
Bridging the Gap between Technical and Social
Dependencies with Ariadne

Erik Trainer1 Stephen Quirk1 Cleidson de Souza1,2 David Redmiles1
1
Donald Bren School of Information and Computer

Sciences

University of California, Irvine

Irvine, CA, USA – 92667

2
Departamento de Informática

Universidade Federal do Pará

Belém, PA, Brazil – 66075

[etrainer, squirk, cdesouza, redmiles]@ics.uci.edu

ABSTRACT

One of the reasons why large-scale software development is

difficult is the number of dependencies that software engineers

need to face: e.g., dependencies among the software components

and among the development tasks. These dependencies create a

need for communication and coordination that requires continuous

effort by software developers. Empirical studies, including our

own, suggest that technical dependencies among software

components create social dependencies among the software

developers implementing these components. Based on this

observation, we developed Ariadne, a Java plug-in for Eclipse.

Ariadne analyzes a Java project to identify program dependencies

and collects authorship information about the project by

connecting to a configuration management repository. Through

this process, Ariadne can “translate” technical dependencies

among software components into social dependencies among

software developers. This paper describes the design of Ariadne,

how it identifies technical dependencies among software

components, how it extracts information from configuration

management systems and, finally, how it translates this into social

dependencies. Ariadne’s purpose is to create a bridge between

technical and social dependencies.

Categories and Subject Descriptors

H.4.1 [Information Systems Applications]: Office Automation

– Groupware; H.5.3 [Information Interfaces and Presentation]:

Group and Organization Interfaces - Computer-supported

cooperative work.

General Terms

Design, Human Factors

Keywords

Collaborative software development, program dependencies,

social dependencies.

ACM COPYRIGHT NOTICE. Copyright © 2005 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this

notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted.

 To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org

1. INTRODUCTION

Researchers and practitioners have long recognized that

breakdowns in communication and coordination efforts

constitute a major problem in software development [4].

One of the reasons for this problem is the large number of

dependencies that any software development effort

involves: dependencies among activities in the development

process and dependencies among different software

artifacts. To overcome this problem, the field of software

engineering has developed tools, approaches, and principles

to manage dependencies. Configuration management and

issue-tracking systems are examples of such tools. The

adoption of software development processes ([11, 22])

exemplifies an organizational approach [9] to managing

dependencies. Finally, information hiding [23] illustrates a

fundamental principle that has been implemented as several

mechanisms in programming languages [18].

In any one of these cases, the underlying goal is the same,

to make dependencies more manageable. By minimizing

dependencies it is possible to reduce the required

communication and coordination of software developers.

This relationship between coordination and dependencies

has long been recognized. Parnas [23], for instance,

recognized over 30 years ago that the principle of

information hiding also brings managerial advantages: by

dividing the work in independent modules, it is also

possible to assign the implementation of these modules to

different developers that can work on them in parallel.

More recent ethnographic studies (e.g., Grinter [14] and de

Souza et al. [7]) found that technical dependencies in

source code create “social dependencies” among software

developers. That is, given two dependent pieces of code,

the developers responsible for developing each piece need

to interact and coordinate in order to guarantee the smooth

flow of work. In a quantitative approach, Morelli, Eppinger

and Gulati [20] found out that these same dependencies can

be used to predict communication frequency among team

members in a manufacturer of electrical technologies.

Later, similar results were found in the software

development industry in a study of a telecommunications

organization [24].

Despite this acknowledged relationship between

dependencies and communication and coordination needs,

this relationship has not been explored to facilitate and

understand software development activities. Software

development is indeed a strong candidate for exploring this

relationship since (i) dependencies among software components

can be automatically identified, and (ii) software is malleable, i.e.,

their dependencies, if so desired, can be more or less easily

changed, and consequently the coordination of those developing

it1. Ariadne, a plug-in for Eclipse, aims to fill this gap and explore

this socio-technical relationship. In this paper, we describe

Ariadne’s underlying architecture and API. By identifying these

“social” dependencies, Ariadne is able to identify developers who

are more likely to be communicating, as well as, developers

whose similar dependencies make them likely to collaborate.

Furthermore, it can even facilitate expertise identification [19].

The rest of the paper is organized as follows. We begin by

presenting the three types of dependencies that Ariadne supports,

namely, technical, socio-technical, and social dependencies. More

importantly, we describe our approach to extract program

dependencies from the source code and how from code

dependencies, we infer social dependencies between software

developers. In the following section, we describe Ariadne’s

architecture, including its configuration management (CM)

module, dependency generation module and its visualization

module. Finally, we make conclusions about our work and

describe avenues for future work.

