
UNIVERSITY OF CALIFORNIA,
IRVINE

Architectural Styles and the Design of Network-based Software Architectures

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Roy Thomas Fielding

Dissertation Committee:
Professor Richard N. Taylor, Chair

Professor Mark S. Ackerman
Professor David S. Rosenblum

2000

© Roy Thomas Fielding, 2000.
All rights reserved.

ii

The dissertation of Roy Thomas Fielding is approved
and is acceptable in quality and form

for publication on microfilm:

Committee Chair

University of California, Irvine
2000

iii

DEDICATION

To
my parents,

Pete and Kathleen Fielding,

who made all of this possible,
for their endless encouragement and patience.

And also to

Tim Berners-Lee,

for making the World Wide Web an open, collaborative project.

What is life?
It is the flash of a firefly in the night.
It is the breath of a buffalo in the wintertime.
It is the little shadow which runs across the grass
and loses itself in the sunset.

— Crowfoot's last words (1890), Blackfoot warrior and orator.

Almost everybody feels at peace with nature: listening to the ocean
waves against the shore, by a still lake, in a field of grass, on a
windblown heath. One day, when we have learned the timeless way
again, we shall feel the same about our towns, and we shall feel as
much at peace in them, as we do today walking by the ocean, or
stretched out in the long grass of a meadow.

— Christopher Alexander, The Timeless Way of Building (1979)

TABLE OF CONTENTS

Page

LIST OF FIGURES ...vi

LIST OF TABLES..vii

ACKNOWLEDGMENTS ...viii

CURRICULUM VITAE...x

ABSTRACT OF THE DISSERTATION ..xvi

INTRODUCTION ..1

CHAPTER 1: Software Architecture ..5
1.1 Run-time Abstraction..5
1.2 Elements..7
1.3 Configurations ..12
1.4 Properties ..12
1.5 Styles...13
1.6 Patterns and Pattern Languages ..16
1.7 Views ..17
1.8 Related Work ..18
1.9 Summary...23

CHAPTER 2: Network-based Application Architectures.............................24
2.1 Scope...24
2.2 Evaluating the Design of Application Architectures ..26
2.3 Architectural Properties of Key Interest ...28
2.4 Summary...37
iv

CHAPTER 3: Network-based Architectural Styles38
3.1 Classification Methodology..38
3.2 Data-flow Styles ...41
3.3 Replication Styles ...43
3.4 Hierarchical Styles ..45
3.5 Mobile Code Styles...50
3.6 Peer-to-Peer Styles..55
3.7 Limitations ..59
3.8 Related Work ..60
3.9 Summary...64

CHAPTER 4: Designing the Web Architecture: Problems and Insights66
4.1 WWW Application Domain Requirements ..66
4.2 Problem...71
4.3 Approach...72
4.4 Summary...75

CHAPTER 5: Representational State Transfer (REST)................................76
5.1 Deriving REST ...76
5.2 REST Architectural Elements...86
5.3 REST Architectural Views ...97
5.4 Related Work ..103
5.5 Summary...105

CHAPTER 6: Experience and Evaluation ..107
6.1 Standardizing the Web..107
6.2 REST Applied to URI...109
6.3 REST Applied to HTTP..116
6.4 Technology Transfer...134
6.5 Architectural Lessons ...138
6.6 Summary...147

CONCLUSIONS...148

REFERENCES..152
v

vi

LIST OF FIGURES

Page

Figure 5-1. Null Style 77

Figure 5-2. Client-Server 78

Figure 5-3. Client-Stateless-Server 78

Figure 5-4. Client-Cache-Stateless-Server 80

Figure 5-5. Early WWW Architecture Diagram 81

Figure 5-6. Uniform-Client-Cache-Stateless-Server 82

Figure 5-7. Uniform-Layered-Client-Cache-Stateless-Server 83

Figure 5-8. REST 84

Figure 5-9. REST Derivation by Style Constraints 85

Figure 5-10. Process View of a REST-based Architecture 98

vii

LIST OF TABLES

Page

Table 3-1. Evaluation of Data-flow Styles for Network-based Hypermedia 41

Table 3-2. Evaluation of Replication Styles for Network-based Hypermedia 43

Table 3-3. Evaluation of Hierarchical Styles for Network-based Hypermedia 45

Table 3-4. Evaluation of Mobile Code Styles for Network-based Hypermedia 51

Table 3-5. Evaluation of Peer-to-Peer Styles for Network-based Hypermedia 55

Table 3-6. Evaluation Summary 65

Table 5-1. REST Data Elements 88

Table 5-2. REST Connectors 93

Table 5-3. REST Components 96

ACKNOWLEDGMENTS

It has been a great pleasure working with the faculty, staff, and students at the University
of California, Irvine, during my tenure as a doctoral student. This work would never have
been possible if it were not for the freedom I was given to pursue my own research
interests, thanks in large part to the kindness and considerable mentoring provided by
Dick Taylor, my long-time advisor and committee chair. Mark Ackerman also deserves a
great deal of thanks, for it was his class on distributed information services in 1993 that
introduced me to the Web developer community and led to all of the design work
described in this dissertation. Likewise, it was David Rosenblum’s work on Internet-scale
software architectures that convinced me to think of my own research in terms of
architecture, rather than simply hypermedia or application-layer protocol design.

The Web’s architectural style was developed iteratively over a six year period, but
primarily during the first six months of 1995. It has been influenced by countless
discussions with researchers at UCI, staff at the World Wide Web Consortium (W3C), and
engineers within the HTTP and URI working groups of the Internet Engineering
Taskforce (IETF). I would particularly like to thank Tim Berners-Lee, Henrik Frystyk
Nielsen, Dan Connolly, Dave Raggett, Rohit Khare, Jim Whitehead, Larry Masinter, and
Dan LaLiberte for many thoughtful conversations regarding the nature and goals of the
WWW architecture. I’d also like to thank Ken Anderson for his insight into the open
hypertext community and for trailblazing the path for hypermedia research at UCI. Thanks
also to my fellow architecture researchers at UCI, all of whom finished before me,
including Peyman Oreizy, Neno Medvidovic, Jason Robbins, and David Hilbert.

The Web architecture is based on the collaborative work of dozens of volunteer software
developers, many of whom rarely receive the credit they deserve for pioneering the Web
before it became a commercial phenomenon. In addition to the W3C folks above,
recognition should go to the server developers that enabled much of the Web’s rapid
growth in 1993-1994 (more so, I believe, than did the browsers). That includes
Rob McCool (NCSA httpd), Ari Luotonen (CERN httpd/proxy), and Tony Sanders
(Plexus). Thanks also to “Mr. Content”, Kevin Hughes, for being the first to implement
most of the interesting ways to show information on the Web beyond hypertext. The early
client developers also deserve thanks: Nicola Pellow (line-mode), Pei Wei (Viola),
Tony Johnson (Midas), Lou Montulli (Lynx), Bill Perry (W3), and Marc Andreessen and
Eric Bina (Mosaic for X). Finally, my personal thanks go to my libwww-perl
collaborators, Oscar Nierstrasz, Martijn Koster, and Gisle Aas. Cheers!
viii

The modern Web architecture is still defined more by the work of individual volunteers
than by any single company. Chief among them are the members of the Apache Software
Foundation. Special thanks go to Robert S. Thau for the incredibly robust Shambhala
design that led to Apache 1.0, as well as for many discussions on desirable (and
undesirable) Web extensions, to Dean Gaudet for teaching me more about detailed system
performance evaluation than I thought I needed to know, and to Alexei Kosut for being the
first to implement most of HTTP/1.1 in Apache. Additional thanks to the rest of the
Apache Group founders, including Brian Behlendorf, Rob Hartill, David Robinson,
Cliff Skolnick, Randy Terbush, and Andrew Wilson, for building a community that we
can all be proud of and changing the world one more time.

I’d also like to thank all of the people at eBuilt who have made it such a great place to
work. Particular thanks go to the four technical founders — Joe Lindsay, Phil Lindsay,
Jim Hayes, and Joe Manna — for creating (and defending) a culture that makes
engineering fun. Thanks also to Mike Dewey, Jeff Lenardson, Charlie Bunten, and
Ted Lavoie, for making it possible to earn money while having fun. And special thanks to
Linda Dailing, for being the glue that holds us all together.

Thanks and good luck go out to the team at Endeavors Technology, including
Greg Bolcer, Clay Cover, Art Hitomi, and Peter Kammer. Finally, I’d like to thank my
three muses—Laura, Nikki, and Ling—for their inspiration while writing this dissertation.

In large part, my dissertation research has been sponsored by the Defense Advanced
Research Projects Agency, and Airforce Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-0021. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Airforce Research Laboratory or the U.S.
Government.
ix

CURRICULUM VITAE

Roy Thomas Fielding

Education

Doctor of Philosophy (2000)
University of California, Irvine
Information and Computer Science
Institute of Software Research
Advisor: Dr. Richard N. Taylor
Dissertation: Architectural Styles and

the Design of Network-based Software Architectures

Master of Science (1993)
University of California, Irvine
Information and Computer Science
Major Emphasis: Software

Bachelor of Science (1988)
University of California, Irvine
Information and Computer Science

Professional Experience

12/99 - Chief Scientist, eBuilt, Inc., Irvine, California

3/99 - Chairman, The Apache Software Foundation

4/92 - 12/99 Graduate Student Researcher, Institute for Software Research
University of California, Irvine

6/95 - 9/95 Visiting Scholar, World Wide Web Consortium (W3C)
MIT Laboratory of Computer Science, Cambridge, Massachusetts

9/91 - 3/92 Teaching Assistant
ICS 121 - Introduction to Software Engineering
ICS 125A - Project in Software Engineering

University of California, Irvine

11/89 - 6/91 Software Engineer
ADC Kentrox, Inc., Portland, Oregon

7/88 - 8/89 Professional Staff (Software Engineer)
PRC Public Management Services, Inc., San Francisco, California

10/86 - 6/88 Programmer/Analyst
Megadyne Information Systems, Inc., Santa Ana, California

6/84 - 9/86 Programmer/Analyst
TRANSMAX, Inc., Santa Ana, California
x

Publications

Refereed Journal Articles

[1] R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson, G. A. Bolcer, P. Oreizy, and
R. N. Taylor. Web-based Development of Complex Information Products.
Communications of the ACM, 41(8), August 1998, pp. 84-92.

[2] R. T. Fielding. Maintaining Distributed Hypertext Infostructures: Welcome to
MOMspider’s Web. Computer Networks and ISDN Systems, 27(2), November 1994,
pp. 193-204. (Revision of [7] after special selection by referees.)

Refereed Conference Publications

[3] R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture.
In Proceedings of the 2000 International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland, June 2000, pp. 407-416.

[4] A. Mockus, R. T. Fielding, and J. Herbsleb. A Case Study of Open Source Software
Development: The Apache Server. In Proceedings of the 2000 International
Conference on Software Engineering (ICSE 2000), Limerick, Ireland, June 2000, pp.
263-272.

[5] E. J. Whitehead, Jr., R. T. Fielding, and K. M. Anderson. Fusing WWW and Link
Server Technology: One Approach. In Proceedings of the 2nd Workshop on Open
Hypermedia Systems, Hypertext’96, Washington, DC, March, 1996, pp. 81-86.

[6] M. S. Ackerman and R. T. Fielding. Collection Maintenance in the Digital Library.
In Proceedings of Digital Libraries ’95, Austin, Texas, June 1995, pp. 39-48.

[7] R. T. Fielding. Maintaining Distributed Hypertext Infostructures: Welcome to
MOMspider’s Web. In Proceedings of the First International World Wide Web
Conference, Geneva, Switzerland, May 1994, pp. 147-156.

Industry Standards

[8] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Internet Draft Standard
RFC 2616, June 1999. [Obsoletes RFC 2068, January 1997.]

[9] T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. Internet Draft Standard RFC 2396, August 1998.

[10] J. Mogul, R. T. Fielding, J. Gettys, and H. F. Frystyk. Use and Interpretation of
HTTP Version Numbers. Internet Informational RFC 2145, May 1997.

[11] T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Transfer Protocol —
HTTP/1.0. Internet Informational RFC 1945, May 1996.

[12] R. T. Fielding. Relative Uniform Resource Locators. Internet Proposed Standard
RFC 1808, June 1995.
xi

Industry Articles

[13] R. T. Fielding. The Secrets to Apache’s Success. Linux Magazine, 1(2), June 1999,
pp. 29-71.

[14] R. T. Fielding. Shared Leadership in the Apache Project. Communications of the
ACM, 42(4), April 1999, pp. 42-43.

[15] R. T. Fielding and G. E. Kaiser. The Apache HTTP Server Project. IEEE Internet
Computing, 1(4), July-August 1997, pp. 88-90.

Non-Refereed Publications

[16] R. T. Fielding. Architectural Styles for Network-based Applications. Phase II
Survey Paper, Department of Information and Computer Science, University of
California, Irvine, July 1999.

[17] J. Grudin and R. T. Fielding. Working Group on Design Methods and Processes. In
Proceedings of the ICSE’94 Workshop on SE-HCI: Joint Research Issues, Sorrento,
Italy, May 1994. Published in “Software Engineering and Human-Computer
Interaction,” Springer-Verlag LNCS, vol. 896, 1995, pp. 4-8.

[18] R. T. Fielding. Conditional GET Proposal for HTTP Caching. Published on the
WWW, January 1994.

Published Software Packages

[19] Apache httpd. The Apache HTTP server is the world's most popular Web server
software, used by more than 65% of all public Internet sites as of July 2000.

[20] libwww-perl. A library of Perl4 packages that provides a simple and consistent
programming interface to the World Wide Web.

[21] Onions. A library of Ada95 packages that provides an efficient stackable streams
capability for network and file system I/O.

[22] MOMspider. MOMspider is a web robot for providing multi-owner maintenance of
distributed hypertext infostructures.

[23] wwwstat. A set of utilities for searching and summarizing WWW httpd server access
logs and assisting other webmaster tasks.

Formal Presentations

[1] State of Apache. O’Reilly Open Source Software Convention, Monterey, CA, July
2000.

[2] Principled Design of the Modern Web Architecture. 2000 International Conference
on Software Engineering, Limerick, Ireland, June 2000.

[3] HTTP and Apache. ApacheCon 2000, Orlando, FL, March 2000.
xii

[4] Human Communication and the Design of the Modern Web Architecture. WebNet
World Conference on the WWW and the Internet (WebNet 99), Honolulu, HI,
October 1999.

[5] The Apache Software Foundation. Computer & Communications Industry
Association, Autumn Members Meeting, Dallas, TX, September 1999.

[6] Uniform Resource Identifiers. The Workshop on Internet-scale Technology
(TWIST 99), Irvine, CA, August 1999.

[7] Apache: Past, Present, and Future. Web Design World, Seattle, WA, July 1999.

[8] Progress Report on Apache. ZD Open Source Forum, Austin, TX, June 1999.

[9] Open Source, Apache-style: Lessons Learned from Collaborative Software
Development. Second Open Source and Community Licensing Summit, San Jose,
CA, March 1999.

[10] The Apache HTTP Server Project: Lessons Learned from Collaborative Software.
AT&T Labs — Research, Folsom Park, NJ, October 1998.

[11] Collaborative Software Development: Joining the Apache Project. ApacheCon ‘98,
San Francisco, CA, October 1998.

[12] Representational State Transfer: An Architectural Style for Distributed Hypermedia
Interaction. Microsoft Research, Redmond, WA, May 1998.

[13] The Apache Group: A Case Study of Internet Collaboration and Virtual
Communities. UC Irvine Social Sciences WWW Seminar, Irvine, CA, May 1997.

[14] WebSoft: Building a Global Software Engineering Environment. Workshop on
Software Engineering (on) the World Wide Web, 1997 International Conference on
Software Engineering (ICSE 97), Boston, MA, May 1997.

[15] Evolution of the Hypertext Transfer Protocol. ICS Research Symposium, Irvine,
CA, January 1997.

[16] World Wide Web Infrastructure and Evolution. IRUS SETT Symposium on
WIRED: World Wide Web and the Internet, Irvine, CA, May 1996.

[17] HTTP Caching. Fifth International World Wide Web Conference (WWW5), Paris,
France, May 1996.

[18] The Importance of World Wide Web Infrastructure. California Software Symposium
(CSS ‘96), Los Angeles, CA, April 1996.

[19] World Wide Web Software: An Insider’s View. IRUS Bay Area Roundtable (BART),
Palo Alto, CA, January 1996.

[20] libwww-Perl4 and libwww-Ada95. Fourth International World Wide Web
Conference, Boston, MA, December 1995.

[21] Hypertext Transfer Protocol — HTTP/1.x. Fourth International World Wide Web
Conference, Boston, MA, December 1995.
xiii

[22] Hypertext Transfer Protocol — HTTP/1.x. HTTP Working Group, 34th Internet
Engineering Taskforce Meeting, Dallas, TX, December 1995.

[23] Hypertext Transfer Protocol — HTTP/1.0 and HTTP/1.1. HTTP Working Group,
32nd Internet Engineering Taskforce Meeting, Danvers, MA, April 1995.

[24] WWW Developer Starter Kits for Perl. WebWorld Conference, Orlando, FL,
January 1995, and Santa Clara, CA, April 1995.

[25] Relative Uniform Resource Locators. URI Working Group, 31st Internet
Engineering Taskforce Meeting, San Jose, CA, December 1994.

[26] Hypertext Transfer Protocol — HTTP/1.0. HTTP BOF, 31st Internet Engineering
Taskforce Meeting, San Jose, CA, December 1994.

[27] Behind the Curtains: How the Web was/is/will be created. UC Irvine Social Sciences
World Wide Web Seminar, Irvine, CA, October 1995.

[28] Maintaining Distributed Hypertext Infostructures: Welcome to MOMspider’s Web.
First International World Wide Web Conference, Geneva, Switzerland, May 1994.

Professional Activities

• Webmaster, 1997 International Conference on Software Engineering (ICSE’97),
Boston, May 1997.

• HTTP Session Chair, Fifth International World Wide Web Conference (WWW5),
Paris, France, May 1996.

• Birds-of-a-Feather Chair and Session Chair, Fourth International World Wide Web
Conference (WWW4), Boston, December 1995.

• Student Volunteer, 17th International Conference on Software Engineering (ICSE 17),
Seattle, June 1995.

• Student Volunteer, Second International World Wide Web Conference (WWW2),
Chicago, October 1994.

• Student Volunteer, 16th International Conference on Software Engineering (ICSE 16),
Sorrento, Italy, April 1994.

• Co-founder and member, The Apache Group, 1995-present.

• Founder and chief architect, libwww-perl collaborative project, 1994-95.

• ICS Representative, Associated Graduate Students Council, 1994-95.

Professional Associations

• The Apache Software Foundation

• Association for Computing Machinery (ACM)

• ACM Special Interest Groups on Software Engineering (SIGSOFT),
Data Communications (SIGCOMM), and Groupware (SIGGROUP)
xiv

Honors, Awards, Fellowships

2000 Appaloosa Award for Vision, O’Reilly Open Source 2000

2000 Outstanding Graduate Student, UCI Alumni Association

1999 ACM Software System Award

1999 TR100: Top 100 young innovators, MIT Technology Review

1991 Regent’s Fellowship, University of California

1988 Golden Key National Honor Society

1987 Dean’s Honor List
xv

ABSTRACT OF THE DISSERTATION

Architectural Styles and the Design of Network-based Software Architectures

by

Roy Thomas Fielding

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2000

Professor Richard N. Taylor, Chair

The World Wide Web has succeeded in large part because its software architecture has

been designed to meet the needs of an Internet-scale distributed hypermedia system. The

Web has been iteratively developed over the past ten years through a series of

modifications to the standards that define its architecture. In order to identify those aspects

of the Web that needed improvement and avoid undesirable modifications, a model for the

modern Web architecture was needed to guide its design, definition, and deployment.

Software architecture research investigates methods for determining how best to

partition a system, how components identify and communicate with each other, how

information is communicated, how elements of a system can evolve independently, and

how all of the above can be described using formal and informal notations. My work is

motivated by the desire to understand and evaluate the architectural design of network-

based application software through principled use of architectural constraints, thereby

obtaining the functional, performance, and social properties desired of an architecture. An

architectural style is a named, coordinated set of architectural constraints.
xvi

This dissertation defines a framework for understanding software architecture via

architectural styles and demonstrates how styles can be used to guide the architectural

design of network-based application software. A survey of architectural styles for

network-based applications is used to classify styles according to the architectural

properties they induce on an architecture for distributed hypermedia. I then introduce the

Representational State Transfer (REST) architectural style and describe how REST has

been used to guide the design and development of the architecture for the modern Web.

REST emphasizes scalability of component interactions, generality of interfaces,

independent deployment of components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy systems. I describe the

software engineering principles guiding REST and the interaction constraints chosen to

retain those principles, contrasting them to the constraints of other architectural styles.

