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Polygonalizations

Given n points

Find a simple polygon
with exactly those
vertices

(allow 180◦ angles for
collinear points)



Known

They always exist [Steinhaus 1964]

. . . even for non-general position but non-collinear

Easy construction:

Sort radially around any point in convex hull

[Deneen and Shute 1988]

There can be singly-exponentially many

and they can be listed in single-exponential time

[Sharir et al. 2013; Garćıa et al. 2000; Yamanaka et al. 2021]

Some optimization criteria are NP-hard (traveling salesman!)

for more see: [Fekete 2000; Fekete and Keldenich 2018]



Unknown

Can we list them all in
polynomial time/polygon?

We can for many other
non-crossing structures by
searching a state space
connected by local moves

For polygonizations,
natural moves do not work

Unflippable polygon
[Hernando et al. 2002]



Main result

We can list all polygonalizations of given points in time
polynomial in the number of polygonalizations

Singly-exponential in worst case (matching known algorithms)

Can be much faster when # polygonalizations is smaller

Also works (a little easier) for non-crossing Hamiltonian paths



Surrounding polygons

Vertices = subset of points, enclosing the rest



Listing all surrounding polygons

Two ears theorem: A polygon that is not a triangle has ≥ 2 ears,
triangles that can be cut off to form a simpler polygon

[Meisters 1975; Guggenheimer 1977]

⇒ Every surrounding polygon, other than the convex hull, has a
triangle that can be popped out to form a simpler polygon

⇒ Tree of surrounding polygons rooted at the convex hull

⇒ Explore this tree [Yamanaka et al. 2021]



Listing all polygonalizations

For each surrounding polygon:

If it is a polygonalization:

Output it

Already used to list polygonalizations in singly exponential time
and polynomial space [Yamanaka et al. 2021]

We prove this is output-polynomial!

[Mollerus 2007]

Equivalently: The tree of surrounding polygons cannot have
many branches but few polygonalizations at its leaves



Example where numbers differ

Concave chain of n − 1 vertices inside a triangle

# polygonalizations = (n − 1)2n−4

# surrounding polygons =
∑

a+b+c=n−3

(a+ 1)

(
a+ b

a

)(
b + c

b

)
≈ (1 + golden ratio)n ≈ 2.618n ≈ (# polygonalizations)1.388



The main idea

Analyze point sets with few
polygonalizations

Controlled by two hereditary
parameters of order types of point sets

Approximate log # polygonalizations
and log # surrounding polygons by a
formula involving these two parameters

Both counts have the same
approximation formula ⇒
polynomial relation between them



Point sets with few polygons

The number of polygons is small when, for small k , either:

All but k points lie on a single line, or
all but k points lie on the convex hull

Determined by the k points, their neighbors, and their connections

#polygons ≤
(
n − k

≤ 2k

)
2O(k) log#polygons = O

(
k
(
log

n

k
+ 1

))
.



Hard part: Lower bound on #polygonalizations

Three separate lower bounds:

▶ All but k points on a line, but not on hull: ≥
(
n/2

k/2

)
▶ All but k points on hull: ≥

(
(n + k)/4− O(1)

k/2

)
▶ Both hull and max line have ≤ n/7 points:

singly exponential

Combine to give log#polygonalizations = Ω
(
k
(
log

n

k
+ 1

))



Many points on a line, not on hull

Find ≥ k/2 points on one side of the line

Find many 010-avoiding binary sequences with n − k one-bits,
starting and ending with 1

1: point on line; 0: point not on line

After each block of 0’s, rotate a ray from the next 1 to separate a
block of that many off-line points from the rest

Each sequence corresponds to at least one polygonalization
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Conclusions

We can:

List all polygonalizations in output-polynomial time

Approximate log #polygonalizations with constant approximation
ratio in polynomial time

Solve traveling salesperson or any other optimization or counting
problem on polygonalizations in XP time, nO(k)

Work in progress but I think we can:

Count polygonalizations, solve TSP, and find min/max area
polygonalization in time fixed-parameter tractable in same k
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