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Abstract

We give tight bounds on the complexity of the cells of a line arrangement that are cut by
another line or by a convex polygon. These quantities are useful for the analysis of various
geometric algorithms.

1. Introduction

A number of results in the analysis of algorithms depend on bounds on the complexity of zones
in an arrangement; that is, given an arrangement of n lines in the plane, and some figure in the
same plane, we wish to know the sum of the numbers of sides of the cells in the arrangement
that are cut by that figure. The basic result in this area is the so-called horizon theorem: the
complexity of the cells supported by one side of any line in the arrangement is at most 5n
[1, 2, 4]. This result can be used to prove an O(n2) bound on the time needed to construct the
arrangement. The horizon theorem has also been used in some recent work on hidden surface
removal and constructive solid geometry [6]; in these cases the figure cutting the arrangement
is a convex k-gon, and we wish to know the complexity of the cells touching the k-gon on the
inside. For fixed k the previous bound shows that this is O(n).

We give a number of results on the complexity of zones in an arrangement of lines:

1. The maximum number of sides in all cells supported by a single line is at most 9.5n+O(1),
improving a previous bound of 10n. We give an example to show that the new bound
is tight up to O(1). (We have recently learned that Edelsbrunner et al. have proved the
same bounds with different techniques [3].)

2. We give examples showing that this bound does not generalize to other related configura-
tions: the complexity of cells supported by two sides of two parallel lines, either between
the two lines or on the outsides of the lines, can be at least 10n + O(1). By previously
known results, this is also an upper bound.

3. The maximum complexity of the cells touching the inside of a triangle is at most 10.5n +
O(1) and at least 10n + O(1).
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4. The complexity of the cells touching the inside of a convex k-gon, is at most 11n+(3/2)k2.

5. The complexity of the cells touching the inside of a convex k-gon is O(nα(n, k)), assuming
k is O(n). This gives a tighter bound than (4) for k larger than about

√
n and improves

previous bounds of O(nα(n)) [5] and O(nk) [6]. Here α(n) and α(n, k) are one-variable
and two-variable inverse Ackermann functions, respectively.

These results also hold for pseudoline arrangements. A pseudoline arrangement is a col-
lection of curves, in which each pair of curves intersects at most once (at a crossing, rather
than at a tangency). A convex k-gon cutting a pseudoline arrangement is assumed to cut each
curve at most twice. In the final section of the paper, we give a sixth result. We adapt a con-
struction that gives n line segments with lower envelope complexity Ω(nα(n)) [10, 8] to show
that the complexity of an arrangement of pseudolines cut by a convex k-gon may be as large
as Ω(nα(n, k)). This construction proves that the upper bound in (5) is tight for pseudolines
up to a constant factor. It is unknown whether the bound in (5) is tight for straight lines.

2. Tight Bounds for Both Sides of a Line

Let A be an arrangement of lines in the plane. Following Edelsbrunner [2], we define a 1-border
(respectively, 0-border) of A to be a side (vertex) of a polygonal cell of A. A 1-border can be
thought of as a pair, consisting of a line segment and a cell. The zone of a line of A is the set
of 0- and 1-borders that bound cells supported by that line. The complexity of a zone is its
cardinality.

The number of 0-borders in the zone of a line or a convex polygon is exactly the number of
1-borders minus one for each unbounded cell. Since we are interested in the maximum possible
complexity of a zone, and since there are constructions for zones achieving the maximum 1-
border complexity that have only 4 unbounded cells, we can treat the 0-border complexity as
essentially equal to the 1-border complexity. Therefore, we consider only 1-borders in all our
complexity bounds.

We further assume that the n+1 lines of A are in general position. We refer to the (n+1)-st
line h0 whose zone is under consideration as the horizon line, and assume that it is horizontal.
For a line a of A, a 6= h0, we distinguish the two sides of a, left and right. A 1-border contained
in a belongs to one side or the other.

First we review an argument due to Edelsbrunner et al. [2, 4] that gives an upper bound
of 5n − 1 on the number of 1-borders that lie on one side of horizon h0 (that, say, lie in the
closed half-plane above h0). We conceptually sweep a horizontal line h vertically away from
h0. During the sweep, each side of each line of A, other than h0, is in one of three states:
alive, sleeping , or dead . Each side starts in the alive state, and transition rules determine the
states resulting as h passes through line intersections. Intuitively, a side is alive if its current
intersection with sweep line h is visible to horizon h0; a side is sleeping if its intersection is
currently invisible, but may become visible again as h continues; and a side is dead if it is
currently invisible and will remain invisible for the rest of the sweep.

Figure 1 illustrates the six transition rules as h passes through the intersection of two lines.
We show the states of only the left sides of the lines, since left sides and right sides interact
independently and symmetrically, that is, the new state of a’s left side depends only on its old
state and the old state of b’s left side.
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Figure 1. Transition rules for left sides of lines.

As the sweep proceeds we count the number of 1-borders in h0’s zone that are not contained
in h0; a 1-border is added to the count when its upper endpoint is passed. (1-borders that
extend to infinity are thrown in after the sweep has passed all intersections.) The numbers
below each transition rule show the net gain in the count of left-side 1-borders.

Valuing an alive side at 2, a sleeping side at 1, and a dead side at 0, we see that the net
gain in the count is never more than the loss in value. Since there are n left sides, all initially
alive, the total number of left-side 1-borders not contained in h0 is at most 2n. Adding 2n
for right sides and n + 1 for 1-borders contained in h0, and then subtracting 2 since at least 2
sides remain alive forever (the right side with smallest positive slope and the left side with the
smallest negative slope) gives 5n− 1. It is not hard to create an example that shows that this
value is tight for the number of 1-borders above the horizon.

