

Internet Packet Filter Management and Rectangle Geometry

David Eppstein∗ S. Muthukrishnan†

Abstract

We consider rule sets for internet packet routing and filter-
ing, where each rule consists of a range of source addresses,
a range of destination addresses, a priority, and an action. A
given packet should be handled by the action from the max-
imum priority rule that matches its source and destination.
We describe new data structures for quickly finding the rule
matching an incoming packet, in near-linear space, and a new
algorithm for determining whether a rule set contains any
conflicts, in time O(n3/2).

1 Introduction

The working of the current Internet and its posited evolution
depend on efficient packet filtering mechanisms: databases
of rules, maintained at various parts of the network, which
use patterns to filter out sets of IP packets and specify actions
to be performed on those sets. Typical filter patterns are based
on packet header information such as the source or destina-
tion IP addresses. The actions to be performed depend on
where the packet filtering is performed in the network. For
example, at backbone routers, packet filters specify which
interface or link to use when forwarding packets. In fire-
walls, packet filters specify whether to allow a connection.
More generally, packet filters specify Quality-of-Service ac-
tions such as restricting certain classes of traffic to no more
than a threshold bandwidth. This packet filtering mechanism
— maintaining a database of filters with associated actions
and applying them to IP packets as appropriate — underlies
most crucial aspects of the Internet: correct routing, provid-
ing security, guaranteeing service level agreements between
different subnets, billing based on traffic patterns, etc.

Implementing the packet filtering mechanism in the In-
ternet involves sophisticated packet filter management tasks.
In particular, we need packet classification, that is, given an
IP packet with a specific header values, we need to determine
which filter applies to that packet. We also need filter con-
flict detection, that is, we need to determine whether two or
more filters that apply to a packet specify conflicting actions.

∗Dept. Inf. & Comp. Sci., Univ. of California, Irvine, CA 92697-
3425. Email: eppstein@ics.uci.edu. Work performed in part while
visiting AT&T.
†AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park, NJ

07932. Email: muthu@research.att.com.

Conflicts are resolved by adding additional filters, so the fil-
ter database remains consistent. These are the fundamental
packet filter management tasks governing the IP network per-
formance.

In this paper, we present efficient algorithms for solving
both of these packet filter management problems. Our ap-
proach is to solve the underlying abstract problem which, in
each case, is naturally formulated as a geometric data struc-
tural problem. We focus on simple techniques suitable for
highly efficient implementations, especially in our packet
classification algorithms, because in the future we hope to
explore implementations of them in practical applications.
However our work provides theoretical asymptotic improve-
ments as well.

The same abstract geometric data structural problems
derived from these packet filtering applications arise inde-
pendently in other important applications areas as well, and
our results improve the best known results for those appli-
cations. In what follows, we describe the packet filter man-
agement problems (Section 1.1) and our results (Section 1.2),
and provide an overview of our techniques (Section 1.3) be-
fore providing all the details (Sections 2 to 3). We will briefly
describe the other application areas where our results are rel-
evant in Section 1.3.

1.1 Packet Filter Management Problems

A packet filter i in IP networks is a collection of d-
dimensional ranges [l1i , r

1
i] × · · · × [ldi , r

d
i], an action Ai and

a priority pi. The precise nature of action is not relevant here
except that we can determine if two actions Ai and Aj are in
conflict (for example, if Ai is to allow the packet through the
firewall and Aj is to disallow it, there is a conflict of action).
Any IP packet P can be viewed as a d-dimensional vector of
values [P1, . . . ,Pd] summarizing the header information of
the packet. A filter i applies to packet P if Pj ∈ [lji, r

j
i] for

each j ∈ [1, d].

Packet Classification Problem. A database F of filters
is available for preprocessing. Each online query is a
packet P, and the goal is to classify it, that is, to deter-
mine the filter of highest priority that applies to P. A
related problem is to list all filters that apply to P.

