create

but not manage.”, “52 teaches the intellectual level, overall view; the game illustrates

this by feel and trial/error.”, and “[Having to deal with] pay, energy, and mood

introduces more complex, real-life issues present in a workspace.”

Although responses were positive for the most part, it was clear from this experiment

that some aspects of the game needed to be improved. The most negative response on the

numerical questions was that students did not feel that the game taught them much new

software process knowledge (2.5). While reinforcing the concepts taught in lecture is

useful in and of itself, one of the primary goals of SimSE was to also teach new concepts

that are either not taught in lectures at all, or do not come across well using other means.

It is understandable, however, that this particular model did not teach much new

knowledge, since it was based on the waterfall model, which is a well-known and

straightforward model that is frequently talked about in lectures. This underscored the

need to build more models of different sizes, scopes, and foci, and test them out with

students (which we subsequently did, as we describe in the remainder of this chapter).

Many of the students also wished that they were given more explanation as to why

they received the score they did and felt that it was sometimes hard to tell where they

went wrong. This was part of the impetus for the development of the explanatory tool

(see Chapter 8), which was built for the primary purpose of allowing the player to see

which of their decisions had good or bad effects. Aside from this, the other aspects of the

 162

game that the students were unhappy with were mainly technical issues, such as the lack

of a “stop” button when the clock was ticking, and the quality of the graphics. These

issues were addressed in subsequent versions of SimSE.

Interestingly, students’ attitudes about the game seemed to be correlated to some

pieces of background information that they were asked about on the questionnaire. The

first of these is gender. The differences in response between males and females are shown

in Figure 55. Surprisingly, females rated nearly every question higher than males. The

only issue they rated lower was SimSE’s ability to teach new process knowledge, and

their perception of SimSE’s difficulty was equal to that of males. Because the realm of

computer games is notorious for being male-dominated [49], this was definitely an

unexpected result that suggests SimSE’s potential as an educational tool that is applicable

to both genders.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

en
joy

ab
ility

ea
sy

 to
 pl

ay

rei
nfo

rce
 kn

ow
led

ge

ne
w kn

ow
ledg

e

he
lpf

ul
to

lea
rni

ng
 SE pr

oc
es

s

rec
om

men
d a

s p
art

 of
 co

urs
e

rec
om

men
d m

and
ato

ry

rec
om

men
d v

olu
ntar

y

Question

R
at

in
g

Females Males

Figure 55: Gender Differences in SimSE Questionnaire Results for Pilot Experiment.

 163

There also seemed to be some correlation between the amount of industrial

experience a student had and their opinions of SimSE, shown in Figure 56. In all

questions except enjoyability and ease of play, students who had industrial experience

(which ranged from one to two years) ranked SimSE higher than those who did not. In

other words, while they felt it was somewhat more difficult and somewhat less enjoyable

than the inexperienced students (though it is unclear why), they were also better able to

see its value as an educational tool. Perhaps the real-world experience these students had

under their belt gave them more insight into the need for the type of knowledge a tool

like SimSE provides. This suggests that, at least in the waterfall model, SimSE is

accurate in its portrayal of a realistic software engineering process, as these students who

had actually experienced such a process were able to appreciate its value.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

en
joy

ab
ility

ea
sy

 to
 pl

ay

rei
nfo

rce
 kn

ow
led

ge

ne
w kn

ow
ledg

e

he
lpf

ul
to

lea
rni

ng
 SE pr

oc
es

s

rec
om

men
d a

s p
art

 of
 co

urs
e

rec
om

men
d m

and
ato

ry

rec
om

men
d v

olu
ntar

y

Question

Ra
tin

g

Experience No experience

Figure 56: Industrial Experience Differences in SimSE Questionnaire Results for Pilot

Experiment.

 164

Similarly, those who had additional educational experience (at least one additional

software engineering course on top of the introductory one) also seemed to have higher

opinions of SimSE, as shown in Figure 57. This is also a positive outcome, again

suggesting that those who have some extra software engineering experience to look back

on can better see how SimSE can help students learn what they need to know to succeed

in more advanced software engineering situations.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

en
joy

ab
ility

ea
sy

 to
 pl

ay

rei
nfo

rce
 kn

ow
led

ge

ne
w kn

ow
ledg

e

he
lpf

ul
to

lea
rni

ng
 SE pr

oc
es

s

rec
om

men
d a

s p
art

 of
 co

urs
e

rec
om

men
d m

and
ato

ry

rec
om

men
d v

olu
ntar

y

Question

Ra
tin

g

Additional SE classes No additional SE classes

Figure 57: Educational Experience Differences in SimSE Questionnaire Results for Pilot

Experiment.

In sum, the following lessons were learned from this pilot experiment:

• SimSE has the potential to be an educationally effective tool in teaching

students software process concepts. The students who played SimSE in this

experiment, especially those with significant industrial and/or educational

experience, viewed it as a positive and reasonably educationally effective

 165

experience and recommended its addition to an introductory software

engineering course.

• SimSE has applicability to females as well as males. The difficulty of getting

females interested in computer science (and computer games) is well known.

However, in this experiment females rated SimSE higher than males in most

categories, suggesting that SimSE has the potential to help students of both

genders learn software process concepts.

• An explanatory tool is needed to provide students with more insight into their

final score. A frequent complaint of students in this experiment was the lack of

feedback given about their performance in the game, an issue that can be

directly addressed with the addition of an explanatory tool.

9.2 In-Class Use

9.2.1 Setup

The pilot experiment established that SimSE did indeed seem to have potential to be a

useful tool in teaching software engineering. On top of that, the feedback given by the

subjects in the pilot experiment also gave us valuable guidance about ways SimSE

needed to be refined and enhanced to make it more effective. After addressing these

issues and developing two more simulation models, the next step was to try SimSE in the

setting for which it was designed: in conjunction with a software engineering course. Our

chief goal in doing so was to assess how SimSE fits into such a setting, including whether

the students actually learn from the experience, how they perceive and feel about the

 166

experience in the context of a course, and how it fits in logistically as a course

component.

Because this was the first time SimSE was being used in the context of a course and

we were unsure about how it would work in such a setting, we thought it appropriate to

make it an extra-credit rather than compulsory exercise. Moreover, in the pilot

experiment the students rated its inclusion as an optional exercise higher than its

inclusion as a mandatory exercise. Hence, we made it a moderate to minimal extra-credit

assignment, worth 7.5% of the final grade.

The course in which we used SimSE was ICS 52 / Informatics 43, a one-quarter

introductory software engineering course at UC Irvine. We used SimSE over two

subsequent offerings of the course. In the beginning weeks of the quarter, we presented a

short five to ten minute tutorial about how to play SimSE, and gave the students the

assignment: by the end of the quarter, play three SimSE models (waterfall, incremental,

and inspection) and answer a set of questions concerning the concepts the models are

designed to teach (although partial credit could be given for partial completion of the

assignment). In addition to the questions about the models, students were asked to

complete a questionnaire about their experience with SimSE (the questions of which are

listed in Appendix D), similar to the one used in the pilot experiment.

The questions about the models the students were assigned are listed in Appendix E,

along with the correct answers. The students were assigned five questions per model, and

these questions were carefully designed to cover both concepts presented in the course

and those that were only present in the models. This was done so that we could detect if

students performed better on one of these types of questions over the other. Although we

 167

could not ask questions about every single lesson built into each model, the questions we

included were specifically chosen to cover both some major and some minor ones from

each model. This would allow us to generalize from the results of these questions and

come to some conclusions about how well SimSE as a whole communicates to its players

the lessons its models are designed to teach.

The questions were also specifically written in such a way that the students had to

play the game in order to find out the answer. Some of these questions instructed the

student to take a particular route through the simulation and note the results. For example,

one of the waterfall model questions asked, “How is the outcome of the game affected if

you fire André right at the beginning?” (a question designed to make the student aware of

how crucial a skilled software designer is to a project). As another example, an

incremental model question said, “Try skipping one or more of the documentation phases

(requirements/design) on one or more modules. What effect does this have?” There were

also questions that were more straightforward, but still required that the students play the

game in order to find the answer, such as, “What is the ideal size of an inspection team?”

and “Is it worth it to purchase software engineering tools?” Inclusion of these types of

questions not only ensures that they put forth legitimate effort for their extra credit, but it

also ensures that they get a thorough and meaningful experience of SimSE by playing the

models thoughtfully, carefully, and, in all likelihood, multiple times to find out the

answers to the different questions.

Based on the results of the pilot experiment, the version of SimSE used in these

instances included a new and improved user interface—the version presented in Chapter

6, minus the explanatory tool.

 168

9.2.2 Results

In the end, 50% of the first class and 66% of the second class attempted the SimSE extra-

credit assignment, so the interest in the opportunity was significant, although the

possibility of getting extra credit was likely a large part of the draw. The students’ scores

on the assigned questions were quite high—the high scores were 99% and 98%, the

average was 80%, and the low scores were 15%, 50%, 54%, and 55%, with a large jump

after that. This seems to suggest that the majority of students were able to learn most of

the concepts the models were designed to teach.

In looking at the answers given by the low-scoring students, it is clear that most of

their scores could be attributed to the students simply not spending the time playing that

is needed to answer the questions—for example, many of these students simply skipped

all of the questions pertaining to a particular model, suggesting that they probably did not

even attempt to play that particular model at all. It was not often that a student who

obviously at least attempted each model could not get a decent score (about 75% or

above) on the questions. This seems to suggest that when enough time and effort are put

forth, most students do learn the concepts the SimSE models are designed to teach.

As mentioned previously, the assigned questions were carefully devised to cover both

concepts presented in the course and concepts that were only present in the models.

Students scored equally well on both types of questions. Hence, it is clear that students

were not only reinforced in the knowledge they gained in their courses, but also did learn

a number of lessons that were not present in their lectures. For instance, the students were

asked to study the incremental model, an approach that involves incremental delivery of

code to a customer. While the lecture covered one aspect of why one would want to

 169

follow this approach (customer buy-in), students learned from playing the model that

another reason is changeability: by delivering code early and often, code changes less

frequently and the program core becomes stable faster. As other examples, students

learned the ideal size of an inspection team as well as the reasons for this size (tradeoff

among finding more bugs but having slower discussions), they understood that intrinsic

factors such as not putting an employee on too many tasks was important, and discovered

that inspection meetings lose their benefit if they run long. None of these items were

explicitly covered in the lectures, all were encoded in the models, and all were discovered

by the majority of the students during game play.

We examined each student’s SimSE assignment scores in relation to their final grade

in the class and found that there was no correlation between the two. In other words, both

students who were doing well and those who were not doing well on other assignments in

the class were able to provide quality answers on the SimSE assignments. This is

important for two reasons: First, it suggests that SimSE is applicable across a broad range

of students with different levels of academic performance, without biasing one group

over another. Second, it suggests that SimSE has a strong potential to help students who

are not doing well academically, because apparently this method of instruction is one that

they can grasp. Of course, there is also the possibility that those who were not doing well

in the class simply tried harder or spent more time on the assignment since they needed

the extra credit more. Because we did not collect data about the time put forth by each

student, however, we are unfortunately not able to investigate this possibility further.

Looking at the students’ responses on the questionnaires provides even more insight.

The results of the questionnaires are shown in Table 5, with the averages for each

 170

Table 5: Questionnaire Results from Class Use of SimSE, with Averages Compared to Pilot
Experiment.

question compared with the pilot experiment’s average when applicable (some of the

questions on the in-class questionnaire were not asked in the pilot experiment). First we

note that the students who used SimSE in class rated it somewhat lower overall than

those in the controlled, out-of-class setting of the pilot experiment. This was particularly

true in the enjoyability aspect of the game: students using it in class ranked it an entire

point lower (2.5) than those in the pilot experiment (3.5). We hypothesize that this can be

attributed to two factors: First, course use of SimSE involved the added pressure to earn

extra credit, required that they play three models instead of one, and required that they

play enough to find answers to the assigned questions, all of which resulted in

significantly more time invested than the two or three hours involved in the pilot

experiment. These circumstances all made the experience decidedly less fun than

participating in a novel experiment for a few hours through which they earn money. This

was particularly noticeable when comparing the free-form answers on the questionnaires

between the two groups—there was definitely a more positive attitude on the part of the

Question 1 1.5 2 2.5 3 3.5 4 4.5 5 Avg Pilot
How enjoyable? (1=least enjoyable, 5=most enjoyable) 5 1 19 0 14 1 5 0 1 2.5 3.5
How difficult/easy? (1=most difficult, 5=easiest) 2 0 7 2 16 0 14 0 5 3.3 3.2
Reinforces material taught in class? (1=no, 5=definitely) 2 0 7 0 20 0 13 1 3 3.2 3.7
Teaches new process knowledge? (1=no, 5=definitely) 12 1 13 0 12 0 7 0 5 2.4 2.5
Teaches SE process in general? (1=no, 5=definitely) 4 0 9 1 18 1 8 0 4 3.0 3.6
Helps understand lecture concepts? (1=no, 5=definitely) 4 0 13 0 15 1 10 0 2 2.9 N/A
Helpful as extra-credit? (1=no, 5=definitely) 1 0 8 0 13 0 6 0 18 3.7 N/A
Helpful as required part? (1=no, 5=definitely) 1 0 15 0 13 1 8 0 3 2.8 N/A
Incorporate into SE course? (1=no, 5=definitely) 9 0 9 2 8 0 12 0 4 2.8 3.5
As a mandatory part? (1=no, 5=definitely) 16 0 12 0 13 0 5 0 0 2.2 3.3
As an extra-credit part? (1=no, 5=definitely) 0 0 5 0 3 1 8 0 29 4.3 N/A
As a voluntary part? (1=no, 5=definitely) 7 0 3 0 7 0 12 1 16 3.6 3.4

 171

pilot experiment subjects, while the in-class students seemed to feel more pressure that

this was something they “had to do”.

We believe the second contributing factor to the lower in-class scores was the

repetitive nature of playing models over and over again in order to master the game and

discover the answers to the assigned questions—this was the most frequent complaint of

the students on their questionnaires. Many reported that it was a frustrating, cumbersome

experience to try to figure out how to succeed in the game, and suggested that SimSE

provide more feedback about their performance in the game, help tips, and/or a more

extensive manual. Although repetitiveness can be beneficial educationally, the extent to

which it was necessary to get to the answers seemed to become a seriously detracting

factor. As described in Chapter 8, the explanatory tool was specifically designed to

remove this hurdle (see Section 9.4 for a description of the experiment conducted to

determine the effectiveness of the explanatory tool in achieving this goal). However, on

top of the addition of the explanatory tool, this experience may suggest that the way

SimSE is introduced to students in class should be re-examined, as will be discussed in

Section 9.6.

There were only three questions on which the in-class group ranked approximately

the same as the pilot experiment group: First, both groups believed that SimSE was

equally difficult/easy to play (3.3 for the in-class group and 3.2 for the pilot experiment

group). Second, both groups gave SimSE’s ability to teach new process knowledge a

mediocre rating (2.4 for in-class, 2.5 for pilot). Finally, both groups also had similar

feelings about SimSE being a voluntary part of the course (3.6 for the in-class group and

3.4 for the pilot experiment group). The in-class students particularly liked the fact that it

 172

was extra-credit, judging from the fact that they rated the question about whether it

should be incorporated as an extra-credit exercise higher than any other question (4.3).

This is not surprising—students are always going to appreciate the opportunity for extra

points. However, this is telling for an instructor’s perspective: use of SimSE in the

classroom must be rewarded with some form of credit, either as an integral assignment or

as an extra-credit assignment (again, not surprising, since students are notorious for not

doing optional elements in any kind of class).

The students’ answers to the free form questions revealed even more insights,

sometimes in conflict with their numerical ratings. Interestingly, although the most

frequent complaint was that it took them too long to be able to “master” a game, when

asked specifically about the appropriateness of the length of the game, only about half

said that it lasted too long, while the majority of the rest said the length was just right.

Also surprising were the answers to the question about whether SimSE taught them any

concepts better than the lectures did: approximately half of them were able to come up

with at least one thing they learned better in the game, despite their mediocre ratings of

SimSE’s ability to help them understand the concepts taught in lecture (2.9) and its

ability to teach new process knowledge (2.4).

We were unable to correlate assignment scores to any other student data given in the

questionnaire responses (such as male versus female) because the questionnaires were

anonymous in this experiment and were in no way tied to the respondent’s assignment

score. However, we were able to make correlations among different pieces of data given

within the questionnaire. First, we compared the responses of students with industrial

software engineering experience versus those with no experience. The results are shown

 173

in Figure 58. The overall trend is that those without experience rated SimSE higher in all

categories except enjoyability, for which both groups rated it equal. This was almost the

complete opposite result from the pilot experiment, in which those with experience rated

SimSE higher. Without further discussion with students in both groups, it is unclear why

this is, but we can hypothesize that it must have something to do with the different

environments in which each group was exposed to SimSE. In any case, the differences in

ratings between the experienced and inexperienced students were not that great. If we

take these results into consideration with the data from the pilot experiment in which the

trends were opposite, we can conclude that there probably is no significant difference

between those with industrial experience and those without, suggesting that SimSE is

applicable for both types of students.

The second trend we were able to notice in the questionnaire responses involved the

differences between males and females, shown in Figure 59. Males ranked SimSE higher

in all categories except difficulty (females thought it was slightly easier to play), its

ability to teach new knowledge (equal to females) and its helpfulness to learning process

concepts (also equal to females). Again, this is in direct conflict to the results in the pilot

experiment, in which females rated SimSE higher in almost every category. Although we

would ideally like SimSE to be equally applicable to both genders, these results from in-

class use are not surprising, as it is well-known that computer games are substantially

more popular with males than females [49]. Nevertheless, the difference in ratings

between males and females in this case was not that large compared to the known

difference between the two groups in their affinity for computer games, suggesting that

 174

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

en
joy

ab
ility

ea
sy

 to
 pl

ay

rei
nfo

rce
 kn

ow
led

ge

ne
w kn

ow
ledg

e

he
lpf

ul
to

lea
rni

ng
 SE pr

oc
es

s

he
lpf

ul
as

 ex
tra

 cr
ed

it

he
lpf

ul
as

 re
qu

ire
d

rec
om

men
d a

s p
art

 of
 co

urs
e

rec
om

men
d m

and
ato

ry

rec
om

men
d e

xtr
a-c

red
it

rec
om

men
d v

olu
ntar

y

he
lp

un
de

rst
an

d c
on

ce
pts

in
lec

tur
es

Question

R
at

in
g

Experience No experience

Figure 58: Industrial Experience Differences in SimSE Questionnaire Results for Class Use.

SimSE is still a promising way to educate both males and females nearly equally well in

software process concepts.

To summarize, our experience with class use of SimSE revealed the following

insights:

• Students who play SimSE in parallel with taking a software engineering course

are able to learn from the game most of the concepts the models are designed to

teach. These include both new concepts and reinforcement of concepts taught in

lectures. When given a set of questions concerning these concepts, students are

generally successful in finding the answers to them by playing SimSE.

 175

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

en
joy

ab
ility

ea
sy

 to
 pl

ay

rei
nfo

rce
 kn

ow
led

ge

ne
w kn

ow
ledg

e

he
lpf

ul
to

lea
rni

ng
 SE pr

oc
es

s

he
lpf

ul
as

 ex
tra

 cr
ed

it

he
lpf

ul
as

 re
qu

ire
d

rec
om

men
d a

s p
art

 of
 co

urs
e

rec
om

men
d m

and
ato

ry

rec
om

men
d e

xtr
a-c

red
it

rec
om

men
d v

olu
ntar

y

he
lp

un
de

rst
an

d c
on

ce
pts

in
lec

tur
es

Question

Ra
tin

g

Male Female

Figure 59: Gender Differences in SimSE Questionnaire Results for Class Use.

• Use of SimSE in the classroom should at least be rewarded with some form of

credit. Offering SimSE as an extra-credit exercise seemed to work well, as

many students attempted the assignment and felt favorably about the

opportunity for extra credit. Of course, the next step, then, is to experiment with

incorporating SimSE as a compulsory component, which we plan to do as part

of our future work (see Chapter 12).

• SimSE is applicable to a broad range of students along the academic

performance spectrum. Both students who did well on other assignments and

 176

those who did not were able to succeed in the SimSE extra-credit assignment,

suggesting that it can be a useful tool for students of varying abilities.

• SimSE is equally applicable for both males and females in terms of their

attitudes and perceptions about the game. While males (not surprisingly) ranked

SimSE slightly higher than females, the difference was quite minor, and not as

great as one would expect, given the known attraction of males to computer

games. Taken with the pilot experiment results in which females’ rankings were

higher, we can conclude that there is probably no difference between the two

groups’ opinions about SimSE.

• Additional guidance and feedback in a SimSE game is needed to make the

experience less frustrating, more enjoyable, and potentially more educationally

effective. Because the main complaint of students was the lack of guidance and

feedback, it is clear that more help is needed in order to create a more positive

experience.

9.3 Comparative Experiment

9.3.1 Experiment Setup

After establishing in the first two experiments that SimSE does indeed have significant

potential as a teaching tool and that students who play it do seem to learn the concepts the

models are designed to teach, the next step was to try and discover how it compares to

traditional teaching methods (reading from a textbook and hearing lectures). In particular,

we aimed to compare the effectiveness of each method in teaching a specific set of

software process concepts, as well as other aspects underlying the learning process—both

 177

practical aspects such as time spent and subjective aspects such as student attitudes and

motivation. With this comparison we would be able to make some informed judgments

about whether SimSE would truly be a useful addition to a course—an addition more

useful than one that included extra traditional assignments such as readings or lectures.

For this experiment we recruited 30 undergraduate students, 15 who had passed either

ICS 52 or Informatics 43, and 15 who had not taken either of these courses (however,

only 19 subjects total ended up completing the experiment, as is discussed in the next

section). This particular mix of educational experience was chosen for the following

reason: SimSE is meant to be used as a complement to existing teaching methods, so it

assumes some background knowledge of basic software engineering concepts, and hence,

the target population is those students who have taken at least one introductory software

engineering course. However, students who have taken a software engineering course

will have already been taught (through textbooks and lectures) much of the material that

was taught in this experiment using textbooks and lectures. Hence, creating an equal mix

of students from the two different experience levels creates a balance addressing both of

these concerns, as well as helps provide some insight into how SimSE does as a teaching

tool for those who have no software engineering experience. The number of subjects (30)

was chosen based on the desire to have a high enough number of people in each of three

treatment groups so that statistically significant statements could be made about the

results. The students were randomly divided into three groups (SimSE, reading, and

lecture) of approximately equal size, with the condition that in each group approximately

half of the people had passed either ICS 52 or Informatics 43 while the other half had not.

 178

The SimSE group was given the same version of SimSE that was used in the in-class

experiments, along with three SimSE models to play, specifically, the waterfall,

incremental, and inspection models. These were the three SimSE models that were most

stable and had already been shown in the previous experiments to be potentially useful

and effective in teaching the software process concepts they are designed to teach. The

subjects in this group were instructed to play each model enough to be able to obtain a

“good” score in each game (85 or above). This instruction was given to try to ensure that

they would play each game enough to learn most of the concepts the games are designed

to teach.