Finally, I describe the lessons learned from applying REST to the design of the Hypertext

Transfer Protocol and Uniform Resource Identifier standards, and from their subsequent

deployment in Web client and server software.
xvii

INTRODUCTION

Excuse me ... did you say ‘knives’?
— City Gent #1 (Michael Palin), The Architects Sketch [111]

As predicted by Perry and Wolf [105], software architecture has been a focal point for

software engineering research in the 1990s. The complexity of modern software systems

have necessitated a greater emphasis on componentized systems, where the

implementation is partitioned into independent components that communicate to perform

a desired task. Software architecture research investigates methods for determining how

best to partition a system, how components identify and communicate with each other,

how information is communicated, how elements of a system can evolve independently,

and how all of the above can be described using formal and informal notations.

A good architecture is not created in a vacuum. All design decisions at the

architectural level should be made within the context of the functional, behavioral, and

social requirements of the system being designed, which is a principle that applies equally

to both software architecture and the traditional field of building architecture. The

guideline that “form follows function” comes from hundreds of years of experience with

failed building projects, but is often ignored by software practitioners. The funny bit

within the Monty Python sketch, cited above, is the absurd notion that an architect, when

faced with the goal of designing an urban block of flats (apartments), would present a

building design with all the components of a modern slaughterhouse. It might very well be

the best slaughterhouse design ever conceived, but that would be of little comfort to the

prospective tenants as they are whisked along hallways containing rotating knives.
1

The hyperbole of The Architects Sketch may seem ridiculous, but consider how often

we see software projects begin with adoption of the latest fad in architectural design, and

only later discover whether or not the system requirements call for such an architecture.

Design-by-buzzword is a common occurrence. At least some of this behavior within the

software industry is due to a lack of understanding of why a given set of architectural

constraints is useful. In other words, the reasoning behind good software architectures is

not apparent to designers when those architectures are selected for reuse.

This dissertation explores a junction on the frontiers of two research disciplines in

computer science: software and networking. Software research has long been concerned

with the categorization of software designs and the development of design methodologies,

but has rarely been able to objectively evaluate the impact of various design choices on

system behavior. Networking research, in contrast, is focused on the details of generic

communication behavior between systems and improving the performance of particular

communication techniques, often ignoring the fact that changing the interaction style of an

application can have more impact on performance than the communication protocols used

for that interaction. My work is motivated by the desire to understand and evaluate the

architectural design of network-based application software through principled use of

architectural constraints, thereby obtaining the functional, performance, and social

properties desired of an architecture. When given a name, a coordinated set of

architectural constraints becomes an architectural style.

The first three chapters of this dissertation define a framework for understanding

software architecture via architectural styles, revealing how styles can be used to guide the

architectural design of network-based application software. Common architectural styles
2

are surveyed and classified according to the architectural properties they induce when

applied to an architecture for network-based hypermedia. This classification is used to

identify a set of architectural constraints that could be used to improve the architecture of

the early World Wide Web.

Architecting the Web requires an understanding of its requirements, as we shall

discuss in Chapter 4. The Web is intended to be an Internet-scale distributed hypermedia

system, which means considerably more than just geographical dispersion. The Internet is

about interconnecting information networks across organizational boundaries. Suppliers

of information services must be able to cope with the demands of anarchic scalability and

the independent deployment of software components. Distributed hypermedia provides a

uniform means of accessing services through the embedding of action controls within the

presentation of information retrieved from remote sites. An architecture for the Web must

therefore be designed with the context of communicating large-grain data objects across

high-latency networks and multiple trust boundaries.

Chapter 5 introduces and elaborates the Representational State Transfer (REST)

architectural style for distributed hypermedia systems. REST provides a set of

architectural constraints that, when applied as a whole, emphasizes scalability of

component interactions, generality of interfaces, independent deployment of components,

and intermediary components to reduce interaction latency, enforce security, and

encapsulate legacy systems. I describe the software engineering principles guiding REST

and the interaction constraints chosen to retain those principles, contrasting them to the

constraints of other architectural styles.
3

Over the past six years, the REST architectural style has been used to guide the design

and development of the architecture for the modern Web, as presented in Chapter 6. This

work was done in conjunction with my authoring of the Internet standards for the

Hypertext Transfer Protocol (HTTP) and Uniform Resource Identifiers (URI), the two

specifications that define the generic interface used by all component interactions on the

Web.

Like most real-world systems, not all components of the deployed Web architecture

obey every constraint present in its architectural design. REST has been used both as a

means to define architectural improvements and to identify architectural mismatches.

Mismatches occur when, due to ignorance or oversight, a software implementation is

deployed that violates the architectural constraints. While mismatches cannot be avoided

in general, it is possible to identify them before they become standardized. Several

mismatches within the modern Web architecture are summarized in Chapter 6, along with

analyses of why they arose and how they deviate from REST.

In summary, this dissertation makes the following contributions to software research

within the field of Information and Computer Science:

• a framework for understanding software architecture through architectural styles,
including a consistent set of terminology for describing software architecture;

• a classification of architectural styles for network-based application software by
the architectural properties they would induce when applied to the architecture for
a distributed hypermedia system;

• REST, a novel architectural style for distributed hypermedia systems; and,

• application and evaluation of the REST architectural style in the design and
deployment of the architecture for the modern World Wide Web.
4

CHAPTER 1

Software Architecture

In spite of the interest in software architecture as a field of research, there is little

agreement among researchers as to what exactly should be included in the definition of

architecture. In many cases, this has led to important aspects of architectural design being

overlooked by past research. This chapter defines a self-consistent terminology for

software architecture based on an examination of existing definitions within the literature

and my own insight with respect to network-based application architectures. Each

definition, highlighted within a box for ease of reference, is followed by a discussion of

how it is derived from, or compares to, related research.

1.1 Run-time Abstraction

At the heart of software architecture is the principle of abstraction: hiding some of the

details of a system through encapsulation in order to better identify and sustain its

properties [117]. A complex system will contain many levels of abstraction, each with its

own architecture. An architecture represents an abstraction of system behavior at that

level, such that architectural elements are delineated by the abstract interfaces they

provide to other elements at that level [9]. Within each element may be found another

architecture, defining the system of sub-elements that implement the behavior represented

A software architecture is an abstraction of the run-time elements of a
software system during some phase of its operation. A system may be
composed of many levels of abstraction and many phases of operation,
each with its own software architecture.
5

by the parent element’s abstract interface. This recursion of architectures continues down

to the most basic system elements: those that cannot be decomposed into less abstract

elements.

In addition to levels of architecture, a software system will often have multiple

operational phases, such as start-up, initialization, normal processing, re-initialization, and

shutdown. Each operational phase has its own architecture. For example, a configuration

file will be treated as a data element during the start-up phase, but won’t be considered an

architectural element during normal processing, since at that point the information it

contained will have already been distributed throughout the system. It may, in fact, have

defined the normal processing architecture. An overall description of a system architecture

must be capable of describing not only the operational behavior of the system’s

architecture during each phase, but also the architecture of transitions between phases.

Perry and Wolf [105] define processing elements as “transformers of data,” while

Shaw et al. [118] describe components as “the locus of computation and state.” This is

further clarified in Shaw and Clements [122]: “A component is a unit of software that

performs some function at run-time. Examples include programs, objects, processes, and

filters.” This raises an important distinction between software architecture and what is

typically referred to as software structure: the former is an abstraction of the run-time

behavior of a software system, whereas the latter is a property of the static software source

code. Although there are advantages to having the modular structure of the source code

match the decomposition of behavior within a running system, there are also advantages to

having independent software components be implemented using parts of the same code

(e.g., shared libraries). We separate the view of software architecture from that of the
6

source code in order to focus on the software’s run-time characteristics independent of a

given component’s implementation. Therefore, architectural design and source code

structural design, though closely related, are separate design activities. Unfortunately,

some descriptions of software architecture fail to make this distinction (e.g., [9]).

1.2 Elements

A comprehensive examination of the scope and intellectual basis for software architecture

can be found in Perry and Wolf [105]. They present a model that defines a software

architecture as a set of architectural elements that have a particular form, explicated by a

set of rationale. Architectural elements include processing, data, and connecting elements.

Form is defined by the properties of the elements and the relationships among the

elements — that is, the constraints on the elements. The rationale provides the underlying

basis for the architecture by capturing the motivation for the choice of architectural style,

the choice of elements, and the form.

My definitions for software architecture are an elaborated version of those within the

Perry and Wolf [105] model, except that I exclude rationale. Although rationale is an

important aspect of software architecture research and of architectural description in

particular, including it within the definition of software architecture would imply that

design documentation is part of the run-time system. The presence or absence of rationale

can influence the evolution of an architecture, but, once constituted, the architecture is

independent of its reasons for being. Reflective systems [80] can use the characteristics of

A software architecture is defined by a configuration of architectural
elements—components, connectors, and data—constrained in their
relationships in order to achieve a desired set of architectural properties.
7

past performance to change future behavior, but in doing so they are replacing one lower-

level architecture with another lower-level architecture, rather than encompassing

rationale within those architectures.

As an illustration, consider what happens to a building if its blueprints and design

plans are burned. Does the building immediately collapse? No, since the properties by

which the walls sustain the weight of the roof remain intact. An architecture has, by

design, a set of properties that allow it to meet or exceed the system requirements.

Ignorance of those properties may lead to later changes which violate the architecture, just

as the replacement of a load-bearing wall with a large window frame may violate the

structural stability of a building. Thus, instead of rationale, our definition of software

architecture includes architectural properties. Rationale explicates those properties, and

lack of rationale may result in gradual decay or degradation of the architecture over time,

but the rationale itself is not part of the architecture.

A key feature of the model in Perry and Wolf [105] is the distinction of the various

element types. Processing elements are those that perform transformations on data, data

elements are those that contain the information that is used and transformed, and

connecting elements are the glue that holds the different pieces of the architecture

together. I use the more prevalent terms of components and connectors to refer to

processing and connecting elements, respectively.

Garlan and Shaw [53] describe an architecture of a system as a collection of

computational components together with a description of the interactions between these

components—the connectors. This model is expanded upon in Shaw et al. [118]: The

architecture of a software system defines that system in terms of components and of
8

interactions among those components. In addition to specifying the structure and topology

of the system, the architecture shows the intended correspondence between the system

requirements and elements of the constructed system. Further elaboration of this definition

can be found in Shaw and Garlan [121].

What is surprising about the Shaw et al. [118] model is that, rather than defining the

software’s architecture as existing within the software, it is defining a description of the

software’s architecture as if that were the architecture. In the process, software

architecture as a whole is reduced to what is commonly found in most informal

architecture diagrams: boxes (components) and lines (connectors). Data elements, along

with many of the dynamic aspects of real software architectures, are ignored. Such a

model is incapable of adequately describing network-based software architectures, since

the nature, location, and movement of data elements within the system is often the single

most significant determinant of system behavior.

1.2.1 Components

Components are the most easily recognized aspect of software architecture. Perry and

Wolf’s [105] processing elements are defined as those components that supply the

transformation on the data elements. Garlan and Shaw [53] describe components simply

as the elements that perform computation. Our definition attempts to be more precise in

making the distinction between components and the software within connectors.

A component is an abstract unit of software instructions and internal state that

provides a transformation of data via its interface. Example transformations include

A component is an abstract unit of software instructions and internal
state that provides a transformation of data via its interface.
9

loading into memory from secondary storage, performing some calculation, translating to

a different format, encapsulation with other data, etc. The behavior of each component is

part of the architecture insofar as that behavior can be observed or discerned from the

point of view of another component [9]. In other words, a component is defined by its

interface and the services it provides to other components, rather than by its

implementation behind the interface. Parnas [101] would define this as the set of

assumptions that other architectural elements can make about the component.

1.2.2 Connectors

Perry and Wolf [105] describe connecting elements vaguely as the glue that holds the

various pieces of the architecture together. A more precise definition is provided by Shaw

and Clements [122]: A connector is an abstract mechanism that mediates communication,

coordination, or cooperation among components. Examples include shared

representations, remote procedure calls, message-passing protocols, and data streams.

Perhaps the best way to think about connectors is to contrast them with components.

Connectors enable communication between components by transferring data elements

from one interface to another without changing the data. Internally, a connector may

consist of a subsystem of components that transform the data for transfer, perform the

transfer, and then reverse the transformation for delivery. However, the external

behavioral abstraction captured by the architecture ignores those details. In contrast, a

component may, but not always will, transform data from the external perspective.

A connector is an abstract mechanism that mediates communication,
coordination, or cooperation among components.
10

1.2.3 Data

As noted above, the presence of data elements is the most significant distinction between

the model of software architecture defined by Perry and Wolf [105] and the model used by

much of the research labelled software architecture [1, 5, 9, 53, 56, 117-122, 128].

Boasson [24] criticizes current software architecture research for its emphasis on

component structures and architecture development tools, suggesting that more focus

should be placed on data-centric architectural modeling. Similar comments are made by

Jackson [67].

A datum is an element of information that is transferred from a component, or received

by a component, via a connector. Examples include byte-sequences, messages, marshalled

parameters, and serialized objects, but do not include information that is permanently

resident or hidden within a component. From the architectural perspective, a “file” is a

transformation that a file system component might make from a “file name” datum

received on its interface to a sequence of bytes recorded within an internally hidden

storage system. Components can also generate data, as in the case of a software

encapsulation of a clock or sensor.

The nature of the data elements within a network-based application architecture will

often determine whether or not a given architectural style is appropriate. This is

particularly evident in the comparison of mobile code design paradigms [50], where the

choice must be made between interacting with a component directly or transforming the

component into a data element, transferring it across a network, and then transforming it

A datum is an element of information that is transferred from a
component, or received by a component, via a connector.
11

back to a component that can be interacted with locally. It is impossible to evaluate such

an architecture without considering data elements at the architectural level.

1.3 Configurations

Abowd et al. [1] define architectural description as supporting the description of systems

in terms of three basic syntactic classes: components, which are the locus of computation;

connectors, which define the interactions between components; and configurations, which

are collections of interacting components and connectors. Various style-specific concrete

notations may be used to represent these visually, facilitate the description of legal

computations and interactions, and constrain the set of desirable systems.

Strictly speaking, one might think of a configuration as being equivalent to a set of

specific constraints on component interaction. For example, Perry and Wolf [105] include

topology in their definition of architectural form relationships. However, separating the

active topology from more general constraints allows an architect to more easily

distinguish the active configuration from the potential domain of all legitimate

configurations. Additional rationale for distinguishing configurations within architectural

description languages is presented in Medvidovic and Taylor [86].

1.4 Properties

The set of architectural properties of a software architecture includes all properties that

derive from the selection and arrangement of components, connectors, and data within the

system. Examples include both the functional properties achieved by the system and non-

A configuration is the structure of architectural relationships among
components, connectors, and data during a period of system run-time.
12

functional properties, such as relative ease of evolution, reusability of components,

efficiency, and dynamic extensibility, often referred to as quality attributes [9].

Properties are induced by the set of constraints within an architecture. Constraints are

often motivated by the application of a software engineering principle [58] to an aspect of

the architectural elements. For example, the uniform pipe-and-filter style obtains the

qualities of reusability of components and configurability of the application by applying

generality to its component interfaces — constraining the components to a single interface

type. Hence, the architectural constraint is “uniform component interface,” motivated by

the generality principle, in order to obtain two desirable qualities that will become the

architectural properties of reusable and configurable components when that style is

instantiated within an architecture.

The goal of architectural design is to create an architecture with a set of architectural

properties that form a superset of the system requirements. The relative importance of the

various architectural properties depends on the nature of the intended system. Section 2.3

examines the properties that are of particular interest to network-based application

architectures.

1.5 Styles

Since an architecture embodies both functional and non-functional properties, it can be

difficult to directly compare architectures for different types of systems, or for even the

An architectural style is a coordinated set of architectural constraints
that restricts the roles/features of architectural elements and the allowed
relationships among those elements within any architecture that
conforms to that style.
13

same type of system set in different environments. Styles are a mechanism for

categorizing architectures and for defining their common characteristics [38]. Each style

provides an abstraction for the interactions of components, capturing the essence of a

pattern of interaction by ignoring the incidental details of the rest of the architecture [117].

Perry and Wolf [105] define architectural style as an abstraction of element types and

formal aspects from various specific architectures, perhaps concentrating on only certain

aspects of an architecture. An architectural style encapsulates important decisions about

the architectural elements and emphasizes important constraints on the elements and their

relationships. This definition allows for styles that focus only on the connectors of an

architecture, or on specific aspects of the component interfaces.

In contrast, Garlan and Shaw [53], Garlan et al. [56], and Shaw and Clements [122] all

define style in terms of a pattern of interactions among typed components. Specifically, an

architectural style determines the vocabulary of components and connectors that can be

used in instances of that style, together with a set of constraints on how they can be

combined [53]. This restricted view of architectural styles is a direct result of their

definition of software architecture — thinking of architecture as a formal description,

rather than as a running system, leads to abstractions based only in the shared patterns of

box and line diagrams. Abowd et al. [1] go further and define this explicitly as viewing the

collection of conventions that are used to interpret a class of architectural descriptions as

defining an architectural style.

New architectures can be defined as instances of specific styles [38]. Since

architectural styles may address different aspects of software architecture, a given
14

architecture may be composed of multiple styles. Likewise, a hybrid style can be formed

by combining multiple basic styles into a single coordinated style.

Some architectural styles are often portrayed as “silver bullet” solutions for all forms

of software. However, a good designer should select a style that matches the needs of the

particular problem being solved [119]. Choosing the right architectural style for a

network-based application requires an understanding of the problem domain [67] and

thereby the communication needs of the application, an awareness of the variety of

architectural styles and the particular concerns they address, and the ability to anticipate

the sensitivity of each interaction style to the characteristics of network-based

communication [133].

Unfortunately, using the term style to refer to a coordinated set of constraints often

leads to confusion. This usage differs substantially from the etymology of style, which

would emphasize personalization of the design process. Loerke [76] devotes a chapter to

denigrating the notion that personal stylistic concerns have any place in the work of a

professional architect. Instead, he describes styles as the critics’ view of past architecture,

where the available choice of materials, the community culture, or the ego of the local

ruler were responsible for the architectural style, not the designer. In other words, Loerke

views the real source of style in traditional building architecture to be the set of constraints

applied to the design, and attaining or copying a specific style should be the least of the

designer’s goals. Since referring to a named set of constraints as a style makes it easier to

communicate the characteristics of common constraints, we use architectural styles as a

method of abstraction, rather than as an indicator of personalized design.
15

1.6 Patterns and Pattern Languages

In parallel with the software engineering research in architectural styles, the object-

oriented programming community has been exploring the use of design patterns and

pattern languages to describe recurring abstractions in object-based software

development. A design pattern is defined as an important and recurring system construct.

A pattern language is a system of patterns organized in a structure that guides the patterns’

application [70]. Both concepts are based on the writings of Alexander et al. [3, 4] with

regard to building architecture.

The design space of patterns includes implementation concerns specific to the

techniques of object-oriented programming, such as class inheritance and interface

composition, as well as the higher-level design issues addressed by architectural styles

[51]. In some cases, architectural style descriptions have been recast as architectural

patterns [120]. However, a primary benefit of patterns is that they can describe relatively

complex protocols of interactions between objects as a single abstraction [91], thus

including both constraints on behavior and specifics of the implementation. In general, a

pattern, or pattern language in the case of multiple integrated patterns, can be thought of as

a recipe for implementing a desired set of interactions among objects. In other words, a

pattern defines a process for solving a problem by following a path of design and

implementation choices [34].

Like software architectural styles, the software patterns research has deviated

somewhat from its origin in building architecture. Indeed, Alexander’s notion of patterns

centers not on recurring arrangements of architectural elements, but rather on the recurring

pattern of events—human activity and emotion—that take place within a space, with the
16

understanding that a pattern of events cannot be separated from the space where it occurs

[3]. Alexander’s design philosophy is to identify patterns of life that are common to the

target culture and determine what architectural constraints are needed to differentiate a

given space such that it enables the desired patterns to occur naturally. Such patterns exist

at multiple levels of abstraction and at all scales.

As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and
a certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how
this spatial configuration can be used, over and over again, to resolve the
given system of forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing, and when we must
create it. It is both a process and a thing; both a description of a thing which is
alive, and a description of the process which will generate that thing. [3]

In many ways, Alexander’s patterns have more in common with software architectural

styles than the design patterns of OOPL research. An architectural style, as a coordinated

set of constraints, is applied to a design space in order to induce the architectural

properties that are desired of the system. By applying a style, an architect is differentiating

the software design space in the hope that the result will better match the forces inherent in

the application, thus leading to system behavior that enhances the natural pattern rather

than conflicting with it.

1.7 Views

An architectural viewpoint is often application-specific and varies widely
based on the application domain. ... we have seen architectural viewpoints that
address a variety of issues, including: temporal issues, state and control
approaches, data representation, transaction life cycle, security safeguards,
and peak demand and graceful degradation. No doubt there are many more
possible viewpoints. [70]
17

In addition to the many architectures within a system, and the many architectural styles

from which the architectures are composed, it is also possible to view an architecture from

many different perspectives. Perry and Wolf [105] describe three important views in

software architecture: processing, data, and connection views. A process view emphasizes

the data flow through the components and some aspects of the connections among the

components with respect to the data. A data view emphasizes the processing flow, with

less emphasis on the connectors. A connection view emphasizes the relationship between

components and the state of communication.