1

2

Filter Conflict Detection Problem. Given a database F of
filters, determine if there exists any packet P such that of
the filters of the highest priority that apply to P, any two
of them specify actions that conflict. Reated problems
are to list all regions wherein conflicting P’s lie, or to
list all conflicting pairs of filters.

Some remarks follow. Existing IP routers use destina-
tion based routing, that is, use filters with d = 1 specifying
ranges of destination IP addresses. As the Internet evolves
from being the best effort network as it is now to provide
differentiated services, two or more IP header fields may be
specified by a filter. Some proposals are underway to specify
many fields such as source IP address, destination IP address,
source port, destination port etc., while others are underway
which seem to preclude using more than just the source and
destination IP addresses, that is, d = 2 (in IPsec for exam-
ple, the source or destination port numbers may not be re-
vealed.) In the rest of this paper, we will assume d = 2 and
the fields that are specified are source and destination IP ad-
dresses since that seems likely to be most prevalent and of
immediate interest.

Filters typically specify IP address ranges as an IP ad-
dress a1 · · · a32 and a mask of certain number l of bits, that
is, the range is a1 · · · al00 · · · 0 to a1 · · · al11 · · · 1. So these
are not arbitrary ranges. Instead they are hierarchical, that
is, if two ranges intersect, one is completely contained in the
other. All our results will in fact work for arbitrary ranges in
each dimension although some of our algorithms can be made
simpler for implementation purposes if the ranges are hierar-
chical.

In both problems we will let n denote the number of fil-
ters in F. The value of n varies depending on where filtering
is done: backbone routers may have hundreds of thousands of
filters, firewalls may only have a few hundreds, etc. All num-
bers are integers in the range [0,U − 1] — for IP addresses,
this is currently [0, 232 − 1], but may go up to 264 or higher
in IPv6.

1.2 Our Results

Our main results are as follows.

• Packet Classification Problem. We present an algo-
rithm for this problem with different tradeoffs for data
structure space vs filtering time. In particular, we ob-
tain very fast classification times with near-linear space:
withO(n1+o(1)) space, classification takesO(log log n)
time, or with O(n1+ε) space, classification takes O(1)
time.1

1For clarity, we have stated the results for U = nO(1); bounds for general
U appear later in the paper. Throughout this section, we assume U = nO(1)

for making comparisons with existing results.

• Filter Conflict Detection Problem. We present an
O(n) space, O(n3/2) time algorithm for this problem.
Straightforward O(n2 log n) time algorithms were the
only known previous result.

The packet classification problem has been extensively
studied with over a dozen papers in the premier networking
conferences (INFOCOM and SIGCOMM) in the past few
years (e.g., see references in [7]). Classification time is of
paramount importance (for example, for backbone routers,
filtering IP packets has to be done at the speed at which it
forwards the packets, a blistering speed!). However, at such
high speeds, memory is very expensive and the consensus
in the networking community is that classification must be
very fast, but that data structural space must be limited to the
extent possible. The applied works in INFOCOM and SIG-
COMM use near-linear space, but take time Ω(log n) to clas-
sify each packet which they attempt to further speed up using
large memory cache line etc. However, the golden standard
has been the bound of Θ(log log n) that can be achieved for
the d = 1. With the exception of [7], known algorithms for
d = 2 fail to meet this bound. Our algorithmic result here
meets this bound, but uses onlyO(n1+o(1)) space improving
upon the Θ(n1+ε) space needed by [7, 8] which is the previ-
ously best known result. Furthermore, our result is easily im-
plementable; hence, it additionally holds promise as a practi-
cal packet classification solution.

The filter conflict detection problem has received atten-
tion only recently [1]. That work was primarily motivated
by detecting security holes in firewalls. Filter databases in
firewalls get modified by systems administrators manually or
automatically (for example, when a host from inside a fire-
wall requests a TCP connection with a host outside, a fil-
ter may be added to the firewall to enable the target host to
open a TCP connection through the firewall). Conflicts arise
quite naturally, and the task of the administrator is to resolve
them appropriately. The work in [1] was motivated by this
scenario. However, conflict detection helps in auditing filter
databases [6] in general for ambiguities in routing, unfulfilled
service guarantees etc., that is, in general where packet filter
mechanism is employed. It is straightforward to solve this
problem in O(n2 log n) time. Our main contribution here is
in breaking the quadratic barrier and designing an O(n3/2)
time algorithm.