The reading group was instructed to complete a set of readings that covered the

software process concepts embodied in the SimSE models played by the SimSE group.

The readings were taken from Ian Sommerville’s textbook, Software Engineering [134],

since this is the most widely-used software engineering textbook, and the specific topics

covered in the book matched well with the lessons in the SimSE models.

The lecture group was required to attend two 50-minute lectures about the same

software process concepts that were taught to the SimSE group (through SimSE) and the

reading group (through readings). The slides used for the lectures were those that were

created by Ian Sommerville to accompany his textbook [134]. A graduate student who

was experienced in teaching software engineering classes gave the lectures.

The experiment ran over a duration of five days. On day one, all subjects were given

a pre-test (the questions of which are listed in Appendix F) that measured their

knowledge in the software process concepts that were to be taught using the three

methods. At the completion of the test, all subjects were then randomly assigned to a

 179

treatment group and given instructions about the assignment to complete (SimSE,

reading, or lectures). At this time, all subjects were also notified that on day five they

would be given another test on the concepts they were to be taught in the learning

exercise during the week. For the next four days, the SimSE group was expected to play

SimSE, the reading group was expected to complete the readings, and the lecture group

was expected to attend their two lectures, which took place on days two and four.

On day five, the subjects were given a post-test (the questions of which are listed in

Appendix G) which contained some of the same questions as those in the pre-test, but

also included some different questions. This mix of questions was designed to both

ensure some consistency between the two tests and, at the same time, mitigate the

possible bias of students knowing the questions that will be asked ahead of time (in

which case they might have looked up answers, or prepared for them in some other way).

The pre- and post-tests, which were anonymized so that the grader did not know which

group each subject was in, were then graded and each subject received a score on each

test.

The questions on the pre- and post-tests were of three main types: Specific questions

asked students to recite explicit pieces of software process knowledge that were taught in

the learning exercise. Insight questions asked students to abstract away general concepts

from the material, and make comparisons between various concepts in the material.

Application questions required students to apply their software process knowledge to a

hypothetical real-world problem. These three different types of questions were included

for three main reasons: (1) In order to cover a broad range of different types of

knowledge; (2) To reflect the different types of questions that are normally asked on the

 180

tests in ICS 52 / Informatics 43, (an existing standard designed to test software

engineering knowledge); and (3) To provide insight into whether there is any difference

in the types of questions that students from each group score high or low on, which may

suggest something about what types of knowledge each method is better or worse at

teaching than the others.

Some of these questions were also designed with a deliberate bias toward either

SimSE or the readings and lectures. (The readings and lectures taught exactly the same

material, while some of the SimSE concepts were different. It was not possible to find a

set of readings and lectures that matched perfectly the knowledge taught in the SimSE

models, since the SimSE models were built using a variety of knowledge sources.) These

questions asked about concepts that were not overlapping between the different treatment

groups. For example, a SimSE-biased question asked about knowledge that was only

taught through one of the SimSE models, but not through either the readings or the

lectures. These few, select biased questions were included for another comparison point

between the three methods, namely, in order to compare how well each method enables

students to remember the specific knowledge taught, as well as how well each group can

infer knowledge that was not taught in their treatment group.

At the end of the experiment all subjects were also given a questionnaire (see

Appendix H) that asked them to state their thoughts and feelings about the instructional

method in which they participated. This questionnaire contained two main types of

questions: The first type of question asked them about the teaching/learning method used,

including how much time they spent on the exercise, how much they enjoyed it, how

effective they felt it was, and whether they prefer it over other methods. These questions

 181

allowed us to compare both practical aspects of the methods (such as time spent), as well

as students’ attitudes about the various methods. The second type of question asked them

to provide some background information, which allowed us to detect any correlations

between such variables as experience level or gender and the subject’s performance on

the learning exercise. Overall, the purpose of the questionnaire was to gain insight into

how SimSE compares with the traditional teaching methods of reading and lectures in

some of the fundamental aspects of learning such as students’ attitude and motivation.

9.3.2 Experiment Results

Due to the unfortunate facts that (1) several subjects who were scheduled for the

experiment did not show up, and (2) some dropped out between day 1 and day 5 of the

experiment, the number of subjects in each group and in the experiment as a whole was

fewer than planned. The experiment ended up with only 19 subjects versus the 30 that

were planned for, with seven in the SimSE group, six in the reading group, and six in the

lecture group. As a result, there were very few trends in the data that can be considered

truly statistically significant (all are p>0.05 unless otherwise stated). However, as a pilot

comparative study, the data still hints at the probability of several trends that warrant

further investigation in future studies, and points out critical issues that must be

considered when conducting these studies.

The overall results for the pre- and post-test scores are shown in Figure 60. In terms

of measured gain in software process knowledge, while all groups improved somewhat,

the reading group improved the most (5.08), followed by the lecture group (4.04),

followed by the SimSE group (1.21). In the end, the reading group also seemed to end up

with the greatest amount of software process knowledge, as the post-test scores followed

 182

Averages for All Questions

5.13 5.42

7

9.17
10.5

8.21

4.04
5.08

1.21

0

2

4

6

8

10

12

Lecture Reading SimSE

Pre Post Difference

Figure 60: Test Score Results for All Questions Divided by Treatment Group.

this same trend (reading group highest, followed by the lecture group, followed by the

SimSE group). However, this data also shows that the SimSE group had significantly

higher pre-test scores to begin with. This could be partially due to the fact that the SimSE

group, because of the random distribution of experiment drop-outs, by chance happened

to end up with the highest percentage of students who had taken ICS 52 / Informatics 43

(5 out of 7), compared to the reading (3 out of 6) and lecture (4 out of 6) groups. (For

simplicity, from here on we will refer to students who have taken ICS 52 / Informatics 43

as “52/43 students”, and those who have not as “non-52/43 students”.)

If we divide the subjects not only by treatment group, but also by whether or not they

are 52/43 students (as shown in Figure 61), we can gain even more insight. First, it is

probable that, as we hypothesized, the high pre-test score average of the SimSE group

can be attributed to its 52/43 students, as these students’ pre-test scores were significantly

higher than any other group (8.9). Their gain in knowledge, however, was significantly

lower than any other group (0.6). One possible reason for this (and there are others, as

 183

Averages for All Questions (Split by Education)

6.8

1.8

6.2
4.7

8.9

2.25

9.4 8.8 8.5

12.5

9.5

5

2.6

7

2.3

7.8

0.6

2.75

0
2
4
6
8

10
12
14

Lecture-
52/43

Lecture-
Non-52/43

Reading-
52/43

Reading-
Non-52/43

SimSE-
52/43

SimSE-
Non-52/43

Pre Post Difference

Figure 61: Test Score Results for All Questions Divided by Treatment Group and Educational

Experience.

will be discussed later) is that, since the SimSE group had the strongest students to begin

with, they did not have much room for improvement—that is, most of the knowledge

they stood to gain from the exercise they already possessed.

If we look at the post-test scores in Figure 61, we can see that, although overall the

SimSE group scored lowest, in actuality the SimSE 52/43 students had the second-

highest post-test score average of any group (9.5), and it was the especially poor

performance of the non-52/43 SimSE students (5) that brought the overall group’s

average down. In fact, the non-52/43 SimSE students had the lowest post-test scores of

any group (although they still improved by 2.75 points on average). This suggests that

using SimSE with students who have no background knowledge in software engineering

is not very effective (as compared to reading and lectures, which seem to be equally, if

not more effective for students with no background knowledge). From this data, it is hard

to say whether it is effective for students who do have background knowledge, since the

 184

52/43 SimSE students happened to be so well-versed in software process to begin with.

However, it does show that even these students who knew a great deal already were able

to improve somewhat (albeit modestly) by using SimSE.

Looking at the data in this way also shows an unexpected trend that occurred in the

reading group: On the post-tests, the non-52/43 students scored an entire three points

higher than the 52/43 students on average. In all other groups across the board, the 52/43

students scored noticeably higher on the post-tests than the non-52/43 students. This

trend, however, can be easily explained by what many of the 52/43 reading students

wrote on their questionnaires when asked if they did less than assigned, and why: they

began reading the material, noticed that it was familiar to them since they had been

exposed to it in class before, and, as a result, decided to either skip it or just skim it. The

non-52/43 students, on the other hand, read the material more thoroughly, since they had

not seen it before. To corroborate this, the 52/43 students also reported spending less time

on the reading exercise (1.3 hours on average) than the non-52/43 students (1.7 hours on

average).

In general, the rest of the trends when split up by education level (in Figure 61) were

as expected: in each group, the 52/43 students scored higher than the non-52/43 students

on the pre-tests (suggesting that the pre-tests measured software process knowledge

accurately); all students in all groups improved between the pre- and post-test; and the

non-52/43 students improved more than the 52/43 students in all groups (since they had

more to learn).

We can also look at the data in terms of each groups’ scores on the type of question,

whether specific, insight, or application. The trends for specific questions are shown in

 185

Figure 62, and for the most part follow the same trends that we have seen already.

Although for these questions the reading and lecture groups showed equal improvement

(0.3), the SimSE group was, again, significantly behind the others (0.036).

Averages for Specific Questions

0.25

0.358
0.421

0.55

0.658

0.457

0.3 0.3

0.036

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Lecture Reading SimSE

Pre Post Difference

Figure 62: Test Score Results for Specific Questions Divided by Treatment Group.

If we look at the data for insight questions, however, there is an interesting trend to

notice (see Figure 63). This was the only time that the SimSE group actually scored

highest on the post-test. (Again, of course, their starting point was also higher.) Looking

at the data for the insight questions split into 52/43 and non-52/43 students (see Figure

64) shows that this was primarily due to the high scores of the 52/43 students, not the

non-52/43 students. Perhaps this suggests that, for students with sufficient background

knowledge, SimSE is more useful than reading or lectures for teaching the kind of skills

needed to answer this type of question—specifically, the skills to abstract away general

concepts from the material, and make comparisons between various concepts in the

material.

 186

Averages for Insight Questions

0.417
0.361

0.571

0.722 0.75 0.786

0.305
0.389

0.215

0

0.2

0.4

0.6

0.8

1

Lecture Reading SimSE

Pre Post Difference

Figure 63: Test Score Results for Insight Questions Divided by Treatment Group.

Figure 64: Test Score Results for Insight Questions Divided by Treatment Group and
Educational Experience.

The averages for the application questions seem to follow the overall trends, as is

seen in Figure 65. However, splitting each group into 52/43 and non-52/43 students,

shown in Figure 66, yields a notable trend: Of the 52/43 students in all groups, the 52/43

 187

Averages for Application Questions

0.667

0.417
0.536

0.75
0.833

0.643

0.083

0.416

0.107

0

0.2

0.4

0.6

0.8

1

Lecture Reading SimSE

Pre Post Difference

Figure 65: Test Score Results for Application Questions Divided by Treatment Group.

Figure 66: Test Score Results for Application Questions Divided by Treatment Group and
Educational Experience.

students in the SimSE group had the highest post-test scores for application questions.

This may suggest that SimSE is also especially effective in teaching the type of skills

needed to answer these types of questions, namely, skills in applying software process

 188

knowledge to real-world problems (specifically the type of skills that SimSE is designed

to teach), but, again, with the caveat that the students must first have sufficient

background knowledge in software engineering. Of course, this trend is small and only

shows that SimSE helped these 52/43 students perform better on these questions by a

small amount. (This is not surprising since this group’s test scores started out high

already.)

Now let us take a look at the biased questions. Surprisingly, the SimSE group was

only the second-most improved group in SimSE-biased questions, as shown in Figure 67.

This apparently means that either the SimSE-biased questions were not truly SimSE-

biased, or else the SimSE group did not really learn the concepts meant to be taught by

SimSE as well as they were expected to. The latter is probably true, judging from the rest

of the data that indicates the SimSE students did not gain a great amount of new

knowledge.

Averages for SimSE-biased Questions

0.361

0.5
0.571

0.396

0.646
0.589

0.035

0.146

0.018
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Lecture Reading SimSE

Pre Post Difference

Figure 67: Test Score Results for SimSE-Biased Questions Divided by Treatment Group.

 189

Breaking down the groups into 52/43 and non-52/43 students for the SimSE-biased

questions reveals more interesting insights (see Figure 68): First, the 52/43 SimSE group

scored much higher than the non-52/43 SimSE students on both the post-test (0.675

versus 0.375), and in the difference between the pre- and post-test (0.183 versus -0.0435).

In fact, the non-52/43 SimSE students actually worsened in their performance on SimSE-

biased questions from the pre- to the post-test. This was the only instance in the SimSE

group in which students did not improve from pre-test to post-test (aside from the 52/43

students with the reading/lecture-biased questions, probably simply because SimSE did

not teach these particular concepts). Moreover, this was the only instance throughout the

whole experiment in which the 52/43 students in a group improved more than non-52/43

students (with the exception of the lecture students with the SimSE-biased questions,

however, the haphazardness of the data and the fact that the lectures do not really address

the SimSE-biased questions suggests that the lecture students may have been guessing on

the questions). Again, these trends may indicate that in order for students to learn the

concepts SimSE is designed to teach, it must be used only with students who have

sufficient background knowledge in software engineering.

Finally, the trends for the reading/lecture-biased questions are as expected: the

reading and lecture groups improved about equally as well (0.5 and 0.48, respectively),

and the SimSE group’s improvement was almost zero (0.018). This data is reflected in

Figure 69.

The students’ answers to the questionnaires provide us with more insight about the

trends seen here, by capturing their attitudes, thoughts, and perceptions of the particular

learning exercise in which they were involved. The first part of the questionnaire asked

 190

Figure 68: Test Score Results for SimSE-Biased Questions Divided by Treatment Group and
Educational Experience.

Averages for Reading/Lecture-biased Questions

0.208 0.208

0.393

0.688 0.708

0.411
0.48 0.5

0.018
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lecture Reading SimSE

Pre Post Difference

Figure 69: Test Score Results for SimSE-Biased Questions Divided by Treatment Group.

the students to rate and report on various aspects of their experience. These are

summarized in Table 6.

 191

Table 6: Summary of Rating/Reporting Questions on Questionnaire.

Group Time spent
(average)

More / less
than / equal
to assigned?
(number of

subjects
reporting)

Enjoyable?
(average)

Engaging?
(average).

Helpful in
learning
process

concepts?
(average)

Effective
lecturer?
(average)

Lecture 2 hours 6 all 3.7 3.9 3.9 4.3
Reading 1.5 hours 1 more,

4 less,
1 all

2.0 2.0 2.8 N/A

SimSE 4.6 hours 7 less 3.7 4.0 3.2 N/A

The SimSE group spent significantly longer on the exercise (4.6 hours) than either the

lecture group (2 hours) or the reading group (1.5 hours). However, every subject in the

SimSE group also played less than they were assigned (they did not play each model

enough to get a score of 85 or above). When asked why, the answers of every SimSE

subject indicated that the game was frustrating for them because it was too hard to get a

good score, so they gave up. Some of them did not even attempt all of the models even

once (one student only played the waterfall model, and never even started the other two

models). All of them stated that they needed more guidance and/or background

information in order to be able to succeed in the game.

This was probably the biggest factor behind the SimSE group’s comparatively low

test score improvement–if they did not complete the exercise, they are obviously not

going to learn all of the lessons the exercise was meant to teach. Plotting the time spent

on the learning exercise versus improvement from pre- to post-test (see Figure 70)

underscores this. Although the reading group showed no correlation between time spent

and improvement (and this analysis was irrelevant for lectures since all subjects spent the

same amount of time), the SimSE group showed a strong and highly significant

 192

correlation between the time spent and improvement (Pearson r=0.81, p<0.001)1.

This suggests that even though the way in which SimSE was delivered in this case was

less-than-ideal, the students were still learning something as they played, and it is likely

that they would have learned more had they continued playing and not given up when

they did. It is also evident from this data that the cost in time for using SimSE effectively

is high. This is a potential drawback of SimSE, as it requires significantly more time

invested on average than readings or lectures covering roughly equivalent material.

Time Spent vs. Improvement

-4
-2
0
2
4
6
8

10
12

0 2 4 6 8 1

Time Spent

Im
pr

ov
em

en
t f

ro
m

 P
re

-
to

 P
os

t-T
es

t

0

Lecture Reading SimSE

Figure 70: Time Spent on Learning Exercise Versus Improvement from Pre- to Post-Test.

All of this is more evidence that SimSE needs to be used in conjunction with other

teaching methods, but, since the 52/43 students also complained that they did not have

enough guidance to succeed in the game, it is clear that more guidance needs to be given

with the game, even with students who have background knowledge in software

engineering. This corroborates the data from in-class use, in which students also

1 To be thorough, we also used the two main ordinal measures of association (Gamma and Spearman rho),
and the results were similar (Gamma=0.789, p<0.001; Spearman rho=0.845, p<0.001).

 193

expressed this same frustration at the lack of direction given with the game (although not

with the same frequency or severity as in this experiment).

Even though the SimSE students found the experience frustrating, they still gave it

surprisingly high scores in enjoyability (3.7 out of 5, tied for first place with the lecture

group) and level of engagement (4.0 out of 5, higher than both the lecture group (3.9) and

the reading group (2.0) rated their experiences). They also still felt that SimSE, although

frustrating, was helpful in teaching software process concepts (3.2 out of 5, compared

with 3.9 for the lecture group and 2.8 for the reading group).

The questionnaires also asked the students to state which method of learning about

software process concepts they would choose if given a choice (along with a mention that

playing the game would take twice as long as reading or hearing a lecture). The answers

to these questions are summarized in Table 7. Again, even though the students found

SimSE frustrating, the majority of them would still choose to learn software process

concepts through SimSE instead of reading (57%) and instead of lectures (86%). And for

those who had never been exposed to SimSE before, just the idea of a software

engineering game is intriguing and attractive—100% of the reading group would choose

a game over reading, and 50% of the lecture group would choose a game over lectures.

This was also evidenced by the students’ observable attitudes during the experiment: on

the first day of the experiment when they were assigned to their treatment groups, most of

the students assigned to the reading and lecture groups were noticeably disappointed, and

even angry, as they expected to get to play a game as part of the experiment! On top of

that, several of these students asked for information about how to get a copy of the game,

so they could play it on their own time after the experiment was over.

 194

Table 7: Summary of Learning Method Choice Questions on Questionnaire.

Group Reading or lectures? Reading or game? Lectures or game?
Lecture 100% lectures N/A 50% lectures, 50%

game
Reading 60% reading, 40%

lectures
100% game N/A

SimSE N/A 43% reading, 57%
game

14% lectures, 86%
game

What is interesting is that while the difficulty of figuring out how to get a good score

was repeatedly listed as the most discouraging part of SimSE, it was also listed many

times as one of the most enjoyable and attention-grabbing aspects of the exercise.

Although the challenge posed by SimSE might have been too large in this particular

setting, they still enjoyed the process of trying to tackle it. Other aspects of the game the

students listed as most enjoyable were: the “gaming” aspects such as graphics and

interactivity, the “fun” of being in control, managing employees, and getting to

experience a hands-on approach to software engineering.

All of these high ratings in an out-of-class context with little guidance suggest that, if

used in the proper context (in conjunction with a software engineering course) and with

an adequate amount of guidance, SimSE has tremendous potential to be a highly

enjoyable, engaging, and effective method of teaching software process concepts in

which students are excited to participate.

Other questions on the questionnaire asked about each students’ amount of industrial

experience in software engineering, how many software engineering classes they had

taken, and whether they were male or female. However, since only one person had

industrial experience, only one person had taken more than one class in software

engineering, and there were only three females in the experiment (two in the lecture

group and one in the SimSE group), there were no detectable trends involving this data.

 195

To sum up, this experiment revealed the following insights about SimSE:

• The idea of playing a game to learn software process concepts is intriguing and

attractive to students. Both the fact that the SimSE group was noticeably the

most desirable group to be in on day one of the experiment, and their stated

preference on the questionnaire for learning software process concepts through

a game over other teaching methods attest to this.

• SimSE should only be used complementary to other teaching methods, and more

guiding information than was given in this experiment must be provided when

giving an assignment to play SimSE. This was suggested again and again in the

data: The 52/43 SimSE students performed overwhelmingly better than the non-

52/43 students on the post-tests; the non-52/43 students performed

overwhelmingly worse than any other group on the post-test, and only improved

modestly between pre- and post-test; the 52/43 SimSE students seemed to learn

the SimSE-biased concepts much better than the non-52/43 SimSE students; and

all SimSE students repeatedly expressed that they needed more information and

guidance to be able to succeed in the game.

• The longer a student plays SimSE, the more they learn. The one strongly

significant effect that was detected in this experiment was the positive

correlation between time spent playing SimSE and the magnitude of

improvement between pre- and post-test. Thus, proper investment of time is a

critical factor in using SimSE effectively.

• It requires significantly more time to play and learn from SimSE than it does to

attend lectures or complete a reading assignment covering roughly the same

 196

concepts. This high time commitment no doubt added to the frustration felt by

SimSE players in this experiment. Although it is possible that the extra time

actually pays off in additional learning that does not take place through readings

or lectures, this was not suggested by the data from this experiment.

• SimSE has tremendous potential to be an effective, engaging, and enjoyable tool

for teaching software process concepts—if used in the context of a software

engineering course, and if adequate instruction and guidance is provided to the

students playing SimSE. Even without adequate background knowledge and

guidance, students who played SimSE rated their experience remarkably high in

several different areas. Moreover, even though none of them fulfilled the

assignment to completion, they still improved between pre- and post-tests,

indicating that they did learn something, and the data indicates that the more

they played, the more they learned.

9.4 Observational Study

9.4.1 Setup

Although the first three experiments provided us with much valuable data about SimSE

and its ability to help students learn, the insight gained into an individual student’s

learning process was limited to questionnaires and test results, due to the design of these

experiments. Thus, for our final experiment we conducted an in-depth observational

study in which we observed students playing SimSE and interviewed them about their

experience. The primary purpose of this study was to investigate the learning processes

students go through when playing SimSE—namely, how SimSE helps people learn

 197

software engineering process concepts. We designed SimSE with a number of learning

theories in mind (in particular, Learning by Doing, Situated Learning, Keller’s ARCS,

Discovery Learning, and Learning through Failure), and student responses from the first

three experiments hinted that some of these were being employed. Because these

experiments focused on other aspects besides the in-depth learning process, these

learning theories were not looked into any further. In this experiment, therefore, we

specifically set out to detect which of these (and other) learning theories actually come

into play in the learning process of a SimSE player. In so doing, we aimed to gain further

insight into the way SimSE helps students learn, which can inform future work both in

educational simulation in software engineering, and educational simulation environments

in general. Moreover, this data can serve to help validate whether or not the learning

theories simulation environments are thought to embody are actually employed by

students who use them.

The secondary purpose of this experiment was to evaluate how well the explanatory

tool achieves its goals of aiding students in understanding their score, helping them

recognize where they went wrong and/or right in the approach they took, and assisting

them in planning a successful approach to the next run of the game. This was done by

having some students play SimSE with the explanatory tool and some without, and noting

the differences in their attitudes and opinions about the game, as well as their behavior in

playing the game.

For this experiment, we recruited 15 undergraduate computer science students who

had passed either ICS 52 or Informatics 43 to participate (although only 11 actually

completed the experiment—four students either cancelled or missed their appointment).