Multiple architectural views are common within case studies of specific architectures

[9]. One architectural design methodology, the 4+1 View Model [74], organizes the

description of a software architecture using five concurrent views, each of which

addresses a specific set of concerns.

1.8 Related Work

I include here only those areas of research that define software architecture or describe

software architectural styles. Other areas for software architecture research include

architectural analysis techniques, architecture recovery and re-engineering, tools and

environments for architectural design, architecture refinement from specification to

implementation, and case studies of deployed software architectures [55]. Related work in

the areas of style classification, distributed process paradigms, and middleware are

discussed in Chapter 3.
18

1.8.1 Design Methodologies

Most early research on software architecture was concentrated on design methodologies.

For example, object-oriented design [25] advocates a way to structure problems that leads

naturally to an object-based architecture (or, more accurately, does not lead naturally to

any other form of architecture). One of the first design methodologies to emphasize design

at the architectural level is Jackson System Development [30]. JSD intentionally

structures the analysis of a problem so that it leads to a style of architecture that combines

pipe-and-filter (data flow) and process control constraints. These design methodologies

tend to produce only one style of architecture.

There has been some initial work investigating methodologies for the analysis and

development of architectures. Kazman et al. have described design methods for eliciting

the architectural aspects of a design through scenario-based analysis with SAAM [68] and

architectural trade-off analysis via ATAM [69]. Shaw [119] compares a variety of box-

and-arrow designs for an automobile cruise control system, each done using a different

design methodology and encompassing several architectural styles.

1.8.2 Handbooks for Design, Design Patterns, and Pattern Languages

Shaw [117] advocates the development of architectural handbooks along the same lines as

traditional engineering disciplines. The object-oriented programming community has

taken the lead in producing catalogs of design patterns, as exemplified by the “Gang of

Four” book [51] and the essays edited by Coplien and Schmidt [33].

Software design patterns tend to be more problem-oriented than architectural styles.

Shaw [120] presents eight example architectural patterns based on the architectural styles
19

described in [53], including information on the kinds of problems best suited to each

architecture. Buschmann et al. [28] provide a comprehensive examination of the

architectural patterns common to object-based development. Both references are purely

descriptive and make no attempt to compare or illustrate the differences among

architectural patterns.

Tepfenhart and Cusick [129] use a two dimensional map to differentiate among

domain taxonomies, domain models, architectural styles, frameworks, kits, design

patterns, and applications. In the topology, design patterns are predefined design

structures used as building blocks for a software architecture, whereas architectural styles

are sets of operational characteristics that identify an architectural family independent of

application domain. However, they fail to define architecture itself.

1.8.3 Reference Models and Domain-specific Software Architectures (DSSA)

Reference models are developed to provide conceptual frameworks for describing

architectures and showing how components are related to each other [117]. The Object

Management Architecture (OMA), developed by the OMG [96] as a reference model for

brokered distributed object architectures, specifies how objects are defined and created,

how client applications invoke objects, and how objects can be shared and reused. The

emphasis is on management of distributed objects, rather than efficient application

interaction.

Hayes-Roth et al. [62] define domain-specific software architecture (DSSA) as

comprising: a) a reference architecture, which describes a general computational

framework for a significant domain of applications, b) a component library, which
20

contains reusable chunks of domain expertise, and c) an application configuration method

for selecting and configuring components within the architecture to meet particular

application requirements. Tracz [130] provides a general overview of DSSA.

DSSA projects have been successful at transferring architectural decisions to running

systems by restricting the software development space to a specific architectural style that

matches the domain requirements [88]. Examples include ADAGE [10] for avionics, AIS

[62] for adaptive intelligent systems, and MetaH [132] for missile guidance, navigation,

and control systems. DSSA emphasize reuse of components within a common

architectural domain, rather than selecting an architectural style that is specific to each

system.

1.8.4 Architecture Description Languages (ADL)

Most of the recent published work regarding software architectures is in the area of

architecture description languages (ADL). An ADL is, according to Medvidovic and

Taylor [86], a language that provides features for the explicit specification and modeling

of a software system’s conceptual architecture, including at a minimum: components,

component interfaces, connectors, and architectural configurations.

Darwin is a declarative language which is intended to be a general purpose notation

for specifying the structure of systems composed of diverse components using diverse

interaction mechanisms [81]. Darwin’s interesting qualities are that it allows the

specification of distributed architectures and dynamically composed architectures [82].

UniCon [118] is a language and associated toolset for composing an architecture from

a restricted set of component and connector examples. Wright [5] provides a formal basis
21

for specifying the interactions between architectural components by specifying connector

types by their interaction protocols.

Like design methodologies, ADLs often introduce specific architectural assumptions

that may impact their ability to describe some architectural styles, and may conflict with

the assumptions in existing middleware [38]. In some cases, an ADL is designed

specifically for a single architectural style, thus improving its capacity for specialized

description and analysis at the cost of generality. For example, C2SADEL [88] is an ADL

designed specifically to describe architectures developed in the C2 style [128]. In contrast,

ACME [57] is an ADL that attempts to be as generic as possible, but with the trade-off

being that it doesn’t support style-specific analysis and the building of actual applications;

rather, its focus is on the interchange among analysis tools.

1.8.5 Formal Architectural Models

Abowd et al. [1] claim that architectural styles can be described formally in terms of a

small set of mappings from the syntactic domain of architectural descriptions (box-and-

line diagrams) to the semantic domain of architectural meaning. However, this assumes

that the architecture is the description, rather than an abstraction of a running system.

Inverardi and Wolf [65] use the Chemical Abstract Machine (CHAM) formalism to

model software architecture elements as chemicals whose reactions are controlled by

explicitly stated rules. It specifies the behavior of components according to how they

transform available data elements and uses composition rules to propagate the individual

transformations into an overall system result. While this is an interesting model, it is
22

unclear as to how CHAM could be used to describe any form of architecture whose

purpose goes beyond transforming a data stream.

Rapide [78] is a concurrent, event-based simulation language specifically designed for

defining and simulating system architectures. The simulator produces a partially-ordered

set of events that can be analyzed for conformance to the architectural constraints on

interconnection. Le Métayer [75] presents a formalism for the definition of architectures

in terms of graphs and graph grammars.

1.9 Summary

This chapter examined the background for this dissertation. Introducing and formalizing a

consistent set of terminology for software architecture concepts is necessary to avoid the

confusion between architecture and architecture description that is common in the

literature, particularly since much of the prior research on architecture excludes data as an

important architectural element. I concluded with a survey of other research related to

software architecture and architectural styles.

The next two chapters continue our discussion of background material by focusing on

network-based application architectures and describing how styles can be used to guide

their architectural design, followed by a survey of common architectural styles using a

classification methodology that highlights the architectural properties induced when the

styles are applied to an architecture for network-based hypermedia.
23

CHAPTER 2

Network-based Application Architectures

This chapter continues our discussion of background material by focusing on network-

based application architectures and describing how styles can be used to guide their

architectural design.

2.1 Scope

Architecture is found at multiple levels within software systems. This dissertation

examines the highest level of abstraction in software architecture, where the interactions

among components are capable of being realized in network communication. We limit our

discussion to styles for network-based application architectures in order to reduce the

dimensions of variance among the styles studied.

2.1.1 Network-based vs. Distributed

The primary distinction between network-based architectures and software architectures

in general is that communication between components is restricted to message passing [6],

or the equivalent of message passing if a more efficient mechanism can be selected at run-

time based on the location of components [128].

Tanenbaum and van Renesse [127] make a distinction between distributed systems

and network-based systems: a distributed system is one that looks to its users like an

ordinary centralized system, but runs on multiple, independent CPUs. In contrast,

network-based systems are those capable of operation across a network, but not
24

necessarily in a fashion that is transparent to the user. In some cases it is desirable for the

user to be aware of the difference between an action that requires a network request and

one that is satisfiable on their local system, particularly when network usage implies an

extra transaction cost [133]. This dissertation covers network-based systems by not

limiting the candidate styles to those that preserve transparency for the user.

2.1.2 Application Software vs. Networking Software

Another restriction on the scope of this dissertation is that we limit our discussion to

application architectures, excluding the operating system, networking software, and some

architectural styles that would only use a network for system support (e.g., process control

styles [53]). Applications represent the “business-aware” functionality of a system [131].

Application software architecture is an abstraction level of an overall system, in which

the goals of a user action are representable as functional architectural properties. For

example, a hypermedia application must be concerned with the location of information

pages, performing requests, and rendering data streams. This is in contrast to a networking

abstraction, where the goal is to move bits from one location to another without regard to

why those bits are being moved. It is only at the application level that we can evaluate

design trade-offs based on the number of interactions per user action, the location of

application state, the effective throughput of all data streams (as opposed to the potential

throughput of a single data stream), the extent of communication being performed per user

action, etc.
25

2.2 Evaluating the Design of Application Architectures

One of the goals of this dissertation is to provide design guidance for the task of selecting

or creating the most appropriate architecture for a given application domain, keeping in

mind that an architecture is the realization of an architectural design and not the design

itself. An architecture can be evaluated by its run-time characteristics, but we would

obviously prefer an evaluation mechanism that could be applied to the candidate

architectural designs before having to implement all of them. Unfortunately, architectural

designs are notoriously hard to evaluate and compare in an objective manner. Like most

artifacts of creative design, architectures are normally presented as a completed work, as if

the design simply sprung fully-formed from the architect’s mind. In order to evaluate an

architectural design, we need to examine the design rationale behind the constraints it

places on a system, and compare the properties derived from those constraints to the target

application’s objectives.

The first level of evaluation is set by the application’s functional requirements. For

example, it makes no sense to evaluate the design of a process control architecture against

the requirements of a distributed hypermedia system, since the comparison is moot if the

architecture would not function. Although this will eliminate some candidates, in most

cases there will remain many other architectural designs that are capable of meeting the

application’s functional needs. The remainder differ by their relative emphasis on the non-

functional requirements—the degree to which each architecture would support the various

non-functional architectural properties that have been identified as necessary for the

system. Since properties are created by the application of architectural constraints, it is

possible to evaluate and compare different architectural designs by identifying the
26

constraints within each architecture, evaluating the set of properties induced by each

constraint, and comparing the cumulative properties of the design to those properties

required of the application.

As described in the previous chapter, an architectural style is a coordinated set of

architectural constraints that has been given a name for ease of reference. Each

architectural design decision can be seen as an application of a style. Since the addition of

a constraint may derive a new style, we can think of the space of all possible architectural

styles as a derivation tree, with its root being the null style (empty set of constraints).

When their constraints do not conflict, styles can be combined to form hybrid styles,

eventually culminating in a hybrid style that represents a complete abstraction of the

architectural design. An architectural design can therefore be analyzed by breaking-down

its set of constraints into a derivation tree and evaluating the cumulative effect of the

constraints represented by that tree. If we understand the properties induced by each basic

style, then traversing the derivation tree gives us an understanding of the overall design’s

architectural properties. The specific needs of an application can then be matched against

the properties of the design. Comparison becomes a relatively simple matter of identifying

which architectural design satisfies the most desired properties for that application.

Care must be taken to recognize when the effects of one constraint may counteract the

benefits of some other constraint. Nevertheless, it is possible for an experienced software

architect to build such a derivation tree of architectural constraints for a given application

domain, and then use the tree to evaluate many different architectural designs for

applications within that domain. Thus, building a derivation tree provides a mechanism

for architectural design guidance.
27

The evaluation of architectural properties within a tree of styles is specific to the needs

of a particular application domain because the impact of a given constraint is often

dependent on the application characteristics. For example, the pipe-and-filter style enables

several positive architectural properties when used within a system that requires data

transformations between components, whereas it would add nothing but overhead to a

system that consists only of control messages. Since it is rarely useful to compare

architectural designs across different application domains, the simplest means of ensuring

consistency is to make the tree domain-specific.

Design evaluation is frequently a question of choosing between trade-offs. Perry and

Wolf [105] describe a method of recognizing trade-offs explicitly by placing a numeric

weight against each property to indicate its relative importance to the architecture, thus

providing a normalized metric for comparing candidate designs. However, in order to be a

meaningful metric, each weight would have to be carefully chosen using an objective

scale that is consistent across all properties. In practice, no such scale exists. Rather than

having the architect fiddle with weight values until the result matches their intuition, I

prefer to present all of the information to the architect in a readily viewable form, and let

the architect’s intuition be guided by the visual pattern. This will be demonstrated in the

next chapter.

2.3 Architectural Properties of Key Interest

This section describes the architectural properties used to differentiate and classify

architectural styles in this dissertation. It is not intended to be a comprehensive list. I have

included only those properties that are clearly influenced by the restricted set of styles
28

surveyed. Additional properties, sometimes referred to as software qualities, are covered

by most textbooks on software engineering (e.g., [58]). Bass et al. [9] examine qualities in

regards to software architecture.

2.3.1 Performance

One of the main reasons to focus on styles for network-based applications is because

component interactions can be the dominant factor in determining user-perceived

performance and network efficiency. Since the architectural style influences the nature of

those interactions, selection of an appropriate architectural style can make the difference

between success and failure in the deployment of a network-based application.

The performance of a network-based application is bound first by the application

requirements, then by the chosen interaction style, followed by the realized architecture,

and finally by the implementation of each component. In other words, software cannot

avoid the basic cost of achieving the application needs; e.g., if the application requires that

data be located on system A and processed on system B, then the software cannot avoid

moving that data from A to B. Likewise, an architecture cannot be any more efficient than

its interaction style allows; e.g., the cost of multiple interactions to move the data from A

to B cannot be any less than that of a single interaction from A to B. Finally, regardless of

the quality of an architecture, no interaction can take place faster than a component

implementation can produce data and its recipient can consume data.

2.3.1.1 Network Performance

Network performance measures are used to describe some attributes of communication.

Throughput is the rate at which information, including both application data and
29

communication overhead, is transferred between components. Overhead can be separated

into initial setup overhead and per-interaction overhead, a distinction which is useful for

identifying connectors that can share setup overhead across multiple interactions

(amortization). Bandwidth is a measure of the maximum available throughput over a

given network link. Usable bandwidth refers to that portion of bandwidth which is

actually available to the application.

Styles impact network performance by their influence on the number of interactions

per user action and the granularity of data elements. A style that encourages small,

strongly typed interactions will be efficient in an application involving small data transfers

among known components, but will cause excessive overhead within applications that

involve large data transfers or negotiated interfaces. Likewise, a style that involves the

coordination of multiple components arranged to filter a large data stream will be out of

place in an application that primarily requires small control messages.

2.3.1.2 User-perceived Performance

User-perceived performance differs from network performance in that the performance of

an action is measured in terms of its impact on the user in front of an application rather

than the rate at which the network moves information. The primary measures for user-

perceived performance are latency and completion time.

Latency is the time period between initial stimulus and the first indication of a

response. Latency occurs at several points in the processing of a network-based

application action: 1) the time needed for the application to recognize the event that

initiated the action; 2) the time required to setup the interactions between components; 3)

the time required to transmit each interaction to the components; 4) the time required to
30

process each interaction on those components; and, 5) the time required to complete

sufficient transfer and processing of the result of the interactions before the application is

able to begin rendering a usable result. It is important to note that, although only (3) and

(5) represent actual network communication, all five points can be impacted by the

architectural style. Furthermore, multiple component interactions per user action are

additive to latency unless they take place in parallel.

Completion is the amount of time taken to complete an application action. Completion

time is dependent upon all of the aforementioned measures. The difference between an

action’s completion time and its latency represents the degree to which the application is

incrementally processing the data being received. For example, a Web browser that can

render a large image while it is being received provides significantly better user-perceived

performance than one that waits until the entire image is completely received prior to

rendering, even though both experience the same network performance.

It is important to note that design considerations for optimizing latency will often have

the side-effect of degrading completion time, and vice versa. For example, compression of

a data stream can produce a more efficient encoding if the algorithm samples a significant

portion of the data before producing the encoded transformation, resulting in a shorter

completion time to transfer the encoded data across the network. However, if this

compression is being performed on-the-fly in response to a user action, then buffering a

large sample before transfer may produce an unacceptable latency. Balancing these trade-

offs can be difficult, particularly when it is unknown whether the recipient cares more

about latency (e.g., Web browsers) or completion (e.g., Web spiders).
31

2.3.1.3 Network Efficiency

An interesting observation about network-based applications is that the best application

performance is obtained by not using the network. This essentially means that the most

efficient architectural styles for a network-based application are those that can effectively

minimize use of the network when it is possible to do so, through reuse of prior

interactions (caching), reduction of the frequency of network interactions in relation to

user actions (replicated data and disconnected operation), or by removing the need for

some interactions by moving the processing of data closer to the source of the data

(mobile code).

The impact of the various performance issues is often related to the scope of

distribution for the application. The benefits of a style under local conditions may become

drawbacks when faced with global conditions. Thus, the properties of a style must be

framed in relation to the interaction distance: within a single process, across processes on

a single host, inside a local-area network (LAN), or spread across a wide-area network

(WAN). Additional concerns become evident when interactions across a WAN, where a

single organization is involved, are compared to interactions across the Internet, involving

multiple trust boundaries.

2.3.2 Scalability

Scalability refers to the ability of the architecture to support large numbers of components,

or interactions among components, within an active configuration. Scalability can be

improved by simplifying components, by distributing services across many components

(decentralizing the interactions), and by controlling interactions and configurations as a
32

result of monitoring. Styles influence these factors by determining the location of

application state, the extent of distribution, and the coupling between components.

Scalability is also impacted by the frequency of interactions, whether the load on a

component is distributed evenly over time or occurs in peaks, whether an interaction

requires guaranteed delivery or a best-effort, whether a request involves synchronous or

asynchronous handling, and whether the environment is controlled or anarchic (i.e., can

you trust the other components?).

2.3.3 Simplicity

The primary means by which architectural styles induce simplicity is by applying the

principle of separation of concerns to the allocation of functionality within components. If

functionality can be allocated such that the individual components are substantially less

complex, then they will be easier to understand and implement. Likewise, such separation

eases the task of reasoning about the overall architecture. I have chosen to lump the

qualities of complexity, understandability, and verifiability under the general property of

simplicity, since they go hand-in-hand for a network-based system.

Applying the principle of generality to architectural elements also improves

simplicity, since it decreases variation within an architecture. Generality of connectors

leads to middleware [22].

2.3.4 Modifiability

Modifiability is about the ease with which a change can be made to an application

architecture. Modifiability can be further broken down into evolvability, extensibility,

customizability, configurability, and reusability, as described below. A particular concern
33

of network-based systems is dynamic modifiability [98], where the modification is made

to a deployed application without stopping and restarting the entire system.

Even if it were possible to build a software system that perfectly matches the

requirements of its users, those requirements will change over time just as society changes

over time. Because the components participating in a network-based application may be

distributed across multiple organizational boundaries, the system must be prepared for

gradual and fragmented change, where old and new implementations coexist, without

preventing the new implementations from making use of their extended capabilities.

2.3.4.1 Evolvability

Evolvability represents the degree to which a component implementation can be changed

without negatively impacting other components. Static evolution of components generally

depends on how well the architectural abstraction is enforced by the implementation, and

thus is not something unique to any particular architectural style. Dynamic evolution,

however, can be influenced by the style if it includes constraints on the maintenance and

location of application state. The same techniques used to recover from partial failure

conditions in a distributed system [133] can be used to support dynamic evolution.

2.3.4.2 Extensibility

Extensibility is defined as the ability to add functionality to a system [108]. Dynamic

extensibility implies that functionality can be added to a deployed system without

impacting the rest of the system. Extensibility is induced within an architectural style by

reducing the coupling between components, as exemplified by event-based integration.
34

2.3.4.3 Customizability

Customizability refers to the ability to temporarily specialize the behavior of an

architectural element, such that it can then perform an unusual service. A component is

customizable if it can be extended by one client of that component’s services without

adversely impacting other clients of that component [50]. Styles that support

customization may also improve simplicity and scalability, since service components can

be reduced in size and complexity by directly implementing only the most frequent

services and allowing infrequent services to be defined by the client. Customizability is a

property induced by the remote evaluation and code-on-demand styles.

2.3.4.4 Configurability

Configurability is related to both extensibility and reusability in that it refers to post-

deployment modification of components, or configurations of components, such that they

are capable of using a new service or data element type. The pipe-and-filter and code-on-

demand styles are two examples that induce configurability of configurations and

components, respectively.

2.3.4.5 Reusability

Reusability is a property of an application architecture if its components, connectors, or

data elements can be reused, without modification, in other applications. The primary

mechanisms for inducing reusability within architectural styles is reduction of coupling

(knowledge of identity) between components and constraining the generality of

component interfaces. The uniform pipe-and-filter style exemplifies these types of

constraints.
35

2.3.5 Visibility

Styles can also influence the visibility of interactions within a network-based application

by restricting interfaces via generality or providing access to monitoring. Visibility in this

case refers to the ability of a component to monitor or mediate the interaction between two

other components. Visibility can enable improved performance via shared caching of

interactions, scalability through layered services, reliability through reflective monitoring,

and security by allowing the interactions to be inspected by mediators (e.g., network

firewalls). The mobile agent style is an example where the lack of visibility may lead to

security concerns.