1.3 Our Techniques and Other Applications
of Our Results

Both the packet classification and the filter conflict detec-
tion problem can be thought of as geometric problems in
which each rule is a 2-dimensional axis-parallel rectangle.2

The packet classification problem can be viewed as locating

2In d dimensions, they will be d-dimensional hyperrectangles.

3

a point (the query IP packet header values) in a partition of
space formed by overlaying these rectangles. The filter con-
flict detection problem is that of detecting certain overlap-
ping regions among rectangles of highest priority that over-
lap a region. Our approach is to solve the underlying geo-
metric data structural problems in the bounds quoted above.
This has other immediate applications, for example to the
problems in [8], giving the following new results: (1) faster
multi-method lookup in object oriented languages and the
first known efficient algorithm for auditing multi-method li-
braries, (2) improved matching algorithms for rectangular
matching, wherein, for the first time, matching time is inde-
pendent of the dictionary size while the space used is sub-
quadratic in dictionary size, and (3) the first known optimal
algorithm for approximately matching a pattern string with
edit distance at most 1 in a text – the matching time is linear
in the text size and preprocessed space is sublinear in the dic-
tionary size. These three problems have extensive literature,
and all these results are of independent interest. Readers are
referred to [8] for details.

Our approach to solving the two packet classification re-
lies on a standard plane-sweep approach to turn the static
two-dimensional rectangle query problem into a dynamic
one-dimensional problem, in which we maintain a dynamic
set of intervals and must again query the maximum priority
set element containing a query point. This one-dimensional
problem must be solved persistently, so we can query previ-
ous versions of the data structure after the plane sweep has
occurred. We solve this persistent one-dimensional problem
using a data structure combining ideas from B-trees and seg-
ment trees.

Our approach to the filter conflict detection problem uses
a technique related to an algorithm by Overmars and Yap [11]
for Klee’s measure problem (determining the volume of a
union of rectangular blocks): we use a kD-tree [5] to divide
the plane into rectangular cells, not containing any rectangle
vertex, so that the rectangles intersecting any cell form stripes
(i.e., rectangles that are unbounded in one dimension). The
conflict detection problem can thus be reduced to determin-
ing a lower envelope of line segments, which can also be in-
terpreted data structurally as an offline priority queue prob-
lem or graph theoretically as a minimum spanning tree veri-
fication problem. We solve this subproblem efficiently using
a linear-time union-find data structure.

2 Fast Packet Classification Queries

As described above, packet classification can be viewed as an
orthogonal range querying problem, in which we wish to find
the maximum priority rectangle containing any query point.
We now describe data structures for solving this problem
efficiently.

2.1 Persistent Interval Queries

First, we consider a dynamic one-dimensional query prob-
lem: what is the maximum priority interval containing a
query point among a dynamically changing set of intervals,
having integer endpoints in the range [0,U − 1]. We assume
without loss of generality that U is a power of two. Our data
structure will be partially persistent: an update must be per-
formed on the most recent version of the structure, but a query
can refer to any prior version.

Our data structure will be parametrized by a value k, and
will consist of blocks of O(2k) memory words, each corre-
sponding to information about an interval of values within the
range [0,U − 1]. An update may create new blocks but will
not change existing blocks. If a block corresponds to query
values in the interval [x, y], then by subinterval i we refer to
the interval [x + i(y− x)2−k, x + (i + 1)(y− x)2−k − 1]. A
persistent version of the data structure will be represented by
a pointer to a block forming the top level of the data structure.

Each block contains the following information:

• A table opt[i] of pointers to the maximum-priority inter-
val in the dynamic set that contains subinterval i.

• A table pq[i] of pointers to priority queue data structures
for the intervals containing subinterval i.

