The h-index of a graph and its application to dynamic subgraph statistics

David Eppstein
Univ. of California, Irvine
Computer Science Department

Emma S. Spiro
Univ. of California, Irvine
Department of Sociology
Context: Analysis of Social Networks

Represent interactions among people and their environments as graphs

There are many different kinds of social networks, with different data analysis challenges

Goal: develop mathematical models that are general enough to handle this heterogeneity and accurate enough to give us interesting predictions
Examples of social networks:
Real-life personal or sexual contacts

Vertices = people

Edges = contacts

Graphs are small, difficult to obtain, and noisy

Structure depends on vertex/edge labels
(e.g. M-F sexual contact more frequent than M-M or F-F)

Illustration of contacts from the movie Love, Actually

The h-index of a graph and dynamic subgraph statistics

D. Eppstein, UC Irvine, 2009
Examples of social networks:
On-line social networks such as LiveJournal

Vertices = online identities
(not 1-1 with people)

Edges = “friends”
(two meanings on LiveJournal:
people whose entries one reads, and
people with permission to read one’s
semi-private entries)

Graphs are large,
easy to obtain,
and heterogeneous
(many subcommunities with different
connection patterns)

LiveJournal connections for mcfnord,
from ljmindmap.com
Examples of social networks:
Scientific publication databases

Two kinds of vertices, authors and publications

Two kinds of edges, authorship and citation

Graphs are large, not hard to obtain, but noisy

(difficulty: determining when two similarly named entities are the same)
Exponential random graph model: graphs shaped by their local structures

Fix a set of vertices

Determine local features
- Presence of an edge
- Degree of a vertex
- Small subgraphs

Assign weights to features: positive = more likely, negative = less likely

Log-likelihood of $G = \text{sum of weights of features} + \text{normalizing constant}$

Different feature sets and weights give different models capable of fitting different types of social network

Probabilistic reasoning in exponential random graphs

Most basic problem: pull the handle, generate a random graph from the model

With a generation subroutine, we can also:

• Find normalizing constant
• Fit weights to data
• Understand typical behavior of graphs in this model (e.g. how many edges?)
• Detect unusual structures in real-world graphs

Crop of CC-BY-SA licensed image “Slot Machine” by Jeff Kubina on Flickr, http://www.flickr.com/photos/95118988@N00/347687569
Standard method for random generation: Markov Chain Monte Carlo (random walk)

Idea: start with any graph

Repeatedly choose a random edge to add or remove

Choose whether to perform that update based on its effect on log-likelihood

After enough steps, graph is random with correct probability distribution

Key subproblem: Maintain feature counts for a dynamically changing graph

Assumption: feature = small induced subgraph

Feature counts can be related to other more easily-counted quantities:

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
\text{number of triangles} \\
\end{bmatrix}
\begin{bmatrix}
\sum \text{deg}(v) (\text{deg}(v) - 1)/2 \\
n(n - 1)(n - 2)/6 \\
m(n - 2) \\
\end{bmatrix}
\]

So if we can count triangles in a dynamic graph, we can maintain all other possible 3-vertex feature counts.
Main ideas of triangle-counting data structure (I)

Select a number D

Partition vertices into two subsets:

L: many vertices with degree less than D
H: few vertices with degree greater than D
Main ideas of triangle-counting data structure (II)

Maintain hash table C indexed by pairs (u,v) of vertices

$$C[u,v] = \text{number of two-edge paths } u \rightarrow L \rightarrow v$$

To count triangles involving an updated edge:

Look up its endpoints in C to find triangles with third point in L

Test each vertex in H to find triangles with third point in H

Hollerith 1890 census tabulator from http://www.columbia.edu/acis/history/census-tabulator.html
How much time does it take per change?

Finding triangles involving changed edge takes $O(|H|)$

Each edge is involved in $O(D)$ x–L–x paths, so updating hash table after a change takes $O(D)$

If L/H partition ever changes, update counts for all x–L–x paths through moved vertex taking time $O(D^2)$

How to choose D so $|H| + D$ is small and partition changes infrequently?
A detour into bibliometrics

How to measure productivity of an academic researcher?

Total publication count: encourages many low-impact papers

Total citation count: unduly influenced by few high-impact pubs

h-index [J. E. Hirsch, PNAS 2005]:
maximum number such that h papers each have $\geq h$ citations

The h-index of a graph and dynamic subgraph statistics

D. Eppstein, UC Irvine, 2009
The *h*-index of a graph:

Maximum number such that
h vertices each have $\geq h$ neighbors

$H =$ set of *h* high-degree vertices
$L =$ remaining vertices

All vertices in L have degree $\leq h$

Provides optimal tradeoff
between $|H|$ and D

Never more than \sqrt{m}
Else H would have too many edges
The h-index of some actual social networks

136 networks from Pajek, UCINET, statnet, UCI Network Data Repository
h-index scaling as a power of n

(frequency histogram of $\log h / \log n$)

Appears to be bimodal; we don’t have an explanation.
Algorithms based on h-index will be faster for networks in the first peak.
Maintaining h-index and h-partition efficiently

Group vertices by degree

Degree $> h$: always in H
Degree $< h$: always in L
Degree $= h$: some in H and some not (store as two separate groups)

When adding an edge to vertex v: Move v to new degree group

 If v was in L but degree now $> h$: Move it into H
 Find w in H with degree h, move to L
 If no w exists, increase h

When removing an edge from v: Move v to new degree group

 If v was in H but degree now $< h$: Move it into L
 Find w in L with degree h, move to H
 If no w exists, decrease h

$O(1)$ time per update

$O(1)$ changes to the partition per update (too frequent!)
Even more efficient

Maintain h-index itself as before

Modify partition into H and L so that it changes less frequently
- When degree exceeds $2h$, move vertex into H
- When degree drops below h, move vertex into L

Average number of changes to partition per update: $O(1/h)$

Easy part of analysis: if h remains constant,
h updates needed to move a vertex through neutral zone

Less easy: what if h itself changes?
Conclusions

Data structure for speeding up MCMC steps in ERGM simulation

\(O(h)\) time per step to update all possible 3-vertex feature counts

New graph invariant \(h\) may be of independent interest

Can be generalized to labeled vertices
(e.g. male/female or researcher/publication)
and weighted edges

Future directions

So far, analysis is theoretical
Needs experimental validation

Faster for sparse graphs?

Additional ERGM features?