This usage of the term visibility differs from that in Ghezzi et al. [58], where they are

referring to visibility into the development process rather than the product.

2.3.6 Portability

Software is portable if it can run in different environments [58]. Styles that induce

portability include those that move code along with the data to be processed, such as the

virtual machine and mobile agent styles, and those that constrain the data elements to a set

of standardized formats.

2.3.7 Reliability

Reliability, within the perspective of application architectures, can be viewed as the

degree to which an architecture is susceptible to failure at the system level in the presence

of partial failures within components, connectors, or data. Styles can improve reliability

by avoiding single points of failure, enabling redundancy, allowing monitoring, or

reducing the scope of failure to a recoverable action.
36

2.4 Summary

This chapter examined the scope of the dissertation by focusing on network-based

application architectures and describing how styles can be used to guide their architectural

design. It also defined the set of architectural properties that will be used throughout the

rest of the dissertation for the comparison and evaluation of architectural styles.

The next chapter presents a survey of common architectural styles for network-based

application software within a classification framework that evaluates each style according

to the architectural properties it would induce if applied to an architecture for a

prototypical network-based hypermedia system.
37

CHAPTER 3

Network-based Architectural Styles

This chapter presents a survey of common architectural styles for network-based

application software within a classification framework that evaluates each style according

to the architectural properties it would induce if applied to an architecture for a

prototypical network-based hypermedia system.

3.1 Classification Methodology

The purpose of building software is not to create a specific topology of interactions or use

a particular component type — it is to create a system that meets or exceeds the

application needs. The architectural styles chosen for a system’s design must conform to

those needs, not the other way around. Therefore, in order to provide useful design

guidance, a classification of architectural styles should be based on the architectural

properties induced by those styles.

3.1.1 Selection of Architectural Styles for Classification

The set of architectural styles included in the classification is by no means comprehensive

of all possible network-based application styles. Indeed, a new style can be formed merely

by adding an architectural constraint to any one of the styles surveyed. My goal is to

describe a representative sample of styles, particularly those already identified within the

software architecture literature, and provide a framework by which other styles can be

added to the classification as they are developed.
38

I have intentionally excluded styles that do not enhance the communication or

interaction properties when combined with one of the surveyed styles to form a network-

based application. For example, the blackboard architectural style [95] consists of a

central repository and a set of components (knowledge sources) that operate

opportunistically upon the repository. A blackboard architecture can be extended to a

network-based system by distributing the components, but the properties of such an

extension are entirely based on the interaction style chosen to support the distribution —

notifications via event-based integration, polling a la client-server, or replication of the

repository. Thus, there would be no added value from including it in the classification,

even though the hybrid style is network-capable.

3.1.2 Style-induced Architectural Properties

My classification uses relative changes in the architectural properties induced by each

style as a means of illustrating the effect of each architectural style when applied to a

system for distributed hypermedia. Note that the evaluation of a style for a given property

depends on the type of system interaction being studied, as described in Section 2.2. The

architectural properties are relative in the sense that adding an architectural constraint may

improve or reduce a given property, or simultaneously improve one aspect of the property

and reduce some other aspect of the property. Likewise, improving one property may lead

to the reduction of another.

Although our discussion of architectural styles will include those applicable to a wide

range of network-based systems, our evaluation of each style will be based on its impact

upon an architecture for a single type of software: network-based hypermedia systems.
39

Focusing on a particular type of software allows us to identify the advantages of one style

over another in the same way that a designer of a system would evaluate those advantages.

Since we do not intend to declare any single style as being universally desirable for all

types of software, restricting the focus of our evaluation simply reduces the dimensions

over which we need to evaluate. Evaluating the same styles for other types of application

software is an open area for future research.

3.1.3 Visualization

I use a table of style versus architectural properties as the primary visualization for this

classification. The table values indicate the relative influence that the style for a given row

has on a column’s property. Minus (−) symbols accumulate for negative influences and

plus (+) symbols for positive, with plus-minus (±) indicating that it depends on some

aspect of the problem domain. Although this is a gross simplification of the details

presented in each section, it does indicate the degree to which a style has addressed (or

ignored) an architectural property.

An alternative visualization would be a property-based derivation graph for

classifying architectural styles. The styles would be classified according to how they are

derived from other styles, with the arcs between styles illustrated by architectural

properties gained or lost. The starting point of the graph would be the null style (no

constraints). It is possible to derive such a graph directly from the descriptions.
40

3.2 Data-flow Styles

3.2.1 Pipe and Filter (PF)

In a pipe and filter style, each component (filter) reads streams of data on its inputs and

produces streams of data on its outputs, usually while applying a transformation to the

input streams and processing them incrementally so that output begins before the input is

completely consumed [53]. This style is also referred to as a one-way data flow network

[6]. The constraint is that a filter must be completely independent of other filters (zero

coupling): it must not share state, control thread, or identity with the other filters on its

upstream and downstream interfaces [53].

Abowd et al. [1] provide an extensive formal description of the pipe and filter style

using the Z language. The Khoros software development environment for image

processing [112] provides a good example of using the pipe and filter style to build a

range of applications.

Garlan and Shaw [53] describe the advantageous properties of the pipe and filter style

as follows. First, PF allows the designer to understand the overall input/output of the

system as a simple composition of the behaviors of the individual filters (simplicity).

Second, PF supports reuse: any two filters can be hooked together, provided they agree on

the data that is being transmitted between them (reusability). Third, PF systems can be

easily maintained and enhanced: new filters can be added to existing systems

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ± + + + + +
UPF PF − ± ++ + + ++ ++ +

Table 3-1. Evaluation of Data-flow Styles for Network-based Hypermedia
41

(extensibility) and old filters can be replaced by improved ones (evolvability). Fourth,

they permit certain kinds of specialized analysis (verifiability), such as throughput and

deadlock analysis. Finally, they naturally support concurrent execution (user-perceived

performance).

Disadvantages of the PF style include: propagation delay is added through long

pipelines, batch sequential processing occurs if a filter cannot incrementally process its

inputs, and no interactivity is allowed. A filter cannot interact with its environment

because it cannot know that any particular output stream shares a controller with any

particular input stream. These properties decrease user-perceived performance if the

problem being addressed does not fit the pattern of a data flow stream.

One aspect of PF styles that is rarely mentioned is that there is an implied “invisible

hand” that arranges the configuration of filters in order to establish the overall application.

A network of filters is typically arranged just prior to each activation, allowing the

application to specify the configuration of filter components based on the task at hand and

the nature of the data streams (configurability). This controller function is considered a

separate operational phase of the system, and hence a separate architecture, even though

one cannot exist without the other.

3.2.2 Uniform Pipe and Filter (UPF)

The uniform pipe and filter style adds the constraint that all filters must have the same

interface. The primary example of this style is found in the Unix operating system, where

filter processes have an interface consisting of one input data stream of characters (stdin)

and two output data streams of characters (stdout and stderr). Restricting the interface
42

allows independently developed filters to be arranged at will to form new applications. It

also simplifies the task of understanding how a given filter works.

A disadvantage of the uniform interface is that it may reduce network performance if

the data needs to be converted to or from its natural format.

3.3 Replication Styles

3.3.1 Replicated Repository (RR)

Systems based on the replicated repository style [6] improve the accessibility of data and

scalability of services by having more than one process provide the same service. These

decentralized servers interact to provide clients the illusion that there is just one,

centralized service. Distributed filesystems, such as XMS [49], and remote versioning

systems, like CVS [www.cyclic.com], are the primary examples.

Improved user-perceived performance is the primary advantage, both by reducing the

latency of normal requests and enabling disconnected operation in the face of primary

server failure or intentional roaming off the network. Simplicity remains neutral, since the

complexity of replication is offset by the savings of allowing network-unaware

components to operate transparently on locally replicated data. Maintaining consistency is

the primary concern.

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

RR ++ + +
$ RR + + + +

Table 3-2. Evaluation of Replication Styles for Network-based Hypermedia
43

3.3.2 Cache ($)

A variant of replicated repository is found in the cache style: replication of the result of an

individual request such that it may be reused by later requests. This form of replication is

most often found in cases where the potential data set far exceeds the capacity of any one

client, as in the WWW [20], or where complete access to the repository is unnecessary.

Lazy replication occurs when data is replicated upon a not-yet-cached response for a

request, relying on locality of reference and commonality of interest to propagate useful

items into the cache for later reuse. Active replication can be performed by pre-fetching

cacheable entries based on anticipated requests.

Caching provides slightly less improvement than the replicated repository style in

terms of user-perceived performance, since more requests will miss the cache and only

recently accessed data will be available for disconnected operation. On the other hand,

caching is much easier to implement, doesn’t require as much processing and storage, and

is more efficient because data is transmitted only when it is requested. The cache style

becomes network-based when it is combined with a client-stateless-server style.
44

3.4 Hierarchical Styles

3.4.1 Client-Server (CS)

The client-server style is the most frequently encountered of the architectural styles for

network-based applications. A server component, offering a set of services, listens for

requests upon those services. A client component, desiring that a service be performed,

sends a request to the server via a connector. The server either rejects or performs the

request and sends a response back to the client. A variety of client-server systems are

surveyed by Sinha [123] and Umar [131].

Andrews [6] describes client-server components as follows: A client is a triggering

process; a server is a reactive process. Clients make requests that trigger reactions from

servers. Thus, a client initiates activity at times of its choosing; it often then delays until its

request has been serviced. On the other hand, a server waits for requests to be made and

then reacts to them. A server is usually a non-terminating process and often provides

service to more than one client.

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

CS + + +
LS − + + + +

LCS CS+LS − ++ + ++ + +
CSS CS − ++ + + + +

C$SS CSS+$ − + + ++ + + + +
LC$SS LCS+C$SS − ± + +++ ++ ++ + + + +

RS CS + − + + −
RDA CS + − − + −

Table 3-3. Evaluation of Hierarchical Styles for Network-based Hypermedia
45

Separation of concerns is the principle behind the client-server constraints. A proper

separation of functionality should simplify the server component in order to improve

scalability. This simplification usually takes the form of moving all of the user interface

functionality into the client component. The separation also allows the two types of

components to evolve independently, provided that the interface doesn’t change.

The basic form of client-server does not constrain how application state is partitioned

between client and server components. It is often referred to by the mechanisms used for

the connector implementation, such as remote procedure call [23] or message-oriented

middleware [131].

3.4.2 Layered System (LS) and Layered-Client-Server (LCS)

A layered system is organized hierarchically, each layer providing services to the layer

above it and using services of the layer below it [53]. Although layered system is

considered a “pure” style, its use within network-based systems is limited to its

combination with the client-server style to provide layered-client-server.

Layered systems reduce coupling across multiple layers by hiding the inner layers

from all except the adjacent outer layer, thus improving evolvability and reusability.

Examples include the processing of layered communication protocols, such as the TCP/IP

and OSI protocol stacks [138], and hardware interface libraries. The primary disadvantage

of layered systems is that they add overhead and latency to the processing of data,

reducing user-perceived performance [32].

Layered-client-server adds proxy and gateway components to the client-server style. A

proxy [116] acts as a shared server for one or more client components, taking requests and
46

forwarding them, with possible translation, to server components. A gateway component

appears to be a normal server to clients or proxies that request its services, but is in fact

forwarding those requests, with possible translation, to its “inner-layer” servers. These

additional mediator components can be added in multiple layers to add features like load

balancing and security checking to the system.

Architectures based on layered-client-server are referred to as two-tiered, three-tiered,

or multi-tiered architectures in the information systems literature [131].

LCS is also a solution to managing identity in a large scale distributed system, where

complete knowledge of all servers would be prohibitively expensive. Instead, servers are

organized in layers such that rarely used services are handled by intermediaries rather than

directly by each client [6].

3.4.3 Client-Stateless-Server (CSS)

The client-stateless-server style derives from client-server with the additional constraint

that no session state is allowed on the server component. Each request from client to

server must contain all of the information necessary to understand the request, and cannot

take advantage of any stored context on the server. Session state is kept entirely on the

client.

These constraints improve the properties of visibility, reliability, and scalability.

Visibility is improved because a monitoring system does not have to look beyond a single

request datum in order to determine the full nature of the request. Reliability is improved

because it eases the task of recovering from partial failures [133]. Scalability is improved
47

because not having to store state between requests allows the server component to quickly

free resources and further simplifies implementation.

The disadvantage of client-stateless-server is that it may decrease network

performance by increasing the repetitive data (per-interaction overhead) sent in a series of

requests, since that data cannot be left on the server in a shared context.

3.4.4 Client-Cache-Stateless-Server (C$SS)

The client-cache-stateless-server style derives from the client-stateless-server and cache

styles via the addition of cache components. A cache acts as a mediator between client and

server in which the responses to prior requests can, if they are considered cacheable, be

reused in response to later requests that are equivalent and likely to result in a response

identical to that in the cache if the request were to be forwarded to the server. An example

system that makes effective use of this style is Sun Microsystems’ NFS [115].

The advantage of adding cache components is that they have the potential to partially

or completely eliminate some interactions, improving efficiency and user-perceived

performance.

3.4.5 Layered-Client-Cache-Stateless-Server (LC$SS)

The layered-client-cache-stateless-server style derives from both layered-client-server and

client-cache-stateless-server through the addition of proxy and/or gateway components.

An example system that uses an LC$SS style is the Internet domain name system (DNS).

The advantages and disadvantages of LC$SS are simply a combination of those for

LCS and C$SS. However, note that we don’t count the contributions of the CS style twice,

since the benefits are not additive if they come from the same ancestral derivation.
48

3.4.6 Remote Session (RS)

The remote session style is a variant of client-server that attempts to minimize the

complexity, or maximize the reuse, of the client components rather than the server

component. Each client initiates a session on the server and then invokes a series of

services on the server, finally exiting the session. Application state is kept entirely on the

server. This style is typically used when it is desired to access a remote service using a

generic client (e.g., TELNET [106]) or via an interface that mimics a generic client (e.g.,

FTP [107]).

The advantages of the remote session style are that it is easier to centrally maintain the

interface at the server, reducing concerns about inconsistencies in deployed clients when

functionality is extended, and improves efficiency if the interactions make use of extended

session context on the server. The disadvantages are that it reduces scalability of the

server, due to the stored application state, and reduces visibility of interactions, since a

monitor would have to know the complete state of the server.

3.4.7 Remote Data Access (RDA)

The remote data access style [131] is a variant of client-server that spreads the application

state across both client and server. A client sends a database query in a standard format,

such as SQL, to a remote server. The server allocates a workspace and performs the query,

which may result in a very large data set. The client can then make further operations upon

the result set (such as table joins) or retrieve the result one piece at a time. The client must

know about the data structure of the service to build structure-dependent queries.
49

The advantages of remote data access are that a large data set can be iteratively

reduced on the server side without transmitting it across the network, improving

efficiency, and visibility is improved by using a standard query language. The

disadvantages are that the client needs to understand the same database manipulation

concepts as the server implementation (lacking simplicity) and storing application context

on the server decreases scalability. Reliability also suffers, since partial failure can leave

the workspace in an unknown state. Transaction mechanisms (e.g., two-phase commit)

can be used to fix the reliability problem, though at a cost of added complexity and

interaction overhead.

3.5 Mobile Code Styles

Mobile code styles use mobility in order to dynamically change the distance between the

processing and source of data or destination of results. These styles are comprehensively

examined in Fuggetta et al. [50]. A site abstraction is introduced at the architectural level,

as part of the active configuration, in order to take into account the location of the different

components. Introducing the concept of location makes it possible to model the cost of an

interaction between components at the design level. In particular, an interaction between

components that share the same location is considered to have negligible cost when

compared to an interaction involving communication through the network. By changing

its location, a component may improve the proximity and quality of its interaction,

reducing interaction costs and thereby improving efficiency and user-perceived

performance.
50

In all of the mobile code styles, a data element is dynamically transformed into a

component. Fuggetta et al. [50] use an analysis that compares the code’s size as a data

element to the savings in normal data transfer in order to determine whether mobility is

desirable for a given action. This would be impossible to model from an architectural

standpoint if the definition of software architecture excludes data elements.

3.5.1 Virtual Machine (VM)

Underlying all of the mobile code styles is the notion of a virtual machine, or interpreter,

style [53]. The code must be executed in some fashion, preferably within a controlled

environment to satisfy security and reliability concerns, which is exactly what the virtual

machine style provides. It is not, in itself, a network-based style, but it is commonly used

as such when combined with a component in the client-server style (REV and COD

styles).

Virtual machines are commonly used as the engine for scripting languages, including

general purpose languages like Perl [134] and task-specific languages like PostScript [2].

The primary benefits are the separation between instruction and implementation on a

particular platform (portability) and ease of extensibility. Visibility is reduced because it is

hard to know what an executable will do simply by looking at the code. Simplicity is

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

VM ± + − +
REV CS+VM + − ± + + − + −
COD CS+VM + + + ± + + −

LCODC$SS LC$SS+COD − ++ ++ +4+ +±+ ++ + + + ± + +
MA REV+COD + ++ ± ++ + + − +

Table 3-4. Evaluation of Mobile Code Styles for Network-based Hypermedia
51

reduced due to the need to manage the evaluation environment, but that may be

compensated in some cases as a result of simplifying the static functionality.

3.5.2 Remote Evaluation (REV)

In the remote evaluation style [50], derived from the client-server and virtual machine

styles, a client component has the know-how necessary to perform a service, but lacks the

resources (CPU cycles, data source, etc.) required, which happen to be located at a remote

site. Consequently, the client sends the know-how to a server component at the remote

site, which in turn executes the code using the resources available there. The results of that

execution are then sent back to the client. The remote evaluation style assumes that the

provided code will be executed in a sheltered environment, such that it won’t impact other

clients of the same server aside from the resources being used.

The advantages of remote evaluation include the ability to customize the server

component’s services, which provides for improved extensibility and customizability, and

better efficiency when the code can adapt its actions to the environment inside the server

(as opposed to the client making a series of interactions to do the same). Simplicity is

reduced due to the need to manage the evaluation environment, but that may be

compensated in some cases as a result of simplifying the static server functionality.

Scalability is reduced; this can be improved with the server’s management of the

execution environment (killing long-running or resource-intensive code when resources

are tight), but the management function itself leads to difficulties regarding partial failure

and reliability. The most significant limitation, however, is the lack of visibility due to the
52

client sending code instead of standardized queries. Lack of visibility leads to obvious

deployment problems if the server cannot trust the clients.

3.5.3 Code on Demand (COD)

In the code-on-demand style [50], a client component has access to a set of resources, but

not the know-how on how to process them. It sends a request to a remote server for the

code representing that know-how, receives that code, and executes it locally.

The advantages of code-on-demand include the ability to add features to a deployed

client, which provides for improved extensibility and configurability, and better user-

perceived performance and efficiency when the code can adapt its actions to the client’s

environment and interact with the user locally rather than through remote interactions.

Simplicity is reduced due to the need to manage the evaluation environment, but that may

be compensated in some cases as a result of simplifying the client’s static functionality.

Scalability of the server is improved, since it can off-load work to the client that would

otherwise have consumed its resources. Like remote evaluation, the most significant

limitation is the lack of visibility due to the server sending code instead of simple data.

Lack of visibility leads to obvious deployment problems if the client cannot trust the

servers.

3.5.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)

As an example of how some architectures are complementary, consider the addition of

code-on-demand to the layered-client-cache-stateless-server style discussed above. Since

the code can be treated as just another data element, this does not interfere with the
53

advantages of the LC$SS style. An example is the HotJava Web browser [java.sun.com],

which allows applets and protocol extensions to be downloaded as typed media.

The advantages and disadvantages of LCODC$SS are just a combination of those for

COD and LC$SS. We could go further and discuss the combination of COD with other CS

styles, but this survey is not intended to be exhaustive (nor exhausting).

3.5.5 Mobile Agent (MA)

In the mobile agent style [50], an entire computational component is moved to a remote

site, along with its state, the code it needs, and possibly some data required to perform the

task. This can be considered a derivation of the remote evaluation and code-on-demand

styles, since the mobility works both ways.

The primary advantage of the mobile agent style, beyond those already described for

REV and COD, is that there is greater dynamism in the selection of when to move the

code. An application can be in the midst of processing information at one location when it

decides to move to another location, presumably in order to reduce the distance between it

and the next set of data it wishes to process. In addition, the reliability problem of partial

failure is reduced because the application state is in one location at a time [50].
54

3.6 Peer-to-Peer Styles

3.6.1 Event-based Integration (EBI)

The event-based integration style, also known as the implicit invocation or event system

style, reduces coupling between components by removing the need for identity on the

connector interface. Instead of invoking another component directly, a component can

announce (or broadcast) one or more events. Other components in a system can register

interest in that type of event and, when the event is announced, the system itself invokes

all of the registered components [53]. Examples include the Model-View-Controller

paradigm in Smalltalk-80 [72] and the integration mechanisms of many software

engineering environments, including Field [113], SoftBench [29], and Polylith [110].

