Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time

David Eppstein
University of California, Irvine

Symposium on Computational Geometry, June 2023

Polygonalizations

Given n points
Find a simple polygon with exactly those vertices
(allow 180° angles for collinear points)

Known

They always exist [Steinhaus 1964]
... even for non-general position but non-collinear

Easy construction:
Sort radially around any point in convex hull [Deneen and Shute 1988]

There can be singly-exponentially many and they can be listed in single-exponential time [Sharir et al. 2013; García et al. 2000; Yamanaka et al. 2021]

Some optimization criteria are NP-hard (traveling salesman!) for more see: [Fekete 2000; Fekete and Keldenich 2018]

Unknown

Can we list them all in polynomial time/polygon?

We can for many other non-crossing structures by searching a state space connected by local moves

For polygonizations, natural moves do not work

Unflippable polygon
[Hernando et al. 2002]

Main result

We can list all polygonalizations of given points in time polynomial in the number of polygonalizations

Singly-exponential in worst case (matching known algorithms)
Can be much faster when \# polygonalizations is smaller
Also works (a little easier) for non-crossing Hamiltonian paths

Surrounding polygons

Vertices $=$ subset of points, enclosing the rest

Listing all surrounding polygons

Two ears theorem: A polygon that is not a triangle has ≥ 2 ears, triangles that can be cut off to form a simpler polygon [Meisters 1975; Guggenheimer 1977]

\Rightarrow Every surrounding polygon, other than the convex hull, has a triangle that can be popped out to form a simpler polygon
\Rightarrow Tree of surrounding polygons rooted at the convex hull

Listing all polygonalizations

For each surrounding polygon:
If it is a polygonalization: Output it

Already used to list polygonalizations in singly exponential time and polynomial space [Yamanaka et al. 2021]

We prove this is output-polynomial!

[Mollerus 2007]

Equivalently: The tree of surrounding polygons cannot have many branches but few polygonalizations at its leaves

Example where numbers differ

Concave chain of $n-1$ vertices inside a triangle

$$
\# \text { polygonalizations }=(n-1) 2^{n-4}
$$

\# surrounding polygons $=\sum_{a+b+c=n-3}(a+1)\binom{a+b}{a}\binom{b+c}{b}$
$\approx(1+\text { golden ratio })^{n} \approx 2.618^{n} \approx(\# \text { polygonalizations })^{1.388}$

The main idea

Analyze point sets with few polygonalizations

Controlled by two hereditary parameters of order types of point sets

Approximate log \# polygonalizations and $\log \#$ surrounding polygons by a formula involving these two parameters

Both counts have the same approximation formula \Rightarrow polynomial relation between them

Point sets with few polygons

The number of polygons is small when, for small k, either:

All but k points lie on a single line, or all but k points lie on the convex hull

Determined by the k points, their neighbors, and their connections
\#polygons $\leq\binom{ n-k}{\leq 2 k} 2^{O(k)} \quad \log \#$ polygons $=O\left(k\left(\log \frac{n}{k}+1\right)\right)$.

Hard part: Lower bound on \#polygonalizations

Three separate lower bounds:

- All but k points on a line, but not on hull: $\geq\binom{ n / 2}{k / 2}$
- All but k points on hull: $\geq\binom{(n+k) / 4-O(1)}{k / 2}$
- Both hull and max line have $\leq n / 7$ points: singly exponential

Combine to give $\log \#$ polygonalizations $=\Omega\left(k\left(\log \frac{n}{k}+1\right)\right)$

Many points on a line, not on hull

Find $\geq k / 2$ points on one side of the line
Find many 010-avoiding binary sequences with $n-k$ one-bits, starting and ending with 1
1: point on line; 0: point not on line
After each block of 0's, rotate a ray from the next 1 to separate a block of that many off-line points from the rest

Each sequence corresponds to at least one polygonalization

Conclusions

We can:

List all polygonalizations in output-polynomial time
Approximate log \#polygonalizations with constant approximation ratio in polynomial time

Solve traveling salesperson or any other optimization or counting problem on polygonalizations in XP time, $n^{O(k)}$

Work in progress but I think we can:

Count polygonalizations, solve TSP, and find min/max area polygonalization in time fixed-parameter tractable in same k

References and image credits, I

Linda Deneen and Gary Shute. Polygonizations of point sets in the plane.
Discrete \& Computational Geometry, 3(1):77-87, 1988. doi: 10.1007/BF02187898.

Sándor P. Fekete. On simple polygonalizations with optimal area.
Discrete Comput. Geom., 23(1):73-110, 2000. doi: 10.1007/PL00009492.

Sándor P. Fekete and Phillip Keldenich. Computing crossing-free configurations with minimum bottleneck. In 34th European Workshop on Computational Geometry, pages 23:1-23:6. Free University of Berlin, 2018. URL https://conference.imp.fu-berlin.de/ eurocg18/download/paper_23.pdf.
Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free subgraphs of K_{N}. Comput. Geom. Theory \& Appl., 16 (4):211-221, 2000. doi: 10.1016/S0925-7721(00)00010-9.
H. Guggenheimer. The Jordan curve theorem and an unpublished manuscript by Max Dehn. Archive for History of Exact Sciences, 17 (2):193-200, 1977. doi: 10.1007/BF02464980.

References and image credits, II

Carmen Hernando, Michael E. Houle, and Ferran Hurtado. On local transformation of polygons with visibility properties. Theoret. Comput. Sci., 289(2):919-937, 2002. doi: 10.1016/S0304-3975(01)00409-1.
G. H. Meisters. Polygons have ears. Amer. Math. Monthly, 82(6): 648-651, 1975. doi: 10.2307/2319703.
Sharon Mollerus. Last leaves. CC-BY image, October 8 2007. URL https://commons.wikimedia.org/wiki/File: Last_Leaves_(1523604902).jpg. Cropped from original.
Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn's technique. J. Combin. Theory Ser. A, 120(4):777-794, 2013. doi: 10.1016/j.jcta.2013.01.002.

Hugo Steinhaus. One Hundred Problems in Elementary Mathematics. Basic Books, 1964. See pp. 17, 85-86.
Katsuhisa Yamanaka, David Avis, Takashi Horiyama, Yoshio Okamoto, Ryuhei Uehara, and Tanami Yamauchi. Algorithmic enumeration of surrounding polygons. Discrete Appl. Math., 303:305-313, 2021. doi: 10.1016/j.dam.2020.03.034.