 198

As in previous experiments, the requirement of passing either ICS 52 or Informatics 43

was put in place because of the intended audience for SimSE: those who have some prior

knowledge of basic software engineering concepts. The number of subjects (15) was

chosen because this was a highly focused study that required a significant amount of time

spent with each subject. Therefore, the focus was on getting an in-depth look at a few

subjects, rather than an overall, shallower view of a larger number of students.

This experiment occurred in a one-on-one setting—one subject and one observer.

Each subject was first given approximately 10 to 15 minutes of instruction on how to

play SimSE. They were then observed playing SimSE for around 2.5 hours. Eight

subjects played with the explanatory tool and three played without. While they were

playing, their game play and behavior were observed and noted. Following this, the

subject was interviewed about their experience for about 30 minutes, and the audio of the

interview was recorded. In addition to any spontaneous questions the observer formulated

based on a particular subject’s actions or behavior during game play, all subjects were

asked a set of standard questions. Several of these questions were designed to specifically

detect the presence of one or more learning theories in the subject’s learning process.

Some questions did not target a particular theory or set of theories, but were instead

meant to evoke insightful comments from the subject from which various learning

theories could be detected, and from which general insight into the learning process could

be discovered. The standard set of questions is listed here, with the targeted learning

theory (or theories) listed in parentheses afterwards when applicable.

1. How would you summarize what happened in game 1/2/x?

 199

2. How did your score change each time you played (did it improve, worsen,

fluctuate, remain constant)? (Discovery Learning, Learning through Failure)

3. To what do you attribute the change (or lack of) (improvement, worsening,

fluctuation, steady state) of your score with each game? (Discovery Learning,

Learning through Failure)

4. How many times did you feel you “won”, or were successful at the game? What

did you learn from each of these games? (Discovery Learning, Learning

through Failure)

5. How many times did you feel you “lost”, or were unsuccessful at the game?

What did you learn from each of these games? (Discovery Learning, Learning

through Failure)

6. Do you feel you learned more when you “won” or when you “lost”? Why?

(Discovery Learning, Learning through Failure)

7. When you lost, did you feel motivated to try again or not? Why? (Learning

through Failure)

8. On a scale of 1 to 5, how much did playing SimSE engage your attention? Why?

(Keller’s ARCS)

9. How relevant do you feel this experience will be to your future experiences in

software engineering? Why? (Keller’s ARCS)

10. How much has your level of confidence changed in the learning material since

completing this exercise? (Keller’s ARCS)

11. How satisfied do you feel with your experience playing SimSE? (Keller’s

ARCS)

 200

12. Did you feel that you learned any new software process concepts from playing

SimSE that you did not know before? If so, which ones?

13. If you feel you learned from SimSE, what do you believe it is about SimSE that

facilitated your learning?

The next three questions were primarily designed for comparison between the

subjects who used the explanatory tool and those who did not. These questions aim to

discover how the player went about figuring out the reasoning behind their scores, as well

as how well they understood this reasoning.

14. Where do you think you went wrong in game 1/2/x?

15. Please describe the process that you followed to figure out the reasoning behind

your score, or where you went wrong/right.

16. How would you alter your approach in the next game based on this

information?

The final four questions were only asked of those who used the explanatory tool, and

were designed to determine how well the explanatory tool achieves its purpose.

17. What was your strategy for using the explanatory tool to figure out where you

went wrong/right?

18. How helpful did you feel the explanatory tool was to figuring out where you

went wrong, the reasoning behind your score, and how you could improve in the

next game?

19. Was there anything confusing about the explanatory tool? If so, what?

 201

20. What changes would you make to the explanatory tool to make it more helpful

for figuring out where you went wrong, the reasoning behind your score, and

how to improve in the next game?

Following the experiment, the interviewer’s observations and interview notes were

analyzed to try to discover which learning theories were employed, and how, as well as to

discover any other insights about SimSE as a teaching tool that could be gained from this

data. We used different techniques for detecting different learning theories. Learning by

Doing and Situated Learning are theories that are more difficult to detect than some of

the others—any associations between the act of “doing” or realistic factors in the learning

environment and the process of learning are not obvious through observation, and

interview questions targeting these theories would be too suggestive (e.g., “Was it the act

of doing something that helped you learn?”) Rather, we wanted to ask more general

questions that would allow the subject to state their opinions and comments honestly and

freely, without any subtle suggestions about what the “right” answer was (e.g., “If you

feel you learned from SimSE, what do you believe it is about SimSE that facilitated your

learning?”) We mainly used the subjects’ answers to questions like these, as well as any

other relevant comments, to detect these two theories. Specifically, anything they said

that indicated the usage of one of these theories was noted. For example, “SimSE helped

me learn because I could actually put into practice what I learned in class” would be

considered a comment indicative of Learning by Doing. An example of a comment

hinting at the Situated Learning theory might be, “SimSE helped me learn because I

could experience a software engineering process in a realistic setting.”

 202

To measure the utilization of the Keller’s ARCS learning theory, we primarily looked

at each subject’s answers to questions that specifically asked about their attention,

(perceptions of) relevance, confidence, and satisfaction in relation to SimSE. In addition

to this, we also used observations of their behavior during game play, as well as any other

relevant comments they made, to make conclusions about the presence of this theory in

their learning process. For example, we noted whenever a subject behaved in a way that

suggested their attention was or was not engaged (e.g., leaning forward with an expectant

look on their face, or letting out a sigh of boredom), or made a comment relating to

attention, relevance, confidence, or satisfaction (e.g., “It was fun”, “It was repetitive”, or

“It was frustrating”).

The presence of the Learning through Failure theory was detected in a manner similar

to that of Keller’s ARCS. Some of the interview questions were specifically targeted to

discover how often subjects felt they failed and how much they learned through those

failures. We analyzed answers to these questions, as well as other relevant comments and

behavior (e.g., appearing defeated after a low score) to evaluate the utilization of this

theory.

We looked for the presence of the Discovery Learning theory by analyzing several

parts of the interview, as well as observations of game play, to determine what each

subject learned and how they learned it (i.e., through independent discovery or some

other means).

We also sought to detect if any other learning theories that we did not anticipate were

employed by analyzing interviews and subject behavior to see if any additional theories

became evident. Finally, we compared the answers and behaviors of those who used the

 203

explanatory tool to those who did not, noting any differences that would suggest how

well the explanatory tool achieves its purposes.

The version of SimSE used in this experiment was the same as the one used in the

previous two experiments, with the addition of the explanatory tool for eight of the 11

subjects. To ensure that the results could be generalized for SimSE as a whole, and not

for a particular simulation model, a variety of models were used—four subjects played

the RUP model (three with the explanatory tool and one without), one subject played the

waterfall model (with the explanatory tool), and six subjects played both the rapid

prototyping and the inspection models (four with the explanatory tool and two without).

The rapid prototype and inspection models did not take as long to play as the others, so

they were always played together. The waterfall model was only played by one subject

because it was deemed less appropriate for this experiment than the other models, as will

be explained in Section 9.4.2. Two of the subjects had played SimSE before, so to make

sure they did not have any prior experience with the model played, they were given the

RUP model, which was newly built and not yet released at the time.

9.4.2 Results

General Learning. First and foremost, as corroborating with the previous experiments, it

appears that all subjects in this experiment learned, at least to some degree, from playing

SimSE. All subjects were able to recount software process lessons that they learned from

SimSE, nine of the 11 subjects reported that their confidence in the subject matter

(software process) had increased at least somewhat, and, for the most part, subjects

tended to improve their scores from game to game as they successfully implemented the

learned lessons in their game play. However, we found that scores alone are not accurate

 204

indicators of learning—even subjects who were never able to improve their score

reported that they still learned, and were able to list a number of specific lessons they

could take away from the experience. This can partly be attributed to too-harsh scoring in

some models (which will be discussed later in this section), but we also discovered

through our observations that fluctuating scores can result from the way most subjects set

about tackling the challenges of each model: isolate aspects of the process and

experiment with them individually (or in small sets), while keeping the others constant.

Thus, once they have mastered one aspect, they move on to another aspect, with their

scores fluctuating with each round of experimentation as they likely attempt a few

incorrect strategies before discovering a correct one. In the end however, with the

exception of the model we determined used too-harsh scoring, nearly every subject was

able to achieve their best score with each model the last time they played that model.

This, along with each subject’s ability to describe lessons they learned, suggests that

through the experience they gained a decent understanding of the lessons taught.

Learning Theories. The learning theory that was most clearly implemented by every

subject was Discovery Learning. All subjects were able to recount at least a few lessons

they learned from SimSE, and none of these lessons were ever told to them explicitly

during their experience. Rather, they discovered them independently through exploration

and experimentation within the game. Interestingly, although all subjects that played a

model seemed to discover the same lessons (for the most part), no two subjects

discovered them in the same way. Every subject approached the game with a different

strategy, but came away with similar new knowledge, suggesting that SimSE, and

perhaps educational simulation in general, can be applicable to a wide range of students

 205

that come from different backgrounds with different ideas. This is a central aspect of a

learner-focused theory like Discovery Learning. Since learning depends primarily on the

learner and not the instructor, the learner is free to use their own style and ideas in

discovering the knowledge, rather than being forced to adhere to a rigid style of

instruction.

Learning through Failure also seemed to be widely utilized. As mentioned previously,

every subject seemed to take a “divide and conquer” approach to playing SimSE,

isolating aspects of the model and tackling them individually (or a few at a time). When

subjects described the progression of their games in the interviews, it was clear that the

way they conquered each aspect was by going through at least one or two rounds of

failure in which they discovered what not to do, and from this discovering a correct

approach that lead to success. When asked explicitly about learning through failure, every

subject stated that they learned when they failed, but the amount of learning they reported

varied. Five subjects said they learned more from failure than success, two subjects said

they learned more when they succeeded, and four subjects said they learned equally as

much from failure and success. All but one subject said that they were motivated to try

again after they failed. This motivation was also evident in the behavior of several

subjects, as some, after the completion of one failed game, hurriedly and eagerly started a

new one. One subject even tried to start a new game when the time for the game play

portion of the experiment was up and he was already informed that it would be the last

game.

Overall, the challenge of receiving a “failing” score and trying to improve it seemed

to be a significant avenue of learning and a strong motivating factor of SimSE. We can

 206

abstract away from this a broader lesson for educational simulation environments in

general: Simulation models should be made challenging enough that students are set up

to fail at times. It is these failures that provide some of the greatest opportunities for

learning.

The Learning by Doing theory seemed to be employed by most of the subjects. Eight

out of the 11 subjects made comments about their experience playing SimSE that hinted

at their usage of Learning by Doing. Some of their comments included:

- “[SimSE helped me learn because it] puts you in charge of things. It’s a good

way of applying your knowledge.”

- “[SimSE helped me learn because it is] interactive, not just sitting down and

listening to something.”

- “[SimSE helped me learn because] you’re actually engaged in doing

something.”

- “[SimSE is] a good way of putting concepts into practice.”

As can be seen, several of these comments mentioned the ability to put previously

learned knowledge into practice as a learning-facilitating characteristic of SimSE. This

again reinforces the principle that simulation should be used complementary to other

teaching methods, so that it can fulfill this important role of being an avenue through

which students can employ Learning by Doing as they apply concepts learned in class.

Comments indicative of Situated Learning were also rather frequent, mentioned by

seven out of the 11 subjects. Some of these included:

 207

- “[SimSE helped me learn because] it was very realistic and helped me learn a

lot of realistic elements of software engineering, such as employees, budget,

time, and surprising events.”

- “[One of the learning-facilitating characteristics of SimSE was] seeing a real-

life project in action with realistic factors like employee backgrounds and

dialogues.”

- “[One of the learning-facilitating characteristics of SimSE was] the real-life

scenarios.”

- “[SimSE is helpful to learning because] it would be good for students to apply

what they learn in a pseudo-realistic setting.”

The realistic elements in SimSE seem to add significantly to its educational effectiveness.

Thus, it is important to include elements of the real world in any educational simulation,

in order to situate students’ knowledge in a realistic environment.

Keller’s ARCS Motivation Theory seemed to also be employed by the subjects,

although certain aspects of the theory came out stronger than others. To explain, let us

look at the four aspects of the theory (attention, relevance, confidence, and satisfaction)

individually.

First, the attention of the subjects seemed to be quite engaged with SimSE. This was

evident in their body language, the comments made both during game play and the

interview, and their ratings of SimSE’s level of engagement. Many of them spent the

majority of their time during game play sitting on the edge of their seats, leaning forward

and fixing their eyes on the screen. There were head nods, chuckles in response to

random events and character descriptions, shouts of “Woo hoo!” after achieving a high

 208

score in a game, shaking of the head when things were not going so well for a player, and

requests of, “Can I try this one more time?” when the experiment’s allotted time for game

play was coming to an end. Words some subjects used to describe SimSE in the interview

were “challenging”, “fun”, “interesting”, “addictive”, and “amusing.” When explicitly

asked how much SimSE engaged their attention, the students rated it quite high—4.1 on

average out of five.

Second, relevance was rated moderately high, but not as high as level of engagement.

Five of the subjects rated SimSE’s relevance to their future experiences as “pretty

relevant” or “very relevant”, five described it as “somewhat” or “partially” relevant and

one said it was not relevant at all. Some of the positive comments about relevance

included:

- “It will definitely help in decision-making.”

- “It will be very relevant for my ICS 121 midterm next week.”

- “What it’s simulating I expect I’ll be doing eventually.”

- “It will be pretty relevant because I kind of want to do some software

engineering in the future if I get a job in that area.”

Some of the subjects who rated relevance less positively had the following comments:

- “It didn’t help that much compared to what I already know.”

- “I definitely don’t want to go into software engineering so it’s probably not too

relevant for the future, but for classes it could be useful.”

- “[I do not consider it relevant to my future experiences because] I don’t really

see myself as the type of person who would govern those processes, I see myself

as the guy that follows the orders.”

 209

Although not explicitly asked about SimSE’s relevance to their past experiences,

nearly all of the subjects mentioned that they used some of the knowledge they had

learned in software engineering courses to come up with their strategies for playing the

game, suggesting that there is also a relevance between their past experiences (learning

the concepts in class) and their learning experience with SimSE.

Third, most subjects felt their level of confidence in the learning material had

increased at least somewhat since playing SimSE. Four subjects reported their level of

confidence had changed “a lot” or “very much”, five said it had changed “somewhat”,

and two said it had not changed at all. Some of their comments included:

- “[I now have] a better understanding of how [the processes] work.”

- “It enhanced my level of knowledge of the process.”

Interestingly, subjects’ confidence ratings seemed to be unassociated with their

performance in the game. For instance, several people who never improved their score

still reported that their confidence in the subject matter had increased as a result of

playing SimSE. This suggests, again, that game scores alone are not an accurate indicator

of learning. It is the experience of going through the simulated process, rather than the

eventual result, that seems to be the central avenue of learning.

 Fourth, satisfaction was rated quite high by the subjects. Nine out of the 11 subjects

reported that they were “quite satisfied”, “very satisfied”, “fully satisfied”, or “pretty

satisfied”, and three subjects stated they were “somewhat satisfied.” Most of the reported

factors that contributed to a feeling of satisfaction pertained to a subject’s increasing

success from game to game, although some also mentioned that the fun and challenge of

SimSE contributed to their satisfaction as well.

 210

 In reviewing and analyzing the interview transcripts, one unanticipated learning

theory became evident: Constructivism [25]. The basis of this theory is that learners

construct new concepts or ideas based on their past knowledge and current experience.

As already mentioned, when asked how they came up with their strategies for playing

SimSE, nearly all of the subjects reported that it was a combination of knowledge they

had learned in their software engineering course(s) and the experience of playing the

game to figure out how to succeed. This is another piece of evidence suggesting that

simulation should be used complementary to other teaching methods, so that learners can

employ Constructivism as their new knowledge is built and framed on their existing

knowledge.

Explanatory Tool. Most of the subjects that had access to the explanatory tool did

make use of it, using it for, on average, five to 25 minutes after most games. It was

obvious that the subjects who did not have the explanatory tool (to whom we will

henceforth refer as “non-explanatory subjects”) were significantly more confused and

unconfident about the reasoning behind their scores than those who did have the

explanatory tool (to whom we will henceforth refer as “explanatory subjects”). All of the

non-explanatory subjects expressed this, while only one explanatory subject stated such

an opinion. The following are some of the comments made by the non-explanatory

subjects:

- “I still don’t really understand what the score is based on.”

- “I’m not really sure exactly what the scoring criteria are.”

- “I was trying to guess what I was doing wrong, so I probably chose the wrong

areas that I was doing wrong, and then I tried to switch back to my original way

 211

and then I kind of forgot what that was and once I started trying to improve it,

all of my little details started changing and I didn’t know what parts were

causing my score to go lower.”

- “I felt like I knew, oh, that’s where I went wrong sometimes, like I should spend

a little less time there, but a lot of times I was wrong about where it was I went

wrong.”

- “I thought maybe afterwards [SimSE should] kind of give you a description of

here’s where you went wrong, or a little hint or something, not exactly the

actual solution, or little warning signs like you forgot to do this.”

- “[I wish SimSE had] more descriptions of what each task does.”

Interestingly, the last two comments even seem to describe some aspects of the

explanatory tool, indicating that the addition of this tool fills a real need of SimSE.

There was no noticeable difference in the other aspects of each subject’s experience

(such as learning theories employed, ratings of SimSE, game scores, etc.) between the

two groups, suggesting that even when a player doesn’t fully understand the reasoning

behind their score, they can still have an overall successful learning experience. And

again, while scoring does play an important part, it is not the most important part—it is

the overall experience of going through game play that seems to be the most influential

factor.

The helpfulness of the explanatory tool as expressed by the explanatory subjects was

only moderate. Of the eight explanatory subjects, three said it was “very helpful” or

“pretty helpful”, two said it was “somewhat helpful”, and three said it was not helpful at

all. What is interesting, however, is that these ratings of helpfulness were strongly

 212

correlated to whether or not the subject made use of the rule descriptions in the

explanatory tool (which are brought up by clicking on an action graph to find out more

information about the action). Four of the eight explanatory subjects read the rule

descriptions, and four did not. Of those that read the rule descriptions, three of them rated

the explanatory tool as either “very helpful” or “pretty helpful”, and one rated it

“somewhat helpful.” This is in stark contrast to the four subjects who did not read the

rule descriptions: three of them said the explanatory tool was not helpful, and one said it

was only somewhat helpful. Furthermore, most of the positive comments made about the

explanatory tool pertained to the rules in some way:

- “Rules were a major help.”

- “[What was helpful about SimSE was that] it’s a combination of being able to

read the rules and apply them and go through the process.”

- “The rules are really helpful—even if someone doesn’t know anything about

software engineering I think the rules can teach you how to play the game.”

Only two of the eight explanatory subjects reported that they got any useful information

out of the graphs. Thus, it seems that the usefulness of the explanatory tool as it currently

stands lies primarily in the rule descriptions.

Even when subjects did use the graphs, very few of them used the composite graphs,

tending to focus mainly on the object and action graphs. This was surprising, as we

anticipated that the composite graphs would be the most useful part of the explanatory

tool. However, based on our observations it seems that this lack of use can be attributed

to the difficulty of formulating a meaningful object and action graph combination that

will produce an insightful composite graph. Based on the number of possible

 213

combinations, this seems to be too overwhelming a task for the average student. To

address this, we plan to add functionality that will point the user to useful composite

graphs for each model. Whether this is something that will be specifiable in the model

builder, or something that can be automatically detected by the explanatory tool per

individual game remains to be seen. In our future work we will experiment with both

options to determine which is most feasible and effective.

An additional way to make the graphing mechanism of the explanatory tool more

useful would be to add some attributes to each model that are meant specifically for

explanatory graphing purposes. For example, in the RUP model we could add project

attributes representing suggested budget for each phase and suggested time for each

phase. (These attributes would be hidden in the game interface but visible in the

explanatory tool.) The player could graph these attributes against the actual budget or

time for each phase to see where they need to adjust. As another example, the inspection

model could include a “meeting productivity” attribute that shows how productive the

inspection meeting as a whole was over time, so the player could see, in one attribute,

how effective their approach was at each point in the game. In our future work we plan to

add explanatory attributes such as these to each model (see Chapter 12).

The overwhelming importance of the rule descriptions leads us to a critical question:

If the rule descriptions were so useful, why did only half of the explanatory subjects use

them? We specifically asked those who did not use them why they did not use them and

for all of them the answer was the same: they forgot they were there. After subject #1

failed to use the rule descriptions, we started being more careful about emphasizing their

presence when instructing the students on how to play SimSE and use the explanatory

 214

tool. However, subject #2 also did not look at the rule descriptions. We continued to

emphasize the rule descriptions more and more in our instructions, including showing

specific examples of how they can be useful, along with reminding subjects that “this is

one of the most useful parts of the explanatory tool and everyone forgets to look at

them!” Finally, subject #4 was the first to read the rules. The remainder of the

explanatory subjects after subject #4 (with the exception of #5) also used the rule

descriptions. Although placing strong emphasis on rule descriptions in the instructions

seemed to eventually help, there is obviously more that needs to be done to get students

to take advantage of this valuable resource. We anticipate that making the rule

descriptions more accessible will help significantly. At the moment, in order to get to the

rule descriptions one has to first generate either an action or a composite graph, click on a

point on the graph, and then click on the Rule Info tab. This is a somewhat cumbersome

and non-intuitive process to go through. Some of the subjects, even though they

remembered that the rules were there somewhere, had to ask to be reminded of how to

access them. We plan to experiment with making rule descriptions directly accessible

from the main explanatory tool user interface to see if this increases their visibility and

thus, their usage. This could take the form of an added drop-down list of actions from

which the player could choose to automatically bring up the rule descriptions for that

action.

One additional insight discovered from this experiment was that students wanted the

explanatory tool accessible during the game. Some of them even assumed it was

accessible during the game and asked how to access it. As mentioned in Chapter 8, this is

something that we plan to do. Whether or not having it accessible during the game will

 215

“give too much away” and take away too much of the challenge remains to be seen.

Additional experiments after this change is made will be necessary to determine this.

The importance of instruction. As we already saw in the way subjects tended to

forget about the rule descriptions, the instruction one receives in playing SimSE is

crucial. The explanatory tool instructions were one example, but it was equally apparent

that the instructions given about how to play the game in general make an enormous

difference as well. The first subject failed to take advantage of several informational

resources in SimSE that are designed to guide a player and help them succeed in the

game. For example, the subject only skimmed over the starting narrative, seemed to

ignore the text in the speech bubbles, and failed to monitor the status of any artifacts

during development (even though these features were pointed out during the instruction

period). This subject’s opinions of SimSE and the experience in general were lower than

average, perhaps as a direct result of these oversights. After subject #1, therefore, we

altered the instructions given to place more emphasis on these overlooked sources of

information, including giving specific examples of why and how they can be helpful. As

the experiment went on, we discovered more aspects of SimSE that could be helpful to

players, but that were not being taken advantage of, and we accordingly altered the

instructions to emphasize these as well. By about midway through the experiment,

subjects were giving most of these aspects the proper attention, and their overall opinions

of the experience seemed to be significantly more positive as a result.