• A table subblock[i] of pointers to blocks representing the
subset of dynamic intervals having endpoints in subin-
terval i. If a subinterval contains no endpoints, this
pointer is null.

The priority queues are not used for queries, and so do
not need to be maintained persistently. We will later see
how to eliminate them altogether for problems derived from
hierarchical rectangle sets.

LEMMA 2.1. The data structure described above can find
the maximum priority interval containing a query point in
time O((log U)/k).

Proof. We answer a query simply by repeatedly following
the pointer subblock[i] for the subinterval i that contains the
query point. For each block found via this chain of pointers,
we look up the value opt[i] and compare the priorities of the
intervals found in this way.

Each successive block in the chain corresponds to an
interval of size smaller by a 2−k factor than the previous
block, so the total number of blocks considered is log2k U =
(log U)/k. For any interval I containing the query point
there is a maximal block such that I contains the subinterval
containing the query in that block; then by the assumption
of maximality I must have an endpoint in the block and is
a candidate for opt[i]. Therefore, the true maximum-priority
interval containing the query is one of the ones found by the
query, and the query algorithm is correct. 2

4

LEMMA 2.2. The data structure described above can
be updated in time O((2k log n)(log U)/k) and space
O(2k(log U)/k).

Proof. To insert or delete an interval, we create a new copy of
each block containing one of the endpoint intervals. By the
same argument used to bound query time, there are at most
2(log U)/k such blocks. For each copied block, we update
the priority queues corresponding to subintervals containing
the updated interval, copy pointers to these priority queues
into the pq[i] pointers of the new block, and use these priority
queues to set each value of opt[i]. We then copy each pointer
subblock[i] from the previous version of the block, except for
the one or two subintervals containing the updated interval’s
endpoints, which are changed to point to the new blocks for
those subintervals. Each update causes the creation of at most
2(log U)/k new blocks, using space O(2k(log U)/k). Each
update also changesO(2k(log U)/k) priority queues, in time
O((2k log n)(log U)/k). 2

We summarize the results of this section:

THEOREM 2.1. For any k there exists a data struc-
ture for maintaining dynamic prioritized intervals in
the range [0,U − 1], and finding the maximum prior-
ity interval containing a query point in any persistent
version of the data structure, in time O((log U)/k) per
query, time O((2k log n)(log U)/k) per update, and space
O(2k(log U)/k) per update.

The log n factor in the update time can be reduced by
building a segment tree of subintervals within each block, and
maintaining a priority queue of the dynamic intervals corre-
sponding to each canonical interval of the segment tree; we
omit the details, since this factor does not form an important
part of our overall running time and can (as detailed below)
be avoided entirely for hierarchical rectangles.

2.2 Static to Dynamic Transformation

We use the dynamic data structure of the previous subsection
to solve our static rectangle querying problem, as follows.

LEMMA 2.3. Suppose we are given a set S of n integers in
the range [0,U−1]. Then for any x we can build a data struc-
ture which finds the largest predecessor in S of a given query
integer, in space O(nx logx U) and query time O(logx U).

Proof. Form a set of intervals [i,U − 1] with priority i for
i ∈ S. The maximum priority interval containing q has as its
left endpoint the predecessor of q. Thus, we can use a static
version of the data structure described in Theorem 2.1 (with
k = log x) to solve this problem. 2

Beame and Fich [4] provide matching
Θ(log log n/ log log log n) upper and lower bounds for
integer predecessor queries in polynomial space, and survey
several previous results on the problem. Because of the
reduction above, their lower bounds apply as well the the
maximum priority interval and rectangle problems. Our
results escape this lower bound by having a space bound that
depends on U and not just on n.

THEOREM 2.2. Given a set of n axis-aligned prioritized
rectangles with coordinates in the range [0,U−1], and a pa-
rameter x, we can build a data structure of sizeO(nx logx U)
which can find the maximum priority rectangle containing a
query point in time O(logx U).