By simply doubling this value a bound of 10n − 2 can be obtained for the total number of
1-borders, above and below, in the zone of h0 [1, 2, 4]. We now prove a tighter bound. Our
strategy is to show that many sleeping sides never return to the alive state and hence leave
unused value in the accounting scheme.

We must simultaneously consider both the above and below halfplanes. From now on, the
word side means a side of a ray with vertex on h0. Each line of A other than h0 has upper
right, upper left, lower right, and lower left sides. We write a× b for the intersection of lines a
and b, and we say a× b is above c× d if a× b has the larger y-coordinate.

Definition 1. A line a of A, a 6= h0, is full if all four of its sides make a transition from alive
to dead.

A line that is not full must have at least one side that either makes a transition from sleeping
to dead or goes off to infinity sleeping or alive. Thus a line that is not full has unused value at
least 1. We say that a side does not wake up if it makes a transition from sleeping to dead or
goes off to infinity sleeping. We say that line a kills a given side of line b if at a × b, that side
of b makes a transition from alive or sleeping to dead.

Call a region w of the plane a dead wedge if w is the intersection of two closed halfplanes
bounded by lines of A and w does not intersect h0. Assume that w lies above h0, and name the
two rays that bound w right and left in the obvious way. The following lemma is immediate
and applies analogously to the other 3 types of sides. See Figure 2.

Lemma 1. Assume that at some point in the sweep, the upper right side of line a lies within
dead wedge w and is sleeping. Then either a intersects the right ray of w or a’s upper right
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Figure 2. Traversing a dead wedge.

side does not wake up.

We now look at a full line f in detail. The four sides of f each make an alive-to-dead
transition. Define lines a, b, c, and d to be the lines which kill, respectively, the lower right,
upper left, upper right, and lower left sides of f . Then a and b must form larger angles than
f with horizon h0 (where the angle is counterclockwise between h0 and the other line), while c
and d form smaller angles. Assume further that b× f is above c× f . See Figure 3.

Lemma 2. Under the assumptions above:
(a) Intersection a× f is below d× f .
(b) Intersection a× c lies below horizon h0.
(c) Intersection b× d lies above horizon h0.

Proof: Assume the opposite of (a). Then since the lower left side of f must be alive just
above f × d, intersection a× c must lie above h0. But then the upper left side of f cannot be
alive just below f × b.

Observation (b) follows from the fact that f ’s upper left side must be alive just below f × b.
Similarly, observation (c) follows from the fact that f ’s lower right must be alive just above
f × a.

Thus Figure 3 gives the only possible arrangement of lines a, b, c, d, f , and h0, assuming
that b × f is above c × f . The opposite assumption, that is, c above b gives the mirror image
of Figure 3.

Lemma 3. There is a line c∗ satisfying the following: (1) c∗ intersects f below f × b and at
or above f × c, (2) c∗ intersects b at or below b × c, (3) the upper right side of c∗ is alive just
below c∗ × b and is sleeping just above c∗ × b, and (4) c∗ crosses h0 to the right of h0 × a and
at or to the left of h0 × c.

Proof: Line c is just such a line unless its upper right side is killed somewhere between its
intersections with f and b. The line that kills the upper right side of c is suitable unless this
line is itself killed. Following this chain of killers leads to a suitable c∗. Notice that (4) above
holds for every line along the chain, since f ’s upper left side is alive just below f × b.

Lemma 4. There is a line d∗ satisfying the following: (1) d∗ intersects f above f×a and at or
below f × d, (2) d∗ intersects a at or above a× d, (3) the lower left side of d∗ is alive (sleeping)
just above (below) its intersection with d∗ × a, and (4) d∗ crosses h0 to the left of h0 × b and
at or to the right of h0 × d.

Proof: Symmetric to the proof of Lemma 3.
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Figure 3. Line f is full.

Lemma 5. Assume c∗ satisfies (1)-(4) of Lemma 3 and d∗ satisfies (1)-(4) of Lemma 4. Then
either the upper right side of c∗ or the lower left side of d∗ does not wake up.

Proof: Lines c∗ and d∗ intersect either above or below h0. If they intersect below, then c∗

does not intersect the right ray of the dead wedge defined by b and d∗ above the horizon. If
they intersect above, then d∗ does not intersect the left side of the dead wedge defined by a and
c∗ below the horizon. Lemma 1 now implies the result.

The lemmas above show how to associate a full line f with two sleeping sides, i.e., the upper
right of c∗ and the lower left of d∗, such that one of them does not wake up. For the mirror
image case, that is, when c×f is above b×f , the associated sides are an upper left and a lower
right.

Define a mapping ur from full lines to upper right sides that maps a full line f to its
associated side of c∗. Notice that c∗ is well-defined by the procedure given in the proof of
Lemma 3. Similarly define a mapping ll from full lines to lower left sides that maps a full line
f to its associated side of d∗. For the mirror image case, there are mappings ul and lr.

Now assume that f and g are distinct full lines such that ur(f) = ur(g) and these sides are
contained in line c∗. Rename f and g if necessary so that c∗ × f is above c∗ × g. See Figure 4.

Lemma 6. If ur(f) = ur(g) and c∗ × f is above c∗ × g, then ll(g) 6= ll(f) and ll(g) does not
wake up.

Proof: Let af and bf denote the lines that kill f ’s lower right and upper left sides, and d∗f
denote the line containing ll(f). Analogously name ag, bg, and d∗g. In Figure 4, the “diamond”
formed by g’s four associated lines is shaded.