The event-based integration style provides strong support for extensibility through the

ease of adding new components that listen for events, for reuse by encouraging a general

event interface and integration mechanism, and for evolution by allowing components to

be replaced without affecting the interfaces of other components [53]. Like pipe-and-filter

systems, a higher-level configuring architecture is needed for the “invisible hand” that

places components on the event interface. Most EBI systems also include explicit

invocation as a complementary form of interaction [53]. For applications that are

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

EBI + − − ± + + + + − −
C2 EBI+LCS − + + ++ + + ++ ± + ±
DO CS+CS − + + + + + − −

BDO DO+LCS − − ++ + + ++ − +

Table 3-5. Evaluation of Peer-to-Peer Styles for Network-based Hypermedia
55

dominated by data monitoring, rather than data retrieval, EBI can improve efficiency by

removing the need for polling interactions.

The basic form of EBI system consists of one event bus to which all components listen

for events of interest to them. Of course, this immediately leads to scalability issues with

regard to the number of notifications, event storms as other components broadcast as a

result of events caused by that notification, and a single point of failure in the notification

delivery system. This can be ameliorated though the use of layered systems and filtering

of events, at the cost of simplicity.

Other disadvantages of EBI systems are that it can be hard to anticipate what will

happen in response to an action (poor understandability) and event notifications are not

suitable for exchanging large-grain data [53]. Also, there is no support for recovery from

partial failure.

3.6.2 C2

The C2 architectural style [128] is directed at supporting large-grain reuse and flexible

composition of system components by enforcing substrate independence. It does so by

combining event-based integration with layered-client-server. Asynchronous notification

messages going down, and asynchronous request messages going up, are the sole means

of intercomponent communication. This enforces loose coupling of dependency on higher

layers (service requests may be ignored) and zero coupling with lower levels (no

knowledge of notification usage), improving control over the system without losing most

of the advantages of EBI.
56

Notifications are announcements of a state change within a component. C2 does not

constrain what should be included with a notification: a flag, a delta of state change, or a

complete state representation are all possibilities. A connector’s primary responsibility is

the routing and broadcasting of messages; its secondary responsibility is message filtering.

The introduction of layered filtering of messages solves the EBI problems with scalability,

while improving evolvability and reusability as well. Heavyweight connectors that include

monitoring capabilities can be used to improve visibility and reduce the reliability

problems of partial failure.

3.6.3 Distributed Objects

The distributed objects style organizes a system as a set of components interacting as

peers. An object is an entity that encapsulates some private state information or data, a set

of associated operations or procedures that manipulate the data, and possibly a thread of

control, so that collectively they can be considered a single unit [31]. In general, an

object’s state is completely hidden and protected from all other objects. The only way it

can be examined or modified is by making a request or invocation on one of the object’s

publicly accessible operations. This creates a well-defined interface for each object,

enabling the specification of an object’s operations to be made public while at the same

time keeping the implementation of its operations and the representation of its state

information private, thus improving evolvability.

An operation may invoke other operations, possibly on other objects. These operations

may in turn make invocations on others, and so on. A chain of related invocations is

referred to as an action [31]. State is distributed among the objects. This can be
57

advantageous in terms of keeping the state where it is most likely to be up-to-date, but has

the disadvantage in that it is difficult to obtain an overall view of system activity (poor

visibility).

In order for one object to interact with another, it must know the identity of that other

object. When the identity of an object changes, it is necessary to modify all other objects

that explicitly invoke it [53]. There must be some controller object that is responsible for

maintaining the system state in order to complete the application requirements. Central

issues for distributed object systems include: object management, object interaction

management, and resource management [31].

Object systems are designed to isolate the data being processed. As a consequence,

data streaming is not supported in general. However, this does provide better support for

object mobility when combined with the mobile agent style.

3.6.4 Brokered Distributed Objects

In order to reduce the impact of identity, modern distributed object systems typically use

one or more intermediary styles to facilitate communication. This includes event-based

integration and brokered client/server [28]. The brokered distributed object style

introduces name resolver components whose purpose is to answer client object requests

for general service names with the specific name of an object that will satisfy the request.

Although improving reusability and evolvability, the extra level of indirection requires

additional network interactions, reducing efficiency and user-perceived performance.
58

Brokered distributed object systems are currently dominated by the industrial

standards development of CORBA within the OMG [97] and the international standards

development of Open Distributed Processing (ODP) within ISO/IEC [66].

In spite of all the interest associated with distributed objects, they fare poorly when

compared to most other network-based architectural styles. They are best used for

applications that involve the remote invocation of encapsulated services, such as hardware

devices, where the efficiency and frequency of network interactions is less a concern.

3.7 Limitations

Each architectural style promotes a certain type of interaction among components. When

components are distributed across a wide-area network, use or misuse of the network

drives application usability. By characterizing styles by their influence on architectural

properties, and particularly on the network-based application performance of a distributed

hypermedia system, we gain the ability to better choose a software design that is

appropriate for the application. There are, however, a couple limitations with the chosen

classification.

The first limitation is that the evaluation is specific to the needs of distributed

hypermedia. For example, many of the good qualities of the pipe-and-filter style disappear

if the communication is fine-grained control messages, and are not applicable at all if the

communication requires user interactivity. Likewise, layered caching only adds to latency,

without any benefit, if none of the responses to client requests are cacheable. This type of

distinction does not appear in the classification, and is only addressed informally in the

discussion of each style. I believe this limitation can be overcome by creating separate
59

classification tables for each type of communication problem. Example problem areas

would include, among others, large grain data retrieval, remote information monitoring,

search, remote control systems, and distributed processing.

A second limitation is with the grouping of architectural properties. In some cases, it is

better to identify the specific aspects of, for example, understandability and verifiability

induced by an architectural style, rather than lumping them together under the rubric of

simplicity. This is particularly the case for styles which might improve verifiability at the

expense of understandability. However, the more abstract notion of a property also has

value as a single metric, since we do not want to make the classification so specific that no

two styles impact the same category. One solution would be a classification that presented

both the specific properties and a summary property.

Regardless, this initial survey and classification is a necessary prerequisite to any

further classifications that might address its limitations.

3.8 Related Work

3.8.1 Classification of Architectural Styles and Patterns

The area of research most directly related to this chapter is the identification and

classification of architectural styles and architecture-level patterns.

Shaw [117] describes a few architectural styles, later expanded in Garlan and Shaw

[53]. A preliminary classification of these styles is presented in Shaw and Clements [122]

and repeated in Bass et al. [9], in which a two-dimensional, tabular classification strategy

is used with control and data issues as the primary axes, organized by the following

categories of features: which kinds of components and connectors are used in the style;
60

how control is shared, allocated, and transferred among the components; how data is

communicated through the system; how data and control interact; and, what type of

reasoning is compatible with the style. The primary purpose of the taxonomy is to identify

style characteristics, rather than to assist in their comparison. It concludes with a small set

of “rules of thumb” as a form of design guidance

Unlike this chapter, the Shaw and Clements [122] classification does not assist in

evaluating designs in a way that is useful to an application designer. The problem is that

the purpose of building software is not to build a specific shape, topology or component

type, so organizing the classification in that fashion does not help a designer find a style

that corresponds to their needs. It also mixes the essential differences among styles with

other issues which have only incidental significance, and obscures the derivation

relationships among styles. Furthermore, it does not focus on any particular type of

architecture, such as network-based applications. Finally, it does not describe how styles

can be combined, nor the effect of their combination.

Buschmann and Meunier [27] describe a classification scheme that organizes patterns

according to granularity of abstraction, functionality, and structural principles. The

granularity of abstraction separates patterns into three categories: architectural

frameworks (templates for architectures), design patterns, and idioms. Their classification

addresses some of the same issues as this dissertation, such as separation of concerns and

structural principles that lead to architectural properties, but only covers two of the

architectural styles described here. Their classification is considerably expanded in

Buschmann et al. [28] with more extensive discussion of architectural patterns and their

relation to software architecture.
61

Zimmer [137] organizes design patterns using a graph based on their relationships,

making it easier to understand the overall structure of the patterns in the Gamma et al. [51]

catalog. However, the patterns classified are not architectural patterns, and the

classification is based exclusively on derivation or uses relationships rather than on

architectural properties.

3.8.2 Distributed Systems and Programming Paradigms

Andrews [6] surveys how processes in a distributed program interact via message passing.

He defines concurrent programs, distributed programs, kinds of processes in a distributed

program (filters, clients, servers, peers), interaction paradigms, and communication

channels. Interaction paradigms represent the communication aspects of software

architectural styles. He describes paradigms for one-way data flow through networks of

filters (pipe-and-filter), client-server, heartbeat, probe/echo, broadcast, token passing,

replicated servers, and replicated workers with bag of tasks. However, the presentation is

from the perspective of multiple processes cooperating on a single task, rather than

general network-based architectural styles.

Sullivan and Notkin [126] provide a survey of implicit invocation research and

describe its application to improving the evolution quality of software tool suites. Barrett

et al. [8] present a survey of event-based integration mechanisms by building a framework

for comparison and then seeing how some systems fit within that framework. Rosenblum

and Wolf [114] investigate a design framework for Internet-scale event notification. All

are concerned with the scope and requirements of an EBI style, rather than providing

solutions for network-based systems.
62

Fuggetta et al. [50] provide a thorough examination and classification of mobile code

paradigms. This chapter builds upon their work to the extent that I compare the mobile

code styles with other network-capable styles, and place them within a single framework

and set of architectural definitions.

3.8.3 Middleware

Bernstein [22] defines middleware as a distributed system service that includes standard

programming interfaces and protocols. These services are called middleware because they

act as a layer above the OS and networking software and below industry-specific

applications. Umar [131] presents an extensive treatment of the subject.

Architecture research regarding middleware focuses on the problems and effects of

integrating components with off-the-shelf middleware. Di Nitto and Rosenblum [38]

describe how the usage of middleware and predefined components can influence the

architecture of a system being developed and, conversely, how specific architectural

choices can constrain the selection of middleware. Dashofy et al. [35] discuss the use of

middleware with the C2 style.

Garlan et al. [56] point out some of the architectural assumptions within off-the-shelf

components, examining the authors’ problems with reusing subsystems in creating the

Aesop tool for architectural design [54]. They classify the problems into four main

categories of assumptions that can contribute to architectural mismatch: nature of

components, nature of connectors, global architectural structure, and construction process.
63

3.9 Summary

This chapter has presented a survey of common architectural styles for network-based

application software within a classification framework that evaluates each style according

to the architectural properties it would induce if applied to an architecture for a

prototypical network-based hypermedia system. The overall classification is summarized

below in Table 3-6.

The next chapter uses the insight garnered from this survey and classification to

hypothesize methods for developing and evaluating an architectural style to guide the

design of improvements for the modern World Wide Web architecture.
64

Style Derivation N
et

 P
er

fo
rm

.

U
P

 P
er

fo
rm

.

E
ffi

ci
en

cy

S
ca

la
bi

lit
y

S
im

pl
ic

ity

E
vo

lv
ab

ili
ty

E
xt

en
si

bi
lit

y

C
us

to
m

iz
.

C
on

fig
ur

.

R
eu

sa
bi

lit
y

V
is

ib
ili

ty

P
or

ta
bi

lit
y

R
el

ia
bi

lit
y

PF ± + + + + +
UPF PF − ± ++ + + ++ ++ +
RR ++ + +
$ RR + + + +

CS + + +
LS − + + + +

LCS CS+LS − ++ + ++ + +
CSS CS − ++ + + + +

C$SS CSS+$ − + + ++ + + + +
LC$SS LCS+C$SS − ± + +++ ++ ++ + + + +

RS CS + − + + −
RDA CS + − − + −
VM ± + − +
REV CS+VM + − ± + + − + −
COD CS+VM + + + ± + + −

LCODC$SS LC$SS+COD − ++ ++ +4+ +±+ ++ + + + ± + +
MA REV+COD + ++ ± ++ + + − +
EBI + − − ± + + + + − −
C2 EBI+LCS − + + ++ + + ++ ± + ±
DO CS+CS − + + + + + − −

BDO DO+LCS − − ++ + + ++ − +

Table 3-6. Evaluation Summary
65

CHAPTER 4

Designing the Web Architecture: Problems and Insights

This chapter presents the requirements of the World Wide Web architecture and the

problems faced in designing and evaluating proposed improvements to its key

communication protocols. I use the insights garnered from the survey and classification of

architectural styles for network-based hypermedia systems to hypothesize methods for

developing an architectural style that would be used to guide the design of improvements

for the modern Web architecture.

4.1 WWW Application Domain Requirements

Berners-Lee [20] writes that the “Web’s major goal was to be a shared information space

through which people and machines could communicate.” What was needed was a way

for people to store and structure their own information, whether permanent or ephemeral

in nature, such that it could be usable by themselves and others, and to be able to reference

and structure the information stored by others so that it would not be necessary for

everyone to keep and maintain local copies.

The intended end-users of this system were located around the world, at various

university and government high-energy physics research labs connected via the Internet.

Their machines were a heterogeneous collection of terminals, workstations, servers and

supercomputers, requiring a hodge podge of operating system software and file formats.

The information ranged from personal research notes to organizational phone listings. The

challenge was to build a system that would provide a universally consistent interface to
66

this structured information, available on as many platforms as possible, and incrementally

deployable as new people and organizations joined the project.

4.1.1 Low Entry-barrier

Since participation in the creation and structuring of information was voluntary, a low

entry-barrier was necessary to enable sufficient adoption. This applied to all users of the

Web architecture: readers, authors, and application developers.

Hypermedia was chosen as the user interface because of its simplicity and generality:

the same interface can be used regardless of the information source, the flexibility of

hypermedia relationships (links) allows for unlimited structuring, and the direct

manipulation of links allows the complex relationships within the information to guide the

reader through an application. Since information within large databases is often much

easier to access via a search interface rather than browsing, the Web also incorporated the

ability to perform simple queries by providing user-entered data to a service and rendering

the result as hypermedia.

For authors, the primary requirement was that partial availability of the overall system

must not prevent the authoring of content. The hypertext authoring language needed to be

simple and capable of being created using existing editing tools. Authors were expected to

keep such things as personal research notes in this format, whether directly connected to

the Internet or not, so the fact that some referenced information was unavailable, either

temporarily or permanently, could not be allowed to prevent the reading and authoring of

information that was available. For similar reasons, it was necessary to be able to create

references to information before the target of that reference was available. Since authors
67

were encouraged to collaborate in the development of information sources, references

needed to be easy to communicate, whether in the form of e-mail directions or written on

the back of a napkin at a conference.

Simplicity was also a goal for the sake of application developers. Since all of the

protocols were defined as text, communication could be viewed and interactively tested

using existing network tools. This enabled early adoption of the protocols to take place in

spite of the lack of standards.

4.1.2 Extensibility

While simplicity makes it possible to deploy an initial implementation of a distributed

system, extensibility allows us to avoid getting stuck forever with the limitations of what

was deployed. Even if it were possible to build a software system that perfectly matches

the requirements of its users, those requirements will change over time just as society

changes over time. A system intending to be as long-lived as the Web must be prepared

for change.

4.1.3 Distributed Hypermedia

Hypermedia is defined by the presence of application control information embedded

within, or as a layer above, the presentation of information. Distributed hypermedia allows

the presentation and control information to be stored at remote locations. By its nature,

user actions within a distributed hypermedia system require the transfer of large amounts

of data from where the data is stored to where it is used. Thus, the Web architecture must

be designed for large-grain data transfer.
68

The usability of hypermedia interaction is highly sensitive to user-perceived latency:

the time between selecting a link and the rendering of a usable result. Since the Web’s

information sources are distributed across the global Internet, the architecture needs to

minimize network interactions (round-trips within the data transfer protocols).

4.1.4 Internet-scale

The Web is intended to be an Internet-scale distributed hypermedia system, which means

considerably more than just geographical dispersion. The Internet is about interconnecting

information networks across multiple organizational boundaries. Suppliers of information

services must be able to cope with the demands of anarchic scalability and the

independent deployment of software components.

4.1.4.1 Anarchic Scalability

Most software systems are created with the implicit assumption that the entire system is

under the control of one entity, or at least that all entities participating within a system are

acting towards a common goal and not at cross-purposes. Such an assumption cannot be

safely made when the system runs openly on the Internet. Anarchic scalability refers to the

need for architectural elements to continue operating when they are subjected to an

unanticipated load, or when given malformed or maliciously constructed data, since they

may be communicating with elements outside their organizational control. The

architecture must be amenable to mechanisms that enhance visibility and scalability.

The anarchic scalability requirement applies to all architectural elements. Clients

cannot be expected to maintain knowledge of all servers. Servers cannot be expected to

retain knowledge of state across requests. Hypermedia data elements cannot retain “back-
69

pointers,” an identifier for each data element that references them, since the number of

references to a resource is proportional to the number of people interested in that

information. Particularly newsworthy information can also lead to “flash crowds”: sudden

spikes in access attempts as news of its availability spreads across the world.

Security of the architectural elements, and the platforms on which they operate, also

becomes a significant concern. Multiple organizational boundaries implies that multiple

trust boundaries could be present in any communication. Intermediary applications, such

as firewalls, should be able to inspect the application interactions and prevent those

outside the security policy of the organization from being acted upon. The participants in

an application interaction should either assume that any information received is untrusted,

or require some additional authentication before trust can be given. This requires that the

architecture be capable of communicating authentication data and authorization controls.

However, since authentication degrades scalability, the architecture’s default operation

should be limited to actions that do not need trusted data: a safe set of operations with

well-defined semantics.

4.1.4.2 Independent Deployment

Multiple organizational boundaries also means that the system must be prepared for

gradual and fragmented change, where old and new implementations co-exist without

preventing the new implementations from making use of their extended capabilities.

Existing architectural elements need to be designed with the expectation that later

architectural features will be added. Likewise, older implementations need to be easily

identified so that legacy behavior can be encapsulated without adversely impacting newer

architectural elements. The architecture as a whole must be designed to ease the
70

deployment of architectural elements in a partial, iterative fashion, since it is not possible

to force deployment in an orderly manner.

4.2 Problem

In late 1993, it became clear that more than just researchers would be interested in the

Web. Adoption had occurred first in small research groups, spread to on-campus dorms,

clubs, and personal home pages, and later to the institutional departments for campus

information. When individuals began publishing their personal collections of information,

on whatever topics they might feel fanatic about, the social network-effect launched an

exponential growth of websites that continues today. Commercial interest in the Web was

just beginning, but it was clear by then that the ability to publish on an international scale

would be irresistible to businesses.

Although elated by its success, the Internet developer community became concerned

that the rapid growth in the Web’s usage, along with some poor network characteristics of

early HTTP, would quickly outpace the capacity of the Internet infrastructure and lead to a

general collapse. This was worsened by the changing nature of application interactions on

the Web. Whereas the initial protocols were designed for single request-response pairs,

new sites used an increasing number of in-line images as part of the content of Web pages,

resulting in a different interaction profile for browsing. The deployed architecture had

significant limitations in its support for extensibility, shared caching, and intermediaries,

which made it difficult to develop ad-hoc solutions to the growing problems. At the same

time, commercial competition within the software market led to an influx of new and

occasionally contradictory feature proposals for the Web’s protocols.
71

Working groups within the Internet Engineering Taskforce were formed to work on

the Web’s three primary standards: URI, HTTP, and HTML. The charter of these groups

was to define the subset of existing architectural communication that was commonly and

consistently implemented in the early Web architecture, identify problems within that

architecture, and then specify a set of standards to solve those problems. This presented us

with a challenge: how do we introduce a new set of functionality to an architecture that is

already widely deployed, and how do we ensure that its introduction does not adversely

impact, or even destroy, the architectural properties that have enabled the Web to

succeed?

4.3 Approach

The early Web architecture was based on solid principles—separation of concerns,

simplicity, and generality—but lacked an architectural description and rationale. The

design was based on a set of informal hypertext notes [14], two early papers oriented

towards the user community [12, 13], and archived discussions on the Web developer

community mailing list (www-talk@info.cern.ch). In reality, however, the only true

description of the early Web architecture was found within the implementations of

libwww (the CERN protocol library for clients and servers), Mosaic (the NCSA browser

client), and an assortment of other implementations that interoperated with them.

An architectural style can be used to define the principles behind the Web architecture

such that they are visible to future architects. As discussed in Chapter 1, a style is a named

set of constraints on architectural elements that induces the set of properties desired of the
72

architecture. The first step in my approach, therefore, is to identify the constraints placed

within the early Web architecture that are responsible for its desirable properties.

Additional constraints can be applied to an architectural style in order to extend the set of

properties induced on instantiated architectures. The next step in my approach is to

identify the properties desirable in an Internet-scale distributed hypermedia system, select

additional architectural styles that induce those properties, and combine them with the

early Web constraints to form a new, hybrid architectural style for the modern Web

architecture.