The obvious lesson we can learn from this is that the instructions given to a player of

SimSE must include certain specific pieces of information about components they must

pay attention to in order to promote a maximally effective educational experience. It is

 216

not safe to assume that students will figure these things out on their own. Our first step in

addressing this issue will be to rewrite SimSE’s instruction manual (included

electronically with a download of a SimSE game) to include these commonly overlooked

features. However, given that users are notorious for not reading instruction manuals, it is

necessary to take this a step further, especially for in-class usage of SimSE. Students

could be given paper-based handouts along with the electronic version, and the instructor

could emphasize the importance of reading them carefully. Even more effective would be

holding a training session in class under the leadership of a teaching assistant or

instructor, in which students are also given verbal instructions, with live examples, to

underscore and illustrate the information provided in the textual instructions.

Another issue that needs to be explored is whether SimSE can be altered so that a

player’s success is less dependent on their attention to these details, and more on the

integral game play. Perhaps some of the crucial information contained in textual

components such as the starting narrative and speech bubbles can be incorporated into

game play in a non-textual way. It is unclear how this could be done, but it is definitely

an avenue that warrants investigation. Another possible way to address this is by making

the models simpler so that less attention to detail is needed. However, this would take

some of the challenge of SimSE away, so this is something that also must be carefully

experimented with.

Models. The data revealed a number of insights about the SimSE models used in this

experiment, both individually and as a whole. One of these insights was the average time

it takes to play each model. These averages are shown in Table 8. The inspection model,

being our only model in the “specific” category (see Chapter 7), was the one that took the

 217

Table 8: Average Time Taken to Play Different SimSE Models.

Model Average Time to Play (in
Minutes) with Explanatory Tool

Average Time to Play (in
Minutes) without Explanatory

Tool
Inspection 7 2

Rapid Prototyping 13 8
Waterfall 34 N/A

RUP 47 21

shortest amount of time to play. The rapid prototyping model took approximately twice

as long to play, and the waterfall model was almost three times as long as the rapid

prototyping model. The RUP model was the most time-consuming model to play.

From this data we were also able to compare the relative difficulty of each game in

terms of scores subjects were able to achieve. Table 9 shows two types of average scores

for each model: the average score for all times that model was played (“average overall

score”), and the average high score for each subject who played that model (“average

high score”). Subjects had the easiest time achieving a high score in the rapid prototyping

model, and a somewhat more difficult time mastering the inspection model. The waterfall

model was the next most difficult in terms of scoring, and the RUP model was by far the

most difficult of all the models.

Table 9: Average Scores Achieved for Different SimSE Models.

Model Average Overall Score Average High Score
Rapid Prototyping 78 96

Inspection 54 90
Waterfall 35 68

RUP 8 32

As mentioned previously, we purposely designed the rapid prototyping model with

more lenient scoring than the other models. Our observations of subjects who played this

model suggest that the scoring is perhaps too lenient. For instance, one subject went

through the model with only one round of prototyping and received a score of 85 with a

 218

resulting system that was 13% erroneous and implemented only 70% of the customer’s

requirements. The subject felt satisfied with the score of 85 and assumed they were not

going to play that model anymore since they had “mastered” it. As a result, the subject

did not even know that their resulting system lacked in these areas since they did not

bother to look at any artifact statistics to try to find out why 15 points were deducted

(until the observer stated that they would be playing the model again to try to get a higher

score). This is obviously a dangerous situation—a student could come away from playing

this model thinking that one round of prototyping is sufficient for completing a successful

rapid prototyping approach. Accordingly, we plan to adjust the scoring for this model to

make the penalization for such situations harsher.

The RUP model fell on the other end of the scoring spectrum—it seemed to be too

harsh. 24 RUP games total were played in this experiment, and only four of them resulted

in non-zero scores. Three of the five subjects who played RUP never achieved a score

greater than zero, even though their performance was improving from game to game.

Therefore we also plan to adjust the RUP model scoring to make it more lenient.

Although the scoring for the inspection model did not seem to be overly harsh, it was

clear from interviewing subjects who played it that the majority of them missed some of

its most central lessons. Even when a subject figured out an approach that would lead to a

high score, they would sometimes translate it incorrectly into real-world concepts. For

instance, a number of subjects thought that the size of the code and the size of the

checklist should correlate to each other (e.g., a small checklist should accompany a small

piece of code, a large checklist should accompany a large piece of code, etc.), whereas

the model is actually trying to teach that there is a certain size of checklist (approximately

 219

one page) and a certain sized piece of code (less than or equal to 200 lines) that are ideal

for all code inspection situations (see Section 7.2). A complicating factor that likely

detracted from this lesson is the fact that, with three different pieces of code and three

different checklists, there are nine possible combinations that a player could choose, and

only one of them is maximally rewarded by the model. (This is in addition to the

numerous combinations of employees that can also be chosen.) Players often tended to

stumble upon the correct combination of checklist and piece of code only by luck.

We can address these problematic issues by both simplifying the search process and

simultaneously providing more guidance to the player in finding the correct combination

and inferring the correct real-world lessons. To do this, we will first remove the smallest

checklist choice and the largest piece of code choice (or vice-versa) so that it will be

more obvious that there is no dependency between the two. At the same time, this will

reduce the search space that the player must go through. Additionally, we will include

with the inspection model carefully-worded questions for the player to answer that

suggest the proper real-world translations (e.g., “What is the ideal size of checklist (in

number of pages) that should be used in a code inspection?”) This is precisely what we

did in the in-class usage of SimSE with the questions that each student had to answer in

order to receive their extra-credit points (see Section 9.2). The students that played the

inspection model in class, with the questions, answered them correctly for the most part,

which seems to indicate that they did make the proper real-world interpretations

(although it would require actually interviewing these students to determine whether this

is actually true). This observational experiment has suggested that these questions may be

 220

necessary to always include with certain models (such as inspection) that have lessons

which sometimes tend to get interpreted incorrectly.

Another model that seems to necessitate the inclusion of a set of guiding questions is

the waterfall model. As mentioned previously, only one subject in this experiment

(subject #2) played this model. This is because it became clear from observing and

interviewing this subject that the waterfall model was too large and complex for the

setting of this experiment. The subject seemed somewhat lost and confused, was unable

to achieve a good score, and only reported one new concept that they had learned from

playing SimSE. We believe this can be attributed to the fact that the waterfall model

contains too many variables, interactions between these variables, and possible actions a

player can take at any given time (this model steers the player very little, allowing them

to perform almost any action at any time). On top of the waterfall activities in the model,

there are also several non-software engineering specific aspects—employees have energy

and mood levels (in addition to their experience levels and pay rates), and they can get

sick, take breaks, and quit their jobs. A player can fire an employee, give them bonuses,

and give them pay raises (aside from assigning them regular software engineering tasks).

Because of this complexity, it is hard for a player to isolate and experiment with variables

to find a successful approach to the game. If given a set of guiding questions, however,

we expect that the lessons contained in the model will be more readily noticed and

learned by a player, as this seemed to be the case with the in-class usage of the waterfall

model (see Section 9.2).

The overarching lesson this experiment taught us about models is that it is difficult to

create good game-based educational simulation models. There are a number of crucial

 221

choices that must be made to develop an educationally effective model. Namely, the

following critical issues must be carefully considered:

• The number of lessons/variables. As we saw with the waterfall model,

including too many effects results in an overly complex model that students find

difficult to play and learn from. Including too few effects would likely make a

model that is not challenging enough to keep the student engaged.

• How lessons are communicated. There are numerous different ways a lesson

can be taught through a SimSE model. Sometimes it becomes apparent that a

lesson is not getting picked up on (as in the inspection model), indicating that

something about the way it is communicated must be changed. Alternatively, a

set of guiding questions can be made to accompany the model, to point the

player in the direction of lessons that are difficult to pick up on.

• Explicit versus implicit information. A modeler can put all of the information

a player needs to know in the instructions, starting narrative, speech bubbles,

and rule descriptions of the model, but there is no guarantee the player will

actually read these sources of information. Therefore, removing the need for this

information by making the model simpler or using other, non-textual ways to

communicate this information should be explored.

• Scoring. Although students who play a model with overly-harsh scoring can

still learn from the experience (as we saw with the RUP model), it is still a

frustrating experience to be unable to achieve a high score. A greater danger, as

we saw with the rapid prototyping model, is overly-lenient scoring, which can

 222

lead to the player coming away from the experience with the wrong lessons

being learned. A careful balance between the two must be achieved.

• User testing. In our experience, often the only way to discover the weaknesses

of a model is through user testing. As with any software, the developer always

holds misconceptions in their minds about such things as what will be obvious

to players versus what must be pointed out to them, how people are going to

play the model, and how difficult a model will be, among others. These

misconceptions will only be brought to light by allowing others to play a model

and collecting their feedback.

From our own experience, it seems that the most effective way to learn the proper

balance of all these factors and create good models is through practice. This experiment

revealed that our later models (rapid prototyping and RUP) are noticeably better than our

earlier models (waterfall and inspection) at getting their lessons across effectively.

(Despite the scoring issues with rapid prototyping and RUP, players nevertheless seemed

to learn a significant amount from these models, based on their interviews.) We plan to

include this lesson, plus the critical considerations mentioned above, in our model builder

“tips and tricks” guide (see Appendix B).

Implications for Class Use. Two of the subjects in this experiment had played

SimSE previously, one in the pilot experiment and one in class. Both subjects were asked

if they learned more playing SimSE during this experiment or during their previous

time(s) playing it, and both reported they learned more during this experiment. They also

provided the same reason for this, which is best summed up by a direct quote from one of

these subjects: “When you have somebody watching and checking up on you, you work

 223

harder and I guess, in the end learn more.” Because the presence of an observer seems to

have a positive effect on learning in SimSE, it would be ideal if students using it in

conjunction with a class could be observed one-on-one, although this is obviously

infeasible. However, a possible way to simulate this “observer presence” would be to

instrument SimSE with a logging mechanism that records traces of the games and sends

this information to the instructor in a format that can be quickly and easily viewed and

assessed. (The students would, of course, be told that this information is being sent so

that they feel the added pressure of an observer’s presence.) Another option is to use a

“pair programming” approach in which students play SimSE in groups of two, so that

each can be the observer of their partner. Whether or not these options would take too

much fun out of the experience and obviate the extra motivation that seems to come from

an observer presence would need to be determined through actual experimentation.

Applicability for Varying Academic Abilities. With any instructional method, there

will always be some students who “just don’t get it.” There was one subject in this

experiment that seemed to fit this description with SimSE. This subject was unable to

make much progress in either of the two models he played, mainly because he missed

some things that were very obvious to all of the other subjects (e.g., more than one round

of prototyping should be done). The subject also tended to simply repeat the same

approaches over and over even though they continually resulted in less-than-ideal scores.

Surprisingly, however, this subject still seemed to learn a significant amount (although

probably somewhat less than other subjects who “got it”), judging from the interview.

This corroborates the findings of our in-class use that suggested SimSE is equally

applicable for both students with high and low academic performance levels. From this

 224

experiment, however, we can sum this up in a slightly different way: even students who

seem to largely “miss the mark” when playing SimSE can still learn from the experience.

Summary. To summarize, this observational study revealed the following insights

about SimSE:

• Discovery Learning, Learning through Failure, and Constructivism are the

learning theories most central to SimSE, being employed by all subjects.

Learning by Doing and Situated Learning were employed by most subjects, but

not all. Keller’s ARCS theory was moderately evident, as some of its aspects

(attention and satisfaction) were more seen more strongly than others

(relevance and confidence). All of the theories we used in the design of SimSE

(plus one unanticipated theory—Constructivism) were observed to be employed

by the subjects, although some to a greater extent than others. Thus, educational

simulations should be designed with these theories in mind, aiming to maximize

the characteristics that are known to promote each one.

• SimSE’s explanatory tool is a useful resource for helping players understand

their score, but its value lays primarily in its rule descriptions. To make the

graph generation feature more helpful, the explanatory tool and/or the models

will need to be enhanced to provide a larger set of useful graphs, along with

ways to point the player to these graphs. In addition, the rule descriptions,

which are currently somewhat hidden in the user interface, must be made more

directly accessible to the player.

• The instruction one receives in playing SimSE is crucial. Subjects tend to miss

important information if it is not adequately emphasized in the instructions.

 225

Thus, instruction must be a carefully and deliberately planned part of SimSE

use, either with paper-based handouts, training sessions, or some other means.

• It is difficult to create educationally effective SimSE models. A modeler must

make a careful balance of such aspects as achieving the proper scope, giving the

player adequate guidance, communicating the model’s lessons in an effective

way, and making scoring neither too difficult nor too hard. Achieving this

balance requires both practice in building models and collection of user

feedback.

• Models that are unusually large and models containing lessons that are difficult

for students to translate into real-world concepts require the accompaniment of

a set of guiding questions to adequately communicate these lessons to the

player. There are certain lessons that almost all players picked up on, but others

that seemed to be either hidden among other lessons, or difficult to pick up on

for some other reason. Based on the fact that students who used SimSE in class

and were given a set of questions to answer about the material seemed to pick

up on these lessons, this approach should always be used with models

containing these less perceptible lessons.

• An observer presence can be educationally beneficial to players of SimSE.

Students who played SimSE both with and without the presence of a one-on-one

observer reported that they learned significantly more when being observed.

Thus, use of SimSE in class may be more effective if an observer presence is

simulated either through automatic logging and reporting of students’ games, or

playing SimSE in pairs.

 226

• Even students who have unusual difficulty succeeding in SimSE can still learn

from the experience. The one subject who seemed to miss many of the lessons

picked up on easily by other subjects still seemed to employ several learning

theories and was able to report several things he had learned from the

experience.

9.5 Model Builder and Modeling Approach Evaluation

We informally evaluated SimSE’s model builder tool and associated modeling approach

in terms of its expressiveness, or its ability to model a wide variety of different software

processes of different scales, purposes, and teaching objectives. As evidenced by the six

models we built spanning the three different categories (classic, modern, and specific),

overall, SimSE seems to have achieved a relatively high level of expressivity. These

models vary rather widely in several different aspects such as scope, scoring difficulty,

intermediate feedback, and guidance, but all of the ones we have used with students (five

out of 6—we have not used the XP model with students) appear to help students learn the

concepts they are designed to teach.

We have already mentioned that building a successful SimSE model is a difficult

task. This was especially evident in the performance of undergraduate students we

recruited to build models. One of these students spent three quarters trying to build an

inspection model, the efforts of which ended in failure—the resulting model consisted of

a static, linear set of steps of an inspection process. Another student spent two quarters

trying to build a RUP model, and this also resulted in an unusable model with very little

dynamics. (Both the inspection and RUP models were then rebuilt, resulting in the ones

described in Chapter 7.) Our third attempt at having an undergraduate build a SimSE

 227

model was slightly more successful, resulting in the XP model described in Section 7.4.

However, although this model is playable, it is flawed in some ways. Its most significant

problem is that it tries to teach all of its lessons through the same effect—the slow-down

of activities. Specifically, failing to follow any of the XP practices taught by the model

(e.g., pair-programming, frequent releases, rapid prototyping, using coding standards) all

result in the same consequence—slow-down of development. Therefore, because so

many factors contribute to the same effect, it would be quite difficult for a player to

detect which one(s) are responsible for the effect. Thus, part of our future work will entail

rebuilding this model to use different effects to illustrate different consequences, in order

to make the lessons clearer.

The only successful model that we did not build ourselves was the incremental model.

This model was built by a graduate student well-versed in software process and game

development. It took him approximately one week to build this model, and in our class

use it appeared to be effective at communicating the lessons it contains. Thus, it seems a

certain level of knowledge is required to be able to build an effective SimSE model, a

level normally not possessed by undergraduate computer science students.

The one-week development time of this graduate student seemed to be the standard

for our model development as well. All of our models took, on average, one week (7

days) of full-time work to develop, with the last day or two usually being devoted to play

testing and adjustment. Larger models, such as the RUP model, took longer than this,

while shorter models, such as inspection, took less than a week.

SimSE’s model building process was unexpectedly enhanced by the addition of the

explanatory tool. Because this tool provides direct insight into a model’s internal

 228

workings, it has proven to be a useful aid in building models. An illustrative example is

the following: in the RUP model, one of the published “rules” of this process is that the

four phases of the process (Inception, Elaboration, Construction and Transition) take

approximately 10%, 30%, 50%, and 10% of the total cycle time, respectively [87]. To

test the implementation of this rule in a model prior to the inclusion of the explanatory

tool, one would have to write down the time it takes for each phase and then calculate the

relative percentages. With the explanatory tool, however, a quick glance at a graph like

the one shown in Figure 71 will yield the same results.

Figure 71: A Graph Generated by the Explanatory Tool that Depicts the Relative Lengths of
Rational Unified Process Phases.

 229

9.6 Summary

This chapter has described the five different parts of our approach’s evaluation. Each of

these was designed to assess a different aspect of SimSE—the pilot experiment focused

on SimSE’s initial potential as a teaching tool, the in-class use focused on how SimSE

could fit into a software engineering course, the comparative experiment focused on

discovering the differences between SimSE and traditional instructional approaches, the

observational study focused on the learning process SimSE promotes, and the model

builder evaluation focused on the expressiveness of SimSE’s modeling approach. The

collective results from these can be distilled into a summative list of valuable lessons and

insights about our approach. The first three lessons pertain to the effectiveness of SimSE

in helping students learn software process concepts:

• Students who play SimSE seem to successfully learn the concepts it is designed

to teach. We have seen this clearly, in students’ ability to answer questions

correctly about these concepts (in class), the strong correlation between time

spent playing SimSE and increase in software process knowledge (in the

comparative experiment), and players’ ability to recount learned concepts and

improve their game scores (in the observational experiment).

• Students find playing SimSE a relatively enjoyable experience. Students in all

experiments enjoyed playing SimSE for the most part, although the enjoyment

of those who used it in class was noticeably lower than the others (likely due to

the added pressure to perform for extra credit, and perhaps the absence of the

explanatory tool).

 230

• Students find SimSE repetitive when played for extended periods of time.

Although it was clear from the comparative experiment that the longer a student

plays SimSE, the more they learn, both the comparative experiment and the in-

class usage revealed that a longer playing time also contributes to a feeling of

repetitiveness. Because the version of SimSE used in these experiments

included neither the explanatory tool nor adequate instructions, it is anticipated

that the addition of these two factors will lessen the need for so many repetitions

of the same model when used in classes in the future.

• Students learn through playing SimSE by employing the theories of Discovery

Learning, Learning through Failure, Constructivism, Learning by Doing,

Situated Learning, and Keller’s ARCS. Educational simulations should therefore

be designed with these theories in mind, aiming to maximize the characteristics

that are known to promote each one.

• SimSE is most educationally effective when used as a complementary

component to other teaching methods. All four experiments strongly suggested

that a certain level of existing software process knowledge must be possessed

by a student in order for maximal learning to be promoted. Thus, SimSE should

be used with other teaching methods that provide this required knowledge, and

not be used as a standalone tool.

The next set of lessons concern in-class usage of SimSE, and the critical

considerations that must be made when such an approach is taken:

• Provide students with adequate and proper instruction in playing SimSE. This

was clearly evident in the frustration and confusion felt by the subjects in the in-

 231

class usage and the comparative experiment, who did not feel they received

enough guidance to succeed in SimSE. The results from the observational

experiment corroborated this, as it was observed that subjects tended to miss

important information if it was not sufficiently emphasized in the instructions.

Thus, instruction must be a carefully planned part of SimSE’s use, and should

include such measures as holding training sessions and/or providing paper-

based handouts.

• Students should be assigned a set of questions to answer about each model they

play. Comparing the in-class usage and the observational experiment results

revealed that such questions help guide the student in discovering less

discernable lessons. Moreover, questions such as these provide the instructor

with a way to assess how much the student learned from the exercise.

• In-class usage of SimSE may benefit from the addition of an observer presence.

As we saw in the observational experiment, the presence of an observer seemed

to motivate students to more effective learning. This could be simulated in

classroom usage by either instrumenting SimSE with mechanisms for automatic

logging of simulation runs and reporting of these runs back to the instructor, or

having students play SimSE in pairs.

We also gained important insights about SimSE’s applicability to different types of

students:

• SimSE has applicability to females as well as males. The opinions of females in

these experiments were comparable to those of males. In the pilot experiment

female opinions were even higher, on average, than those of males. Thus,

 232

SimSE has the potential to help students of both genders learn software process

concepts.

• SimSE has applicability for students of varying abilities. We saw in our in-class

usage of SimSE that both students who did well on other assignments and those

who did poorly were able to succeed in the SimSE exercise. Both the pilot and

in-class experiments showed that a student’s amount of industrial experience

also does not seem to have an effect on SimSE’s applicability to them. The

observational study revealed that students who have unusual difficulty

succeeding in SimSE can nonetheless come away from the experience having

learned several lessons. Together, these results suggest that SimSE can be an

effective teaching tool for students of different backgrounds and aptitudes.

The results of our experiments also revealed important lessons about the role and

effectiveness of SimSE’s explanatory tool:

• The explanatory tool is a needed and useful part of SimSE that helps players

understand the reasoning behind their score. The most frequent complaint of

the students who played SimSE without the explanatory tool (in all four

experiments) was the lack of feedback given about their performance in the

game. Students who played SimSE with the explanatory tool (in the

observational experiment) overall found it to be a helpful resource for

understanding their score and the simulated process.

• The value of SimSE’s explanatory tool as it currently stands lies primarily in its

rule descriptions. Students who used the explanatory tool found rule

descriptions to be the most useful part and the graphs to be only marginally

 233

useful. Mechanisms for providing more useful graphs (and pointing players to

them) should be added to the explanatory tool and/or the models.

Finally, our experiences also taught the following overarching lesson about SimSE’s

model builder and modeling approach:

• SimSE’s model builder and modeling approach are adequately expressive for

creating a wide variety of software process simulation models, but designing

these models in such a way for them to be maximally educationally effective is a

difficult task. We were able to build a representative set of simulation models

that differed in several fundamental aspects and seemed to communicate their

software process lessons effectively. However, our experience with building

models and using them with students revealed that the task of creating good

models is nontrivial, requiring critical and difficult choices to be made about

such issues as scope, guidance, lessons, and scoring. Making the proper choices

about these issues can only be learned through practice and user testing.

If we revisit the evaluation questions posed at the beginning of this chapter, we can

see that the results of the experiments described in this chapter have provided answers to

each one:

1. How do students feel about the learning experience playing SimSE (e.g., is

it enjoyable, do they perceive it as an effective method of learning software

process concepts)? Students enjoy and get excited about playing SimSE,

although when it is not used in the context for which it was designed (as a

complement to a software engineering course) and/or not used with the

explanatory tool, students at times find it frustrating. For the most part, students

 234

feel that it is a reasonably effective tool for learning software process concepts.

These opinions seem to be shared by a wide range of students, including males

and females, high-achieving and low-achieving students, and students with and

without industrial experience.