Notice that g × f must be above c∗ × f and below bf × f , because f is alive just below
f × bf . Next, bg × g must be above c∗× g and at or below f × g. In Figure 4, bg = f . Then the
fact that bg × d∗g is above h0 (as in Lemma 2(c)) implies that d∗g × h0 is to the left of f × h0.
Hence d∗g 6= d∗f . Now since c∗ is alive just below bf × c∗, d∗g must cross c∗ above h0 and below
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Figure 4. Full lines f and g are such that ur(f) = ur(g).

bf × c∗. Then the lower left side of d∗g does not wake up below d∗g × ag, since to do so it would
have to cross c∗ below the horizon h0.

Lemma 7. Statements symmetric to Lemma 6 hold for mappings ll, ul, and lr.

Roughly speaking, Lemma 6 shows that even though ur is not one-to-one, if two full lines
f and g map to the same upper right side, there are still two sides that do not wake up to
“blame”—ll(g) and one of ur(f) and ll(f).

Lemma 8. The number of full lines is no greater than the number of sides that do not wake
up.

Proof: Consider the full lines whose upper left sides are killed above their upper right sides,
such as f in Figure 3. Number such full lines f1, f2, . . . clockwise, that is by decreasing angle
with h0. Either ur(f1) and ll(f1) are unique to f1 or there are full lines that share ur(f1)
as their ur images and/or lines that share ll(f1) as their ll images. If unique, then Lemma 5
implies that one of these sides does not wake up, so assume that at least one of ur(f1) and
ll(f1) is not unique to f1. Notice that a line that shares its ur (respectively ll) image with f1

must intersect f1 above (below) h0, so these two sets of lines are disjoint. By Lemma 6, a line
fi that shares its ur image with f1 has an ll image that does not wake up.

Image ll(fi) may itself be shared with another full line fj . We assert that j must be larger
than i. To see this assertion, consider Figure 4 again. Let f in the figure be f1 and g be fi.
Recall that the arrangement of f = f1, g = fi, h0, and c∗ is the only possible arrangement such
that ur(f1) = ur(fi). Now assume fj is such that ll(fj) = ll(fi), and fj forms a larger angle
with h0 than fi, i.e., j < i. Since ll(fj) = ll(fi), the lower left side of fj must be crossed by
d∗g (the line containing ll(fj)) below h0. And h0 × fj must be to the right of h0 × c∗, or else c∗

would kill fj ’s lower left side. But now the upper left side of fi = g cannot be alive above c∗ as
it lies in the dead wedge formed by fj and c∗. This contradicts the fact that fi is full.
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h0

Figure 5. A 9.5n + O(1) example for two sides of one line.

Starting with f1, we can define a rooted tree of full lines, in which a parent full line shares
one of its images under ur and ll with each of its children. This procedure defines a tree because,
by the assertion above and a symmetric counterpart, each full line adds children of larger index
than its own index. Lemmas 6 and 7 guarantee that each full line added to the tree defines a
new side that does not wake up. After a tree terminates we start another tree with the first fi

that has not yet participated. A symmetric argument matches mirror image full lines with ul
and lr sides that do not wake up.

Theorem 1. The maximum number of 1-borders in h0’s zone is at most b9.5nc − 1.

Proof: Let the number of full lines be F , the number of sides that do not wake up be W , and
the maximum number of 1-borders in h0’s zone be M . There are 2n + 2 1-borders contained in
h0, and the total initial value in the two sweeps is 8n. There are 2 lines—the “most horizontal”
lines—each of which contains 2 sides that go off to infinity alive.

Recall that each line that is not full has unused value at least one, and the two most-
horizontal lines—not full—have unused value 2 each. Hence, M ≤ 9n+F . A side that does not
wake up has unused value one, so we also have the inequality M ≤ 10n − 2 − W . By Lemma
8, F ≤ W . The minimum of 9n + F and 10n− 2−W is hence no more than b9.5nc − 1.

Figure 5 gives an example with b9.5nc− 3 1-borders. Figures 6 and 7 show that Theorem 1
cannot be generalized to the complexity of cells on opposite sides of two parallel lines—in both
possible cases the complexity can be as much as 10n+O(1). In these figures, a few straight lines
are shown curved in order to fit them on the page. These examples generalize in the obvious
way to other sufficiently large n.

3. Bounds for a Triangle

In the remainder of this paper, we consider the case of an arrangement of lines cut by a convex
k-gon. There are two kinds of cells in the zone of this configuration: those outside the k-gon,
and those inside the k-gon. Note that the 10n + O(1) upper bound for the zone of a line also
holds, with minor modifications, for the complexity of the outside cells in the k-gon zone. We
shall focus only on those cells inside the k-gon.

As with the previous bounds, it makes sense to allow the lines of the arrangement and
the sides of the k-gon to be generalized to pseudolines. The requirements are: each pair of
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Figure 6. A 10n + O(1) example for the insides of two parallel lines.

Figure 7. A 10n + O(1) example for the outsides of two parallel lines.

pseudolines intersects at most once, and they must cross at intersections; and each pseudoline
of the arrangement crosses exactly two k-gon sides, crossing each side only once. The second
requirement replaces the condition in the straight line case that the k-gon be convex.

In this section we give an upper bound of 10.5n+O(1) on the zone complexity of the inside
of a triangle. It is easy to adapt Figure 6 to give a lower bound of 10n +O(1) in which no lines
intersect one side of the triangle.