Proof. We consider a left-right sweep of the rectangles by a
vertical line; for each position of the sweep line we maintain
a dynamic set of intervals formed by the intersections of the
rectangles with the sweep line. This intersection changes
only when the sweep line crosses the left or right boundary
of a rectangle; at the left boundary we insert the y-projection
of the rectangle and at the right boundary we delete it. With
each rectangle boundary we store a pointer to the version of
the data structure formed when crossing that boundary.

A query can be handled by using the integer predecessor
data structure of Lemma 2.3 to find the x-coordinate of the
nearest rectangle boundary to the right of the query point, and
then performing a query in the corresponding version of the
interval data structure. 2

In particular when U = nO(1) we achieve query time
O(log log n) in space O(n1+o(1)), or query time O(1) in
spaceO(n1+ε), while previous solutions used space Θ(n1+ε)
to achieve query time O(log log n) [8].

It is not difficult to modify our data structure to han-
dle other decomposable queries, such as listing all rectangles
containing the given query point, in similar time and space
bounds.

For hierarchical rectangles, we can simplify the dynamic
interval data structure by using insertion and undo operations
instead of more general insertions and deletions, and by omit-
ting the pq[i] pointers and the priority queues they point to.
An insertion can be handled by comparing the priority of the
newly inserted interval to the values opt[i] for the blocks con-
taining the interval’s endpoints. An undo can be handled sim-
ply by restoring the pointer to the top-level block to its pre-
vious version.

3 Conflict Detection

We say that a set of rules, represented by a set of rectangles
with priorities, has a conflict if there exists a query point q
such that there is not a unique maximum-priority rectangle
containing q. Note that this is a stronger condition than the
existence of an intersecting pair of equal-priority rectangles,

5

since a higher-priority rectangle could cover the intersection
and avoid a conflict. As defined in the introduction, the filter
conflict detection problem further restricts conflicts to rules
with conflicting actions; the algorithms described here can be
extended to cases where the actions can be partitioned into a
small number of conflict types but we omit the details.

We would like to know whether a given set of prioritized
rectangles has a conflict. A naive method would test each pair
of equal-priority rectangles to determine whether they con-
flict, but this would not be efficient due to the difficulty of
testing whether their intersection is covered by the union of
higher priority rectangles. Less naively, the problem can be
solved in near-quadratic time by querying each point deter-
mined by the horizontal boundary of one rectangle and the
vertical boundary of another, or by constructing the arrange-
ment of all the rectangles and using a priority queue to find
the maximum priority rectangle(s) within each arrangement
cell. We seek an even more efficient (subquadratic) solution.

3.1 Priority Queues, Lower Envelopes, and
MST Verification

Consider the following three problems:

• Given is an offline sequence of O(n) integer priority
queue operations: insert or delete a value in the set
{0, 1, . . . n − 1} and query the minimum value. How
quickly can one answer all the queries?

• Given is a set of horizontal line segments (Figure 1,
left), each endpoint of which has coordinates in the set
{0, 1, . . . n − 1}. How quickly can one construct the
lower envelope of the line segments? That is, if we
think of each line segment as representing the graph of
a (constant) function defined over a portion of the x-
axis, what is the (piecewise constant) minimum of these
functions (Figure 1, right)?

• Given is a graph, in which the minimum spanning tree
is a given path, and in which all edges have weights in
the set {0, 1, . . . n−1}. How quickly can one determine,
for each edge in the path, which edge would replace it in
the MST if the path edge were deleted?

It is not difficult to see that in fact these problems are
equivalent to each other: the insertion times, deletion times,
and priorities in the offline priority queue correspond respec-
tively to the x-coordinates of the left endpoints, x-coordinate
of the right endpoints, and y-coordinates of the horizontal line
segments, which correspond respectively to the first vertex
(according to the path order), second vertex, and weight of
the non-MST edges in the graph.

Aho, Hopcroft, and Ullman [2, pp. 139–141] describe
an algorithm for a similar offline priority queue problem,
however their problem involves delete-minimum operations

rather than deletions of particular values. Although the best
replacement edge for each non-MST edge can be found in
linear time [10], the fastest known algorithm for finding the
best replacement for each MST edge (without the integer
restriction) remains Tarjan’s slightly superlinear one [12].

