1. [Goodrich & Tamassia, C-7.3] Consider a greedy strategy for finding a path from vertex \textit{start} to vertex \textit{goal} in a given connected graph, that performs the following steps:

(a) $\text{path} = [\text{start}]$

(b) $\text{visited} = \{\text{start}\}$

(c) if $\text{start} == \text{goal}$, return path and exit

(d) find the minimum-weight edge $\text{start} \rightarrow \text{next}$ such that next is not in visited

(e) add next to the end of path

(f) add next to visited

(g) set start to next and go to step (c)

Does this greedy strategy always find a shortest path from start to goal? Either explain intuitively why it works, or give a counterexample.

2. [Goodrich & Tamassia, C-7.6] Design an efficient algorithm for finding a \textit{longest} directed path from a vertex s to a vertex t of a weighted directed acyclic graph G. Also, analyze the time complexity of your algorithm.

3. Find a directed acyclic graph G, with a starting vertex s that can reach all other vertices of G, such that if you use Dijkstra’s algorithm to find shortest paths in G from s, the order in which it finds these paths is \textit{not} a topological ordering of G.

4. Suppose we are given a directed graph G with positive edge weights, and vertices s and t in the graph. We wish to find the path from s to t that minimizes the \textit{product} of the weights of its edges (rather than minimizing the sum of the weights as in the usual shortest path problem).

(a) Describe a method for computing a new set of weights for the edges of G, such that the shortest path from s to t for the new weights is automatically the same as the minimum-product path for the original weights.

(b) Under what conditions on the original edge weights will Dijkstra’s algorithm (using the new weights) be guaranteed to find the correct path?