Let the sides of the triangle be denoted s1, s2, and s3 clockwise. Let the lines cutting side si

be Ni, with |N1|+ |N2|+ |N3| = 2n. Consider any single side, say s1. The 1-borders supported
by s1 are of two types: those contained in lines of N1 and those contained in lines of N2 ∩N3.
Let c1 denote the lower envelope of N2 ∩N3 inside the triangle; c1 is a convex polygonal chain
with |c1| segments and endpoints on s2 and s3. We can similarly define chains c2 and c3.

Convex chain ci is a pseudoline with respect to the lines in Ni, that is, each line of Ni

intersects ci at most once, and at that intersection crosses ci. Consider sweeping a parallel line
away from si as in the argument of Edelsbrunner et al. reviewed in the last section. We may
assume that si is horizontal, so that left and right are canonically defined.

Lemma 9. The complexity of cells supported by si is at most 5|Ni|+ |ci|.

Proof: First note that if |ci| = 0, the lemma is true by the 5n− 1 bound, so assume |ci| ≥ 1.
The complexity of cells supported by si is the complexity of the arrangement formed by Ni

and ci, considered as a pseudoline, plus the number of corners |ci| − 1. In the sweep away from
si, pseudoline ci adds only 2 to the complexity instead of the usual 5, because only one of its
sides is visible and it does not cut si. Thus we have a bound of 5|Ni| + 1. Considering ci as a
polygonal chain rather than a pseudoline adds |ci| − 1.
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Figure 8. A line that kills a side of a full line cannot be full.

Definition 2. A line f of Ni ∩ Nj is full if (1) it contributes a segment to ck, k 6= i, j; (2) it
makes 4 transitions (left and right sides on each of si and sj) from alive to dead; and (3) there
is a point p on the segment of f on ck such that p is visible from sk but not visible from si or
sj , that is, p lies between the two alive-to-dead transitions of the side of f facing sk.

A 1-border can be counted either in one of the three sweeps, or as part of one of the convex
chains. Requirement (3) above ensures that a full line contributes an “extra” segment to a
convex chain, that is, one that is not already counted in one of the sweeps. A nonfull line either
has unused value in one of the two sweeps, as in the last section, or it does not contribute an
extra visible corner to a convex chain ci.

Lemma 10. Let f be a full line that contributes to c2. Let a be the line that kills f ’s left
side in the sweep from s1. Then a is not full.

Proof: Assume a is full. Line a cannot contribute to convex chain c2, as this would contradict
the requirement that some point of f be visible from s2 above f × a. Here “above” means
further along in the sweep from s1. So assume a contributes to c3, as shown in Figure 8. First
assume a’s point pa visible from s3 (guaranteed by (3) above) lies below f × a. Now the line
that kills a’s left side below pa must also kill f ’s left side below f × a, a contradiction. So
assume point pa lies above f×a. Consider the line b that kills a’s left side in the sweep from s2.
For pa to be visible from s3, b× s3 must lie above the endpoint of c2 on s3. This arrangement
contradicts the fact that some point of f above f × a is visible from s2.

Lemma 11. Let f be a full line that contributes to c2, and let a be the line that kills the
right side of f in the sweep from s1. Then a is not full.

Proof: Assume a is full. Line a must intersect s3, so a must contribute to c2. The point pa

cannot lie above a× f , so it must lie below a× f and above the intersection at which a’s right
side dies. But then the line that kills the right side of a must kill the right side of f below f×a.

Lemma 12. The number of full lines in Ni is at most |Ni|/2.
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Proof: Consider the set of full lines Fi in Ni. By Lemmas 10 and 11 and symmetric counter-
parts, a line in Fi cannot kill a side of another line in Fi. Now consider only the initial segments
of lines in Fi up to the lowest (in the sweep from si) intersection at which both sides are dead.
There are no intersections among these line segments.

We now assert that it takes |Fi| lines to kill all of these segments. To each initial segment
f , assign the line of Ni that kills a side of f below f ’s upper endpoint. Assume line a is
assigned twice: say a kills in sweep order the right sides of segments f and g. Then we have
a contradiction to the assumption that the left side of g is alive above g × a. The case that a
kills two left sides is symmetric.

Finally, assume a kills in sweep order the left side of f and the right side of g. Then the
line that kills the right side of f at its upper endpoint cannot escape from the triangle formed
by a, g, and si without killing the right side of g below g × a, a contradiction. The case of a
right side followed by a left side is symmetric. Thus no line that kills a side of Fi is assigned
twice, and we have |Fi| ≤ |Ni|/2.

Theorem 2. The complexity of the cells on the inside of a triangle, cut by n lines, is at most
10.5n + O(1).

Proof: Lemma 12 implies that the sum over i of the number of full lines in Ni is at most n.
Since each full line cuts two sides, this means that the total number of full lines is at most n/2.
Each line starts with value 9, that is, 2 for each live side in each of the sweeps from the sides of
the triangle it cuts, and 1 more for the possibility of contributing a corner to a convex chain ci.
Each nonfull line has unused value at least 1. Thus the average used value is at most 8.5 and
the total—including the 2n 1-borders contained in the triangle itself—is at most 10.5n + O(1).

Open Problem 1. Reduce the gap between the lower bound of 10n + O(1) and the upper
bound of 10.5n + O(1) on the complexity of the cells along the inside of a triangle.

4. Polygons with Fixed Number of Sides

In this section and the next we give bounds on the complexity of the zone of a k-gon in an
arrangement of pseudolines.