2. How well does SimSE fit into the traditional software engineering

curriculum as a complement to existing methods (which is its intended

use)? SimSE has been shown to integrate relatively well as an optional extra-

credit assignment in a course that provides the background knowledge required

to understand the simulation models. In our experience with this type of setting,

the majority of students chose to complete the assignment, and seemed to learn

the concepts the models are designed to teach. However, even though they were

learning some of the same concepts in class lectures and readings, many of them

still felt that their experience with SimSE was frustrating, and felt that it would

have been significantly improved had more guidance and background

information about the concepts embodied in the models been given.

3. How well does SimSE teach the software process concepts that its models

are designed to teach? If given adequate instruction and background

knowledge, students who play SimSE do seem to glean from the simulation

models the concepts they are created to teach, regardless of gender or academic

performance.

4. How does SimSE compare to traditional methods of teaching software

engineering process concepts such as reading and lectures? In a setting that

used SimSE as a standalone teaching tool rather than a complementary one,

 235

SimSE was enjoyed as much as lectures and more than reading, perceived to be

more educationally effective than reading but less than lectures, and measured

(using pre- and post-tests) to be less effective than both reading and lectures.

The time investment required to play and learn from SimSE was significantly

higher than both reading and lectures. Use of SimSE in this setting revealed that

the proper amount of guidance and instruction must accompany SimSE’s use,

and it must be used complementary to other teaching methods, in order for it to

fulfill its educational potential.

5. Are the learning theories that SimSE was designed to employ actually being

employed by students who play the game, and are there other, unexpected

learning theories that are being employed by SimSE? Discovery Learning,

Learning through Failure, and Constructivism (an unanticipated theory) are the

learning theories most often seen to be employed by players of SimSE. Learning

by Doing and Situated Learning seem to be employed by most players of

SimSE. Keller’s ARCS theory is a moderately employed theory of SimSE, and

some of its aspects—attention and satisfaction—are exhibited more strongly

than others—relevance and confidence.

6. Are the SimSE model-building approach and associated tools adequately

expressive? The tools and approach were found to be adequate in expressing a

wide range of different software process models. However, building an effective

SimSE model is a difficult endeavor that requires the careful balance of several

critical issues. This task can be made less difficult through practice and user

testing.

 236

7. Does the SimSE explanatory tool help players of the game understand their

score and the process better than using the game without the explanatory

tool? The explanatory tool does seem to help players understand their score, but

it primarily does so through its rule descriptions. The explanatory tool can likely

be made to fulfill its purpose even more effectively if more useful graphs are

created and highlighted to the user, and the rule description feature is made

more accessible.

Though our experiment results have provided answered to these questions, they have

also raised new questions—questions that can only be answered through further

experimentation. Our evaluations showed that there are a number of adjustments and

enhancements to our approach that need to be experimented with. Specifically, the

following future evaluations must be conducted:

• In-class usage with modifications. Four modifications must be made to our

approach for further in-class usage: First, we will make SimSE a mandatory,

rather than optional, exercise. Second, we will use SimSE with the explanatory

tool in class, as the only version used in class to date has not included the

explanatory tool. Third, we will increase the level of instruction students receive

in learning to play SimSE, by providing them with paper-based handouts that

contains detailed instructions, and requiring them to attend a training session in

which an instructor illustrates these instructions and shows them how to play

SimSE through live examples. Fourth, to try to further motivate students

through an observer presence, we will add an automatic logging and reporting

mechanism to SimSE that records a student’s game and sends a trace of the

 237

game back to the instructor. We will also place students in groups of pairs to

play SimSE. The perceptions, opinions, and learning of students who use

SimSE in class with these modifications will be carefully studied and compared

to previous in-class usage to try to determine the effects these modifications

have on the effectiveness of our approach. Of particular interest will be whether

or not these alterations reduce the repetitiveness of SimSE reported by students

in the comparative and in-class experiments.

• Observational experiments with new and revised models. Our observational

experiment proved invaluable for revealing flaws in our existing models. Thus,

we plan to continue these types of experiments with models we will build in the

future, as well as with revisions of existing models (which will be revised based

on the results of our observational experiment).

• Observational experiments with a revised explanatory tool. Our

observational experiment also revealed the need for more useful graphing

mechanisms and more accessible rule descriptions in the explanatory tool. We

plan to make these enhancements and then assess them with further

observational experiments.

Overall, our evaluations revealed that SimSE can be an effective, engaging, and

enjoyable tool for teaching software process concepts when used correctly with the

proper critical considerations taken into account. However, some hurdles remain. The

enhancements and evaluations described here are designed specifically to address these

hurdles in order to help SimSE achieve its full educational potential.

 238

10. Related Work

One notable piece of work that has used similar principles to ours in developing their

approach is represented by AgentSheets [114], an educational simulation environment

focused on the simulation-building activity as the primary learning experience.

AgentSheets has been used at multiple educational levels, and has been shown in

numerous evaluations to be very effective. AgentSheets is relevant to our approach in that

it concerns simulation and roots itself in learning theories, both from design and

evaluation standpoints. Our approach has aspired to achieve the same kinds of favorable

results, but in a different domain with somewhat different concerns. The first difference

is that our approach models only software engineering processes, while AgentSheets is a

general purpose simulation environment that can simulate a wide variety of different

processes. Our modeling and simulation approach was deliberately designed to be less

flexible than AgentSheets, focusing specifically on software engineering processes. As a

result, SimSE is more powerful and appropriate for modeling software engineering

processes, and not able to model other types of processes.

The second difference between our approach and AgentSheets is that AgentSheets

focuses on the simulation-building activity as the primarily learning experience, while

our approach instead focuses on the simulation-playing aspect. Because our model-

building process is geared toward the software engineering instructor rather than the

student, building a model in SimSE is not as straightforward as in AgentSheets, and

therefore we have chosen not to focus on the model building process as a learning

activity (although it is certainly possible to use it as a learning exercise for advanced

students, and our approach has been used successfully in such a situation [13]). Despite

 239

these differences in focus, AgentSheets and other simulations like it have provided us

with examples of rigorous, learning theory-centric evaluation methodologies that we have

adopted in our evaluation approach.

In addition to general educational simulations such as AgentSheets, there also exist a

number of other educational simulations that focus specifically on the domain of software

engineering. Because these educational software engineering simulations relate directly

to our approach, we will focus on making direct comparisons to them in the remainder of

this chapter. As described in Section 2.1.3, these approaches fall into three main

categories: industrial simulation brought to the classroom, group process simulation, and

game-based simulation. Our approach falls into the game-based simulation category,

which shares the same general focus of the industrial simulation category—the overall

processes of software engineering. Because group process simulations have a different

focus—namely, group discussion and interaction processes [103, 136]—we will omit this

category of approach from this discussion.

 As described in Section 2.1.3, industrial software engineering simulations brought to

the classroom involve the use of highly-realistic simulators to illustrate to students, using

real-world data, the overall life cycle and project planning phenomena of software

engineering [35, 106]. These approaches differ from ours in four major ways.

 First, because the original purpose of industrial simulations is prediction, their

simulation models are based strictly on empirical data. SimSE’s primary focus is on

education, not prediction. Accordingly, some portions of our simulation models are

deliberately unfaithful to reality to make them more appropriate for educational purposes

(see Section 7.7).

 240

 Second, industrial simulations have a low level of interactivity, generally running in

the following overall manner: Obtain a set of inputs from the user (e.g., project

complexity, time allocated to inspections, person power), run the simulation, and output a

set of results (e.g., cost, time, defects). In contrast to this, because SimSE is designed as

an educational game, we aimed to make its game play as interactive as possible. We

designed SimSE to operate on a clock-tick basis to give the student an active role in the

simulation and allow them to drive the simulation continuously throughout the game,

making adjustments and steering the process as necessary.

 Third, industrial simulations are strongly focused on prediction (as this is their

primary purpose), but not prescription—specifying the allowable next steps a user can

take at any given point in the process. Because of our focus on interactivity, engagement,

and educational effectiveness, SimSE makes ample use of both predictive and

prescriptive aspects in its game play in order to maximally promote these qualities (see

Section 4.3).

 Fourth, in contrast to SimSE’s fully graphical user interface, industrial simulations

have non-graphical user interfaces that generally display a set of gauges, graphs, and

meters rather than characters and realistic surroundings. Again, this is motivated by the

purpose of industrial simulations—tools meant to be used in industrial environments for

the purpose of prediction do not necessitate entertaining graphical user interfaces.

 Finally, industrial simulations are non-customizable. Because they are typically

created to predict the effects of process changes on a particular real-world process, they

are built upon a precise model of that real-world process with no need for simulating

 241

other processes. SimSE’s educational purposes, on the other hand, require the ability to

demonstrate a wide variety of software processes, hence its customizability.

There have also been a handful of approaches that, like SimSE, fall into the game-

based educational software engineering simulation category. Unlike industrial

simulations, these game-based simulations share the same underlying purpose of our

approach: allowing students to practice “virtual” software engineering processes in an

interactive, fun environment that engages the student, making learning more effective.

However, the existing approaches differ from our approach in some fundamental ways.

OSS [129] is a game-based software engineering simulation environment that allows

a user to take a “virtual tour” of a software engineering company. Although OSS includes

audio, animations, and more extensive graphics than SimSE, the user’s role is rather

limited in comparison—the player takes more of a passive “observer” role rather than

that of an active participant in a software engineering process. The user can look at

sample documents, “listen in” on meetings, and hear explanations of tasks, but they

cannot actually effect change on the state of the simulation. Thus, OSS is adequate as

more of a software engineering tutorial program than an actual interactive game.

Moreover, it is static, containing only one underlying model, without any facilities for

customization.

The Incredible Manager [44] is a simulation game designed specifically to train

software project managers. Consequently, its focus is different from SimSE’s, and is

concentrated more on project management than on software processes. In essence, it is

much like an industrial simulator with an added graphical, game-like user interface. The

interactivity of the game is similar to industrial simulations in that the player creates a

 242

project plan, runs the simulation, and receives a result (but can intermediately stop the

simulation, make adjustments, and restart again). Rather than viewing only a series of

gauges, graphs, and meters, however, they can see employees working, getting tired,

going home for the evening, and coming back the next day. The Incredible Manager also

allows for customization of its simulation models through a textual interface, but requires

that these models be built on a system dynamics paradigm—a paradigm that is generally

used by real-world industrial simulation models.

SimVBSE [78] is a game-based simulation specifically designed to teach students the

theory of value-based software engineering [16]. SimVBSE has a relatively high level of

interactivity—players can visit different “rooms” in a software engineering company

where they can perform such activities as changing project parameters, obtaining

feedback from stakeholders, undergoing tutorials on relevant topics, and analyzing

project metrics, risks, and investments. The user interface is fully graphical and includes

animations and audio. The simulation portrays one real-world case study, and does not

include facilities for customization. Thus, the primary difference between SimVBSE and

SimSE is that SimVBSE focuses only on value-based software engineering while SimSE

instead focuses on simulating a variety of different software engineering processes.

Problems and Programmers [9] is also a game-based simulation, but it is a card game

rather than a computer game. It is a two player game designed to simulate a waterfall

software development process from conception to completion. Players in the game

compete against each other to finish their projects while avoiding the potential pitfalls of

software engineering. Being a competitive, multi-player card game, Problems and

Programmers is highly interactive. However, it only simulates one process (waterfall)

 243

and, being a simulation that involves physical objects (cards), it is significantly more

difficult to customize than a computer-based simulation.

SESAM [47] is the approach that is perhaps most similar to SimSE. It is a game-

based simulation environment that allows for the modeling and simulation of different

software engineering processes. It also operates on a clock tick basis, allowing the

student to drive the simulation throughout the game by performing such actions as hiring

and firing employees, assigning them tasks, and asking them about their progress and

state of the project. It also includes an explanatory tool that is similar to ours, and is the

only approach besides SimSE that does so. However, SESAM differs from our approach

in three major ways. First, it lacks a visually interesting graphical user interface, which is

considered essential to any successful educational simulation [51]. Players must type in

commands textually, and can only “view” the process through the form of textual

feedback. The second difference lies in the modeling language. SESAM represents a first

example of a software process modeling language that is prescriptive, predictive, and

interactive (but not graphical). It is also a highly flexible and expressive language, but its

model building process is learning- and labor-intensive and requires writing code in a text

editor. There has only been one SESAM model developed to date, which does not give an

instructor many examples with which to work when trying to build a new model, and is

also perhaps evidence that, despite SESAM’s powerful language, the need to actually

textually program a model is a significant challenge that few wish to tackle. Third,

SESAM has only been evaluated in one small out-of-class experiment. We build on

SESAM’s approach in four major ways: First, we simplify the modeling process by

providing our model builder tool, eliminating the need for writing source code in an

 244

explicit modeling language. Second, we provide support for including graphics in the

simulation models. Third, we have chosen to sacrifice some of the flexibility and

expressivity that SESAM has by making a number of simplifications to our modeling

approach (e.g., limiting all objects to five meta-types). Fourth, we make evaluation and

actual class use an integral part of our approach, both so that we can make conclusions

about SimSE’s effectiveness that are thoroughly rooted in actual experience, and provide

insights about educational software engineering simulations and educational simulations

in general that can be used by others in the research community.

To summarize, we can generalize four fundamental differences between our approach

and the existing educational software engineering simulations:

• Existing software engineering simulations are not adequately flexible. Judging

from the wide variety of software processes that exist, it is obvious that

educational software engineering simulations must be easily configurable to

model different processes. Although two of the existing approaches (The

Incredible Manager [44] and SESAM [47]) are configurable, SimSE has gone

above and beyond their level of configurability through two major features: its

graphical model builder tool that removes some of the difficulties of an explicit

process modeling language; and a set of pre-existing models that can be easily

used off-the-shelf, and/or configured to fit different educational goals.

• Existing software engineering simulations have not been adequately used and

evaluated in a classroom setting. As mentioned in Chapter 3, one of the

guidelines for a successful educational simulation is that it is used

complementary to the other components of a course. Although a few of the

 245

existing simulations have been used in conjunction with a class [28, 35, 129],

these instances have only been anecdotally observed and reported on. Other

approaches that have performed more formal studies have done so with out-of-

class experiments [47, 106]. Although useful as initial evaluations, neither

approach gives much thorough insight into how simulation can effectively be

incorporated into an existing course. One of the fundamental components of our

approach is carefully planned in-class use with objective measurements of

students’ learning, opinions, and attitudes.

• Existing software engineering simulations have not been robustly verified.

Either in-class or out-of-class, there have been relatively few studies that have

definitively affirmed the effectiveness of simulation in software engineering

education. Again, with the exception of [106], all of the other experiments

involving educational software engineering simulations, although mostly

favorable, have been preliminary and informal in nature. Our set of four

experiments was a central component of our approach, and these experiments

were carefully designed to provide a thorough, well-rounded assessment of

SimSE’s value as an educational tool.

• Existing software engineering simulations do not adhere to well-known

principles for educational simulations. The guidelines for successful

educational simulations that our approach has been built on (see Chapter 3)

have not all been followed in any of these approaches: several of them are only

minimally engaging and challenging, many are not used complementary to other

teaching methods, and most do not provide feedback and/or explanatory tools.

 246

11. Conclusions

This dissertation has presented a new approach to educating students in software process

concepts—an approach consisting of three parts: (1) an implementation of a graphical,

interactive, educational, customizable, game-based simulation environment for

simulating software processes (SimSE), (2) a set of simulation models to be used in

seeding the environment, and (3) evaluation of the environment and models, both in

actual software engineering courses and in out-of-class experiments.

 Our experience with SimSE has provided a number of important contributions to both

the field of software engineering education and education in general. The most tangible

contribution is the implementation of SimSE, along with its set of simulation models,

which have been put through both in-class use and out-of-class formal evaluations.

 We have also established through our experience the insight that a graphical,

interactive, educational, customizable, game-based simulation environment such as

SimSE can be beneficial to software engineering process education. Students who play

SimSE tend to learn the intended concepts, and find it a relatively enjoyable experience.

These statements apply to students of different genders, academic performance levels,

and industrial experience backgrounds. However, in order for SimSE to be used in the

most effective way possible, we have demonstrated that it is crucial that it be used

complementary to other educational techniques and accompanied by an adequate amount

of direction and guidance given to the student.

Our experience has also provided as a contributed insight the role and potential of an

explanatory tool in an educational simulation, as well as an implementation of such a

tool. In particular, despite the needed enhancements of our explanatory tool, we have

 247

found that it is a much needed and useful part of our simulation approach that

significantly aids students in understanding the underlying simulated process and their

performance in the simulation.

Our evaluations strongly suggest that SimSE is a useful and educationally effective

approach that has the potential to be even more effective if certain modifications are

made to its implementation and usage. As it currently stands, some difficulties with our

approach exist, most notably the feeling of frustration frequently reported by students

who played SimSE in class, the minimal usefulness of the graph generation feature in the

explanatory tool, and a certain amount of awkwardness in our modeling approach. We

have plans for addressing each of these difficulties in our future work (see Chapter 12).

Beyond these observed hurdles, we have also identified a number of promising directions

for future research that will potentially add to the effectiveness of SimSE and, in turn,

provide even more insights that the research community can utilize. These future research

plans are also discussed in the next chapter.

In sum, this dissertation has contributed an approach to addressing some of the

difficulties with software engineering education—particularly software process

education—by allowing students to practice, through SimSE, the activity of managing

different kinds of quasi-realistic software engineering processes. Our usage and

evaluation of SimSE has demonstrated that this approach does help students learn

software process concepts, and has highlighted the crucial considerations that must be

made when using such an approach. It is our hope that the lessons learned from our

experience can be utilized by the larger research community and eventually contribute to

a new generation of software engineers that are better versed in software processes.

 248

12. Future Work

Our experience with SimSE, both in its development and its usage, have highlighted a

number of areas that can be improved, enhanced, and/or modified to help SimSE better

fulfill its goal of providing an engaging, interactive, and effective way for students to

learn software process concepts.

Some of these concern features of the environment itself. First, we want to reduce

some of the difficulties in our modeling approach that at times require non-intuitive,

roundabout solutions (described in Section 4.3). To do this, we will explore ways of

adding new constructs to our modeling approach that achieve the needed expressiveness

without causing it to degenerate into a full-fledged process modeling language. For

instance, we will add the ability to specify in an effect rule specific actions to activate or

deactivate, rather than the “all or nothing” approach that currently exists.

We also plan to modify the explanatory tool to address the deficiencies brought forth

in the observational experiment—the marginal usefulness of the graph generation feature

and the inaccessibility of the rule descriptions (see Section 9.4). To make the graph

generation feature more useful, we will augment the simulation models with attributes

that are expressly for explanatory graphing purposes (e.g., “suggested budget for phase

X” and “actual budget for phase X” that can be graphed against each other). We will also

experiment with either adding functionality to the model builder that allows a modeler to

specify potentially useful graphs that can be generated for that model, or adding

functionality to the explanatory tool that automatically makes graph generation

suggestions based on a particular simulation run. To increase the accessibility of the rule

descriptions, we plan to add a component to the main explanatory tool user interface

 249

through which they can be viewed. We will also make the explanatory tool accessible

during a simulation run, rather than only at the end of one, and conduct further

experiments to determine how helpful to learning this may or may not be.

Because a frequent request of students who played SimSE was for better graphics, we

will also attempt to enhance the game’s graphical sophistication to make it more

appealing and engaging. One of the main ways we plan to do this is by adding some

simple animation capabilities to the model builder. Specifically, we will add functionality

that will allow a modeler to specify different graphics for different states of an object

(e.g., an employee with low energy will appear to be sleeping; a highly erroneous piece

of code will appear red and flashing).

We also plan to enhance SimSE’s graphics by adding semantics to the layout of the

office. Currently, the position of an employee is meaningless and their surrounding

images are merely for decoration. We will experiment with allowing both employee

position and surrounding graphical components to come in to play when specifying

effects. For instance, the productivity of an employee working in an XP process could be

increased if they are in close proximity to another employee with whom they are pair

programming. As another example, an employee’s mood could be raised if they have

their own large, nicely-decorated, corner office near a window, or lowered if they are

stuck in a tiny, dark cubicle with three other people. Including such graphical semantics

will also require that we add more standard office surrounding images, such as windows,

plants, and pictures.

A more semantically-enhanced map may also require a larger map size, to take full

advantage of these enhancements. Currently, the map is limited to 16 x 10 tiles. We will

 250

experiment with making the map size customizable per model to see if this extra

flexibility will increase the graphical attractiveness and interaction of SimSE in any way.

In addition to these environment enhancements, we also plan to enhance our

repertoire of simulation models by developing a number of new models. In particular, we

plan to build a Personal Software Process [74] model, a Team Software Process [75]

model, and a model of a component-based software engineering process. We will also

explore the possibility of building “mixed” models that illustrate relative strengths and

weaknesses of different models, and focus on honing students’ skills in recognizing

situations in which one approach is better than another, and vice-versa. For instance, we

will attempt to build a model that teaches the balance between unit, integration, and

acceptance testing, and another model that illustrates the tradeoffs between choosing a

particular high-level process approach such as XP or waterfall. We also plan to

experiment with building more models of varying complexity. One of the principles for

successful educational simulations presented in Chapter 3 states that simulation must start

with simple tasks and gradually move towards more difficult ones. Our model-building

work to date has been focused on testing and demonstrating the feasibility and

applicability of our modeling approach, and has therefore resulted in a comprehensive set

of mostly large models. To better apply this principle of moving from the simple to the

more complex, we will attempt to create scaled-down versions of our existing models that

can be used for introducing students to SimSE before they tackle the more complex

models.

As described in Section 9.6, there are also three additional types of experiments with

SimSE that need to be conducted. The first of these is further class use with three

 251

modifications: incorporation of SimSE as a mandatory (rather than optional) exercise,

class use of SimSE with the explanatory tool, and either an added automatic game

logging and reporting mechanism, or placement of students in pairs to play SimSE. The

other two types of experiments are both observational in nature: one assessing the

modified explanatory tool, and another set of experiments evaluating the future

simulation models we will build and the modified versions of our existing ones.

Finally, we will use all of our experience and lessons learned to create SimSE course

modules that will help guide instructors in adopting SimSE in their courses. These course

modules will include such things as the understandings and/or skills that the module

intends to teach, the time it will take, lecture-wise, discussion-wise, and homework-wise,

the relevant simulation models to be used, class materials for the instructor to present and

discuss, instructions for the students, guidelines on how to hold a SimSE training session

for the students, and test questions to be answered with the corresponding correct

answers.

 252

References

1. JFreeChart, http://www.jfree.org/jfreechart.
2. Abdel-Hamid, T. and S.E. Madnick, Software Project Dynamics: an Integrated

Approach. 1991, Upper Saddle River, NJ: Prentice-Hall, Inc.
3. Abernethy, K. and J. Kelly, Technology Transfer Issues for Formal Methods of

Software Specification, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 23-31.

4. ACM Committee on Computers and Public Policy, RISKS-FORUM Digest,
http://catless.ncl.ac.uk/Risks.

5. Alessi, S.M. and S.R. Trollip, Multimedia for Learning. 2001, Needham Heights,
MA, USA: Allyn & Bacon.

6. Anderson, J.R., et al., Cognitive Tutors: Lessons Learned. The Journal of the
Learning Sciences, 1995. 4(2): p. 167-207.

7. Andrews, J.H. and H.L. Lutfiyya, Experience Report: A Software Maintenance
Project Course, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 132-139.

