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Outer: Vertices are placed on the boundary of the drawing area (in this example, at bottom)

Confluent: Adjacency is indicated by smooth curves through a collection of tracks meeting at junctions

Strict: Each two adjacent vertices have only one smooth curve, and there are no smooth loops

Can be dense: Recursively constructed example below has n = 3k vertices, Θ(4k) ≈ n1.26 edges

Recognition complexity: Polynomial for given vertex ordering, otherwise unknown [Eppstein et al. 2016]
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Outerplanar graphs have bounded treewidth.
What about outerconfluent graphs?

They can be dense, but bounded-treewidth graphs are sparse ⇒ we must consider other kinds of width

Clique-width

# colors to construct using disjoint unions,
recoloring, and adding 2-color bicliques

Bounded for tree-like, distance-hereditary
subclasses of strict outerconfluent graphs
[Eppstein et al. 2005; Förster et al. 2021]

Equivalent to treewidth in sparse graphs

Equivalent to rank-width for all graphs

Low rank-width: hierarchical clustering
where each split has a low-rank biadjacency
matrix [Oum and Seymour 2006]

Twin-width
For any vertex clustering, define red graph of pairs of clusters

with some but not all pairs of vertices adjacent

Repeatedly merge from n clusters down to one, keeping red degree small
Twin-width = max degree for merge sequence that minimizes this max

Bounded for planar, k-planar, bounded genus, etc. [Bonnet et al. 2021]

Unbounded clique-width

Theorem: Recursive construction above has unbounded clique-width

Proof ideas:
▶ Find balanced vertex split from optimal rank-width clustering
▶ If split forms many blocks of contiguous vertices, induced matching from pairs

of vertices on block boundaries ⇒ high rank
▶ Otherwise split separates two large blocks with a narrow gap
▶ Many nested semicircular arches above these two blocks ⇒ pairs of vertices

adjacent via distinct arches ⇒ high-rank submatrix

Bounded twin-width
Theorem: Strict outerconfluent graphs have bounded twin-width

Proof ideas:
▶ Ordered graph = graph + linear ordering on vertices
▶ Small class of graphs: # n-vertex graphs ≤ cn for some c
▶ For hereditary classes of ordered graphs (i.e. closed under induced subgraphs

& orders), bounded twin-width = small [Bonnet et al. 2022]

▶ Outerconfluent graphs, ordered by boundary position, are hereditary
▶ Strict confluent ⇒ O(n) junctions [Eppstein et al. 2016] ⇒ small
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