Define V (n, k) to be the maximum possible number of pairs (`, s), where ` is a line in the
arrangement and s is a side of the k-gon, where ` does not intersect s, but where ` forms the
side of a cell supported by s. There may be many such cells, but still (`, s) is counted only
once. If ` forms the side of a cell supported by multiple k-gon sides, we only include the pair
(`, s) where s is the most clockwise of the sides supporting the cell. (However, a pair (`, s′),
where s′ is not most-clockwise, is included if ` is visible to s′ from another cell.) The function
V (n, k) is significant for the k-gon zone complexity because of the following fact.

Lemma 13. The complexity of the cells on the inside of a k-gon, cut by n ≥ 1 lines, is at
most 10n + k + V (n, k).

Proof: Let the sides of the k-gon be denoted s1, s2, . . ., sk. Let the lines crossing side si be
denoted Ni. Let the lines visible to side si but not crossing it be denoted Vi.
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If side si is not crossed by any line, it adds at most one to the total complexity of the figure;
there are at most k such sides.

First assume Vi is empty. Then the cells supported by si are exactly those in the arrangement
of only the lines in Ni, and the complexity of these cells is at most 5|Ni| − 1 ≤ 5|Ni|+ |Vi|.

Otherwise, the “lower envelope” of the lines in Vi (i.e., assuming si is horizontal and below
all lines of Vi) forms a convex chain, that can be treated as a pseudoline with respect to the lines
in Ni. The complexity of all cells supported by si is then the complexity of the arrangement
formed by Ni together with this extra pseudoline, plus the complexity of the corners of the
pseudoline. As in the last section, the arrangement complexity is at most 5|Ni| + 1. The
number of corners on the pseudoline is |Vi| − 1. Therefore in this case also the complexity of
the cells supported by si is bounded by 5|Ni|+ |Vi|.

The complexity of the whole arrangement (counting cells supported by exactly two sides
twice), is then at most

k +
k∑

i=1

(5|Ni|+ |Vi|) = k + 5
k∑

i=1

|Ni|+
k∑

i=1

|Vi| = 10n + k + V (n, k).

We now give a simple combinatorial lemma that we use to prove a bound on V (n, k); this
will then be used as a base case in our more complicated final bound.

Lemma 14. Let S1, S2, . . ., Sm be a family of subsets of a set S with |S| = k, with the
property that, for some constant a and all i 6= j, |Si ∩ Sj | ≤ a. Then

∑m
i=1 |Si| ≤ am +

( k
a+1

)
.

Proof: Let bi = |Si| − a. Then each set Si has at least bi (a + 1)-tuples, that by assumption
must be distinct from the (a + 1)-tuples in all the other Sj . So

∑m
i=1 bi ≤

( k
a+1

)
. Therefore∑m

i=1 |Si| ≤ am +
∑m

i=1 bi ≤ am +
( k
a+1

)
.

Lemma 15. V (n, k) ≤ 2n + k2/2.

Proof: Let m = 2n in Lemma 14, and let the sets Si be the k-gon sides visible to each side
of each line in the arrangement. As above, only the first side in a multi-side cell is “visible”.
Then, for two sets Si and Sj that correspond to sides of distinct lines, the zone cells in the
region inside both corresponding halfplanes can be ordered linearly around the k-gon. The only
possible k-gon side shared by both sets is the one supporting the cell first visible to Sj in this
linear order; the view from a k-gon side later in the order is blocked by the view within this
cell. Thus Lemma 14 applies with a = 1.

Lemma 16. V (n, k) ≤ n + (3/2)k2 − k.

Proof: Divide the lines into classes Ci,j , where line ` belongs to Ci,j exactly when it crosses
sides si and sj of the k-gon. Then, similarly to the proof of Lemma 13, the lines in a single
class visible to sides sx with i < x < j can be treated as a single pseudoline, visible only on one
side. And the lines visible to sides sx with x < i or j < x can be treated as another pseudoline,
also visible on a side.
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The number of corners on these pseudolines is at most |Ci,j |. The pseudoline can be divided
up into a sequence of segments, linearly ordered by which k-gon side they are visible from;
there may be gaps where the pseudoline is not visible to any side, but these can be assigned
arbitrarily to either neighboring side. Then each side that sees the pseudoline sees a number of
the lines composing it equal to one plus the number of corners in the segment assigned to that
side. Therefore each corner adds at most one to the complexity of V (n, k).

Now given two such pseudolines, as in Lemma 15, there is only one side that can be visible to
both of them, and we can apply lemma 14 with a = 1 and m = 2

(k
2

)
. Adding the pseudoline-side

visibilities to the number of corners on each pseudoline gives a total bound of

V (n, k) ≤
k∑

i=1

k∑
j=1

|Ci,j |+ 2

(
k

2

)
+

(
k

2

)
≤ n + (3/2)k2 − k.

Theorem 3. The complexity of the cells on the inside of a k-gon, cut by n ≥ 1 lines, is at
most 11n + (3/2)k2.

This gives the tightest known bound for fixed k, of 11n+O(1). However the best construction
known is Figure 6 (appropriately modified to fit in the k-gon), which has complexity 10n+O(1).

Open Problem 2. Reduce the gap between the lower bound of 10n + O(1) and the upper
bound of 11n + O(1) on the complexity of the cells on the inside of a k-gon when k is a fixed
constant.