2. TYPES OF DEPENDENCIES

2.1 Technical Dependencies

In software engineering, program dependence graphs (PDGs) are

used to allow explicit representation and manipulation of program

dependencies. According to Horwitz and Reps [16], formally, a

PDG for a program P is a directed graph whose vertices are

statements of P connected by edges that represent control and data

dependencies. For simplicity purposes, researchers initially

explored the construction of PDGs for simple programs: isolated

procedures and programs that contain a single procedure. Later,

interprocedural approaches were explored considering several

procedure calls and their parameters and return types [1]. In this

case, some authors adopt the term system dependence graph

(SDG) instead of PDG. A SDG is made up of a collection of

procedure dependence graphs, which are essentially the same as

the program dependence graphs defined above, except that they

may include additional interprocedural control and flow

dependence edges to represent procedure calls [16]. System

dependence graphs can be used to construct call graphs [17] that

are used for interprocedural program optimization and program

understanding [21]. According to Callahan and colleagues, a call

graph “summarizes the dynamic invocation relationships between

procedures. The nodes of the call graph are the procedures in the

program. An edge (pl, p2) exists if procedure pl can call

procedure p2 from some call site within pl. Hence, each edge may

be thought of as representing some call site in the program” [3].

2.2 Socio-Technical Dependencies

By extracting dependencies in the source-code, a call-graph

potentially unveils dependencies among software developers

responsible for the software components [5-7]. For instance,

assume that a software component a depends on another software

component b and that a is being developed by developer A and b

is being implemented by developer B. If a depends on b, we

1 Note that, as other researchers have pointed out, this relationship

is not unique to software engineering.

similarly find that developer A depends on developer B.

That is, these software developers need to coordinate and

communicate to guarantee the smooth flow of work [15,

24-26], even when programming constructs, like interfaces,

are used [8]. The results of these empirical studies suggest

that product dependencies create and reflect task

dependencies between software developers, that is, product

dependencies create a need for communication and

coordination between developers, and, similarly, task

dependencies are reflected in the product dependencies.

This translates into the need to populate the call-graph with

‘social information.’ The goal is to create a data structure

that describes which software developers depend on which

other software developers for a given piece of code [7]. An

example of this data-structure, called a social call-graph, is

presented in Figure 1. A directed edge from package A to B

indicates a dependency from A to B. Directed edges

between authors and packages indicate authorship

information.

Figure 1 - Socio-technical dependencies.

2.3 Social Dependencies

Because social call-graphs describe both technical

dependencies and authorship information, they can be used

to generate sociograms describing the dependence

relationship only among software developers, that is,

dependencies between social developers because of

dependencies in the source-code they are working on. A

sociogram, as used in social network analysis [27], is a

graphical representation of a set of items, vertices or nodes,

connected to one another via links or edges. Figure 2 below

presents an example of a sociogram created using Ariadne.

Software developers can now use these sociograms to find

out two important pieces of information: who they depend

on and who depends on their work. We hypothesize that by

identifying this “impact network”, developers can more

easily coordinate their work. Indeed, we plan to test this

hypothesis through a series of interviews (see section 4).

We have used these sociograms to understand open/free source

software development [6].

Figure 2 - Sociogram

3. ARIADNE

3.1 Features

Ariadne is implemented as a Java plug-in to the popular Eclipse

IDE. As such, Ariadne is integrated into this environment and

makes use of several of the services it provides. The plug-in uses

Eclipse’s SearchEngine class to extract dependencies from a Java

project’s source-code. Ariadne uses Eclipe’s Team API to connect

to the configuration management repository associated with a

project to retrieve authorship information in the form of source

file annotations. Once the authorship information is downloaded,

the plug-in annotates the call-graph with the extracted authorship

information to create a social call-graph (see section 2.2). Finally,

the social call-graph is used to generate a sociogram that is

displayed using the graphical framework JUNG (Java Universal

Network/Graph Framework)2.

Ariadne presents developers with three visualization options:

technical dependencies, socio-technical dependencies and social

dependencies. Our current implementation can present technical

and socio-technical dependency visualization at three different

levels of abstraction, based on the programming language’s

hierarchy (e.g. packages, classes, methods in Java). Essentially,

information is aggregated at each hierarchy level also to,

potentially, average the different results provided by diverse call-

graph extractors [21]. For instance, class dependencies are

displayed as the aggregation of method dependencies (i.e., the

call-graph). All visualizations provided by Ariadne can be

exported to Comma Separated Values formatted files, while

sociograms can be exported to files suitable for use with social

network tools like UCINet.