Using the new architectural style as a guide, we can compare proposed extensions and

modifications to the Web architecture against the constraints within the style. Conflicts

indicate that the proposal would violate one or more of the design principles behind the

Web. In some cases, the conflict could be removed by requiring the use of a specific

indicator whenever the new feature is used, as is often done for HTTP extensions that

impact the default cacheability of a response. For severe conflicts, such as a change in the

interaction style, the same functionality would either be replaced with a design more

conducive to the Web’s style, or the proposer would be told to implement the functionality

as a separate architecture running in parallel to the Web.

Hypothesis I: The design rationale behind the WWW architecture can
be described by an architectural style consisting of the set of constraints
applied to the elements within the Web architecture.

Hypothesis II: Constraints can be added to the WWW architectural
style to derive a new hybrid style that better reflects the desired
properties of a modern Web architecture.
73

Finally, the updated Web architecture, as defined by the revised protocol standards that

have been written according to the guidelines of the new architectural style, is deployed

through participation in the development of the infrastructure and middleware software

that make up the majority of Web applications. This included my direct participation in

software development for the Apache HTTP server project and the libwww-perl client

library, as well as indirect participation in other projects by advising the developers of the

W3C libwww and jigsaw projects, the Netscape Navigator, Lynx, and MSIE browsers,

and dozens of other implementations, as part of the IETF discourse.

Although I have described this approach as a single sequence, it is actually applied in a

non-sequential, iterative fashion. That is, over the past six years I have been constructing

models, adding constraints to the architectural style, and testing their affect on the Web’s

protocol standards via experimental extensions to client and server software. Likewise,

others have suggested the addition of features to the architecture that were outside the

scope of my then-current model style, but not in conflict with it, which resulted in going

back and revising the architectural constraints to better reflect the improved architecture.

The goal has always been to maintain a consistent and correct model of how I intend the

Web architecture to behave, so that it could be used to guide the protocol standards that

define appropriate behavior, rather than to create an artificial model that would be limited

to the constraints originally imagined when the work began.

Hypothesis III: Proposals to modify the Web architecture can be
compared to the updated WWW architectural style and analyzed for
conflicts prior to deployment.
74

4.4 Summary

This chapter presented the requirements of the World Wide Web architecture and the

problems faced in designing and evaluating proposed improvements to its key

communication protocols. The challenge is to develop a method for designing

improvements to an architecture such that the improvements can be evaluated prior to

their deployment. My approach is to use an architectural style to define and improve the

design rationale behind the Web’s architecture, to use that style as the acid test for proving

proposed extensions prior to their deployment, and to deploy the revised architecture via

direct involvement in the software development projects that have created the Web’s

infrastructure.

The next chapter introduces and elaborates the Representational State Transfer

(REST) architectural style for distributed hypermedia systems, as it has been developed to

represent the model for how the modern Web should work. REST provides a set of

architectural constraints that, when applied as a whole, emphasizes scalability of

component interactions, generality of interfaces, independent deployment of components,

and intermediary components to reduce interaction latency, enforce security, and

encapsulate legacy systems.
75

CHAPTER 5

Representational State Transfer (REST)

This chapter introduces and elaborates the Representational State Transfer (REST)

architectural style for distributed hypermedia systems, describing the software engineering

principles guiding REST and the interaction constraints chosen to retain those principles,

while contrasting them to the constraints of other architectural styles. REST is a hybrid

style derived from several of the network-based architectural styles described in Chapter 3

and combined with additional constraints that define a uniform connector interface. The

software architecture framework of Chapter 1 is used to define the architectural elements

of REST and examine sample process, connector, and data views of prototypical

architectures.

5.1 Deriving REST

The design rationale behind the Web architecture can be described by an architectural

style consisting of the set of constraints applied to elements within the architecture. By

examining the impact of each constraint as it is added to the evolving style, we can

identify the properties induced by the Web’s constraints. Additional constraints can then

be applied to form a new architectural style that better reflects the desired properties of a

modern Web architecture. This section provides a general overview of REST by walking

through the process of deriving it as an architectural style. Later sections will describe in

more detail the specific constraints that compose the REST style.
76

5.1.1 Starting with the Null Style

There are two common perspectives on the process of architectural design, whether it be

for buildings or for software. The first is that a designer starts with nothing—a blank slate,

whiteboard, or drawing board—and builds-up an architecture from familiar components

until it satisfies the needs of the intended system. The second is that a designer starts with

the system needs as a whole, without constraints, and then incrementally identifies and

applies constraints to elements of the system in order to differentiate the design space and

allow the forces that influence system behavior to flow naturally, in harmony with the

system. Where the first emphasizes creativity and unbounded vision, the second

emphasizes restraint and understanding of the system context. REST has been developed

using the latter process. Figures 5-1 through 5-8 depict this graphically in terms of how the

applied constraints would differentiate the process view of an architecture as the

incremental set of constraints is applied.

The Null style (Figure 5-1) is simply an empty set of constraints. From an architectural

perspective, the null style describes a system in which there are no distinguished

boundaries between components. It is the starting point for our description of REST.

Figure 5-1. Null Style

WWW
77

5.1.2 Client-Server

The first constraints added to our hybrid style are those of the client-server architectural

style (Figure 5-2), described in Section 3.4.1. Separation of concerns is the principle

behind the client-server constraints. By separating the user interface concerns from the

data storage concerns, we improve the portability of the user interface across multiple

platforms and improve scalability by simplifying the server components. Perhaps most

significant to the Web, however, is that the separation allows the components to evolve

independently, thus supporting the Internet-scale requirement of multiple organizational

domains.

5.1.3 Stateless

We next add a constraint to the client-server interaction: communication must be stateless

in nature, as in the client-stateless-server (CSS) style of Section 3.4.3 (Figure 5-3), such

that each request from client to server must contain all of the information necessary to

Figure 5-2. Client-Server

Client
Server

Figure 5-3. Client-Stateless-Server

Client
Server
78

understand the request, and cannot take advantage of any stored context on the server.

Session state is therefore kept entirely on the client.

This constraint induces the properties of visibility, reliability, and scalability. Visibility

is improved because a monitoring system does not have to look beyond a single request

datum in order to determine the full nature of the request. Reliability is improved because

it eases the task of recovering from partial failures [133]. Scalability is improved because

not having to store state between requests allows the server component to quickly free

resources, and further simplifies implementation because the server doesn’t have to

manage resource usage across requests.

Like most architectural choices, the stateless constraint reflects a design trade-off. The

disadvantage is that it may decrease network performance by increasing the repetitive data

(per-interaction overhead) sent in a series of requests, since that data cannot be left on the

server in a shared context. In addition, placing the application state on the client-side

reduces the server’s control over consistent application behavior, since the application

becomes dependent on the correct implementation of semantics across multiple client

versions.

5.1.4 Cache

In order to improve network efficiency, we add cache constraints to form the client-cache-

stateless-server style of Section 3.4.4 (Figure 5-4). Cache constraints require that the data

within a response to a request be implicitly or explicitly labeled as cacheable or non-

cacheable. If a response is cacheable, then a client cache is given the right to reuse that

response data for later, equivalent requests.
79

The advantage of adding cache constraints is that they have the potential to partially or

completely eliminate some interactions, improving efficiency, scalability, and user-

perceived performance by reducing the average latency of a series of interactions. The

trade-off, however, is that a cache can decrease reliability if stale data within the cache

differs significantly from the data that would have been obtained had the request been sent

directly to the server.

The early Web architecture, as portrayed by the diagram in Figure 5-5 [11], was

defined by the client-cache-stateless-server set of constraints. That is, the design rationale

presented for the Web architecture prior to 1994 focused on stateless client-server

interaction for the exchange of static documents over the Internet. The protocols for

communicating interactions had rudimentary support for non-shared caches, but did not

constrain the interface to a consistent set of semantics for all resources. Instead, the Web

relied on the use of a common client-server implementation library (CERN libwww) to

maintain consistency across Web applications.

Developers of Web implementations had already exceeded the early design. In

addition to static documents, requests could identify services that dynamically generated

responses, such as image-maps [Kevin Hughes] and server-side scripts [Rob McCool].

Figure 5-4. Client-Cache-Stateless-Server

Client
Server

$

$

Client+Cache
80

Work had also begun on intermediary components, in the form of proxies [79] and shared

caches [59], but extensions to the protocols were needed in order for them to communicate

reliably. The following sections describe the constraints added to the Web’s architectural

style in order to guide the extensions that form the modern Web architecture.

5.1.5 Uniform Interface

The central feature that distinguishes the REST architectural style from other network-

based styles is its emphasis on a uniform interface between components (Figure 5-6). By

applying the software engineering principle of generality to the component interface, the

overall system architecture is simplified and the visibility of interactions is improved.

Implementations are decoupled from the services they provide, which encourages

dumb PC Mac X NeXT

HTTP
server

FTP
server

NNTP
server

Internet
News

VM
SHelp gatew

a

XF

IND gateway

W

AIS gateway

Addressing scheme + Common protocol + Format negotiation

Browsers

Servers/Gateways

Gopher
server

© 1992 Tim Berners-Lee, Robert Cailliau, Jean-François Groff, C.E.R.N.

Figure 5-5. Early WWW Architecture Diagram
81

independent evolvability. The trade-off, though, is that a uniform interface degrades

efficiency, since information is transferred in a standardized form rather than one which is

specific to an application’s needs. The REST interface is designed to be efficient for large-

grain hypermedia data transfer, optimizing for the common case of the Web, but resulting

in an interface that is not optimal for other forms of architectural interaction.

In order to obtain a uniform interface, multiple architectural constraints are needed to

guide the behavior of components. REST is defined by four interface constraints:

identification of resources; manipulation of resources through representations; self-

descriptive messages; and, hypermedia as the engine of application state. These

constraints will be discussed in Section 5.2.

5.1.6 Layered System

In order to further improve behavior for Internet-scale requirements, we add layered

system constraints (Figure 5-7). As described in Section 3.4.2, the layered system style

allows an architecture to be composed of hierarchical layers by constraining component

behavior such that each component cannot “see” beyond the immediate layer with which

Figure 5-6. Uniform-Client-Cache-Stateless-Server

orb

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$

$

$

82

they are interacting. By restricting knowledge of the system to a single layer, we place a

bound on the overall system complexity and promote substrate independence. Layers can

be used to encapsulate legacy services and to protect new services from legacy clients,

simplifying components by moving infrequently used functionality to a shared

intermediary. Intermediaries can also be used to improve system scalability by enabling

load balancing of services across multiple networks and processors.

The primary disadvantage of layered systems is that they add overhead and latency to

the processing of data, reducing user-perceived performance [32]. For a network-based

system that supports cache constraints, this can be offset by the benefits of shared caching

at intermediaries. Placing shared caches at the boundaries of an organizational domain can

result in significant performance benefits [136]. Such layers also allow security policies to

be enforced on data crossing the organizational boundary, as is required by firewalls [79].

The combination of layered system and uniform interface constraints induces

architectural properties similar to those of the uniform pipe-and-filter style

(Section 3.2.2). Although REST interaction is two-way, the large-grain data flows of

Figure 5-7. Uniform-Layered-Client-Cache-Stateless-Server

orb

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$

$

$ $

$

$

$

$

83

hypermedia interaction can each be processed like a data-flow network, with filter

components selectively applied to the data stream in order to transform the content as it

passes [26]. Within REST, intermediary components can actively transform the content of

messages because the messages are self-descriptive and their semantics are visible to

intermediaries.

5.1.7 Code-On-Demand

The final addition to our constraint set for REST comes from the code-on-demand style of

Section 3.5.3 (Figure 5-8). REST allows client functionality to be extended by

downloading and executing code in the form of applets or scripts. This simplifies clients

by reducing the number of features required to be pre-implemented. Allowing features to

be downloaded after deployment improves system extensibility. However, it also reduces

visibility, and thus is only an optional constraint within REST.

The notion of an optional constraint may seem like an oxymoron. However, it does

have a purpose in the architectural design of a system that encompasses multiple

organizational boundaries. It means that the architecture only gains the benefit (and suffers

Figure 5-8. REST

orb

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$

$

$ $

$

$

$

$

84

the disadvantages) of the optional constraints when they are known to be in effect for some

realm of the overall system. For example, if all of the client software within an

organization is known to support Java applets [45], then services within that organization

can be constructed such that they gain the benefit of enhanced functionality via

downloadable Java classes. At the same time, however, the organization’s firewall may

prevent the transfer of Java applets from external sources, and thus to the rest of the Web

it will appear as if those clients do not support code-on-demand. An optional constraint

allows us to design an architecture that supports the desired behavior in the general case,

but with the understanding that it may be disabled within some contexts.

5.1.8 Style Derivation Summary

REST consists of a set of architectural constraints chosen for the properties they induce on

candidate architectures. Although each of these constraints can be considered in isolation,

describing them in terms of their derivation from common architectural styles makes it

Figure 5-9. REST Derivation by Style Constraints

RR CS LS VM U

CSS LCS COD$

C$SS LC$SS LCODC$SS REST

replicated

on-demand

separated

layered

mobile

uniform interface

stateless

shared

intermediate

processing

cacheable

extensible

simple

reusable

scalable

reliable

multi-
org.

visible

programmable
85

easier to understand the rationale behind their selection. Figure 5-9 depicts the derivation

of REST’s constraints graphically in terms of the network-based architectural styles

examined in Chapter 3.

5.2 REST Architectural Elements

The Representational State Transfer (REST) style is an abstraction of the architectural

elements within a distributed hypermedia system. REST ignores the details of component

implementation and protocol syntax in order to focus on the roles of components, the

constraints upon their interaction with other components, and their interpretation of

significant data elements. It encompasses the fundamental constraints upon components,

connectors, and data that define the basis of the Web architecture, and thus the essence of

its behavior as a network-based application.

5.2.1 Data Elements

Unlike the distributed object style [31], where all data is encapsulated within and hidden

by the processing components, the nature and state of an architecture’s data elements is a

key aspect of REST. The rationale for this design can be seen in the nature of distributed

hypermedia. When a link is selected, information needs to be moved from the location

where it is stored to the location where it will be used by, in most cases, a human reader.

This is unlike many other distributed processing paradigms [6, 50], where it is possible,

and usually more efficient, to move the “processing agent” (e.g., mobile code, stored

procedure, search expression, etc.) to the data rather than move the data to the processor.

A distributed hypermedia architect has only three fundamental options: 1) render the

data where it is located and send a fixed-format image to the recipient; 2) encapsulate the
86

data with a rendering engine and send both to the recipient; or, 3) send the raw data to the

recipient along with metadata that describes the data type, so that the recipient can choose

their own rendering engine.

Each option has its advantages and disadvantages. Option 1, the traditional client-

server style [31], allows all information about the true nature of the data to remain hidden

within the sender, preventing assumptions from being made about the data structure and

making client implementation easier. However, it also severely restricts the functionality

of the recipient and places most of the processing load on the sender, leading to scalability

problems. Option 2, the mobile object style [50], provides information hiding while

enabling specialized processing of the data via its unique rendering engine, but limits the

functionality of the recipient to what is anticipated within that engine and may vastly

increase the amount of data transferred. Option 3 allows the sender to remain simple and

scalable while minimizing the bytes transferred, but loses the advantages of information

hiding and requires that both sender and recipient understand the same data types.

REST provides a hybrid of all three options by focusing on a shared understanding of

data types with metadata, but limiting the scope of what is revealed to a standardized

interface. REST components communicate by transferring a representation of a resource

in a format matching one of an evolving set of standard data types, selected dynamically

based on the capabilities or desires of the recipient and the nature of the resource. Whether

the representation is in the same format as the raw source, or is derived from the source,

remains hidden behind the interface. The benefits of the mobile object style are

approximated by sending a representation that consists of instructions in the standard data

format of an encapsulated rendering engine (e.g., Java [45]). REST therefore gains the
87

separation of concerns of the client-server style without the server scalability problem,

allows information hiding through a generic interface to enable encapsulation and

evolution of services, and provides for a diverse set of functionality through downloadable

feature-engines.

REST’s data elements are summarized in Table 5-1.

5.2.1.1 Resources and Resource Identifiers

The key abstraction of information in REST is a resource. Any information that can be

named can be a resource: a document or image, a temporal service (e.g. “today’s weather

in Los Angeles”), a collection of other resources, a non-virtual object (e.g. a person), and

so on. In other words, any concept that might be the target of an author’s hypertext

reference must fit within the definition of a resource. A resource is a conceptual mapping

to a set of entities, not the entity that corresponds to the mapping at any particular point in

time.

More precisely, a resource R is a temporally varying membership function MR(t),

which for time t maps to a set of entities, or values, which are equivalent. The values in the

set may be resource representations and/or resource identifiers. A resource can map to the

Table 5-1. REST Data Elements

Data Element Modern Web Examples

resource the intended conceptual target of a hypertext reference

resource identifier URL, URN

representation HTML document, JPEG image

representation metadata media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control
88

empty set, which allows references to be made to a concept before any realization of that

concept exists — a notion that was foreign to most hypertext systems prior to the Web

[61]. Some resources are static in the sense that, when examined at any time after their

creation, they always correspond to the same value set. Others have a high degree of

variance in their value over time. The only thing that is required to be static for a resource

is the semantics of the mapping, since the semantics is what distinguishes one resource

from another.

For example, the “authors’ preferred version” of an academic paper is a mapping

whose value changes over time, whereas a mapping to “the paper published in the

proceedings of conference X” is static. These are two distinct resources, even if they both

map to the same value at some point in time. The distinction is necessary so that both

resources can be identified and referenced independently. A similar example from

software engineering is the separate identification of a version-controlled source code file

when referring to the “latest revision”, “revision number 1.2.7”, or “revision included with

the Orange release.”

This abstract definition of a resource enables key features of the Web architecture.

First, it provides generality by encompassing many sources of information without

artificially distinguishing them by type or implementation. Second, it allows late binding

of the reference to a representation, enabling content negotiation to take place based on

characteristics of the request. Finally, it allows an author to reference the concept rather

than some singular representation of that concept, thus removing the need to change all

existing links whenever the representation changes (assuming the author used the right

identifier).
89

REST uses a resource identifier to identify the particular resource involved in an

interaction between components. REST connectors provide a generic interface for

accessing and manipulating the value set of a resource, regardless of how the membership

function is defined or the type of software that is handling the request. The naming

authority that assigned the resource identifier, making it possible to reference the resource,

is responsible for maintaining the semantic validity of the mapping over time (i.e.,

ensuring that the membership function does not change).

Traditional hypertext systems [61], which typically operate in a closed or local

environment, use unique node or document identifiers that change every time the

information changes, relying on link servers to maintain references separately from the

content [135]. Since centralized link servers are an anathema to the immense scale and

multi-organizational domain requirements of the Web, REST relies instead on the author

choosing a resource identifier that best fits the nature of the concept being identified.

Naturally, the quality of an identifier is often proportional to the amount of money spent to

retain its validity, which leads to broken links as ephemeral (or poorly supported)

information moves or disappears over time.

5.2.1.2 Representations

REST components perform actions on a resource by using a representation to capture the

current or intended state of that resource and transferring that representation between

components. A representation is a sequence of bytes, plus representation metadata to

describe those bytes. Other commonly used but less precise names for a representation

include: document, file, and HTTP message entity, instance, or variant.
90

A representation consists of data, metadata describing the data, and, on occasion,

metadata to describe the metadata (usually for the purpose of verifying message integrity).

Metadata is in the form of name-value pairs, where the name corresponds to a standard

that defines the value’s structure and semantics. Response messages may include both

representation metadata and resource metadata: information about the resource that is not

specific to the supplied representation.

Control data defines the purpose of a message between components, such as the action

being requested or the meaning of a response. It is also used to parameterize requests and

override the default behavior of some connecting elements. For example, cache behavior

can be modified by control data included in the request or response message.

Depending on the message control data, a given representation may indicate the

current state of the requested resource, the desired state for the requested resource, or the

value of some other resource, such as a representation of the input data within a client’s

query form, or a representation of some error condition for a response. For example,

remote authoring of a resource requires that the author send a representation to the server,

thus establishing a value for that resource that can be retrieved by later requests. If the

value set of a resource at a given time consists of multiple representations, content

negotiation may be used to select the best representation for inclusion in a given message.

The data format of a representation is known as a media type [48]. A representation

can be included in a message and processed by the recipient according to the control data

of the message and the nature of the media type. Some media types are intended for

automated processing, some are intended to be rendered for viewing by a user, and a few
91

are capable of both. Composite media types can be used to enclose multiple

representations in a single message.

The design of a media type can directly impact the user-perceived performance of a

distributed hypermedia system. Any data that must be received before the recipient can

begin rendering the representation adds to the latency of an interaction. A data format that

places the most important rendering information up front, such that the initial information

can be incrementally rendered while the rest of the information is being received, results in

much better user-perceived performance than a data format that must be entirely received

before rendering can begin.

For example, a Web browser that can incrementally render a large HTML document

while it is being received provides significantly better user-perceived performance than

one that waits until the entire document is completely received prior to rendering, even

though the network performance is the same. Note that the rendering ability of a

representation can also be impacted by the choice of content. If the dimensions of

dynamically-sized tables and embedded objects must be determined before they can be

rendered, their occurrence within the viewing area of a hypermedia page will increase its

latency.