8. Angehrn, A.A., Advanced Social Simulations: Innovating the Way we Learn how
to Manage Change in Organizations. International Journal of Information
Technology Education, 2004 (to appear).

9. Baker, A., E.O. Navarro, and A. van der Hoek, Problems and Programmers: An
Educational Software Engineering Card Game, in Proceedings of the 2003
International Conference on Software Engineering. 2003: Portland, Oregon. p.
614-619.

10. Beck, K., Extreme Programming Explained: Embrace Change. 2000, Reading,
MA: Addison-Wesley.

11. Beckman, K., et al., Collaborations: Closing the Industry-Academia Gap. IEEE
Software, 1997. 14(6): p. 49-57.

12. Bernstein, L. and D. Klappholz, Eliminating Aversion to Software Process in
Computer Science Students and Measuring the Results, in Proceedings of the
Fifteenth Conference on Software Engineering Education and Training. 2002,
IEEE: Covington, KY, USA. p. 90-99.

13. Birkhoelzer, T. and E.O. Navarro, Teaching by Modeling instead of by Models, in
Proceedings of the 6th International Workshop on Software Process Simulation
and Modeling. 2005: St. Louis, MO, USA.

14. Birtwistle, G.M., Discrete Event Modelling on Simula. 1979, Houndmills,
Basingstoke, Hampshire: MacMillan Education Ltd.

15. Blake, B.M., A Student-Enacted Simulation Approach to Software Engineering
Education. IEEE Transactions on Education, 2003. 46(1): p. 124-132.

16. Boehm, B., Value-Based Software Engineering: Overview and Agenda, in Value-
Based Software Engineering, S. Biffl, et al., Editors. 2005, Springer Verlag.

17. Boehm, B., Abts, C., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy,
R., Reifer, D., and Steece, B, Software Cost Estimation with COCOMO II. 2000,
New Jersey: Prentice Hall.

 253

http://www.jfree.org/jfreechart
http://catless.ncl.ac.uk/Risks

18. Boehm, B.W., Software Engineering Economics. 1981, Upper Saddle River, NJ:
Prentice Hall, Inc.

19. Boehm, B.W., A Spiral Model of Software Development and Enhancement. IEEE
Computer, 1988. 21(5): p. 61-72.

20. Bransford, J.D., et al., Anchored Instruction: Why we Need it and how Technology
can Help, in Cognition, Education, and Multimedia: Exploring Ideas in High
Technology, D. Nix and R. Spiro, Editors. 1990, Lawrence Erlbaum: Hillsdale,
NJ. p. 115-141.

21. Brereton, O.P., et al., Student Group Working Across Universities: A Case Study
in Software Engineering. IEEE Transactions on Education, 2000. 43(4): p. 394-
399.

22. Brooks, F.P., The Mythical Man-Month: Essays on Software Engineering. 2 ed.
1995, Boston, MA: Addison-Wesley. 336.

23. Brown, J.S., A. Collins, and P. Duguid, Situated Cognition and the Culture of
Learning. Educational Researcher, 1989. 18(1): p. 32-42.

24. Brown, S.M., A Software Maintenance Process Architecture, in Proceedings of
the Ninth Conference on Software Engineering Education and Training. 1996,
IEEE: Daytona Beach, FL, USA. p. 130-141.

25. Bruner, J., Acts of Meaning. 1990, Cambridge, MA, USA: Harvard University
Press.

26. Bryan, G.E., Not All Programmers are Created Equal, in Software Engineering
Project Management, R.H. Thayer, Editor. 1997, IEEE Computer Society: Los
Alamitos, CA. p. 346-355.

27. Callahan, D. and B. Pedigo, Educating Experienced IT Professionals by
Addressing Industry's Needs. IEEE Software, 2002. 19(5): p. 57-62.

28. Carrington, D., A. Baker, and A. van der Hoek, It's All in the Game: Teaching
Software Process Concepts, in Proceedings of the 2005 Frontiers in Education
Conference. 2005: Indianapolis, IN. p. T1A-1 - T1A-6.

29. Carswell, L. and D.R. Benyon, An Adventure Game Approach to Multimedia
Distance Education, in Proceedings of the 1996 Integrating Technology into
Computer Science Education Conference. 1996: Barcelona, Spain.

30. Cass, A.G., et al., Little-JIL/Juliette: A Process Definition Language and
Interpreter, in Proceedings of the 22nd International Conference on Software
Engineering. 2000: Limerick, Ireland. p. 754-757.

31. Cheswick, W.R. and S.M. Bellovin, Firewalls and Internet Security: Repelling
the Wily Hacker. 2nd ed. 2003: Addison-Wesley.

32. Chi, M.T.H., et al., Eliciting Self-Explanations Improves Understanding.
Cognitive Science, 1994. 18: p. 439-477.

33. Chua, Y.S. and C. Winton, A Simulation Tool for Teaching CPU Design and
Microprogramming Concepts, in Conference Proceedings on APL as a Tool of
Thought. 1989, ACM. p. 94-100.

34. Collins, A., Cognitive Apprenticeship and Instructional Technology, in
Educational Values and Cognitive Instruction: Implications for Reform, L. Idol
and B.F. Jones, Editors. 1991, Erlbaum: Hillsdale, NJ.

35. Collofello, J.S., University/Industry Collaboration in Developing a Simulation
Based Software Project Management Training Course, in Proceedings of the

 254

Thirteenth Conference on Software Engineering Education and Training, S.
Mengel and P.J. Knoke, Editors. 2000, IEEE Computer Society. p. 161-168.

36. Conn, R., Developing Software Engineers at the C-130J Software Factory. IEEE
Software, 2002. 19(5): p. 25-29.

37. Conway, M.E., How Do Committees Invent? Datamation, 1968. 14(4): p. 28-31.
38. Cook, J., The Role of Dialogue in Computer-based Learning and Observing

Learning: an Evolutionary Approach to Theory. Journal of Interactive Media in
Education, 2002. 5.

39. Cowling, A.J., The Crossover Project as an Introduction to Software
Engineering, in Proceedings of the Seventeenth Conference on Software
Engineering Education and Training. 2004, IEEE: Norfolk, VA, USA. p. 12-17.

40. Crnkovic, I., R. Land, and A. Sjogren, Is Software Engineering Training Enough
for Software Engineers? in Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. 2003, IEEE: Madrid, Spain.

41. Cronbach, L. and R. Snow, Aptitudes and Instructional Methods: A Handbook for
Research on Interactions. 1977, New York, NY, USA: Irvington.

42. Curtis, B., H. Krasner, and N. Iscoe, A Field Study of the Software Design
Process for Large Systems. Communications of the ACM, 1998. 31(11): p. 1268-
1287.

43. Dalcher, D. and M. Woodman, Together We Stand: Group Projects for
Integrating Software Engineering in the Curriculum, in Proceedings of the
Sixteenth Conference on Software Engineering Education and Training. 2003,
IEEE: Madrid, Spain.

44. Dantas, A.R., M.O. Barros, and C.M.L. Werner, A Simulation-Based Game for
Project Management Experiential Learning, in Proceedings of the 2004
International Conference on Software Engineering and Knowledge Engineering.
2004: Banff, Alberta, Canada.

45. Dawson, R., Twenty Dirty Tricks to Train Software Engineers, in Proceedings of
the 22nd International Conference on Software Engineering. 2000, ACM. p. 209-
218.

46. DeBono, E., NewThink: The Use of Lateral Thinking in the Generation of New
Ideas. 1967, New York, NY, USA: Basic Books.

47. Drappa, A. and J. Ludewig, Simulation in Software Engineering Training, in
Proceedings of the 22nd International Conference on Software Engineering.
2000, ACM. p. 199-208.

48. Emmerich, W. and V. Gruhn, FUNSOFT Nets: A Petri-Net Based Software
Process Modeling Language, in Proceedings of the Sixth International Workshop
on Software Specification and Design. 1991, IEEE Computer Society. p. 175-184.

49. Entertainment Software Association, Essential Facts about the Computer and
Video Game Industry,
http://www.theesa.com/archives/files/Essential%20Facts%202006.pdf.

50. Favela, J. and F. Pena-Mora, An Experience in Collaborative Software
Engineering Education. IEEE Software, 2001. 18(2): p. 47-53.

51. Ferrari, M., R. Taylor, and K. VanLehn, Adapting Work Simulations for Schools.
The Journal of Educational Computing Research, 1999. 21(1): p. 25-53.

 255

http://www.theesa.com/archives/files/Essential Facts 2006.pdf

52. Festinger, L., A Theory of Cognitive Dissonance. 1957, Evanston, IL: Row
Peterson.

53. Flor, N.V., F.J. Lerch, and S. Hong, A Market-driven Approach to Teaching
Software Components Engineering. Annals of Software Engineering, 1998. 6: p.
223-251.

54. Gamble, R.F. and L.A. Davis, A Framework for Interaction in Software
Development Training. Journal of Information and Technology Education, 2002.
1(4).

55. Gardner, H., Art, Mind and Brain. 1982, New York, NY, USA: Basic Books.
56. Gee, J.P., What Video Games Have to Teach Us About Literacy and Learning.

2003, New York, NY, USA: Palgrave Macmillan.
57. Gehrke, M., et al., Reporting about Industrial Strength Software Engineering

Courses for Undergraduates, in Proceedings of the 24th International Conference
on Software Engineering. 2002, IEEE: Orlando, FL, USA. p. 395-405.

58. Glib, T., Evolutionary Delivery versus the Waterfall Model. ACM SIGSOFT
Software Engineering Notes, 1985: p. 49-61.

59. Glib, T., Principles of Software Engineering Management. 1988: Addison-
Wesley.

60. Gnatz, M., et al., A Practical Approach of Teaching Software Engineering, in
Proceedings of the Sixteenth Conference on Software Engineering Education and
Training. 2003, IEEE: Madrid, Spain. p. 120-128.

61. Godwins., Boode., and Dickenson., National Survey of Life Stage Needs. Medical
Benefits, 1996.

62. Goold, A. and P. Horan, Foundation Software Engineering Practices for
Capstone Projects and Beyond, in Proceedings of the Fifteenth Conference on
Software Engineering Education and Training. 2002, IEEE: Covington, KY,
USA. p. 140-146.

63. Groth, D.P. and E.L. Robertson, It's All About Process: Project-Oriented
Teaching of Software Engineering, in Proceedings of the Fourteenth Conference
on Software Engineering Education and Training. 2001, IEEE: Charlotte, NC,
USA. p. 7-17.

64. Halling, M., et al., Teaching the Unified Process to Undergraduate Students, in
Proceedings of the Fifteenth Conference on Software Engineering Education and
Training. 2002, IEEE: Covington, KY, USA. p. 148-159.

65. Harrison, J.V., Enhancing Software Development Project Courses Via Industry
Participation, in Proceedings of the Tenth Conference on Software Engineering
Education and Training. 1997, IEEE: Virginia Beach, VA, USA.

66. Hayes, J.H., Energizing Software Engineering Education through Real-World
Projects as Experimental Studies, in Proceedings of the 15th Conference on
Software Engineering Education and Training. 2002, IEEE. p. 192-206.

67. Hazzan, O. and Y. Dubinsky, Teaching a Software Development Methodology:
The Case of Extreme Programming, in Proceedings of the Sixteenth Conference
on Software Engineering Education and Training. 2003, IEEE: Madrid, Spain. p.
176-184.

68. Hazzan, O. and J.E. Tomayko, Reflection Processes in the Teaching and and
Learning of Human Aspects of Software Engineering, in Proceedings of the

 256

Seventeenth Conference on Software Engineering Education and Training. 2004,
IEEE: Norfolk, VA, USA. p. 32-38.

69. Hilburn, T., PSP Metrics in Support of Software Engineering Education, in
Proceedings of the Twelfth Conference on Software Engineering Education and
Training. 1999, IEEE: New Orleans, LA, USA. p. 135-136.

70. Hirai, K., Micro-Process Based Software Metrics in the Training, in Proceedings
of the Twelfth Conference on Software Engineering Education and Training.
1999, IEEE: New Orleans, LA, USA. p. 132-134.

71. Howell, F. and R. McNab, simjava: a Discrete Event Simulation Package for
Java with Applications in Computer Systems Modelling, in Proceedings of the
First International Conference on Web-based Modelling and Simulation. 1998,
Society for Computer Simulation: San Diego, CA.

72. Humphrey, W.S., Managing the Software Process. 1990: Addison-Wesley.
73. Humphrey, W.S., A Discipline for Software Engineering. 1995: Addison-Wesley.
74. Humphrey, W.S., Introducing the Personal Software Process. Annals of Software

Engineering, 1995. 1: p. 311-25.
75. Humphrey, W.S., TSP: Coaching Development Teams. 2006: Addison-Wesley.
76. Inkpen, K., et al., We Have Never Forgetful Flowers in Our Garden: Girls'

Responses to Electronic Games. Journal of Computers in Math and Science
Teaching, 1994. 13(4): p. 383-403.

77. Jaccheri, M.L. and P. Lago, Applying Software Process Modeling and
Improvement in Academic Setting, in Proceedings of the Tenth Conference on
Software Engineering Education and Training. 1997, IEEE: Virginia Beach, VA,
USA. p. 13-27.

78. Jain, A. and B. Boehm, SimVBSE: Developing a Game for Value-Based Software
Engineering, in Proceedings of the Nineteenth Conference on Software
Engineering Education and Training. 2006, IEEE: Turtle Bay, HI, USA. p. 103-
111.

79. Jones, C., Software Assessments, Benchmarks, and Best Practices. 2000, Boston,
MA: Addison-Wesley. 659.

80. Kaiser, G.E., S.S. Popovich, and I.Z. Ben-Shaul, A Bi-level Language for
Software Process Modeling, in Proceedings of the 15th International Conference
on Software Engineering. 1993, ACM. p. 132-143.

81. Keller, J.M. and K. Suzuki, Use of the ARCS Motivation Model in Courseware
Design, in Instructional Designs for Microcomputer Courseware, D.H. Jonassen,
Editor. 1988, Lawrence Erlbaum: Hillsdale, NJ, USA.

82. Kessler, R.R. and L.A. Williams, "If This is What It's Really Like, Maybe I Better
Major in English": Integrating Realism into a Sophomore Software Engineering
Course, in Proceedings of the 1999 Frontiers in Education Conference. 1999,
IEEE: San Juan, Puerto Rico.

83. Kolb, D.A., Experiential Learning: Experiences as the Source of Learning and
Development. 1984, Englewood Cliffs, NJ, USA: Prentice-Hall International, Inc.

84. Kornecki, A.J., Real-Time Computing in Software Engineering Education, in
Proceedings of the Thirteenth Conference on Software Engineering Education
and Training. 2000, IEEE: Austin, TX, USA. p. 197-198.

 257

85. Kornecki, A.J., S. Khajenoori, and D. Gluch, On a Partnership between Software
Industry and Academia, in Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. 2003, IEEE: Madrid, Spain. p. 60-69.

86. Kornecki, A.J., J. Zalewski, and D. Eyassu, Learning Real-Time Programming
Concepts through VxWorks Lab Experiments, in Proceedings of the Thirteenth
Conference on Software Engineering Education and Training. 2000, IEEE:
Austin, TX, USA. p. 294-301.

87. Kruchten, P., The Rational Unified Process: An Introduction (2nd Edition). 2000:
Addison-Wesley.

88. Lakey, P., A Hybrid Software Process Simulation Model for Project Management,
in Proceedings of the 6th Process Simulation Modeling Workshop (ProSim 2003).
2003: Portland, Oregon, USA.

89. Laman, C. and V. Basili, Iterative and Incremental Development: A Brief History.
IEEE Computer, 2003. 36(6): p. 47-56.

90. Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis. 3 ed. 2000:
McGraw-Hill Companies, Inc.

91. Levary, R.R. and C.Y. Lin, Modelling the Software Development Process Using
an Expert Simulation System Having Fuzzy Logic. Software -- Practice and
Experience, 1991. 21(2): p. 133-148.

92. Lindheim, R. and W. Swartout, Forging a New Simulation Technology at the ICT.
IEEE Computer, 2001. 34(1): p. 72-79.

93. Malone, T.W., Heuristics for Designing Enjoyable User Interfaces: Lessons from
Computer Games, in Human Factors in Computer Systems. 1982: Gaithersburg,
MA. p. 63-68.

94. MAPICS Inc., AweSim, http://www.pritsker.com/awesim.asp.
95. McGraw, G., Software Security. 2006: Addison-Wesley.
96. McKendree, J., Effective Feedback Content for Tutoring Complex Skills. Human-

Computer Interaction, 1990. 5: p. 381-413.
97. McKim, J.C. and H.J.C. Ellis, Using a Multiple Term Project to Teach Object-

Oriented Programming and Design, in Proceedings of the Seventeenth
Conference on Software Engineering Education and Training. 2004, IEEE:
Norfolk, VA. p. 59-64.

98. McMillan, W.W. and S. Rajaprabhakaran, What Leading Practitioners Say
Should Be Emphasized in Students' Software Engineering Projects, in
Proceedings of the Twelfth Conference on Software Engineering Education and
Training, H. Saiedian, Editor. 1999, IEEE Computer Society. p. 177-185.

99. Navarro, E.O., A Survey of Software Engineering Educational Delivery Methods
and Associated Learning Theories, UCI-ISR-05-5, 2005, University of California,
Irvine: Irvine, CA, USA.

100. Navarro, E.O. and A. van der Hoek, Scaling Up: How Thirty-two Students
Collaborated and Succeeded in Developing a Prototype Software Design
Environment, in Proceedings of the Eighteenth Conference on Software
Engineering Education and Training. 2004, IEEE: Ottawa, Canada (to appear).

101. Navarro, E.O. and A. van der Hoek, Design and Evaluation of an Education
Software Process Simulation Environment and Associated Model, in Proceedings

 258

http://www.pritsker.com/awesim.asp

of the Eighteenth Conference on Software Engineering Education and Training.
2005, IEEE: Ottawa, Canada.

102. Noll, J. and W. Scacchi, Specifying Process-Oriented Hypertext for
Organizational Computing. Journal of Network and Computer Applications,
2001. 24(1): p. 39-61.

103. Nulden, U. and H. Scheepers, Understanding and Learning about Escalation:
Simulation in Action, in Proceedings of the 3rd Process Simulation Modeling
Workshop (ProSim 2000). 2000: London, United Kingdom.

104. Ohlsson, L. and C. Johansson, A Practice Driven Approach to Software
Engineering Education. IEEE Transactions on Education, 1995. 38(3): p. 291-
295.

105. Parrish, A., et al., A Case Study Approach to Teaching Component Based
Software Engineering, in Proceedings of the Thirteenth Conference on Software
Engineering Education and Training. 2000, IEEE: Austin, TX, USA. p. 140-147.

106. Pfahl, D., et al., Evaluating the Learning Effectiveness of Using Simulations in
Software Project Management Education: Results From a Twice Replicated
Experiment. Information and Software Technology, 2004. 46: p. 81-147.

107. Pierce, K.R., Teaching Software Engineering Principles Using Maintenance-
Based Projects, in Proceedings of the 10th Conference on Software Engineering
Education and Training. 1997, IEEE Computer Society: Virginia Beach, VA,
USA. p. 53-60.

108. Poole, W.G., The Softer Side of Custom Software Development: Working with the
Other Players, in Proceedings of the Sixteenth Conference on Software
Engineering Education and Training. 2003, IEEE: Madrid, Spain. p. 14-21.

109. Postema, M., J. Miller, and M. Dick, Including Practical Software Evolution in
Software Engineering Education, in Proceedings of the Fourteenth Conference on
Software Engineering Education and Training. 2001, IEEE: Charlotte, NC, USA.
p. 127-135.

110. Prensky, M., Digital Game-Based Learning. 2001, New York, NY: McGraw-Hill.
111. Pressman, R.S., Software Engineering -- A Practitioner's Approach. 4 ed. 1997,

New York, NY: McGraw-Hill.
112. Randel, J.M., et al., The Effectiveness of Games for Educational Purposes: A

Review of Recent Research. Simulation and Gaming, 1992. 23(3): p. 261-276.
113. Reigeluth, C.M. and C.A. Rodgers, The Elaboration Theory of Instruction:

Prescriptions for Task Analysis and Design. NSPI Journal, 1980. 19: p. 16-26.
114. Repenning, A., A. Ioannidou, and J. Zola, AgentSheets: End-User Programmable

Simulations. Journal of Artificial Societies and Social Simulation, 2000. 3(3).
115. Resnick, L., Learning in School and Out. Educational Researcher, 1987. 16(9): p.

13-20.
116. Robillard, P.N., Measuring Team Activities in a Process-Oriented Software

Engineering Course, in Proceedings of the Eleventh Conference on Software
Engineering Education and Training. 1998, IEEE: Atlanta, GA, USA. p. 90-101.

117. Rogers, C.R., Freedom to Learn. 1969, Columbus, OH, USA: Merrill.
118. Rolfe, J.M., Flight Simulation (Cambridge Aerospace Series). 1988, Cambridge,

UK: Cambridge University Press.

 259

119. Rost, J., Software Engineering Theory in Practice. IEEE Software, 2005. 22(2): p.
96-95.

120. Royce, W., TRW's Ada Process Model for Incremental Development of Large
Software Systems, in Proceedings of the 12th International Conference on
Software Engineering. 1990. p. 2-11.

121. Sackman, H., W.J. Erikson, and E.E. Grant, Exploratory Experimental Studies
Comparing Online and Offline Programming Performance. Communications of
the ACM, 1968. 11(1): p. 3-11.

122. Scacchi, W., Process Models in Software Engineering, in Encyclopedia of
Software Engineering, J. Marciniak, Editor. 2001, Wiley.

123. Schank, R.C., Virtual Learning. 1997, New York, NY, USA: McGraw-Hill.
124. Schank, R.C. and C. Cleary, Engines for Education. 1995, Hillsdale, NJ, USA:

Lawrence Erlbaum Associates, Inc.
125. Schlimmer, J.C., J.B. Fletcher, and L.A. Hermens, Team-Oriented Software

Practicum. IEEE Transactions on Education, 1994. 37(2): p. 212-220.
126. Schlimmer, J.C. and J.R. Hagemeister, Utilizing Corporate Models in a Software

Engineering Studio, in Proceedings of the Tenth Conference on Software
Engineering Education and Training. 1997, IEEE: Virginia Beach, VA, USA.

127. Schön, D., Educating the Reflective Practitioner. 1987, San Francisco, CA, USA:
Jossey-Bass.

128. Sebern, M.J., The Software Development Laboratory: Incorporating Industrial
Practice in an Academic Environment, in Proceedings of the 15th Conference on
Software Engineering and Training. 2002, IEEE. p. 118-127.

129. Sharp, H. and P. Hall, An Interactive Multimedia Software House Simulation for
Postgraduate Software Engineers, in Proceedings of the 22nd International
Conference on Software Engineering. 2000, ACM. p. 688-691.

130. Shaw, M., Software Engineering Education: A Roadmap, in The Future of
Software Engineering, A. Finkelstein, Editor. 2000, ACM. p. 373-380.