Ariadne also supports the temporal analysis of dependencies,

similarly to TeCFlow [13]. That is, Ariadne can generate

visualizations for graphs of snapshots in time, which allows us to

study the evolution of a project’s technical and social

dependencies.

3.2 Ariadne’s Architecture

Ariadne was initially implemented to analyze only Java projects

and extract information from CVS repositories. We recently re-

designed it to be general enough to support various programming

2 http://jung.sourceforge.net

languages, configuration management (CM) systems, and

visualizations. While Eclipse has a generic Team API for

accomplishing simple tasks involving version controlled

files, programmers must use the internal (unpublished) API

to accomplish more complicated tasks. For instance,

retrieving annotation and check-in log information from a

CVS repository requires accessing classes from the internal

Team package. Eclipse does not provide a model for

branches existing inside a repository, or ways to manipulate

them. The inability to directly manipulate remote resources

motivated us to create our own remote resource API.

Ariadne uses a layered architecture (Figure 3) to allow the

plug-in to be adaptable to different repositories, source

languages, and visualizations. The most important part of

the API is the configuration management and dependency

management modules. This part of the API is used to

isolate the programming language and configuration

management tools from the visualizations provided by

Ariadne. Through this approach, independent developers

can contribute new functionality (configuration

management tools and programming languages) to Ariadne,

while reusing previous visualizations. And, at the same

time, it is possible to easily design new visualizations to

already supported programming languages and CM tools..

Figure 3 – Ariadne’s architecture

Multiple dependency generators, CM tools, and

visualizations may be installed at the same time. We

leverage the metadata Eclipse stores with projects to

determine which code generator and CM subsystem to use

in order to extract the relevant dependency information.

Currently, we have implemented a code dependency

infrastructure that analyzes Java code and Eclipse’s

manifest and “plugin.xml” files. We built a CVS extractor

used to connect to a project’s CVS repository (using

Eclipse’s Team API), that annotates the dependencies with

authorship information, and creates visualizations based on

directed graphs. We have also built an infrastructure that

imports source-control annotations from Rational

ClearCase. These annotations are parsed and used to create

social call-graphs and, ultimately, sociograms.

To facilitate the understanding and usage of this API,

Ariadne utilizes the façade design pattern [12] that

aggregates methods to be used to query program

dependency, authorship information and the combined

information (the social call-graph). For example,

developers may query the classes that depend on a

particular class, the authors of a particular piece of code, all

CM and Dependencies API

CVS CC Java XML

Eclipse

V1 V2 VN ……….

the authors of a file, how the ownership of a class changes from

one release to the next, etc.

3.3 Program Dependency Information

Ariadne has been designed to represent hierarchy levels in various

programming languages. These different levels can be thought of

as two different types of code units: Language Elements as well

as Composite Language Elements. Language Elements are

defined as pieces of source-code that are not composed of smaller

code units. For example, consider a software project written in

Java. In this source-code there is a class A and a method of that

class, b. In our approach, method b is considered a Language

Element because methods are the lowest level of the hierarchy in

Java. On the other hand, class A is a Composite Language

Element because it is composed of methods – one of them being b

– and possibly attributes. This is basically an implementation of

the composite design pattern [12] to represent the relationship

between programming language elements, in this case, Language

Elements and Composite Language Elements. This pattern allows

us to represent part-whole hierarchies as well as treat individual

and composite objects in much the same way.

In the first implementation of Ariadne, due to the design of the

dependency generation subsystem, we were not able to identify in

the sociogram the piece of code responsible for a social

dependency. Therefore, we redesigned Ariadne to address this

issue as described in Figure 4. Our current design defines a

superclass Edge, which abstracts the two different possible types

of edges, Author Edge and Language Element Edge. The first type

of Edge models social dependencies, while the second one models

program dependencies in the source-code. These two edges are

connected by a relationship that is used to allow bi-directional

navigation: given a technical dependency, which are the authors

involved in the corresponding social dependency, and, given a

social dependency, which are the programming elements involved

in the corresponding technical dependency.

The usage of the abstract class Edge allows us to abstract away

the difference between the different edges in the visualization

module, providing a generic way to draw edges. Furthermore, an

edge can be queried for information about what piece of

information it links. We describe the visualization subsystem in

more detail in section 3.5.