5.2.2 Connectors

REST uses various connector types, summarized in Table 5-2, to encapsulate the activities

of accessing resources and transferring resource representations. The connectors present

an abstract interface for component communication, enhancing simplicity by providing a

clean separation of concerns and hiding the underlying implementation of resources and
92

communication mechanisms. The generality of the interface also enables substitutability:

if the users’ only access to the system is via an abstract interface, the implementation can

be replaced without impacting the users. Since a connector manages network

communication for a component, information can be shared across multiple interactions in

order to improve efficiency and responsiveness.

All REST interactions are stateless. That is, each request contains all of the

information necessary for a connector to understand the request, independent of any

requests that may have preceded it. This restriction accomplishes four functions: 1) it

removes any need for the connectors to retain application state between requests, thus

reducing consumption of physical resources and improving scalability; 2) it allows

interactions to be processed in parallel without requiring that the processing mechanism

understand the interaction semantics; 3) it allows an intermediary to view and understand

a request in isolation, which may be necessary when services are dynamically rearranged;

and, 4) it forces all of the information that might factor into the reusability of a cached

response to be present in each request.

The connector interface is similar to procedural invocation, but with important

differences in the passing of parameters and results. The in-parameters consist of request

Table 5-2. REST Connectors

Connector Modern Web Examples

client libwww, libwww-perl

server libwww, Apache API, NSAPI

cache browser cache, Akamai cache network

resolver bind (DNS lookup library)

tunnel SOCKS, SSL after HTTP CONNECT
93

control data, a resource identifier indicating the target of the request, and an optional

representation. The out-parameters consist of response control data, optional resource

metadata, and an optional representation. From an abstract viewpoint the invocation is

synchronous, but both in and out-parameters can be passed as data streams. In other

words, processing can be invoked before the value of the parameters is completely known,

thus avoiding the latency of batch processing large data transfers.

The primary connector types are client and server. The essential difference between

the two is that a client initiates communication by making a request, whereas a server

listens for connections and responds to requests in order to supply access to its services. A

component may include both client and server connectors.

A third connector type, the cache connector, can be located on the interface to a client

or server connector in order to save cacheable responses to current interactions so that they

can be reused for later requested interactions. A cache may be used by a client to avoid

repetition of network communication, or by a server to avoid repeating the process of

generating a response, with both cases serving to reduce interaction latency. A cache is

typically implemented within the address space of the connector that uses it.

Some cache connectors are shared, meaning that its cached responses may be used in

answer to a client other than the one for which the response was originally obtained.

Shared caching can be effective at reducing the impact of “flash crowds” on the load of a

popular server, particularly when the caching is arranged hierarchically to cover large

groups of users, such as those within a company’s intranet, the customers of an Internet

service provider, or Universities sharing a national network backbone. However, shared

caching can also lead to errors if the cached response does not match what would have
94

been obtained by a new request. REST attempts to balance the desire for transparency in

cache behavior with the desire for efficient use of the network, rather than assuming that

absolute transparency is always required.

A cache is able to determine the cacheability of a response because the interface is

generic rather than specific to each resource. By default, the response to a retrieval request

is cacheable and the responses to other requests are non-cacheable. If some form of user

authentication is part of the request, or if the response indicates that it should not be

shared, then the response is only cacheable by a non-shared cache. A component can

override these defaults by including control data that marks the interaction as cacheable,

non-cacheable or cacheable for only a limited time.

A resolver translates partial or complete resource identifiers into the network address

information needed to establish an inter-component connection. For example, most URI

include a DNS hostname as the mechanism for identifying the naming authority for the

resource. In order to initiate a request, a Web browser will extract the hostname from the

URI and make use of a DNS resolver to obtain the Internet Protocol address for that

authority. Another example is that some identification schemes (e.g., URN [124]) require

an intermediary to translate a permanent identifier to a more transient address in order to

access the identified resource. Use of one or more intermediate resolvers can improve the

longevity of resource references through indirection, though doing so adds to the request

latency.

The final form of connector type is a tunnel, which simply relays communication

across a connection boundary, such as a firewall or lower-level network gateway. The only

reason it is modeled as part of REST and not abstracted away as part of the network
95

infrastructure is that some REST components may dynamically switch from active

component behavior to that of a tunnel. The primary example is an HTTP proxy that

switches to a tunnel in response to a CONNECT method request [71], thus allowing its

client to directly communicate with a remote server using a different protocol, such as

TLS, that doesn’t allow proxies. The tunnel disappears when both ends terminate their

communication.

5.2.3 Components

REST components, summarized in Table 5-3, are typed by their roles in an overall

application action.

A user agent uses a client connector to initiate a request and becomes the ultimate

recipient of the response. The most common example is a Web browser, which provides

access to information services and renders service responses according to the application

needs.

An origin server uses a server connector to govern the namespace for a requested

resource. It is the definitive source for representations of its resources and must be the

ultimate recipient of any request that intends to modify the value of its resources. Each

Table 5-3. REST Components

Component Modern Web Examples

origin server Apache httpd, Microsoft IIS

gateway Squid, CGI, Reverse Proxy

proxy CERN Proxy, Netscape Proxy, Gauntlet

user agent Netscape Navigator, Lynx, MOMspider
96

origin server provides a generic interface to its services as a resource hierarchy. The

resource implementation details are hidden behind the interface.

Intermediary components act as both a client and a server in order to forward, with

possible translation, requests and responses. A proxy component is an intermediary

selected by a client to provide interface encapsulation of other services, data translation,

performance enhancement, or security protection. A gateway (a.k.a., reverse proxy)

component is an intermediary imposed by the network or origin server to provide an

interface encapsulation of other services, for data translation, performance enhancement,

or security enforcement. Note that the difference between a proxy and a gateway is that a

client determines when it will use a proxy.

5.3 REST Architectural Views

Now that we have an understanding of the REST architectural elements in isolation, we

can use architectural views [105] to describe how the elements work together to form an

architecture. Three types of view—process, connector, and data—are useful for

illuminating the design principles of REST.

5.3.1 Process View

A process view of an architecture is primarily effective at eliciting the interaction

relationships among components by revealing the path of data as it flows through the

system. Unfortunately, the interaction of a real system usually involves an extensive

number of components, resulting in an overall view that is obscured by the details.
97

Figure 5-10 provides a sample of the process view from a REST-based architecture at a

particular instance during the processing of three parallel requests.

REST’s client-server separation of concerns simplifies component implementation,

reduces the complexity of connector semantics, improves the effectiveness of performance

tuning, and increases the scalability of pure server components. Layered system

constraints allow intermediaries—proxies, gateways, and firewalls—to be introduced at

various points in the communication without changing the interfaces between

components, thus allowing them to assist in communication translation or improve

performance via large-scale, shared caching. REST enables intermediate processing by

constraining messages to be self-descriptive: interaction is stateless between requests,

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$ $

Figure 5-10. Process View of a REST-based Architecture

A user agent is portrayed in the midst of three parallel interactions: a, b, and c. The interactions were
not satisfied by the user agent’s client connector cache, so each request has been routed to the resource
origin according to the properties of each resource identifier and the configuration of the client
connector. Request (a) has been sent to a local proxy, which in turn accesses a caching gateway found
by DNS lookup, which forwards the request on to be satisfied by an origin server whose internal
resources are defined by an encapsulated object request broker architecture. Request (b) is sent directly
to an origin server, which is able to satisfy the request from its own cache. Request (c) is sent to a proxy
that is capable of directly accessing WAIS, an information service that is separate from the Web
architecture, and translating the WAIS response into a format recognized by the generic connector
interface. Each component is only aware of the interaction with their own client or server connectors;
the overall process topology is an artifact of our view.

Origin Server

User Agent

$$

DNS

$DNS

Proxy

Proxy Gateway

wais

http

orbhttp

http

http
http

a

b

c

98

standard methods and media types are used to indicate semantics and exchange

information, and responses explicitly indicate cacheability.

Since the components are connected dynamically, their arrangement and function for a

particular application action has characteristics similar to a pipe-and-filter style. Although

REST components communicate via bidirectional streams, the processing of each

direction is independent and therefore susceptible to stream transducers (filters). The

generic connector interface allows components to be placed on the stream based on the

properties of each request or response.

Services may be implemented using a complex hierarchy of intermediaries and

multiple distributed origin servers. The stateless nature of REST allows each interaction to

be independent of the others, removing the need for an awareness of the overall

component topology, an impossible task for an Internet-scale architecture, and allowing

components to act as either destinations or intermediaries, determined dynamically by the

target of each request. Connectors need only be aware of each other’s existence during the

scope of their communication, though they may cache the existence and capabilities of

other components for performance reasons.

5.3.2 Connector View

A connector view of an architecture concentrates on the mechanics of the communication

between components. For a REST-based architecture, we are particularly interested in the

constraints that define the generic resource interface.

Client connectors examine the resource identifier in order to select an appropriate

communication mechanism for each request. For example, a client may be configured to
99

connect to a specific proxy component, perhaps one acting as an annotation filter, when

the identifier indicates that it is a local resource. Likewise, a client can be configured to

reject requests for some subset of identifiers.

REST does not restrict communication to a particular protocol, but it does constrain

the interface between components, and hence the scope of interaction and implementation

assumptions that might otherwise be made between components. For example, the Web’s

primary transfer protocol is HTTP, but the architecture also includes seamless access to

resources that originate on pre-existing network servers, including FTP [107], Gopher [7],

and WAIS [36]. Interaction with those services is restricted to the semantics of a REST

connector. This constraint sacrifices some of the advantages of other architectures, such as

the stateful interaction of a relevance feedback protocol like WAIS, in order to retain the

advantages of a single, generic interface for connector semantics. In return, the generic

interface makes it possible to access a multitude of services through a single proxy. If an

application needs the additional capabilities of another architecture, it can implement and

invoke those capabilities as a separate system running in parallel, similar to how the Web

architecture interfaces with “telnet” and “mailto” resources.

5.3.3 Data View

A data view of an architecture reveals the application state as information flows through

the components. Since REST is specifically targeted at distributed information systems, it

views an application as a cohesive structure of information and control alternatives

through which a user can perform a desired task. For example, looking-up a word in an

on-line dictionary is one application, as is touring through a virtual museum, or reviewing
100

a set of class notes to study for an exam. Each application defines goals for the underlying

system, against which the system’s performance can be measured.

Component interactions occur in the form of dynamically sized messages. Small or

medium-grain messages are used for control semantics, but the bulk of application work is

accomplished via large-grain messages containing a complete resource representation.

The most frequent form of request semantics is that of retrieving a representation of a

resource (e.g., the “GET” method in HTTP), which can often be cached for later reuse.

REST concentrates all of the control state into the representations received in response

to interactions. The goal is to improve server scalability by eliminating any need for the

server to maintain an awareness of the client state beyond the current request. An

application’s state is therefore defined by its pending requests, the topology of connected

components (some of which may be filtering buffered data), the active requests on those

connectors, the data flow of representations in response to those requests, and the

processing of those representations as they are received by the user agent.

An application reaches a steady-state whenever it has no outstanding requests; i.e., it

has no pending requests and all of the responses to its current set of requests have been

completely received or received to the point where they can be treated as a representation

data stream. For a browser application, this state corresponds to a “web page,” including

the primary representation and ancillary representations, such as in-line images,

embedded applets, and style sheets. The significance of application steady-states is seen in

their impact on both user-perceived performance and the burstiness of network request

traffic.
101

The user-perceived performance of a browser application is determined by the latency

between steady-states: the period of time between the selection of a hypermedia link on

one web page and the point when usable information has been rendered for the next web

page. The optimization of browser performance is therefore centered around reducing this

communication latency.

Since REST-based architectures communicate primarily through the transfer of

representations of resources, latency can be impacted by both the design of the

communication protocols and the design of the representation data formats. The ability to

incrementally render the response data as it is received is determined by the design of the

media type and the availability of layout information (visual dimensions of in-line objects)

within each representation.

An interesting observation is that the most efficient network request is one that doesn’t

use the network. In other words, the ability to reuse a cached response results in a

considerable improvement in application performance. Although use of a cache adds some

latency to each individual request due to lookup overhead, the average request latency is

significantly reduced when even a small percentage of requests result in usable cache hits.

The next control state of an application resides in the representation of the first

requested resource, so obtaining that first representation is a priority. REST interaction is

therefore improved by protocols that “respond first and think later.” In other words, a

protocol that requires multiple interactions per user action, in order to do things like

negotiate feature capabilities prior to sending a content response, will be perceptively

slower than a protocol that sends whatever is most likely to be optimal first and then

provides a list of alternatives for the client to retrieve if the first response is unsatisfactory.
102

The application state is controlled and stored by the user agent and can be composed

of representations from multiple servers. In addition to freeing the server from the

scalability problems of storing state, this allows the user to directly manipulate the state

(e.g., a Web browser’s history), anticipate changes to that state (e.g., link maps and

prefetching of representations), and jump from one application to another (e.g.,

bookmarks and URI-entry dialogs).

The model application is therefore an engine that moves from one state to the next by

examining and choosing from among the alternative state transitions in the current set of

representations. Not surprisingly, this exactly matches the user interface of a hypermedia

browser. However, the style does not assume that all applications are browsers. In fact, the

application details are hidden from the server by the generic connector interface, and thus

a user agent could equally be an automated robot performing information retrieval for an

indexing service, a personal agent looking for data that matches certain criteria, or a

maintenance spider busy patrolling the information for broken references or modified

content [39].

5.4 Related Work

Bass, et al. [9] devote a chapter on architecture for the World Wide Web, but their

description only encompasses the implementation architecture within the CERN/W3C

developed libwww (client and server libraries) and Jigsaw software. Although those

implementations reflect many of the design constraints of REST, having been developed

by people familiar with the Web’s architectural design and rationale, the real WWW

architecture is independent of any single implementation. The modern Web is defined by
103

its standard interfaces and protocols, not how those interfaces and protocols are

implemented in a given piece of software.

The REST style draws from many preexisting distributed process paradigms [6, 50],

communication protocols, and software fields. REST component interactions are

structured in a layered client-server style, but the added constraints of the generic resource

interface create the opportunity for substitutability and inspection by intermediaries.

Requests and responses have the appearance of a remote invocation style, but REST

messages are targeted at a conceptual resource rather than an implementation identifier.

Several attempts have been made to model the Web architecture as a form of

distributed file system (e.g., WebNFS) or as a distributed object system [83]. However,

they exclude various Web resource types or implementation strategies as being “not

interesting,” when in fact their presence invalidates the assumptions that underlie such

models. REST works well because it does not limit the implementation of resources to

certain predefined models, allowing each application to choose an implementation that

best matches its own needs and enabling the replacement of implementations without

impacting the user.

The interaction method of sending representations of resources to consuming

components has some parallels with event-based integration (EBI) styles. The key

difference is that EBI styles are push-based. The component containing the state

(equivalent to an origin server in REST) issues an event whenever the state changes,

whether or not any component is actually interested in or listening for such an event. In the

REST style, consuming components usually pull representations. Although this is less
104

efficient when viewed as a single client wishing to monitor a single resource, the scale of

the Web makes an unregulated push model infeasible.

The principled use of the REST style in the Web, with its clear notion of components,

connectors, and representations, relates closely to the C2 architectural style [128]. The C2

style supports the development of distributed, dynamic applications by focusing on

structured use of connectors to obtain substrate independence. C2 applications rely on

asynchronous notification of state changes and request messages. As with other event-

based schemes, C2 is nominally push-based, though a C2 architecture could operate in

REST’s pull style by only emitting a notification upon receipt of a request. However, the

C2 style lacks the intermediary-friendly constraints of REST, such as the generic resource

interface, guaranteed stateless interactions, and intrinsic support for caching.

5.5 Summary

This chapter introduced the Representational State Transfer (REST) architectural style for

distributed hypermedia systems. REST provides a set of architectural constraints that,

when applied as a whole, emphasizes scalability of component interactions, generality of

interfaces, independent deployment of components, and intermediary components to

reduce interaction latency, enforce security, and encapsulate legacy systems. I described

the software engineering principles guiding REST and the interaction constraints chosen

to retain those principles, while contrasting them to the constraints of other architectural

styles.

The next chapter presents an evaluation of the REST architecture through the

experience and lessons learned from applying REST to the design, specification, and
105

deployment of the modern Web architecture. This work included authoring the current

Internet standards-track specifications of the Hypertext Transfer Protocol (HTTP/1.1) and

Uniform Resource Identifiers (URI), and implementing the architecture through the

libwww-perl client protocol library and Apache HTTP server.
106

CHAPTER 6

Experience and Evaluation

Since 1994, the REST architectural style has been used to guide the design and

development of the architecture for the modern Web. This chapter describes the

experience and lessons learned from applying REST while authoring the Internet

standards for the Hypertext Transfer Protocol (HTTP) and Uniform Resource Identifiers

(URI), the two specifications that define the generic interface used by all component

interactions on the Web, as well as from the deployment of these technologies in the form

of the libwww-perl client library, the Apache HTTP Server Project, and other

implementations of the protocol standards.

6.1 Standardizing the Web

As described in Chapter 4, the motivation for developing REST was to create an

architectural model for how the Web should work, such that it could serve as the guiding

framework for the Web protocol standards. REST has been applied to describe the desired

Web architecture, help identify existing problems, compare alternative solutions, and

ensure that protocol extensions would not violate the core constraints that make the Web

successful. This work was done as part of the Internet Engineering Taskforce (IETF) and

World Wide Web Consortium (W3C) efforts to define the architectural standards for the

Web: HTTP, URI, and HTML.

My involvement in the Web standards process began in late 1993, while developing

the libwww-perl protocol library that served as the client connector interface for
107

MOMspider [39]. At the time, the Web’s architecture was described by a set of informal

hypertext notes [14], two early introductory papers [12, 13], draft hypertext specifications

representing proposed features for the Web (some of which had already been

implemented), and the archive of the public www-talk mailing list that was used for

informal discussion among the participants in the WWW project worldwide. Each of the

specifications were significantly out of date when compared with Web implementations,

mostly due to the rapid evolution of the Web after the introduction of the Mosaic graphical

browser [NCSA]. Several experimental extensions had been added to HTTP to allow for

proxies, but for the most part the protocol assumed a direct connection between the user

agent and either an HTTP origin server or a gateway to legacy systems. There was no

awareness within the architecture of caching, proxies, or spiders, even though

implementations were readily available and running amok. Many other extensions were

being proposed for inclusion in the next versions of the protocols.

At the same time, there was growing pressure within the industry to standardize on

some version, or versions, of the Web interface protocols. The W3C was formed by

Berners-Lee [20] to act as a think-tank for Web architecture and to supply the authoring

resources needed to write the Web standards and reference implementations, but the

standardization itself was governed by the Internet Engineering Taskforce [www.ietf.org]

and its working groups on URI, HTTP, and HTML. Due to my experience developing

Web software, I was first chosen to author the specification for Relative URL [40], later

teamed with Henrik Frystyk Nielsen to author the HTTP/1.0 specification [19], became

the primary architect of HTTP/1.1 [42], and finally authored the revision of the URL

specifications to form the standard on URI generic syntax [21].
108

The first edition of REST was developed between October 1994 and August 1995,

primarily as a means for communicating Web concepts as we wrote the HTTP/1.0

specification and the initial HTTP/1.1 proposal. It was iteratively improved over the next

five years and applied to various revisions and extensions of the Web protocol standards.

REST was originally referred to as the “HTTP object model,” but that name would often

lead to misinterpretation of it as the implementation model of an HTTP server. The name

“Representational State Transfer” is intended to evoke an image of how a well-designed

Web application behaves: a network of web pages (a virtual state-machine), where the

user progresses through the application by selecting links (state transitions), resulting in

the next page (representing the next state of the application) being transferred to the user

and rendered for their use.

REST is not intended to capture all possible uses of the Web protocol standards. There

are applications of HTTP and URI that do not match the application model of a distributed

hypermedia system. The important point, however, is that REST does capture all of those

aspects of a distributed hypermedia system that are considered central to the behavioral

and performance requirements of the Web, such that optimizing behavior within the

model will result in optimum behavior within the deployed Web architecture. In other

words, REST is optimized for the common case so that the constraints it applies to the

Web architecture will also be optimized for the common case.

6.2 REST Applied to URI

Uniform Resource Identifiers (URI) are both the simplest element of the Web architecture

and the most important. URI have been known by many names: WWW addresses,
109

Universal Document Identifiers, Universal Resource Identifiers [15], and finally the

combination of Uniform Resource Locators (URL) [17] and Names (URN) [124]. Aside

from its name, the URI syntax has remained relatively unchanged since 1992. However,

the specification of Web addresses also defines the scope and semantics of what we mean

by resource, which has changed since the early Web architecture. REST was used to

define the term resource for the URI standard [21], as well as the overall semantics of the

generic interface for manipulating resources via their representations.

6.2.1 Redefinition of Resource

The early Web architecture defined URI as document identifiers. Authors were instructed

to define identifiers in terms of a document’s location on the network. Web protocols

could then be used to retrieve that document. However, this definition proved to be

unsatisfactory for a number of reasons. First, it suggests that the author is identifying the

content transferred, which would imply that the identifier should change whenever the

content changes. Second, there exist many addresses that corresponded to a service rather

than a document — authors may be intending to direct readers to that service, rather than

to any specific result from a prior access of that service. Finally, there exist addresses that

do not correspond to a document at some periods of time, such as when the document does

not yet exist or when the address is being used solely for naming, rather than locating,

information.