5. Recursive Bounds for Polygons

In this section we show that the maximum complexity of the zone of a k-gon, for k that is
O(n), is O(nα(n, k)). In the final section of this paper we show that our bound is tight for all
n and k, up to constant factors. We have recently learned that the same O(nα(n, k)) bound
can be obtained in a conceptually simpler way. First observe that the sequence of lines counted
in V (n, k) forms an n-letter Davenport-Schinzel sequence of order three; that is, there can be
no embedded a . . . b . . . a . . . b . . . a. Moreover, this sequence can be divided into k contiguous
blocks, such that each block contains no repeated letters. Sharir [7] has shown an O(nα(n, k))
bound on the length of such a Davenport-Schinzel sequence. In fact, his proof also simplifies the
previous O(nα(n)) upper bound argument for arbitrary order-3 Davenport-Schinzel sequences
[5].

Our upper bound of O(nα(n, k)) depends on the following recurrence bounding V (n, k).
(Sharir’s proof depends on a similar, but slightly less complicated, recurrence.)

Lemma 17. Let k ≤ b · k′. Then

V (n, k) ≤ max
{

2n0 + V (n0 + b, b) +
b∑

i=1

V (ni + 2k′, k′ + 1)
∣∣∣ b∑

i=0

ni = n
}
.
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Figure 9. Cutting a k-gon into one b-gon and b (k′ + 1)-gons.

Proof: Our overall strategy is to conceptually cut the k-gon into a central b-gon along with
b polygons around this b-gon, each with no more than k′ + 1 sides. We then define a new
pseudoline arrangement within each of these polygons, such that the total number of visible
line-side pairs in the new arrangements is an upper bound on V (n, k), the original number of
visible line-side pairs in the k-gon.

Choose a configuration of n lines in a k-gon achieving the maximum value of V (n, k) pairs.
Bundle contiguous sides of the k-gon into b groups, with at most k′ sides in each group. Define
ni, for 1 ≤ i ≤ b, to be the number of lines in the arrangement having both ends within group
i; let n0 be the number of lines having ends in two groups. Then

∑b
i=0 ni = n.

We will count the number of visibilities in the original arrangement by forming new arrange-
ments for each group of sides. Consider the lines visible to a particular group i. These lines
fall into four possible types: (1) lines starting and ending in group i, (2) lines starting in group
i and ending in another group, (3) lines starting and ending in two other groups, and (4) lines
starting and ending in the same other group.

The lines of type (1) will remain unchanged in the new arrangement for group i.
We subdivide the lines of type (2) according to which side of group i they cross. As in Lemma

16, we can form the lines crossing a single side into two pseudolines in the new arrangement
for group i. As in that lemma, we must also count the number of corners formed on those
pseudolines. The total number of pseudolines formed in group i is 2k′; however two of those,
the first and last pseudolines in the clockwise order around group i, cannot create any visibilities
that are counted in V (n, k). Therefore the number of pseudolines contributing to the visibilities
within group i is 2k′ − 2. The number of corners in all these pseudolines is at most equal to
the number of lines of type (2); the sum of these numbers over all groups is 2n0.

We subdivide the lines of type (4) according to which other group they belong to. The lines
from a single group j can be treated as a single pseudoline of type (3) as viewed from sides
in group i. However, we must also count the corners on this pseudoline. These corners are
counted (for all choices of i at once) by adding another side to group j to form a closed polygon
with no more than k′ + 1 sides. See Figure 9.
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The lines and new pseudolines of type (3) can be treated as a single pseudoline “ceiling”
when counting visibilities from group i; however, we must also count the number of corners on
that ceiling. This is just the number of lines and pseudolines of type (3) composing the ceiling,
which can be counted by creating a new arrangement consisting of all lines and pseudolines of
type (3), cut by a b-gon corresponding to the b groups of sides. (For a geometric realization, the
b-gon may have to bend out and exchange an endpoint with a new pseudoline as in Figure 9.)
The number of line-side visibilities in this b-gon arrangement counts the corners on all ceilings
at once. (In fact, this slightly overcounts since only one side of each new pseudoline is visible.)
Thus the total number of corners for all groups is at most V (n0 + b, b).

Summarizing, we have V (ni + 2k′, k′ + 1) visibilities within group i and corners on the
pseudoline for the type (4) lines contributed by group i to visibilities in other groups. We have
2n0 corners on all the pseudolines created for the type (2) visibilities. And we have V (n0 + b, b)
corners on the pseudolines created for the type (3) visibilities and the pseudolines of type (3)
created to count the type (4) visibilities. Adding these together gives the total bound.

Now let us define an Ackermann function A(i, j) as follows:

• A(1, j) = 6j.

• A(i, j) = A(i− 1, j + 1) if j ≤ 6.

• A(i, j) = A(i− 1, A(i, j − 6)) if j > 6.

Let αi(x) = max {1}∪{j ≥ 1 | A(i, j +1) ≤ x} and α(x, y) = min {i ≥ 1 | A(i, bx/yc) ≥ x}.
Our Ackermann function is somewhat nonstandard; at the end of the paper we show that
nevertheless α(x, y) is within a constant factor of other inverse Ackermann functions [8, 9]. Our
functions have the following properties:

Lemma 18. For any k ≥ 0 and ` ≥ 0 with k + l ≥ 1, A(i, j) > A(i− k, j − `).

Proof: We prove the lemma by induction; to prove it for (i, j) we assume that it holds for
all (i′, j′) with i′ < i or with i′ = i and j′ < j. Then we show that A(i, j) > max{A(i −
1, j), A(i, j − 1)}; the full lemma for (i, j) easily follows.

• For i = 1, A(i, j) > A(i, j − 1) immediately from the definition.

• For j ≤ 6, A(i, j) = A(i− 1, j + 1) > A(i− 1, j) = A(i, j − 1).

• For j = 7, A(i, j) = A(i − 1, A(i, 1)) > A(i − 1, A(2, 1)) = A(i − 1, 12) > A(i − 1, 7) =
A(i, j − 1).

