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Given n points

Find a simple polygon
with exactly those
vertices

(allow 180° angles for
collinear points)

Polygonalizations
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Known

They always exist [Steinhaus 1964]

. even for non-general position but non-collinear

Easy construction:
Sort radially around any point in convex hull
[Deneen and Shute 1988]

There can be singly-exponentially many
and they can be listed in single-exponential time
[Sharir et al. 2013; Garcia et al. 2000; Yamanaka et al. 2021]

Some optimization criteria are NP-hard (traveling salesman!)
for more see: [Fekete 2000; Fekete and Keldenich 2018]



Unknown

Can we list them all in
polynomial time/polygon?

We can for many other
non-crossing structures by
searching a state space

connected by local moves

For polygonizations,
natural moves do not work

Unflippable polygon
[Hernando et al. 2002]



Main result

We can list all polygonalizations of given points in time
polynomial in the number of polygonalizations

Singly-exponential in worst case (matching known algorithms)
Can be much faster when # polygonalizations is smaller

Also works (a little easier) for non-crossing Hamiltonian paths



Surrounding polygons

Vertices = subset of points, enclosing the rest



Listing all surrounding polygons

Two ears theorem: A polygon that is not a triangle has > 2 ears,
triangles that can be cut off to form a simpler polygon
[Meisters 1975; Guggenheimer 1977]

= Every surrounding polygon, other than the convex hull, has a
triangle that can be popped out to form a simpler polygon

= Tree of surrounding polygons rooted at the convex hull

= Explore this tree [Yamanaka et al. 2021]



Listing all polygonalizations

For each surrounding polygon:
If it is a polygonalization:
Output it

Already used to list polygonalizations in singly exponential time
and polynomial space [Yamanaka et al. 2021]

We prove this is output-polynomial!

[Mollerus 2007]

Equivalently: The tree of surrounding polygons cannot have
many branches but few polygonalizations at its leaves



Example where numbers differ

Concave chain of n — 1 vertices inside a triangle

# polygonalizations = (n — 1)2"—*

_ at+b\/b+c
d | = 1
# surrounding polygons Z (a+ )( > ( b )

a
a+b+c=n-3

~ (1 + golden ratio)" ~ 2.618" ~ (# polygonalizations)!-3%



The main idea

Analyze point sets with few
polygonalizations FORBIDDEN
CONFIGURATIONS
Controlled by two hereditary IN DISCRETE
parameters of order types of point sets GEOMETRY

Approximate log # polygonalizations
and log # surrounding polygons by a
formula involving these two parameters

Both counts have the same
approximation formula =
polynomial relation between them

DAVID EPPSTEIN



Point sets with few polygons

The number of polygons is small when, for small k, either:
e e o oo

All but k points lie on a single line, or
all but k points lie on the convex hull

Determined by the k points, their neighbors, and their connections

n—k

[ <
#polygons < << ok

>2O(k) log #polygons = O (k (Iogg + 1)) .



Hard part: Lower bound on #polygonalizations

Three separate lower bounds:

2
> All but k points on a line, but not on hull: > (:;2>

» All but k points on hull: > <("+ k)l{;lz— O(l)>

» Both hull and max line have < n/7 points:
singly exponential

Combine to give log #polygonalizations = Q <k (Iogg + 1)>



Many points on a line, not on hull

Find > k/2 points on one side of the line

Find many 010-avoiding binary sequences with n — k one-bits,
starting and ending with 1

1: point on line; 0: point not on line

After each block of Q's, rotate a ray from the next 1 to separate a
block of that many off-line points from the rest

Each sequence corresponds to at least one polygonalization
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Conclusions

We can:

List all polygonalizations in output-polynomial time

Approximate log #polygonalizations with constant approximation
ratio in polynomial time

Solve traveling salesperson or any other optimization or counting
problem on polygonalizations in XP time, n©()

Work in progress but | think we can:

Count polygonalizations, solve TSP, and find min/max area
polygonalization in time fixed-parameter tractable in same k
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