131. Shukla, A. and L. Williams, Adapting Extreme Programming for a Core Software
Engineering Course, in Proceedings of the Fifteenth Conference on Software
Engineering Education and Training. 2002, IEEE. p. 184-191.

132. Sindre, G., et al., The Cross-Course Software Engineering Project at the NTNU:
Four Years of Experience, in Proceedings of the Sixteenth Conference on
Software Engineering Education and Training. 2003, IEEE: Madrid, Spain. p.
251-258.

133. Slimick, J., An Undergraduate Course in Software Maintenance and
Enhancement, in Proceedings of the Tenth Conference on Software Engineering
Education and Training. 1997, IEEE: Virginia Beach, VA, USA. p. 61-73.

134. Sommerville, I., Software Engineering. 6th ed. 2001: Addison-Wesley.
135. Sternberg, R.J., R.K. Wagner, and L. Okagaki, Practical Intelligence: The Nature

and Role of Tacit Knowledge in Work and at School, in Mechanisms of Everyday
Cognition, J.M. Puckett and H.W. Reese, Editors. 1993, Lawrence Erlbaum
Associates: Hillsdale, NJ. p. 205-227.

136. Stevens, S.M., Intelligent Interactive Video Simulation of a Code Inspection.
Communications of the ACM, 1989. 32(7): p. 832-843.

 260

137. Sticht, T.G., Applications of the Audread Model to Reading Evaluation and
Instruction, in Theory of Practice and Early Reading, L. Resnick and P. Weaver,
Editors. 1975, Erlbaum: Hillsdale, NJ.

138. Suri, D. and M.J. Sebern, Incorporating Software Process in an Undergraduate
Software Engineering Curriculum: Challenges and Rewards, in Proceedings of
the Seventeenth Conference on Software Engineering Education and Training.
2004, IEEE: Norfolk, VA, USA. p. 18-23.

139. Tang, J.C., Findings from Observational Studies of Collaborative Work, in
Readings in Groupware and Computer-Supported Cooperative Work, R.M.
Baecker, Editor. 1990, Morgan Kaufmann: San Mateo, CA. p. 251-259.

140. Tomayko, J.E., Carnegie Mellon's Software Development Studio: a Five Year
Retrospective, in Proceedings of the Ninth Conference on Software Engineering
Education and Training. 1996, IEEE: Daytona Beach, FL, USA. p. 119-129.

141. Tvedt, J.D., An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time. 1996, Ph.D. Dissertation,
Arizona State University.

142. van der Veer, G. and H. van Vliet, The Human-Computer Interface is the System;
A Plea for a Poor Man's HCI Component in Software Engineering Curricula, in
Proceedings of the Fourteenth Conference on Software Engineering Education
and Training. 2001, IEEE: Charlotte, NC, USA. p. 276-286.

143. Wahl, N.J., Student-Run Usability Testing, in Proceedings of the Thirteenth
Conference on Software Engineering Education and Training. 2000, IEEE:
Austin, TX, USA. p. 123-131.

144. Wake, W.C., Extreme Programming Explored. 2002, Boston, MA: Addison-
Wesley.

145. Weller, E.F., Lessons from Three Years of Inspection Data. IEEE Software, 1993.
10(5): p. 38-45.

146. Wilde, N., et al., Some Experiences With Evolution and Process-Focused
Projects, in Proceedings of the Sixteenth Conference on Software Engineering
Education and Training. 2003, IEEE: Madrid, Spain. p. 242-250.

147. Wohlin, C. and B. Regnell, Achieving Industrial Relevance in Software
Engineering Education, in Proceedings of the Twelfth Conference on Software
Engineering Education and Training, H. Saiedian, Editor. 1999, IEEE Computer
Society. p. 16-25.

 261

Appendix A: “The Fundamental Rules of Software

Engineering”

1. If you don’t do a system architectural design with well-defined interfaces,

integration will be a big mess [134].

2. Design before coding [134].

3. If a project is late and you add more people, the project will be even later [22].

4. Team members that are new to a project are less productive (1/3 to 2/3 less)

than the adequately trained people [18].

5. The average newly hired employee is about half as productive as an experienced

employee [2].

6. Two factors that affect productivity are work force experience level and level of

project familiarity due to learning-curve effects [2].

7. Developers’ productivity varies greatly depending on their individual skills

(experience concerning a development activity, knowledge of the tools,

methods, and notations used, etc.) [18, 26, 121].

8. Using better and fewer people is more productive than using more less qualified

people [18].

9. The greater the number of developers working on a task simultaneously, the

faster that task is finished, but more overall effort is required due to the growing

need for communication among developers. Thus, the productivity of the

individual developer decreases [22].

10. The earlier problems are discovered, the less the overall cost will be [47].

 262

11. The error detection effectiveness of reviews depends greatly on the

qualifications and preparations of the reviewers and the completeness and

correctness of the documents used as a reference [145].

12. Reviews of non-technical documents (e.g., requirements specification, user

manual) are more effective if the customer is involved [111].

13. Develop tests before doing the coding [10].

14. Extreme time pressure leads to decreased productivity [47].

15. Extreme time pressure leads to a faster rate at which errors are made, which

leads to a further delay in the completion date [91].

16. Error correction is most efficiently done by the document’s author(s) [47].

17. The more errors a document from a previous phase contains, the more errors

will be passed on to the next document [47].

18. Always test everything [134].

19. Talk to users, not to customers to verify the prototype [134].

20. Inspection is the most cost-effective measure of finding problems in

software [134].

21. Software inspections find a high percentage of errors early in the development

life cycle [141].

22. The use of inspections can lead to defect prevention, because developers get

early feedback with respect to the types of mistakes they are making [141].

23. Every group has one programmer that is 10 times more productive than

everyone else [121].

24. If you disable Internet surfing, productivity will go down [141].

 263

25. The structure of the software reflects the structure of the organization that

developed it [37].

26. Changing requirements are inevitable. Anticipating change with open

architectures, adaptable designs, and flexible planning can help to mediate some

of the ill effects of these changes [45].

27. Design for change/variability [45].

28. Use defensive programming [31].

29. Configuration management is good [134].

30. Successful software is designed by people who understand the application of the

software (e.g., a well-designed missile control program was designed by

someone who understood missiles) [72].

31. Software development requires a substantial time commitment to learning the

application domain [42].

32. Broad application knowledge is acquired more through relevant experience than

through training [42].

33. The more bugs you find, the more buggy the rest of your program will likely

be [95].

34. Tests reveal errors in the code. The better a test is prepared for, the higher

amount of detected errors [134].

35. Sticking with a too-tight schedule increases cost due to a large work force [2].

36. Motivation is increased through monetary incentives (profit sharing, pay for

performance, merit pay, work measurement with incentives, and morale

measurement), creating a positive frame of mind at work (employee

 264

involvement in wellness programs and creating fun at work), encouraging a

feeling of commitment and responsibility (worker participation in decision-

making, getting employees to think like owners, self-managing work teams,

commitment to productivity breakthroughs, and providing an environment with

more freedom and less restrictions), and increasing schedule pressure (using

visible milestones and setting individual goals.) Increased motivation leads to

increased productivity which reduces cycle time [141].

37. Improving the work environment is done by making ergonomic considerations,

giving employees enclosed offices to reduce background noise and

interruptions, and giving employees access to required resources, such as

computers, software tools, support staff, and information. Improving the work

environment leads to increased productivity, which reduces cycle time [141].

38. Getting the most out of employees can be done by utilizing experts, employee

training, skills assessment and job matching, and reducing turnover. Getting the

most out of employees leads to increased productivity, which leads to decreased

cycle time [141].

39. Improving the software development process can be done by formalizing the

process, controlling quality, and taking advantage of tools. Improving the

software process increases employees’ motivation, which also increases their

productivity [141].

40. Rework is usually due to customer requirements, product flaws, and

communication breakdown between project members. Improving the process to

reduce rework can be done by using prototyping and evolutionary development

 265

and by using formal specification methods, modern programming practices, and

inspections. Reducing rework increases productivity [141].

41. Design complexity can be reduced by using object-oriented design techniques.

Reducing design complexity reduces product complexity, which increases

productivity [141].

42. Code complexity can be reduced by using modularization and object-oriented

programming techniques. Reducing code complexity reduces product

complexity, which increases productivity [141].

43. Cognitive complexity can be reduced by modularization, multiple levels of

abstraction, simulation, and prototyping. Reducing cognitive complexity

reduces product complexity, which increases productivity [141].

44. Test complexity can be reduced by using testing tools, building the product with

testing in mind, and testing for the type of environment a product will be used

in. Reducing test complexity reduces product complexity, which increases

productivity [141].

45. Management complexity can be reduced by using project management planning

tools and methods. Reducing management complexity reduces product

complexity, which increases productivity [141].

46. Tasks can be eliminated or simplified by using automation of tasks (e.g., code

generators, automated testing) and eliminating non-value added activities and

low-priority tasks. This leads to increased productivity [141].

47. Nine ways to reduce cycle time are: increase productivity, reduce rework,

maximize software reuse, reduce product complexity, eliminate or simplify

 266

tasks, maximize task concurrency, reduce undiscovered work, reduce risk, and

use process models aimed at cycle time reduction [141].

48. Productivity is increased by increasing motivation, improving the work

environment, getting the best people for the job, improving the process, and

maximizing reuse [141].

49. Product complexity can be reduced by reducing code complexity, design

complexity, cognitive complexity, test complexity, and management

complexity [141].

50. Decisions made in the upstream portion of the software development process

(requirements and design) impact productivity, quality, and costs throughout the

life cycle more than the other portions [42].

51. The thin spread of application domain knowledge is a major phenomenon that

greatly reduces software productivity and quality [42].

52. Specification mistakes often occur when designers do not have sufficient

application knowledge to interpret the customer’s intentions from the

requirements document [42].

53. Requirements will appear to fluctuate when the development team lacks

application knowledge and performs an incomplete analysis of the

requirements [42].

54. Coordinating understanding of an application and its environment requires

constant communication between customers and developers [42].

55. Specifications are almost always incomplete and fraught with ambiguities.

Constant contact with the customer is required to obtain the correct

 267

requirements. Without this communication, the developers tend to make

incorrect assumptions about what the customer wants [45].

56. Fluctuating and conflicting requirements is a major phenomenon that greatly

reduces software productivity and quality [42].

57. Communication and coordination breakdown is a major phenomenon that

greatly reduces software productivity and quality [42].

58. Truly exceptional designers that are extremely familiar with the application

domain, skilled at communicating their technical vision to other project

members, possess an exceptional ability to map between the behavior required

of the application system and the computational structures that implement the

behavior, and are recognized as the “intellectual core” of the project are a scarce

resource [42].

59. New requirements frequently emerge during development since they could not

be identified until portions of the system had been designed or

implemented [42].

60. Besides a developer’s ability to design and implement programs, his skills in

resolving conflicting requirements, negotiating with the customer, ensuring that

the development staff shares a consistent understanding of the design, and

providing communications between two contending groups are crucial to project

performance [42].

61. Undiscovered work (work that was not considered in initial planning estimates)

can be reduced by using formal methods, analysis of PERT sizing metrics, the

 268

Spiral life cycle model, and prototyping. Reducing undiscovered work leads to

increased productivity [141].

62. Risk can be reduced by using risk management techniques. Reducing risk leads

to increased productivity [141].

63. Inspections should be thought of as part of the development process, and time

must be set aside accordingly. Once this is done, inspections can have a

significant improvement in the development organization’s ability to meet

internal schedules [141].

64. Proper use of inspections can even shorten life cycle [141].

65. Participants in the inspection team get a high degree of product knowledge,

which leads to higher productivity [141].

66. Slower programmers show a great deal of improvement when using

inspections [141].

67. A new project assignee does not become productive until six months to a year

into the project [42].

68. Collaborators use hand gestures to uniquely communicate significant

information [139].

69. Employers often limit the number of hours employees can work, resulting in

further pressure to finish a project as quickly as possible [45].

70. The customer often changes deadlines to be earlier than originally agreed-upon,

requiring negotiation with the customer for either allowing some deliverables to

be delivered at the earlier date, with the rest being delivered later, or dropping

some deliverables or requirements altogether [45].

 269

71. Code comments and documentation are often produced at the end of a project,

creating major problems when a team member is lost at short notice, leaving

others to continue their work. This can be alleviated by having quality auditors

require inspections at very short notice [45].

72. Teams often change during projects (members are added and/or removed.) [45].

73. Sometimes the software used for development is upgraded to a new version

during development, and despite claims that it is fully backward-compatible and

won’t affect their work, it usually introduces new problems [45].

74. Hardware crashes, and customers are often unsympathetic to this kind of

delay [45].

75. When a project is in its later stages of development, the development hardware

and software tend to be under the greatest demand, and performance starts to

suffer with lengthy compilations, builds, and test runs [45].

76. Matching the tasks to the skills and motivation of the people available increases

productivity [18].

77. Employee motivation is the strongest influence of productivity [18].

78. Above a certain threshold, work conditions are not a powerful motivator, but

below that threshold, they are a powerful de-motivator [18].

79. The training of new employees is usually done by the “old-timers,” which

results in a reduced level of productivity on the “old-timer’s” part. Specifically,

on the average, each new employee consumes in training overhead 20% of an

experienced employee’s time for the duration of the training or assimilation

period [2].

 270

80. The average assimilation delay, the period of time it takes for a new employee

to become fully productive, is 80 days [2].

81. As schedule pressure increases, quality assurance activities (especially walk-

throughs and inspections) are often relaxed or suspended altogether [2].

82. In the absence of schedule pressure, a full-time employee allocates, on average,

60% of his working hours to the project (the rest is slack time: reading mail,

personal activities, non-project related company business, etc.) [2].

83. Under schedule pressure, people tend to increase their percentage of working

hours spent on the project by as much as 100%, due to spending less time on

off-project activities, such as personal business and non-project communication,

and/or working overtime [2].

84. The three “resource-type” variables that have the greatest impact on

programmer productivity are the availability of programming tools, the

availability of programming practices, and programmer experience [2].

85. The two “task-type” variables that have the greatest impact on programmer

productivity are the programming language and the quality of external

documentation [2].

86. The average full-time employee misses 13 – 15 days of work per year (not

counting vacation time). Reasons are broken down in Table A.1.

 271

Table A.1: Average Number of Workdays Missed Per Year (Taken from [61]).

Reasons for
Missed Work
Day

All
Employees

Employees with Dependents

Stress 1.1 1.1
Personal
Matters

1.4 1.5

Sick Child 1.2 2.1
Day Care
Availability
Issue

0.4 0.8

Elder Parent
Care

0.6 0.9

Other Family
Matters

4.4 4.6

Sick/Illness 4.5 4.2
Total Annual
Downtime
(days)

13.6 15.2

 272

Appendix B: Model Builder “Tips and Tricks” Guide

This guide will provide solutions to some common problems people have run into while

using the SimSE model builder. Specifically, these are problems that exist because there

are phenomena that people want to model but think the model builder does not support it,

when in actuality it does, but in a non-intuitive way. If you have such a problem that is

not addressed here, please send an email to emilyo@ics.uci.edu. Furthermore, if you have

solved such a problem yourself, or found a solution to one of these problems that is

different from the ones listed here, please also let us know.

B.1 Starting a Model

Getting started building a model can be difficult, but it helps if you first list out the

specific lessons that you want your model to teach, and work on each of them

incrementally, specifically thinking of how you want to penalize the player for violating

the lesson and/or reward them for adhering to it. For instance, in the waterfall model,

some of the lessons are:

• Do requirements, followed by design, followed by implementation, followed by

integration, followed by testing.

• At the end of each phase, perform quality assurance activities (e.g., reviews,

inspections), followed by correction of any discovered errors

• If you do not create a high quality design, integration will be slower and many

more integration errors will be introduced.

• Software inspections are more effective the earlier they are performed.

• The better a test is prepared for, the higher the amount of detected errors.

 273

mailto:emilyo@ics.uci.edu

• The use of software engineering tools leads to increased productivity.

Each of these lessons were isolated and built into the model one by one, and the model

generated and tested after each lesson was added. Let us take, for example, the last

lesson, “the use of software engineering tools leads to increased productivity.” What we

would first need to do is add some tool object types, such as a requirements tool, a design

tool, and a coding tool. We would then instantiate these as start state objects. Then, in

order to allow players to purchase tools, we would create a “purchase tools” action that

would set each tool’s “purchased” attribute to true. Then, in order to increase

productivity, we would need to add some of these tools as participants to the actions of

creating requirements, creating design, creating code, etc. (Specifically, we would make

them optional participants (quantity = at most one), and have a trigger condition that

purchased must equal true.) Following this, in order to create the effect of increasing

productivity, we would need to modify one of the rules involved in these actions, namely,

the one that increases the size of the artifact (e.g., requirements document) while that

action (e.g., creating requirements) is active. We would modify the rule by multiplying

the amount by which the size is increased by some factor that is dependent on the tool

used – this could be a tool attribute called, for example, productivity increase factor.

B.2 Finishing a Model

Finishing a model can be a task that is more time-consuming than expected. This is

because much play-testing is required to ensure that the model teaches what you designed

it to teach. We have found that the best way to do this is to isolate each lesson that you

defined when starting to build the model (as discussed in Section B.1), and test each one

separately, then collectively with others. What this entails is deliberately violating each

 274

lesson during gameplay (do it the “wrong” way), and see if the outcome is appropriate.

For instance, to test the lesson “The use of software engineering tools leads to increased

productivity”, play the game without using software engineering tools and see what the

penalty is (probably a lower score and/or in slower development). Do this for all of the

lessons and make a table that lists each approach (i.e., which lesson is violated) and the

score (and optionally, any other effects perceived). Then combine some of these

approaches/violations and note the additive effects to see if they are appropriate.

Continue this process, making adjustments as necessary, until you are confident that all

of the lessons are effectively communicated.

B.3 Getting Around the Lack of If-Else Statements

A common programming language construct is the if-else statement. In SimSE, no such

construct explicitly exists. However, a similar effect can be achieved using trigger

conditions and rules. As an example, take the following simple if statement:

1 if (employee.sleeping == true)
2 employee.productivity = 0;

This same effect can be modeled in SimSE using an action, an autonomous trigger, and

an effect rule. The action we must create is one that is responsible for executing the

statement under the if-clause (employee.productivity = 0;). Let’s call this

“employeeSleepingModProductivity.” We transfer the if-statement predicate

(employee.sleeping == true) directly to this action’s trigger—we will make an

autonomous trigger with one condition: employee.sleeping == true. Finally, in order

to execute the statement (employee.productivity = 0;), we will attach an effect rule

to this new action that simply sets productivity of the employee to 0.

 275

Although this is a simple example, this same technique can usually be applied to

more complicated ones. However, in some more complicated cases, using this technique

might result in too many different actions and rules. To describe another workaround, we

use the following example that enforces the principle in the waterfall model that says you

must have the requirements document at least as complete as the design document, or

else productivity when working on the design will suffer (in this case, it will be half as

productive). Suppose this statement is executed every clock tick during the CreateDesign

action:

1 if (designDocument.completeness <= requirementsDocument.completeness)
2 designDocument.size = designDocument.size + (some_factor * 2);
3 else // requirements document is less complete than design
4 designDocument.size = designDocument.size + some_factor

Of course, because the effect rules do not support if-else statements, this cannot be

directly put into an effect rule. However, we can do the following:

1. Add an attribute to the designDocument object type called

“completenessDiffReqDoc” that is an integer attribute with minimum value 0

and maximum value 1. Eventually, this attribute will be 0 if the requirements

document is less complete than the design document, or 1 otherwise.

2. Create the following two effect rules, attached to the CreateDesign action (these

rules must be executed in the following order):

a. designDocument.completenessDiffReqDoc =

(((requirementsDocument.percentComplete –

designDocument.percentComplete) / 100) + .001) * 100000

b. designDocument.size = designDocument.size + (some_factor * (1 +

designDocument.completenessDiffReqDoc)

 276

What the first rule does is set the attribute’s value correctly. Note that it takes adding a

very small number to ensure that there is no division by 0, and multiplying by a very

large number to ensure that the value will be large enough to be rounded up to 1 if that is

the case. This example is taken directly from the CreateDesign action in the waterfall

model.

B.4 Modeling Error Detection Activities

A common activity in software engineering is, of course, detecting errors in an artifact,

either through reviews, tests, inspections, or some other method. Although this seems like

a relatively straightforward activity, it is actually non-trivial to model in SimSE.

The main idea is to take errors that are unknown to the player and make them known.

This is done by subtracting errors from an artifact’s (e.g.,) numUnknownErrors attribute

and adding them to its numKnownErrors attribute. However, this cycle is not so

straightforward in SimSE. The first thing that must be done is the artifact must be given a

hidden attribute that holds a temporary value during the activity. We will call this

attribute numUnknownErrorsTemp. The following three effect rules must be executed, in

the following order, to achieve the effect of error detection:

1. artifact.numUnknownErrorsTemp = artifact.numUnknownErrors

2. artifact.numUnknownErrors = artifact.numUnknownErrors –

(whatever_factor_in_your_model_affects_how_quickly_errors_are_detected)

3. artifact.numKnownErrors = artifact.numKnownErrors +

(artifact.numUnknownErrorsTemp – artifact.numUnknownErrors)

 277

What this sequence does is, in effect, take some errors from the unknown errors and adds

them to the known errors. See the waterfall model’s ReviewRequirements action and

associated rules for a good example of this.

B.5 Calculating and Assigning a Score

All SimSE games end by giving the player a score. Although any attribute of any object

can be designated as the score, for simplicity one of the easiest things to do is to make an

explicit attribute called “score” attached to your project object. Assigning a score can

then be done in the following way:

1. Designate the trigger(s) or destroyer(s) you want to end the game as game-

ending trigger(s)/destroyer(s) (see Section 3.1.1 of the model builder

documentation).

2. Designate the attribute (e.g., “project.score”) that represents the final score.

3. Attach an effect rule to the action for the trigger/destroyer in step 1, e.g.,

“Calculate Score.” In this rule, set the project.score attribute to the correct

value. The timing of this rule will depend on whether this is a game-ending

trigger (in which case you would make it a trigger rule) or a game-ending

destroyer (in which case you would make it a destroyer rule).

For a good example of this, see the action DeliverProduct and its associated rules in the

waterfall model.

B.6 Using Boolean Attributes in Numerical Calculations

As was seen in Section B.1 with the designDocument.completenessDiffReqDoc attribute,

a Boolean attribute can be assigned a numerical value so it can be used in numerical

 278

calculations by making it an integer attribute with a minimum value of 0 and a maximum

value of 1. This attribute can then be set correctly using mathematical manipulations in

an effect rule, as in the example in Section B.1.

B.7 Revealing Hidden Information During Gameplay

There may come a time where you want to model some aspect of a project that is hidden

from the player at the beginning of the game, but that can be revealed when the player

takes a certain action, or under certain conditions. For example, the number of bugs in a

piece of software might be hidden, but the player might have the option to discover this

number via an inspection action. SimSE allows you to have hidden attributes and reveal

them at the end of the game, but if you wish to reveal values mid-game, there is a trick

you can use.