• For i = 2 and j = 7, A(i, j) = 72 > 42 = A(i− 1, j).

• For i = 2 and j > 7, A(i, j) = 6(A(i, j − 6)) > 6(A(i − 1, j − 6)) = 36(j − 6) > 6j =
A(i− 1, j).

In all the remaining inequalities to check, both left and right sides follow the recursive
definition. Then A(i, j) = A(i − 1, A(i, j − 6)) > A(i − 1, A(i, j − 7)) = A(i, j − 1) and
A(i, j) = A(i− 1, A(i, j − 6)) > A(i− 2, A(i− 1, j − 6)) = A(i− 1, j).
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Corollary 1. For any i and x, αi(x) ≤ αi−1(x).

Lemma 19. If i ≥ 2, then αi(x) <
√

x.

Proof: We prove the lemma for i = 2; the remaining cases follow from Corollary 1. If x ≤ 72,
then α2(x) ≤ 6, and the truth of the lemma can be seen by inspection of the possible cases.
Otherwise, using induction, α2(x) = 1 + α2(x/6) < 1 +

√
x/6 <

√
x.

Lemma 20. For any i > 1 and x, αi(αi−1(x) + 1) ≤ max {6, αi(x)− 6}.

Proof: If αi(x) ≤ 6, then αi(αi−1(x) + 1) ≤ 6. Otherwise,

A(i, αi(αi−1(x) + 1) + 6 + 1) = A(i− 1, A(i, αi(αi−1(x) + 1) + 1)) ≤ A(i− 1, αi−1(x) + 1) ≤ x.

But for any y, if A(i, y + 1) ≤ x, it follows that y ≤ αi(x). Hence αi(αi−1(x) + 1) + 6 ≤ αi(x).

Lemma 21. There is a constant c ≥ 3 such that for any i < α(n, k), V (n, k) ≤ 2in+3ikαi(k)+
ci(k − 3).

Proof: For i = 1, the lemma gives the bound of Lemma 15 along with a term linear in k. So
let i > 1. If k ≤

√
n, then the lemma follows from Lemma 15. Assume that αi(k) < 12. Then

A(i, 12) ≥ k and A(i, 13) ≥ k2 ≥ n. So the one-variable function α(n) is O(i). Now i < α(n, k)
implies that A(i, bn/kc) < n, which means that n/k < 13. By choosing c large enough, the
lemma then follows from the Davenport-Schinzel bound of nα(n) [5].

So we may assume i > 1 and αi(k) ≥ 12. Let k′ = αi−1(k), and let b = dk/k′e.
Now A(i, k) < n. If k′ = 1, then αi(k) = 1 = αi−1(k), and the bound follows easily from

that for i− 1. Otherwise, note that k′ < b (by Lemma 19), b ≤ (n + 1)/2, and

bαi−1(b) ≤ bk′ ≤ k + k′ ≤ k + b.

By Lemma 17,

V (n, k) ≤ 2n0 + V (n0 + b, b) +
b∑

j=1

V (nj + 2k′, k′ + 1).

We inductively use the bound we are proving with i − 1 for V (n0, b) and with i for V (nj +
2k′, k′ + 1):

V (n, k) ≤ 2n0 + 2(i− 1)(n0 + b) + 3(i− 1)bαi−1(b) + c(i− 1)(b− 3)

+
b∑

j=1

(
2i(nj + 2k′) + 3i(k′ + 1)αi(k′ + 1) + ci(k′ − 2)

)
.

We now gather terms involving n0 and nj ,

V (n, k) ≤ 2in + 2(i− 1)b + 3(i− 1)bαi−1(b) + c(i− 1)(b− 3)
+ 4ibk′ + 3ib(k′ + 1)αi(k′ + 1) + cib(k′ − 2),
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and apply the facts that bαi−1(b) ≤ k + b and bk′ ≤ k + b,

V (n, k) ≤ 2in + 9ib + 7ik + 3i(k + 2b)αi(k′ + 1) + ci(k − 3).

By Lemma 20 and the fact that αi(k) ≥ 12,

V (n, k) ≤ 2in + 9ib + 7ik + 3i(k + 2b)(αi(k)− 6) + ci(k − 3)
≤ 2in− 27ib− 11ik + 6ibαi(k) + 3ikαi(k) + ci(k − 3)
≤ 2in + 3ikαi(k) + ci(k − 3),

since by Corollary 1, αi(k) ≤ k′ ≤ (k + b)/b.

Theorem 4. The complexity of the cells on the inside of a k-gon, cut by n lines, is O(nα(n, k)).

6. Lower Bounds for Polygons

Wiernik gave a construction of n line segments with lower envelope complexity Ω(nα(n)) [10].
By placing such a collection of segments inside a convex n-gon and extending segments to the
n-gon with curves, we can form a pseudoline arrangement with zone complexity Ω(nα(n)). In
this section we show how to generalize this construction for any k, giving a lower bound of
Ω(nα(n, k)).

We adapt Shor’s construction for the lower-envelope complexity of line segments [8], a sim-
plification of the construction due to Wiernik [10]. As our lower bound construction only works
for pseudolines, we need not concern ourselves with some of the details of Shor’s construction,
such as the careful handling of line segment slopes.