LEMMA 3.1. The three problems described above can be
solved in linear time.

Proof. We consider the minimum spanning tree verification
formulation of the problem, and consider the non-tree edges
in sorted order by weight. Our algorithm finds the replace-
ments for each path edge in a certain order; when a path
edge’s replacement is found we reduce the size of the graph
by contracting that edge. This contraction clearly does not
change the replacement for the remaining edges. We use a
union-find data structure to keep track of the relation between
the original graph vertices and the vertices of the contracted
graph. Since the contractions will be performed along the
edges of a fixed tree (namely, the given path), we can use the
linear-time union-find data structure of Gabow and Tarjan [9]
or its recent simplification by Alstrup et al. [3].

Our algorithm, then, simply performs the following
steps for each edge (u, v), in sorted order by edge weight:
for each uncontracted edge (x, y) remaining in the path be-
tween u and v, set that edge’s replacement to (u, v), contract
the edge, and unite x and y in the union-find data structure.

The time per edge (u, v) is a constant, plus a term pro-
portional to the number of path edges contracted as a result
of processing edge (u, v). Since each edge can only be con-
tracted once, the total time is linear. 2

The technique readily extends to finding best replace-
ment edges for graphs where the MST is not a path.

For our application to conflict detection, we also need to
know whether there were any ambiguities in the above pro-
cess; that is, whether any of the offline min operations can re-
turn more than one equal minimum value. This is essentially
the same as our original conflict detection problem in one di-
mension rather than two. One way to solve this is to apply the
above algorithm twice, once with an arbitrary tie-breaking or-
der imposed on equal weight edges, and once again with the
reverse order imposed, and test whether the two applications
of the algorithm produce the same assignment of replacement
edges.

3.2 Stripes

We first describe an efficient algorithm for conflict detection
in the special case that each rectangle is a stripe; that is, either
its vertical extent or its horizontal extent is the entire space
[0,U−1]. We do not expect such a restricted case to occur in
our application, but it forms an important subroutine for our
more general algorithm.

We classify stripes into three types:

6

Figure 1: A set of horizontal line segments (left) and its lower envelope (right).

• A horizontal stripe has x-extent [0,U − 1] and y-extent
a proper subset of [0,U − 1].

• A vertical stripe has x-extent a proper subset of [0,U−1]
and y-extent [0,U − 1].

• A universal stripe has both x-extent and y-extent equal
to the entire space [0,U − 1].

LEMMA 3.2. Let a collection of prioritized stripes be given,
together with sorted orderings of all stripes according to their
priorities, the horizontal boundaries of horizontal stripes ac-
cording to their y-coordinates, and the vertical boundaries
of vertical stripes according to their x-coordinates. Then we
can detect a conflict in this set of stripes in linear time.

Proof. We first partition the space [0,U−1]2 into horizontal
stripes, according to the maximum-priority horizontal input
stripe covering each point in the space; essentially this is just
the lower envelope computation of Lemma 3.1. Let mh de-
note the minimum priority occurring in this partition. Sim-
ilarly, we partition the space into vertical stripes according
to the maximum-priority vertical input stripe covering each
point, and let mv denote the minimum priority occurring in
this partition. Finally, we let mu denote the maximum prior-
ity of any universal stripe. (We set mh, mv, or mu to −∞ if
the corresponding set of stripes is empty.)

We then use this information to search for conflicts, as
follows, depending on the types of the two conflicting stripes:

• To find a conflict between two horizontal stripes, if one
exists, test whether there exists an ambiguity in the con-
struction of the horizontal partition, as discussed below
Lemma 3.1. If there is such an ambiguity, let ph de-
note the maximum priority of any ambiguity. Then a
conflict exists if and only if ph ≥ max{mv,mu}. Sim-
ilarly we can find a conflict between two vertical stripes
by letting pv denote the maximum priority of an ambi-
guity in the vertical partition, and testing whether pv ≥
max{mh,mu}.