First, make two attributes, one that is hidden and one that is not hidden. These might

be called “bugs_actual” and “bugs_known”. To start the game, the known value is set to

a default value, such as 0, representing the fact that this value is not yet known. Then,

when the player takes the necessary action to reveal the value, an event can be used to

copy the actual value to the known value, revealing the value to the player.

An interesting offshoot of this trick is that it can be used to represent uncertainty in

values, by introducing a random variance to the operation that copies the value from the

hidden to the known field. For example, you might create a formula that reads

bugs_known = bugs_actual - 10 + random(0,20), introducing a potentially inaccurate

value to the player. The player then has a rough idea of the actual value, but cannot know

exactly how the random factor has thrown off the result. This trick allows for

time/accuracy tradeoffs to be considered. For example, you might create a quick

 279

inspection option which includes a random variation, as well as a thorough inspection

option which does not.

B.8 Taming Random Periodic Events

SimSE allows for there to be a chance that a random event occurs on any given tick.

Thus, if you wish for an event to happen every 100 ticks, allowing it to have a 1% chance

to happen on each tick will roughly do the job. But what if you are modeling an effect

and do not want to take the chance that it could occur in very rapid succession, or

otherwise want to smooth out the distribution of the event?

One way is to create a counter, which has a random chance to be incremented, as well

as an event that triggers when the event reaches a certain total. So, suppose you want to

ensure that it is extremely statistically unlikely that customer changes occur too often, but

that they tend to occur about once every 100 ticks. You could create a hidden value called

“change_counter”, which is initialized to 0. Then you have a random event that has a

10% chance of occurring, and which increments change_counter by 1. Finally, an event

would be created which causes a customer change to occur when change_counter reaches

10. This final event would handle the customer change event and would reset the counter

to 0. In this way, you can help ensure that overly frequent random events do not throw off

your simulation.

B.9 Alternative Action Theming

Only employees may perform actions, but if you are willing to force your player to bend

their metaphor for the system a little bit, you can allow things that are not strictly

employees to act as if they were. For example, if you have several customer stakeholders

 280

and wish to allow the player to question each of them, you could create one employee

action for questioning each stakeholder. In some cases though, it may be more

appropriate to create a stakeholder employee type, place stakeholders in the SimSE

environment and allow the customer to run actions “on” them. This would mean that the

customer could click on the stakeholder they wished to interact with and perform an

action involving them. If you think that it is important enough, and if you think it will be

worth the potential confusion of calling such objects “employees”, you could even create

documents, tools or abstract concepts as employee subtypes and allow the player to

interact through them.

This is a trick you should use at your discretion, but may help you to simulate certain

types of behavior when performing an action “on” a given entity makes more sense by

clicking on it, rather than selecting the option from an employee’s menu.

B.10 Making Customers “Speak”

Although in SimSE the employees are the only objects that can “speak” to the player

through pop-up bubbles over their heads, sometimes it is desirable to have customers give

their input as well. While it is not possible to do this directly, one way to get around this

is to have the employees “say” things for the customer, in the form of a report on

something the customer has done or said (e.g., “The customer says he is very unhappy

right now.”) In order to do this, you can simply add an employee participant to whatever

action you want this trigger or destroyer text to be attached to, and then specify this text

as the trigger or destroyer’s overhead text. You can give the employee participant a

quantity of exactly one if you want only one employee to say the message, or give it no

 281

maximum and a minimum of one if you want all employees to say the message

simultaneously.

 282

Appendix C: Questionnaire Used in Pilot Experiment

C.1 Game Play Questions

1. On a scale of 1-5, how enjoyable is playing SimSE (1 least enjoyable, 5 most

enjoyable)?

2. On a scale of 1-5, is it difficult or easy to play SimSE (1 most difficult, 5

easiest)?

3. Concerning the length of game play, do you think playing one game lasts too

long, too short, or just right?

4. What is your most favorite part/aspect of the game? Why?

5. What is your least favorite part/aspect of the game? Why?

6. Is there anything confusing about the game? If so, what (more than one

suggestion allowed)?

7. What changes would you make to improve the game?

C.2 Software Engineering Education Questions

8. On a scale of 1-5, did playing SimSE reinforce your knowledge of the software

engineering process as taught in ICS 52 (1 not at all, 5 definitely)?

9. On a scale of 1-5, did playing SimSE teach you some new knowledge regarding

the software engineering process that you did not learn in ICS 52 (1 not at all, 5

definitely)?

10. Are there any software engineering process issues you feel you learned better in

this game than in ICS 52? If so, which ones?

 283

11. Are there any software engineering process issues you feel you learned better in

ICS 52 than in this game? If so, which ones?

12. On a scale of 1-5, how helpful do you feel SimSE is to learning software

engineering process issues (1 not at all, 5 very much so)?

13. On a scale of 1-5, how helpful to learning software engineering concepts do you

think it would have been if you had been given the opportunity to voluntarily

play SimSE while taking ICS 52 (1 not at all, 5 very much so)?

14. On a scale of 1-5, how helpful to learning software engineering concepts do you

think it would have been if you had been required to play SimSE while taking

ICS 52 (1 not at all, 5 very much so)?

15. On a scale of 1-5, would you recommend incorporating SimSE as a standard

part of the teaching materials of ICS 52 (1 not at all, 5 very much so)?

C.3 Background Information

16. What was your score in game 1?

17. What was your score in game 2?

18. In addition to ICS 52, did you take any other software engineering classes?

19. Have you practiced software engineering in an industrial (outside of ICS)

setting? If so, for how many years?

20. Are you male or female?

 284

Appendix D: Questionnaire Used for In-Class

Experiments

D.1 Use of the SimSE Game

1. Did you or did you not play SimSE? If so, why? If not, why not? (If you

answered “yes” to this question, proceed to the rest of the questionnaire.

Otherwise, you should not answer any more questions.)

D.2 Game Play Questions

2. On a scale of 1-5, how enjoyable is playing SimSE (1 least enjoyable, 5 most

enjoyable)?

3. On a scale of 1-5, is it difficult or easy to play SimSE (1 most difficult, 5

easiest)?

4. Concerning the length of game play, do you think playing one game lasts too

long, too short, or just right?

5. What is your most favorite part/aspect of the game? Why?

6. What is your least favorite part/aspect of the game? Why?

7. Is there anything confusing about the game? If so, what (more than one

suggestion allowed)?

8. What changes would you make to improve the game?

 285

D.3 Software Engineering Education Questions

9. On a scale of 1-5, did playing SimSE reinforce your knowledge of software

engineering process concepts as taught in the lectures of Informatics 43 (1 not at

all, 5 definitely)?

10. On a scale of 1-5, did playing SimSE teach you some new knowledge regarding

software engineering process concepts that you did not learn in the lectures of

Informatics 43 (1 not at all, 5 definitely)?

11. Are there any software engineering process issues you feel you learned better in

this game than in the lectures of Informatics 43? If so, which ones?

12. Are there any software engineering process issues you feel you learned better in

Informatics 43 lectures than in this game? If so, which ones?

13. On a scale of 1-5, how helpful do you feel SimSE is to learning software

engineering process issues (1 not at all, 5 very much so)?

14. On a scale of 1-5, how helpful to learning software engineering concepts do you

think it has been to be able to have the opportunity play SimSE as an extra-

credit assignment while taking Informatics 43 (1 not at all, 5 very much so)?

15. On a scale of 1-5, how helpful to learning software engineering concepts do you

think it would have been if you had been required to play SimSE while taking

Informatics 43 (1 not at all, 5 very much so)?

16. On a scale of 1-5, would you recommend incorporating SimSE as a standard

part of the teaching materials of Informatics 43 (1 not at all, 5 very much so)?

17. On a scale of 1-5, would you recommend incorporating SimSE as a mandatory

exercise in Informatics 43 (1 not at all, 5 very much so)?

 286

18. On a scale of 1-5, would you recommend incorporating SimSE as an extra-

credit exercise in Informatics 43 (1 not at all, 5 very much so)?

19. On a scale of 1-5, would you recommend incorporating SimSE as a voluntary

exercise in Informatics 43 (1 not at all, 5 very much so)?

20. On a scale of 1-5, how well did playing SimSE help you understand the material

that was taught in the lectures of Informatics 43?

21. On a scale of 1-5, how well did playing SimSE help you answer questions on

the final exam?

D.4 Background Information

22. Have you practiced software engineering in an industrial (outside of ICS)

setting? If so, for how many years?

23. Are you male or female?

 287

Appendix E: Assigned Questions (With Answers) for In-

Class Experiments

E.1 Inspection Model Questions

1. What seems to be the ideal size of an inspection team? 4 people

2. How long should an inspection typically last? 2 hours

3. What is the ideal size(s) of checklist that should be used in an inspection? 1

page

4. What is the ideal size(s) of code that should be inspected? 150 lines

5. What are the effects of putting more as opposed to fewer people on an

inspection team? They find bugs faster but take longer to discuss, which

delays them in moving on to finding more bugs.

E.2 Waterfall Model Questions

1. Describe in detail the process (in terms of the sequence of possible steps that

you can take in the game) that this game rewards. Create requirements;

review requirements; correct requirements; create design; review design;

correct design; create code; inspect code; correct code; integrate code;

create, review & correct system test plan (although this step can come

anywhere after requirements are done or partway done); do system test,

correct code, deliver product.

2. What is the effect of giving an employee a bonus? A short-term increase in

productivity/mood.

 288

3. What is the effect of giving an employee a pay raise? A longer-term increase

in productivity/mood.

4. Is it worth it to purchase tools? Yes.

5. How is the outcome of the game affected if you fire Andre right at the

beginning? This is going to severely hinder the game, because Andre is

probably the best all-around employee, good at requirements, design, and

coding. Without him you are left with only 2 good designers, and 3 good

coders, which is not enough to get a good score. Without him, you are

forced to either use too few people on these tasks, or use people who aren’t

very good at these tasks, which will slow things down and introduce more

errors.

E.3 Incremental Model Questions

1. Which artifact attribute seemed to be most important and most strongly affect

the outcome of the game (e.g., inflexibility, difficulty, changeability, etc.)?

There are multiple possible answers here, though the most obviously

correct answer is its changeability, which determines how often customer

changes occur, since customer changes are so damaging. It could be argued

that the difficulty was the most important, since that determines how long

implementation takes, but it would be sort of missing the point. Anything

well-justified should be accepted, but if they just write “inflexibility” that is

insufficient for full credit.

2. Try skipping one or more of the documentation phases (requirements/design) on

one or more modules. What effect does this have? If the requirements phase is

 289

skipped, a very low accuracy rating will result, which will lower the overall

score or require a great deal of redesign. If the design phase is skipped,

they will have a very hard time redesigning any changes, and

implementation will be slowed. Skipping both will mean an inaccurate

module, impossibly hard redesign, and a terrible score, in most cases. This

is, once again, a reasonably open-ended question. Most any well-justified

answer that demonstrates they actually explored each approach should be

accepted.

3. How does the early submission of a partially complete project affect your work

on the remainder of the project? This will reduce changeability, and the

difficulty of some tasks, for each module, especially the submitted module.

In general, this means there will be less customer changes, and an easier

project lifespan. Also, some of the module’s hidden attributes are revealed.

4. Describe your approach to the game in terms of the lifecycle models we

discussed in class. In what ways did you follow a given lifecycle model?

Possible answers include:

- Following the waterfall model by performing requirements on each

module, design on each module, etc.

- Following the spiral model by doing risk analysis of each module,

implementing one, re-analyzing, working on more modules, etc.

- Following the rapid prototyping model by quickly building one

module and submitting it.

 290

- Following the XP model by forgoing most documentation and

implementing modules quickly, reworking them as necessary.

- In general, incremental approaches can be followed by early

submission of modules.

5. Is there any situation where it might be valuable to use the “start over” action?

The most obvious case is after you have submitted a module without doing

any requirements work on it, to obtain the partial submission benefits.

Sometimes it is better to start over than to try to fix that module. Also, if

you have done a complete requirements document but over time your

module accuracy has fallen, it is often quite hard to get that accuracy back

up. Starting over may be necessary. There could be other well-reasoned

answers revolving around having skimped on documentation and needing

the chance to do it right. Again, any that are well-justified should be

accepted.

 291

Appendix F: Pre-Test for Comparative Experiment

1. Describe three of the major principles behind the waterfall model of software

engineering. (specific, non-biased)

2. Name two effective ways to increase a software engineer’s

motivation/productivity. (specific, SimSE-biased)

3. Describe three of the major principles behind iterative/incremental software

development models. (specific, non-biased)

4. In an iterative software process, how does the early submission to the customer

of a partially complete project affect your work on the remainder of the project?

(specific, SimSE-biased)

5. In an incremental/iterative model of software development, how are increments

planned (i.e., what is the criteria for determining which features/modules go into

which increment)? (specific, reading/lecture-biased)

6. What is the purpose of a code inspection? (specific, non-biased)

7. What is the maximum amount of time that should be spent on a code inspection

(in hours/minutes)? (specific, non-biased)

8. What is the ideal size of a code inspection team? (specific, non-biased)

9. What is the purpose of a checklist in a code inspection? (specific,

reading/lecture-biased)

10. What is the ideal size of checklist (in number of pages) that should be used in a

code inspection? (specific, SimSE-biased)

11. Name two strengths of the incremental life cycle model of software engineering.

(insight, non-biased)

 292

12. Name two strengths of the waterfall life cycle model of software engineering.

(insight, non-biased)

13. Discuss the difference, in terms of the software life cycle, between the waterfall

model and incremental/iterative models. (insight, non-biased)

14. Suppose you encounter a situation in which you really would like to have “the

best of both worlds” by combining the incremental and waterfall life cycle

models of software engineering. Draw the resulting model, and discuss the

strengths and weaknesses of this particular combination. (application, non-

biased)

15. You have just been named the chief executive officer of a newly established

software company. Your first customer is NASA, who has contracted your

company to build the software that will launch their newest space shuttle, which

has recently been built. Currently, the entire infrastructure for launch is in place

except for your launching software. Which software life cycle model will you

choose to build this product, and why? (application, non-biased)

 293

Appendix G: Post-Test for Comparative Experiment

1. List the phases of the waterfall model of software development. (specific, non-

biased)

2. Name two effective ways to increase a software engineer’s

motivation/productivity. (specific, SimSE-biased)

3. Explain the role of risk analysis in the software process. (specific, non-biased)

4. In an iterative software process, how does the early submission to the customer

of a partially complete project affect your work on the remainder of the project?

(specific, SimSE-biased)

5. In an incremental/iterative model of software development, how are increments

planned (i.e., what is the criteria for determining which features/modules go into

which increment)? (specific, reading/lecture-biased)

6. What is the purpose of a code inspection? (specific, non-biased)

7. Name and describe three of the typical steps in a code inspection process.

(specific, reading/lecture-biased)

8. What is the maximum amount of time that should be spent on a code inspection

(in hours/minutes)? (specific, non-biased)

9. What is the purpose of a checklist in a code inspection? (specific,

reading/lecture-biased)

10. What is the ideal size of checklist (in number of pages) that should be used in a

code inspection? (specific, SimSE-biased)

11. Describe the pros and cons of a software life cycle model in which increasingly

complete versions of the product are delivered each week, versus a model in

 294

which only one, fully complete product is delivered at the end. (insight, non-

biased)

12. What is the biggest weakness of the waterfall model of software development?

(insight, reading/lecture-biased)

13. What are the effects of putting more as opposed to fewer people on a code

inspection team? (insight, SimSE-biased)

14. Suppose you encounter a situation in which you really would like to have “the

best of both worlds” by combining the incremental and waterfall life cycle

models of software engineering. Draw the resulting model, and discuss the

strengths and weaknesses of this particular combination. (application, non-

biased)

15. You have just been named the chief executive officer of a newly established

software company. Your first customer is Disney, who has contracted your

company to build the “coolest new kids’ computer game” based on their latest

animated feature film. Beyond this, they are unsure what they want the game to

do or look like, but one of their top priorities is to release the game quickly, by

the time the film comes out on DVD. Which software life cycle model will you

choose to build this product, and why? (application, non-biased)

 295

Appendix H: Questionnaire Used for Comparative

Experiment

H.1 Learning Experience Questions

1. Which learning exercise did you participate in (SimSE, reading, or lectures)?

2. Approximately how much total time did you spend on the learning exercise?

3. Did you spend any time looking up any further information about the concepts

being taught in the learning exercise? If so, why did you do this, how much time

did you spend doing this, and which resources did you use to look them up?

4. On a scale of 1-5, how enjoyable was the learning exercise (1 least enjoyable, 5

most enjoyable)?

5. What were the most enjoyable aspects of the learning exercise?

6. What were the least enjoyable aspects of the learning exercise?

7. On a scale of 1 to 5, how much did the learning exercise engage your attention

(1 least engaging, 5 most engaging)?

8. What were the most attention-grabbing aspects of the exercise?

9. What were the least attention-grabbing aspects of the exercise?

10. On a scale of 1-5, how effective did you feel the learning exercise was in

helping you learn software process concepts (1 least effective, 5 most

effective)?

11. In your opinion, which characteristics of the learning exercise were most helpful

to learning software process concepts?

 296

12. In your opinion, which characteristics of the learning exercise were least helpful

to learning software process concepts?

H.2 Background Information Questions

13. Have you practiced software engineering in an industrial (outside of ICS)

setting? If so, for how many years?

14. Which software engineering classes (if any) have you taken?

15. Are you male or female?

H.3 Lecture Group Questions

16. On a scale of 1-5, how effective did you feel the lecturer was in teaching the

concepts to you (1 least effective, 5 most effective)?

17. Did you spend any time reviewing the slides outside of the lecture sessions? If

so, why did you do this, and how much time did you spend?

18. If you could choose between learning software process concepts through

spending two hours hearing lectures about the subject versus spending two

hours reading about the subject, which would you choose and why?

19. If you could choose between learning software process concepts through

spending two hours hearing lectures about the subject versus spending four

hours playing a simulation game that teaches the same concepts, which would

you choose and why?

 297

H.4 Reading Group Questions

20. Did you read any more or less than what was assigned? (Please be honest – you

will get paid regardless of your answer!) If you read more, what extra did you

read? If you read less, why didn’t you read all that was assigned?

21. If you could choose between learning software process concepts through

spending two hours reading about the subject versus spending two hours

hearing lectures about the subject, which would you choose and why?

22. If you could choose between learning software process concepts through

spending two hours reading about the subject versus spending four hours

playing a simulation game that teaches the same concepts, which would you

choose and why?

H.5 SimSE Group Questions

23. Did you play each game less than, as much as, or more than you were instructed

(in order to get a score of 85 or above)? (Please be honest – you will get paid

regardless of your answer!) Why did you play less than, as much as, or more

than you were instructed?

24. Would you prefer to learn software process concepts through four hours of

playing SimSE, or through two hours of reading about software process

concepts? Why?

25. Would you prefer to learn software process concepts through four hours of

playing SimSE, or through two hours of listening to lectures about software

process concepts? Why?

 298

	PrelimPagesMinusTitlePage.pdf
	PrelimPagesMinusTitlePage.pdf
	EDUCATION
	EMPLOYMENT
	REFEREED JOURNAL PUBLICATIONS
	REFEREED CONFERENCE AND WORKSHOP PUBLICATIONS
	OTHER PUBLICATIONS
	PRESENTATIONS
	TEACHING
	UNDERGRADUATE STUDENTS ADVISED
	SERVICE TO THE RESEARCH COMMUNITY
	TECHNICAL SKILLS

	1.pdf
	1. Introduction

	2.pdf
	2. Background
	2.1 Software Engineering Educational Approaches
	2.1.1 Adding Realism to Class Projects
	2.1.2 Adding the “Missing Piece”
	2.1.3 Simulation

	2.2 Learning Theories
	2.3 Software Engineering Educational Approaches and Learning

	3.pdf
	3. Approach
	3.1 Research Questions
	3.2 Key Decisions
	3.3 Detailed Approach

	4.pdf
	4. Modeling/Simulation Capabilities
	4.1 Modeling Constructs
	4.1.1 Object Types
	4.1.2 Start State
	4.1.3 Actions
	4.1.4 Rules
	4.1.5 Graphics
	4.1.6 Modeling Sequence
	4.1.7 Summary of Modeling Constructs

	4.2 Sample Implementation
	4.3 Discussion

	5.pdf
	5.1 Object Types Tab
	5.2 Start State Tab
	5.3 Actions Tab
	5.4 Rules Tab
	5.5 Graphics Tab
	5.6 Map Tab
	5.7 Menu Items
	5.8 Design and Implementation
	5.9 Discussion

	6.pdf
	6.1 Game Play
	6.1.1 Game Play Example

	6.2 Design and Implementation

	7.pdf
	7. Models
	7.1 Waterfall Model
	7.2 Inspection Model
	7.3 Incremental Model
	7.4 Extreme Programming Model
	7.5 Rapid Prototyping Model
	7.6 Rational Unified Process Model
	7.7 Discussion

	8.pdf
	8. Explanatory Tool
	8.1 User Interface
	8.2 Design and Implementation

	9.pdf
	9. Evaluation
	9.1 Pilot Experiment
	9.1.1 Setup
	9.1.2 Results

	9.2 In-Class Use
	9.2.1 Setup
	9.2.2 Results

	9.3 Comparative Experiment
	9.3.1 Experiment Setup
	9.3.2 Experiment Results

	9.4 Observational Study
	9.4.1 Setup
	9.4.2 Results

	9.5 Model Builder and Modeling Approach Evaluation
	9.6 Summary

	10.pdf
	10. Related Work
	Existing software engineering simulations do not adhere to w

	11.pdf
	11. Conclusions

	12.pdf
	12. Future Work

	References.pdf
	References

	Appendix A.pdf
	Appendix A: “The Fundamental Rules of Software Engineering”

	Appendix B.pdf
	Appendix B: Model Builder “Tips and Tricks” Guide
	B.1 Starting a Model
	B.2 Finishing a Model
	B.3 Getting Around the Lack of If-Else Statements
	B.4 Modeling Error Detection Activities
	B.5 Calculating and Assigning a Score
	B.6 Using Boolean Attributes in Numerical Calculations
	B.7 Revealing Hidden Information During Gameplay
	B.8 Taming Random Periodic Events
	B.9 Alternative Action Theming
	B.10 Making Customers “Speak”

	Appendix C.pdf
	Appendix C: Questionnaire Used in Pilot Experiment
	C.1 Game Play Questions
	C.2 Software Engineering Education Questions
	C.3 Background Information

	Appendix D.pdf
	Appendix D: Questionnaire Used for In-Class Experiments
	D.1 Use of the SimSE Game
	D.2 Game Play Questions
	D.3 Software Engineering Education Questions
	D.4 Background Information

	Appendix E.pdf
	Appendix E: Assigned Questions (With Answers) for In-Class E
	E.1 Inspection Model Questions
	E.2 Waterfall Model Questions
	E.3 Incremental Model Questions

	Appendix F.pdf
	Appendix F: Pre-Test for Comparative Experiment

	Appendix G.pdf
	Appendix G: Post-Test for Comparative Experiment

	Appendix H.pdf
	Appendix H: Questionnaire Used for Comparative Experiment
	H.1 Learning Experience Questions
	H.2 Background Information Questions
	H.3 Lecture Group Questions
	H.4 Reading Group Questions
	H.5 SimSE Group Questions