Shor constructs an arrangement of positive-slope line segments S(i, j, r) with nonlinear
lower-envelope complexity as follows. First define an Ackermann function F (i, j) by F (1, j) = 1,
F (i, 1) = 2 · F (i − 1, 2), and F (i, j) = F (i, j − 1) · F (i − 1, F (i, j − 1)). Arrangement S(i, j, r)
contains F (i, j) j-fans. A j-fan is a set of j line segments that share the same left endpoint.
Within each j-fan the segments can be numbered 1, 2, . . . j, such that the slope of each segment
is at least r times the slope of the preceding one, where r is a real number at least 3.

Arrangement S(i, j, r) is defined recursively. S(1, j, r) is a single j-fan. S(i, 1, r) is con-
structed from S(i − 1, 2, r) by translating the larger-slope segment of each 2-fan by a tiny
distance ε, so that the smaller-slope segment has endpoint somewhat to the left of the larger-
slope segment. Each segment is then a 1-fan and the lower-envelope complexity doubles.

In the general inductive step, we generate many copies of S(i, j − 1, r) and a single copy
of S∗ = S(i − 1, F (i, j − 1), r∗), where r∗ is determined by the geometry of S(i, j − 1, r).
Arrangement S∗ is flattened and then tilted by an affine transformation so that all slopes of
segments in S∗ are very close to 1. This transformation leaves the lower envelope complexity
unchanged. There will be some tiny ε > 0 such that if each segment of S∗ is translated a distance
no greater than ε, then the only changes in the lower envelope occur at the left endpoints of
fans.

Next each copy of S(i, j− 1, r) is first flattened so that all slopes are less than 1/r and then
shrunk to be smaller than ε. We place each copy of S(i, j − 1, r) next to a fan left endpoint
of S∗, and then perturb the segments of S∗ so that one segment of S∗ joins each (j − 1)-fan
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Figure 10. Pseudoline arrangement with nonlinear zone complexity.

in the nearby copy of S(i, j − 1, r). The trick is that segments of S∗ are perturbed so that the
largest-slope segment of each fan will have rightmost left endpoint, next largest next rightmost,
and so on. With suitable choice of r∗, each F (i, j−1)-fan emerges from its copy of S(i, j−1, r)
and then forms a “caustic curve”, that is, an arrangement with F (i, j − 1) subsegments in its
lower envelope. This caustic curve lies to the right of all right endpoints of segments in the
copy of S(i, j − 1, r). See Figure 10.

The complexity of the lower envelope of S(i, j, r) is the sum of the complexities of F (i −
1, F (i, j − 1)) copies of S(i, j − 1, r), one copy of S∗, and F (i− 1, F (i, j − 1)) caustic curves of
complexity F (i, j − 1). The solution is ijF (i, j) as confirmed by the following equality:

ijF (i, j) = F (i− 1, F (i, j − 1)) · i(j − 1)F (i, j − 1) +
(i− 1)F (i, j − 1) · F (i− 1, F (i, j − 1)) + F (i− 1, F (i, j − 1)) · F (i, j − 1).

We now show how to extend the segments of S(i, j, r) to pseudolines and fit them into a
polygonal chain with F (i, j)+1 sides, that is, one side for each fan plus one final side. One or two
additional sides can be added at the end to close the polygon. First, S(1, j, r) fits into a chain
with 2 sides. The left endpoint lies on a horizontal side, and right endpoints are extended with
curves to intersect a second side with arbitrary positive slope. The curves are such that they
do not intersect each other. Second, S(i, 1, r) fits into a chain with F (i, 1)+1 = 2F (i−1, 2)+1
sides by simply subdividing each edge, except the last, of the chain holding S(i − 1, 2, r), so
that each fan starts on its own side. In the general step, we need F (i− 1, F (i, j − 1)) copies of
chains with F (i, j − 1) + 1 sides to hold all the copies of S(i, j − 1, r). The last side of a chain
for each copy doubles as the first side of the chain for the next copy, as shown in Figure 10.
One final side is added to receive the extensions of the segments of S∗.

We now confirm that for each choice of the number of pseudolines n and the number of
polygon sides k, this construction matches the upper bound of the last section. Define an
inverse Ackermann function φ(n, k) = min{i ≥ 1 | (n/k)F (i, bn/kc) ≥ n}. The construction
above gives zone complexity ijF (i, j) for an arrangement of jF (i, j) pseudolines and a polygon
with F (i, j) + O(1) sides. Setting j = bn/kc and i = φ(n, k), the construction gives zone
complexity nφ(n, k) for an arrangement of n pseudolines in a (k + O(1))-gon. We now show
that for n/k ≥ 7, φ(n, k) is within a constant of α(n, k), the function defined in the last section.
These inverse Ackermann functions are also within constants of more usual inverse Ackermann
functions, for example the one used by Tarjan [9].
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Lemma 22. If n/k ≥ 7, φ(n, k)− 1 ≤ α(n, k) ≤ 4 · φ(n, k).

Proof: For each choice of i and j, F (i + 1, j) ≥ A(i, j), so α(n, k) ≥ φ(n, k) − 1. For each i
and each j ≥ 7, A(2i, 2j) ≥ A(2i, j + 7) ≥ jF (i, j), so (1/2)α(n, k) ≤ φ(n, 2k) ≤ 2φ(n, k).

Theorem 5. The maximum complexity of the cells on the inside of a k-gon, cut by n pseu-
dolines, is Θ(nα(n, k)).

Proof: This follows from Theorem 4 along with Lemma 22 for n ≥ 7k and the nα(n) lower
bound for n < 7k.

Both Wiernik’s construction and our lower bound construction use pseudolines, and it seems
difficult to modify them to use straight lines instead. We close by posing the following open
problem.

Open Problem 3. Find a construction for a straight line arrangement cut by a polygon
having superlinear zone complexity, or show that no such construction exists.
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