3.4 CM Information

CM systems offer tremendous amounts of data that Ariadne aims

to abstract into generic formats that developers can mine to

produce informative visualizations. For our purposes, Ariadne

models CM repositories in a generic way that allow views of a

project’s data at one or many points in time, no matter which CM

system is used. We believe we designed an API that is generic

enough to capture the essential functionality that Ariadne requires

of systems such as CVS, Subversion, and Clear Case, while still

providing detailed authorship information from repositories. This

is possible because the CM subsystem consists of a hierarchy of

related classes that share a common resource heritage and exist

inside a repository. Ariadne associates one repository with each

project in the workspace. Repositories consist of branches, which

represent the state of code in the repository at specific points in

time (releases). Branches do not exist until users dictate how the

repository should be populated from the CM system.

Implementers may choose to have their plug-in select dates by

which to break up the development timeline into meaningful

states. Branches are broken into collections of commit sets

that group changes made at arbitrary points in time. An

example commit set could be all the resources a developer

commits to the repository after fixing a bug. Commit sets

hold a collection of deltas that represent a set of changes

made to a file. Deltas represent individual changes made to

different parts of a file and contain the line number

information for where a change began and ended. The

Ariadne core module uses this information to query the

code dependency generator module for any language

elements in the region.

3.5 Visualization

Ariadne's visualization subsystem allows developers to

access information from the CM repository as well as the

dependency information. In order to create visualizations, a

developer must query Ariadne’s API for an instance of the

Graph object. We represent a Graph object as a generic

container of Edges and Nodes. As such, Ariadne is capable

of displaying any type of visualization that can be

represented as entities and their connections. By doing that,

we can reuse the same algorithms to draw technical and

social dependency graphs since the Author and Language

Element classes are subclasses of class Node (see Figure 4).

Ariadne's default visualization is a simple directed graph

with nodes representing authors and edges representing

dependencies between authors. Alternatively, the developer

may implement his visualization of choice – that may be a

line-oriented approach as in the SeeSoft project [10] ,

treemaps, design structure matrices [2] or however else he

chooses to visualize dependencies.

4. CONCLUSIONS AND FUTURE

WORK

This paper described Ariadne, a plug-in to the Eclipse IDE

that aims to reduce the gap between technical and social

dependencies, and therefore facilitate the coordination of

software development work. Ariadne was motivated by our

own field studies of large-scale software development and

reflects some of the insights that we learned from these

studies. We described Ariadne’s features as well as

architecture and presented parts of its API, which allows

software developers to have access to source control and

dependency information provided by multiple configuration

management systems and programming languages.

Furthermore, all visualizations are based on this API;

therefore they can be easily reused. We plan to extend this

API to fully explore the Eclipse plug-in model, so that, new

visualizations can be created as new Eclipse plug-ins. In

addition, we plan to adapt our plug-in so that developers

can choose from many visualizations ranging from directed

graphs, annotated class diagrams, or decorators inside the

Eclipse workbench. Decorators are simple visual clues

(usually in the form of an icon) to developers that display

additional information about resources in the workspace.

Finally, we intend on providing a default visualization that

is more tightly integrated with Eclipse. Currently, our

default visualization relies heavily on Swing, rather than

SWT components. This causes cross-platform problems

with our tool (e.g. it does not run on Macs) and prevents the

visualization from being displayed within an Eclipse view.

To resolve this issue, we intend on creating the default

visualization using Zest3, a visualization toolkit built for Eclipse.

Zest uses Eclipse’s Graphical Editing Framework (GEF) to create

many of its views and adheres to Eclipse’s own layout

conventions as a result. By leveraging Zest, we can create a

default visualization that is integrated well with existing Eclipse

views and is not platform dependent.

Currently, we are in the last planning stages of a field evaluation

of Ariadne with software developers from a large software

development company and an open-source project. We want to

understand the coordination problems faced by these developers

and whether Ariadne can be used to minimize some of these

problems. After this initial evaluation, we will make more

improvements in Ariadne before releasing it to the public as an

open-source tool.

5. ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation under awards 0205724 and 0326105, IBM through the

Eclipse Innovation Program, and by the Brazilian Government

under CAPES grant BEX 1312/99-5.

6. REFERENCES

1. Aho, A.V., Sethi, R. and Ullman, J.D. Compilers: Principles,

Techniques and Tools. Addison-Wesley, 1986.

2. Browning, T.R. Applying the Design Structure Matrix to

System Decomposition and Integration Problems: A Review

and New Directions. IEEE Transactions on Engineering

Management, 48 (3). 292-306.

3. Callahan, D., Carle, et. al. Constructing the Procedure Call

Multigraph. IEEE Transactions on Software Engineering, 16

(4). 483-487.

