Triangles and Squares David Eppstein, ICS Theory Group, April 20, 2001

Which unit-side-length convex polygons can be formed by packing together unit squares and unit equilateral triangles? For instance one can pack six triangles around a common vertex to form a regular hexagon. It turns out that there is a pretty set of 11 solutions. We describe connections from this puzzle to the combinatorics of 3- and 4-dimensional polyhedra, using illustrations from the works of M. C. Escher and others.

(Joint work with Günter Ziegler)

- 1. Which convex polygons can be made from squares and triangles?
 - 2. Platonic solids
 - 3. The six regular 4-polytopes
 - 4. Mysteries of 4-polytopes
 - 5. Flatworms
 - 6. The puzzle solutions
 - 7. Polytopes and spheres
 - 8. Koebe's theorem
 - 9. Polarity
 - 10. The key construction
 - 11. E-polytopes
 - 12. Polars of truncated hypercubes?
 - 13. Hyperbolic space
 - 14. Models of hyperbolic space
 - 15. Size versus angle
 - 16. Right-Angled dodecahedra tile hyperbolic space
 - 17. Surprise!
 - 18. Dragon

Which strictly convex polygons can be made by gluing together unit squares and equilateral triangles?

Not strictly convex

The Five Platonic Solids (and some friends)

M. C. Escher, Study for Stars, Woodcut, 1948

The Six Regular 4-Polytopes

Simplex, 5 vertices, 5 tetrahedral facets, analog of tetrahedron

Hypercube, 16 vertices, 8 cubical facets, analog of cube

Cross polytope, 8 vertices, 16 tetrahedral facets, analog of octahedron

24-cell, 24 vertices, 24 octahedral facets, analog of rhombic dodecahedron

120-cell, 600 vertices, 120 dodecahedral facets, analog of dodecahedron

600-cell, 120 vertices, 600 tetrahedral facets, analog of icosahedron

Mysteries of four-dimensional polytopes...

What face counts are possible?

For three dimensions, $f_0 - f_1 + f_2 = 2$, $f_0 \le f_2 - 4$, $f_2 \le f_0 - 4$ describe all constraints on numbers of vertices, edges, faces All counts are within a constant factor of each other

For four dimensions, some similar constraints exist, e.g. $f_0 + f_2 = f_1 + f_3$ but we don't have a complete set of constraints

Is "fatness" $(f_1 + f_2)/(f_0 + f_3)$ bounded? Known O($(f_0 + f_3)^{1/3}$) [Edelsbrunner & Sharir, 1991]

How can we construct more examples like the 24-cell?

All 2-faces are triangles ("2-simplicial")

All edges touch three facets ("2-simple")

Only few 2-simple 2-simplicial examples were known: simplex, hypersimplex, 24-cell, Braden polytope

Octahedron and tetrahedron dihedrals add to 180! So they pack together to fill space

M. C. Escher, Flatworms, lithograph, 1959

The Eleven Convex Square-Triangle Compounds

Polytopes and spheres

M. C. Escher, Order and Chaos, lithograph, 1950

Theorem [Koebe, 1936]:

Any planar graph can be represented by circles on a sphere, s.t. two vertices are adjacent iff the corresponding two circles touch

Replacing circles by apexes of tangent cones forms polyhedron with all edges tangent to the sphere

Polarity

Correspond points to lines in same direction from circle center distance from center to line = 1/(distance to point)

Line-circle crossings equal point-circle horizon Preserves point-line incidences! (a form of projective duality)

Similar dimension-reversing correspondence in any dimension

Converts polyhedron or polytope (containing center) into its dual

Preserves tangencies with unit sphere

Convex Hull of (P union polar), P edge-tangent Edges cross at tangencies; hull facets are quadrilaterals

M. C. Escher, Crystal, mezzotint, 1947

Same Construction for Edge-Tangent 4-Polytopes?

Polar has 2-dimensional faces (not edges) tangent to sphere

Facets of hull are dipyramids over those 2-faces

All 2-faces of hull are triangles (2-simple)

Three facets per edge (2-simplicial) if and only if edge-tangent polytope is simplicial

This leads to all known 2-simple 2-simplicial polytopes

Simplex \Rightarrow hypersimplex

Cross polytope \Rightarrow 24-cell

600-cell ⇒ new 720-vertex polytope, fatness=5

So are there other simplicial edge-tangent polytopes?

Polars of truncated hypercubes?

Formed by gluing simplexes onto tetrahedral facets of cross polytope

Always simplicial

Many different variations

If we warp the glued simplex to make it edge-tangent, is the result still convex?

Need a space where we can measure convexity independent of warping (projective transformations)

Answer: hyperbolic geometry!

Hyperbolic Space (Poincaré model)

Interior of unit sphere; lines and planes are spherical patches perpendicular to unit sphere

M. C. Escher, Circle Limit II, woodcut, 1959

Two models of Hyperbolic Space

Klein Model
Preserves straightness, convexity
Angles severely distorted

Poincaré Model
Preserves angles
Straightness, convexity distorted

Size versus angle in hyperbolic space

Smaller shapes have larger angles

Larger shapes have smaller angles

What are the angles in Escher's triangle-square tiling?

3 triangle + 3 square = 360 2 triangle + 1 square = 180 square < 90, triangle < 60

Another impossible figure!

Right-angled dodecahedra tile hyperbolic space

From Not Knot, Charlie Gunn, The Geometry Center, 1990

Surprise!

Edge-tangent cross polytopes have 90-degree hyperbolic dihedrals

Edge-tangent simplices have 60-degree hyperbolic dihedrals

So truncated cubes work! (new dihedrals are 150 degrees)

Other examples:

Six simplices around a triangle (closely related to Soddy's hexlet of nine spheres in 3d)

Glue up to five cross polytopes around a central simplex then close up nonconvexities by pairs of simplices

Even better, we get infinite families of simplicial edge-tangent polytopes, leading to infinitely many 2-simple 2-simplicial examples!

Glue n cross polytopes end-to-end forming 4n holes (180-degree dihedrals) fill with 12n simplices, three per hole

M. C. Escher, Dragon, wood-engraving, 1952