• A conflict between two universal stripes exists if and
only if some two or more universal stripes have priority
mu, and if mu ≥ max{mh,mv}.

• A conflict between a universal and a horizontal stripe
exists if and only if mu is also the priority of one of
the stripes in the horizontal partition, and mu ≥ mv.
Similarly a conflict between a universal and a vertical
stripe exists if and only if mu is also the priority of one
of the stripes in the vertical partition, and mu ≥ mh.

• A conflict between a horizontal stripe and a vertical
stripe exists if and only if there is a priority p ≥ mu that
appears both in the horizontal and the vertical partition.

Thus, the problem has been reduced to a constant num-
ber of comparisons, together with two more complex opera-
tions: determining whether mu appears in either of two sets of
priorities, and determining the intersection of those two sets.
Since we know the sorted order of the priorities, we can rep-
resent them by values in the range [0, n− 1] and use a simple
bitmap to perform these membership and intersection tests in
linear total time. 2

3.3 kD-tree

A kD-tree [5] of a set of points is a hierarchical partition
into rectangular cells, formed as follows:

• The root of the hierarchy is a bounding box for the point
set.

• If a cell at an even level of the hierarchy contains one or
more points in its interior, then it is split into two smaller
cells by a vertical line through the point with the median
x-coordinate.

• If a cell at an odd level of the hierarchy contains one
or more points in its interior, then it is split into two
smaller cells by a horizontal line through the point with
the median y-coordinate.

7

Figure 2: kD-tree for a set of rectangles. Upper left: the rectangles. Upper right: their vertices. Lower left: kD-tree for the
vertices. Lower right: maximal kD-tree cells partition an input rectangle.

8

If a cell contains an even number of points, either of the
two median points can be used to determin its split line. The
leaf cells of the kD-tree form a partition of the bounding box
intoO(n) empty rectangles. Since each split divides its point
set in half, the number of levels of the hierarchy is at most
log2 n (it can be smaller if several points are contained in a
single split line).

LEMMA 3.3. Any vertical or horizontal line cuts O(
√

n)
cells at all levels of the kD-tree for a set of O(n) points.

Proof. If the line is horizontal (vertical), the number of cells
cut by the line at most doubles at every even (odd) level of the
kD-tree construction, and remains unchanged at every odd
(even) level. The result follows from the log2 n bound on the
number of levels in the tree. 2

In our conflict detection algorithm, we will use kD-trees
defined on the set of corners of the input rectangles (Figure 2).
We say that an input rectangle covers a kD-tree cell if the
cell is completely contained in the rectangle. We define a
maximal covered cell for a given rectangle to be a cell that
is covered by the rectangle, but for which the cell’s parent is
not covered. We say that a rectangle crosses a cell if it has
a nonempty intersection with the interior of the cell but does
not cover it.

LEMMA 3.4. Any rectangle has O(
√

n) crossed cells and
O(
√

n) maximal covered cells at all levels in the kD-tree.

Proof. The bound on the number of crossed cells follows im-
mediately from Lemma 3.3. The parent of a maximal covered
cell must be crossed, and each crossed cell can have at most
one maximal covered child, so the number of maximal cov-
ered cells is also O(

√
n). 2

3.4 The Conflict Detection Algorithm

Clearly, if a set of rectangles has a conflict, then this conflict
must occur within at least one of the leaf cells of a kD-tree.
Further, since the leaf cells contain no rectangle corners, each
rectangle acts like a stripe within any such cell: it extends
either the full width or the full height of the cell. Thus, we can
perform conflict detection by building a kD-tree and applying
our stripe conflict detection algorithm to each cell.

THEOREM 3.1. Given a set of n prioritized rectangles, we
can determine whether the set has a conflict in time O(n3/2)
and space O(n).