4. Curtis, B., Krasner, H. and Iscoe, N. A field study of the

software design process for large systems. Communications

of the ACM, 31 (11). 1268-1287.

5. de Souza, C.R.B., Dourish, P., et. al., From Technical

Dependencies to Social Dependencies. in Workshop on

Social Networks for Design and Analysis: Using Network

Information in CSCW, (Chicago, IL, 2004).

6. de Souza, C.R.B., Froehlich, J. and Dourish, P., Seeking the

Source: Software Source Code as a Social and Technical

Artifact. in ACM Conference on Group Work, pp. 197-206,

(Sanibel Island, FL, USA, 2005).

7. de Souza, C.R.B., Redmiles, D., et al., How a Good Software

Practice thwarts Collaboration - The Multiple roles of APIs

in Software Development. in Foundations of Software

Engineering, (Newport Beach, CA, USA, 2004), ACM Press,

221-230.

8. de Souza, C.R.B., Redmiles, D., et al., Sometimes You Need

to See Through Walls - A Field Study of Application

Programming Interfaces. in Conference on Computer-

Supported Cooperative Work (CSCW '04), (Chicago, IL,

USA, 2004), ACM Press, 63-71.

9. de Souza, C.R.B., Redmiles, D., et. al., Management of

Interdependencies in Collaborative Software Development:

A Field Study. in International Symposium on Empirical

Software Engineering, (Rome, Italy, 2003), 294-303.

3 http://www.eclipse.org/mylar/zest.html

10. Eick, S.G., Steffen, J.L. and Sumner, E.E. SeeSoft --

tool for visualizing line oriented software. IEEE

Transactions on Software Engineering, 11 (18).

11. Fuggetta, A., Software Processes: A Roadmap. in

Future of Software Engineering, Ireland, 2000).

12. Gamma, E., Helm, R., et. al. Design Patterns:

Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading, MA, 1995.

13. Gloor, P.A., TeCFlow - A Temporal Communication

Flow Analyzer for Social Network Analysis. in

Workshop on Social Networks for Design and

Analysis: Using Network Information in CSCW,

(Chicago, IL, USA, 2004).

14. Grinter, R.E. Recomposition: Coordinating a Web of

Software Dependencies. JCSCW, 12 (3). 297-327.

15. Grinter, R.E., Recomposition: Putting It All Back

Together Again. in Conference on Computer

Supported Cooperative Work, 1998, 393-402.

16. Horwitz, S. and Reps, T., The use of program

dependence graphs in software engineering. in

International Conference on Software Engineering,

(Melbourne, Australia, 1992), 392-411.

17. Lakhotia, A., Constructing call multigraphs using

dependence graphs. in Symposium on Principles of

Programming Languages, (1993), 273-284.

18. Larman, G. Protected Variation: The Importance of

Being Closed. IEEE Software, 18 (3). 89-91.

19. McDonald, D.W. and Ackerman, M.S., Just Talk to

Me: A Field Study of Expertise Location. in

Conference on Computer Supported Cooperative Work

'98, (Seattle, Washington, 1998), 315-324.

20. Morelli, M.D., Eppinger, S.D. and Gulati, R.K.

Predicting Technical Communication in Product

Development Organizations. IEEE Transactions on

Engineering Management, 42 (3). 215-222.

21. Murphy, G., Notkin, D., Griswold, W.G. and Lan,

E.S.-C. An Empirical Study of Static Call Graph

Extractors. ACM TOSEM, 7 (2). 158-191.

22. Nutt, G.J. The evolution toward flexible workflow

systems. Distributed Systems Engineering, 1995.

23. Parnas, D.L. On the Criteria to be Used in

Decomposing Systems into Modules. Communications

of the ACM, 15 (12). 1053-1058.

24. Sosa, M.E., Eppinger, S.D. et. al. Factors that

influence Technical Communication in Distributed

Product Development: An Empirical Study in the

Telecommunications Industry. IEEE Transactions on

Engineering Management, 49 (1). 45-58.

25. Sosa, M.E., Eppinger, S.D. et. al. Identifying Modular

and Integrative Systems and Their Impact on Design

Team Interactions. ASME Journal of Mechanical

Design, 125. 240-252.

26. Sosa, M.E., Eppinger, S.D. et. al. The Misalignment of

Product Architecture and Organizational Structure in

Complex Product Development. Management Science,

50 (12). 1674-1689.

27. Wasserman, S. and Faust, K. Social Network Analysis:

Methods and Applications. Cambridge University

Press, Cambridge, UK, 1994.