Proof. We build a kD-tree of the rectangle vertices (this can
be done in timeO(n log n) and perform a depth first traversal
of the tree. As we traverse the tree, we maintain at each cell
of the traversal the following information:

• The maximum priority of a rectangle covering the cell,
and one or (if they exist) two rectangles having that
maximum priority.

• A list of the rectangles crossing the cell, sorted by pri-
ority.

• A sorted list of the horizontal boundaries of the rectan-
gles that cross the cell.

• A sorted list of the vertical boundaries of the rectangles
that cross the cell.

When the traversal reaches a cell C, we can determine
which of rectangles cross or cover the children of C, and
extract the sorted sublists for its two children, in time linear
in the number of rectangles crossing C. We also find the
set of rectangles that cross C but maximally cover one of
its children, scan this set for the maximum priority, and use
this information (together with the maximum priority of a
rectangle covering C) to determine the maximum priority of
a rectangle covering each child.

When the traversal reaches a leaf cell, we apply the algo-
rithm of Lemma 3.2 to test whether the cell contains a con-
flict.

While one child of a cell C is being processed recur-
sively, we store with C only the portions of the sorted lists
that have not been passed to that child, so that each rectangle
or rectangle edge is stored in one of the lists only at a single
level of the tree, keeping the total space linear. All operations
performed when traversing a cell take time linear in the num-
ber of rectangles crossing or maximally covering the cell, so
by Lemma 3.4 the total time is O(n

√
n). 2

4 Concluding Remarks

We have considered the two fundamental packet filter man-
agement problems in IP networks, namely, packet classifica-
tion and filter conflict detection, for the two dimensional case
of immediate interest. For the packet classification problem,
we present a simple algorithm that takes O(log log n) time
to classify packets matching the best known bounds for the
one dimensional case, and improving upon the space needed
by currently known solutions. For the filter conflict detec-
tion problem, our solution is the first sub-quadratic time al-
gorithm.

Our packet classification algorithm may well turn out
to be better than existing ones in practice, too. We fully
intend to test that possibility. However, the task is not one of
merely implementing our algorithm and comparing against
the known ones. Since the study of packet classification is
quite mature in the networking communities, we need to do
a careful job adapting our solution (where to make best use
of large memory cache line, how to combine hardware and
software solutions, how to exploit the properties of rule sets
to isolate small, hard subproblems where our solution will be
useful, etc). Engineering such tradeoffs is best explored in a
separate paper.

9

Dynamic versions of the packet filter management prob-
lem are open, as are extensions of our results to higher dimen-
sional query problems.

References
[1] H. Adiseshu, S. Suri, and G. Parulkar. Detecting and resolving

packet filter conflicts. In Proc. INFOCOM, volume 3, pages
1203–1212. IEEE, March 2000.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[3] S. Alstrup, J. P. Secher, and M. Spork. Optimal on-line decre-
mental connectivity in trees. Inf. Proc. Lett., 64(4):161–164,
November 1997.

[4] P. Beame and F. E. Fich. Optimal bounds for the predecessor
problem. In Proc. 31st ACM Symp. Theory of Computing,
pages 295–304, May 1999.

[5] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
September 1975.

[6] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router
plugins: a software architecture for next-generation routers.
IEEE/ACM Trans. Networking, 8(1):2–15, February 2000.

[7] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet
classification. In Proc. INFOCOM, volume 3, pages 1193–
1202. IEEE, March 2000.

[8] P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-
method dispatching: a geometric approach with applications
to string matching problems. In Proc. 31st ACM Symp. The-
ory of Computing, pages 383–491, May 1999.

[9] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for
a special case of disjoint set union. J. Comput. Sys. Sci.,
30(2):209–221, April 1985.

[10] V. King. A simpler minimum spanning tree verification algo-
rithm. Algorithmica, 18(2):263–270, June 1997.

[11] M. H. Overmars and C. K. Yap. New upper bounds in Klee’s
measure problem. SIAM J. Comput., 20:1034–1045, 1991.

[12] R. E. Tarjan. Applications of path compressions on balanced
trees. J. ACM, 26(4):690–715, October 1979.