The definition of resource in REST is based on a simple premise: identifiers should

change as infrequently as possible. Because the Web uses embedded identifiers rather than

link servers, authors need an identifier that closely matches the semantics they intend by a
110

hypermedia reference, allowing the reference to remain static even though the result of

accessing that reference may change over time. REST accomplishes this by defining a

resource to be the semantics of what the author intends to identify, rather than the value

corresponding to those semantics at the time the reference is created. It is then left to the

author to ensure that the identifier chosen for a reference does indeed identify the intended

semantics.

6.2.2 Manipulating Shadows

Defining resource such that a URI identifies a concept rather than a document leaves us

with another question: how does a user access, manipulate, or transfer a concept such that

they can get something useful when a hypertext link is selected? REST answers that

question by defining the things that are manipulated to be representations of the identified

resource, rather than the resource itself. An origin server maintains a mapping from

resource identifiers to the set of representations corresponding to each resource. A

resource is therefore manipulated by transferring representations through the generic

interface defined by the resource identifier.

REST’s definition of resource derives from the central requirement of the Web:

independent authoring of interconnected hypertext across multiple trust domains. Forcing

the interface definitions to match the interface requirements causes the protocols to seem

vague, but that is only because the interface being manipulated is only an interface and not

an implementation. The protocols are specific about the intent of an application action, but

the mechanism behind the interface must decide how that intention affects the underlying

implementation of the resource mapping to representations.
111

Information hiding is one of the key software engineering principles that motivates the

uniform interface of REST. Because a client is restricted to the manipulation of

representations rather than directly accessing the implementation of a resource, the

implementation can be constructed in whatever form is desired by the naming authority

without impacting the clients that may use its representations. In addition, if multiple

representations of the resource exist at the time it is accessed, a content selection

algorithm can be used to dynamically select a representation that best fits the capabilities

of that client. The disadvantage, of course, is that remote authoring of a resource is not as

straightforward as remote authoring of a file.

6.2.3 Remote Authoring

The challenge of remote authoring via the Web’s uniform interface is due to the separation

between the representation that can be retrieved by a client and the mechanism that might

be used on the server to store, generate, or retrieve the content of that representation. An

individual server may map some part of its namespace to a filesystem, which in turn maps

to the equivalent of an inode that can be mapped into a disk location, but those underlying

mechanisms provide a means of associating a resource to a set of representations rather

than identifying the resource itself. Many different resources could map to the same

representation, while other resources may have no representation mapped at all.

In order to author an existing resource, the author must first obtain the specific source

resource URI: the set of URI that bind to the handler's underlying representation for the

target resource. A resource does not always map to a singular file, but all resources that

are not static are derived from some other resources, and by following the derivation tree
112

an author can eventually find all of the source resources that must be edited in order to

modify the representation of a resource. These same principles apply to any form of

derived representation, whether it be from content negotiation, scripts, servlets, managed

configurations, versioning, etc.

The resource is not the storage object. The resource is not a mechanism that the server

uses to handle the storage object. The resource is a conceptual mapping — the server

receives the identifier (which identifies the mapping) and applies it to its current mapping

implementation (usually a combination of collection-specific deep tree traversal and/or

hash tables) to find the currently responsible handler implementation and the handler

implementation then selects the appropriate action+response based on the request content.

All of these implementation-specific issues are hidden behind the Web interface; their

nature cannot be assumed by a client that only has access through the Web interface.

For example, consider what happens when a Web site grows in user base and decides

to replace its old Brand X server, based on an XOS platform, with a new Apache server

running on FreeBSD. The disk storage hardware is replaced. The operating system is

replaced. The HTTP server is replaced. Perhaps even the method of generating responses

for all of the content is replaced. However, what doesn't need to change is the Web

interface: if designed correctly, the namespace on the new server can mirror that of the

old, meaning that from the client's perspective, which only knows about resources and not

about how they are implemented, nothing has changed aside from the improved

robustness of the site.
113

6.2.4 Binding Semantics to URI

As mentioned above, a resource can have many identifiers. In other words, there may exist

two or more different URI that have equivalent semantics when used to access a server. It

is also possible to have two URI that result in the same mechanism being used upon access

to the server, and yet those URI identify two different resources because they don’t mean

the same thing.

Semantics are a by-product of the act of assigning resource identifiers and populating

those resources with representations. At no time whatsoever do the server or client

software need to know or understand the meaning of a URI — they merely act as a conduit

through which the creator of a resource (a human naming authority) can associate

representations with the semantics identified by the URI. In other words, there are no

resources on the server; just mechanisms that supply answers across an abstract interface

defined by resources. It may seem odd, but this is the essence of what makes the Web

work across so many different implementations.

It is the nature of every engineer to define things in terms of the characteristics of the

components that will be used to compose the finished product. The Web doesn't work that

way. The Web architecture consists of constraints on the communication model between

components, based on the role of each component during an application action. This

prevents the components from assuming anything beyond the resource abstraction, thus

hiding the actual mechanisms on either side of the abstract interface.
114

6.2.5 REST Mismatches in URI

Like most real-world systems, not all components of the deployed Web architecture obey

every constraint present in its architectural design. REST has been used both as a means to

define architectural improvements and to identify architectural mismatches. Mismatches

occur when, due to ignorance or oversight, a software implementation is deployed that

violates the architectural constraints. While mismatches cannot be avoided in general, it is

possible to identify them before they become standardized.

Although the URI design matches REST’s architectural notion of identifiers, syntax

alone is insufficient to force naming authorities to define their own URI according to the

resource model. One form of abuse is to include information that identifies the current

user within all of the URI referenced by a hypermedia response representation. Such

embedded user-ids can be used to maintain session state on the server, track user behavior

by logging their actions, or carry user preferences across multiple actions (e.g., Hyper-G’s

gateways [84]). However, by violating REST’s constraints, these systems also cause

shared caching to become ineffective, reduce server scalability, and result in undesirable

effects when a user shares those references with others.

Another conflict with the resource interface of REST occurs when software attempts

to treat the Web as a distributed file system. Since file systems expose the implementation

of their information, tools exist to “mirror” that information across to multiple sites as a

means of load balancing and redistributing the content closer to users. However, they can

do so only because files have a fixed set of semantics (a named sequence of bytes) that can

be duplicated easily. In contrast, attempts to mirror the content of a Web server as files

will fail because the resource interface does not always match the semantics of a file
115

system, and because both data and metadata are included within, and significant to, the

semantics of a representation. Web server content can be replicated at remote sites, but

only by replicating the entire server mechanism and configuration, or by selectively

replicating only those resources with representations known to be static (e.g., cache

networks contract with Web sites to replicate specific resource representations to the

“edges” of the overall Internet in order to reduce latency and distribute load away from the

origin server).

6.3 REST Applied to HTTP

The Hypertext Transfer Protocol (HTTP) has a special role in the Web architecture as both

the primary application-level protocol for communication between Web components and

the only protocol designed specifically for the transfer of resource representations. Unlike

URI, there were a large number of changes needed in order for HTTP to support the

modern Web architecture. The developers of HTTP implementations have been

conservative in their adoption of proposed enhancements, and thus extensions needed to

be proven and subjected to standards review before they could be deployed. REST was

used to identify problems with the existing HTTP implementations, specify an

interoperable subset of that protocol as HTTP/1.0 [19], analyze proposed extensions for

HTTP/1.1 [42], and provide motivating rationale for deploying HTTP/1.1.

The key problem areas in HTTP that were identified by REST included planning for

the deployment of new protocol versions, separating message parsing from HTTP

semantics and the underlying transport layer (TCP), distinguishing between authoritative

and non-authoritative responses, fine-grained control of caching, and various aspects of
116

the protocol that failed to be self-descriptive. REST has also been used to model the

performance of Web applications based on HTTP and anticipate the impact of such

extensions as persistent connections and content negotiation. Finally, REST has been used

to limit the scope of standardized HTTP extensions to those that fit within the architectural

model, rather than allowing the applications that misuse HTTP to equally influence the

standard.

6.3.1 Extensibility

One of the major goals of REST is to support the gradual and fragmented deployment of

changes within an already deployed architecture. HTTP was modified to support that goal

through the introduction of versioning requirements and rules for extending each of the

protocol’s syntax elements.

6.3.1.1 Protocol Versioning

HTTP is a family of protocols, distinguished by major and minor version numbers, that

share the name primarily because they correspond to the protocol expected when

communicating directly with a service based on the “http” URL namespace. A connector

must obey the constraints placed on the HTTP-version protocol element included in each

message [90].

The HTTP-version of a message represents the protocol capabilities of the sender and

the gross-compatibility (major version number) of the message being sent. This allows a

client to use a reduced (HTTP/1.0) subset of features in making a normal HTTP/1.1

request, while at the same time indicating to the recipient that it is capable of supporting

full HTTP/1.1 communication. In other words, it provides a tentative form of protocol
117

negotiation on the HTTP scale. Each connection on a request/response chain can operate

at its best protocol level in spite of the limitations of some clients or servers that are parts

of the chain.

The intention of the protocol is that the server should always respond with the highest

minor version of the protocol it understands within the same major version of the client’s

request message. The restriction is that the server cannot use those optional features of the

higher-level protocol which are forbidden to be sent to such an older-version client. There

are no required features of a protocol that cannot be used with all other minor versions

within that major version, since that would be an incompatible change and thus require a

change in the major version. The only features of HTTP that can depend on a minor

version number change are those that are interpreted by immediate neighbors in the

communication, because HTTP does not require that the entire request/response chain of

intermediary components speak the same version.

These rules exist to assist in the deployment of multiple protocol revisions and to

prevent the HTTP architects from forgetting that deployment of the protocol is an

important aspect of its design. They do so by making it easy to differentiate between

compatible changes to the protocol and incompatible changes. Compatible changes are

easy to deploy and communication of the differences can be achieved within the protocol

stream. Incompatible changes are difficult to deploy because they require some

determination of acceptance of the protocol before the protocol stream can commence.

6.3.1.2 Extensible Protocol Elements

HTTP includes a number of separate namespaces, each of which has differing constraints,

but all of which share the requirement of being extensible without bound. Some of the
118

namespaces are governed by separate Internet standards and shared by multiple protocols

(e.g., URI schemes [21], media types [48], MIME header field names [47], charset values,

language tags), while others are governed by HTTP, including the namespaces for method

names, response status codes, non-MIME header field names, and values within standard

HTTP header fields. Since early HTTP did not define a consistent set of rules for how

changes within these namespaces could be deployed, this was one of the first problems

tackled by the specification effort.

HTTP request semantics are signified by the request method name. Method extension

is allowed whenever a standardizable set of semantics can be shared between client,

server, and any intermediaries that may be between them. Unfortunately, early HTTP

extensions, specifically the HEAD method, made the parsing of an HTTP response

message dependent on knowing the semantics of the request method. This led to a

deployment contradiction: if a recipient needs to know the semantics of a method before it

can be safely forwarded by an intermediary, then all intermediaries must be updated

before a new method can be deployed.

This deployment problem was fixed by separating the rules for parsing and forwarding

HTTP messages from the semantics associated with new HTTP protocol elements. For

example, HEAD is the only method for which the Content-Length header field has a

meaning other than signifying the message body length, and no new method can change

the message length calculation. GET and HEAD are also the only methods for which

conditional request header fields have the semantics of a cache refresh, whereas for all

other methods they have the meaning of a precondition.
119

Likewise, HTTP needed a general rule for interpreting new response status codes,

such that new responses could be deployed without significantly harming older clients.

We therefore expanded upon the rule that each status code belonged to a class signified by

the first digit of its three-digit decimal number: 100-199 indicating that the message

contains a provisional information response, 200-299 indicating that the request

succeeded, 300-399 indicating that the request needs to be redirected to another resource,

400-499 indicating that the client made an error that should not be repeated, and 500-599

indicating that the server encountered an error, but that the client may get a better response

later (or via some other server). If a recipient does not understand the specific semantics of

the status code in a given message, then they must treat it in the same way as the x00 code

within its class. Like the rule for method names, this extensibility rule places a

requirement on the current architecture such that it anticipates future change. Changes can

therefore be deployed onto an existing architecture with less fear of adverse component

reactions.

6.3.1.3 Upgrade

The addition of the Upgrade header field in HTTP/1.1 reduces the difficulty of deploying

incompatible changes by allowing the client to advertise its willingness for a better

protocol while communicating in an older protocol stream. Upgrade was specifically

added to support the selective replacement of HTTP/1.x with other, future protocols that

might be more efficient for some tasks. Thus, HTTP not only supports internal

extensibility, but also complete replacement of itself during an active connection. If the

server supports the improved protocol and desires to switch, it simply responds with a 101

status and continues on as if the request were received in that upgraded protocol.
120

6.3.2 Self-descriptive Messages

REST constrains messages between components to be self-descriptive in order to support

intermediate processing of interactions. However, there were aspects of early HTTP that

failed to be self-descriptive, including the lack of host identification within requests,

failure to syntactically distinguish between message control data and representation

metadata, failure to differentiate between control data intended only for the immediate

connection peer versus metadata intended for all recipients, lack of support for mandatory

extensions, and the need for metadata to describe representations with layered encodings.

6.3.2.1 Host

One of the worst mistakes in the early HTTP design was the decision not to send the

complete URI that is the target of a request message, but rather send only those portions

that were not used in setting up the connection. The assumption was that a server would

know its own naming authority based on the IP address and TCP port of the connection.

However, this failed to anticipate that multiple naming authorities might exist on a single

server, which became a critical problem as the Web grew at an exponential rate and new

domain names (the basis for naming authority within the http URL namespace) far

exceeded the availability of new IP addresses.

The solution defined and deployed for both HTTP/1.0 and HTTP/1.1 was to include

the target URL’s host information within a Host header field of the request message.

Deployment of this feature was considered so important that the HTTP/1.1 specification

requires servers to reject any HTTP/1.1 request that doesn’t include a Host field. As a

result, there now exist many large ISP servers that run tens of thousands of name-based

virtual host websites on a single IP address.
121

6.3.2.2 Layered Encodings

HTTP inherited its syntax for describing representation metadata from the Multipurpose

Internet Mail Extensions (MIME) [47]. MIME does not define layered media types,

preferring instead to only include the label of the outermost media type within the

Content-Type field value. However, this prevents a recipient from determining the nature

of an encoded message without decoding the layers. An early HTTP extension worked

around this failing by listing the outer encodings separately within the Content-Encoding

field and placing the label for the innermost media type in the Content-Type. That was a

poor design decision, since it changed the semantics of Content-Type without changing its

field name, resulting in confusion whenever older user agents encountered the extension.

A better solution would have been to continue treating Content-Type as the outermost

media type, and use a new field to describe the nested types within that type.

Unfortunately, the first extension was deployed before its faults were identified.

REST did identify the need for another layer of encodings: those placed on a message

by a connector in order to improve its transferability over the network. This new layer,

called a transfer-encoding in reference to a similar concept in MIME, allows messages to

be encoded for transfer without implying that the representation is encoded by nature.

Transfer encodings can be added or removed by transfer agents, for whatever reason,

without changing the semantics of the representation.

6.3.2.3 Semantic Independence

As described above, HTTP message parsing has been separated from its semantics.

Message parsing, including finding and globbing together the header fields, occurs

entirely separate from the process of parsing the header field contents. In this way,
122

intermediaries can quickly process and forward HTTP messages, and extensions can be

deployed without breaking existing parsers.

6.3.2.4 Transport Independence

Early HTTP, including most implementations of HTTP/1.0, used the underlying transport

protocol as the means for signaling the end of a response message. A server would

indicate the end of a response message body by closing the TCP connection.

Unfortunately, this created a significant failure condition in the protocol: a client had no

means for distinguishing between a completed response and one that was truncated by

some erroneous network failure. To solve this, the Content-Length header fields was

redefined within HTTP/1.0 to indicate the message body length in bytes, whenever the

length is known in advance, and the “chunked” transfer encoding was introduced to

HTTP/1.1.

The chunked encoding allows a representation whose size is unknown at the beginning

of its generation (when the header fields are sent) to have its boundaries delineated by a

series of chunks that can be individually sized before being sent. It also allows metadata to

be sent at the end of the message as trailers, enabling the creation of optional metadata at

the origin while the message is being generated, without adding to response latency.

6.3.2.5 Size Limits

A frequent barrier to the flexibility of application-layer protocols is the tendency to over-

specify size limits on protocol parameters. Although there always exist some practical

limits within implementations of the protocol (e.g., available memory), specifying those

limits within the protocol restricts all applications to the same limits, regardless of their
123

implementation. The result is often a lowest-common-denominator protocol that cannot be

extended much beyond the envisioning of its original creator.

There is no limit in the HTTP protocol on the length of URI, the length of header

fields, the length of an representation, or the length of any field value that consists of a list

of items. Although older Web clients have a well-known problem with URI that consist of

more than 255 characters, it is sufficient to note that problem in the HTTP specification

rather than require that all servers be so limited. The reason that this does not make for a

protocol maximum is that applications within a controlled context (such as an intranet)

can avoid those limits by replacing the older components.

Although we did not need to invent artificial limitations, HTTP/1.1 did need to define

an appropriate set of response status codes for indicating when a given protocol element is

too long for a server to process. Such response codes were added for the conditions of

Request-URI too long, header field too long, and body too long. Unfortunately, there is no

way for a client to indicate to a server that it may have resource limits, which leads to

problems when resource-constrained devices, such as PDAs, attempt to use HTTP without

a device-specific intermediary adjusting the communication.

6.3.2.6 Cache Control

Because REST tries to balance the need for efficient, low-latency behavior with the desire

for semantically transparent cache behavior, it is critical that HTTP allow the application

to determine the caching requirements rather than hard-code it into the protocol itself. The

most important thing for the protocol to do is to fully and accurately describe the data

being transferred, so that no application is fooled into thinking it has one thing when it
124

actually has something else. HTTP/1.1 does this through the addition of the Cache-

Control, Age, Etag, and Vary header fields.

6.3.2.7 Content Negotiation

All resources map a request (consisting of method, identifier, request-header fields, and

sometimes a representation) to a response (consisting of a status code, response-header

fields, and sometimes a representation). When an HTTP request maps to multiple

representations on the server, the server may engage in content negotiation with the client

in order to determine which one best meets the client’s needs. This is really more of a

“content selection” process than negotiation.

Although there were several deployed implementations of content negotiation, it was

not included in the specification of HTTP/1.0 because there was no interoperable subset of

implementations at the time it was published. This was partly due to a poor

implementation within NCSA Mosaic, which would send 1KB of preference information

in the header fields on every request, regardless of the negotiability of the resource [125].

Since far less than 0.01% of all URI are negotiable in content, the result was substantially

increased request latency for very little gain, which led to later browsers disregarding the

negotiation features of HTTP/1.0.

Preemptive (server-driven) negotiation occurs when the server varies the response

representation for a particular request method*identifier*status-code combination

according to the value of the request header fields, or something external to the normal

request parameters above. The client needs to be notified when this occurs, so that a cache

can know when it is semantically transparent to use a particular cached response for a

future request, and also so that a user agent can supply more detailed preferences than it
125

might normally send once it knows they are having an effect on the response received.

HTTP/1.1 introduced the Vary header field for this purpose. Vary simply lists the request

header field dimensions under which the response may vary.

In preemptive negotiation, the user agent tells the server what it is capable of

accepting. The server is then supposed to select the representation that best matches what

the user agent claims to be its capabilities. However, this is a non-tractable problem

because it requires not only information on what the UA will accept, but also how well it

accepts each feature and to what purpose the user intends to put the representation. For

example, a user that wants to view an image on screen might prefer a simple bitmap

representation, but the same user with the same browser may prefer a PostScript

representation if they intend to send it to a printer instead. It also depends on the user

correctly configuring their browser according to their own personal content preferences.

In short, a server is rarely able to make effective use of preemptive negotiation, but it was

the only form of automated content selection defined by early HTTP.

HTTP/1.1 added the notion of reactive (agent-driven) negotiation. In this case, when a

user agent requests a negotiated resource, the server responds with a list of the available

representations. The user agent can then choose which one is best according to its own

capabilities and purpose. The information about the available representations may be

supplied via a separate representation (e.g., a 300 response), inside the response data (e.g.,

conditional HTML), or as a supplement to the “most likely” response. The latter works

best for the Web because an additional interaction only becomes necessary if the user

agent decides one of the other variants would be better. Reactive negotiation is simply an
126

automated reflection of the normal browser model, which means it can take full advantage

of all the performance benefits of REST.

Both preemptive and reactive negotiation suffer from the difficulty of communicating

the actual characteristics of the representation dimensions (e.g., how to say that a browser

supports HTML tables but not the INSERT element). However, reactive negotiation has

the distinct advantages of not having to send preferences on every request, having more

context information with which to make a decision when faced with alternatives, and not

interfering with caches.

A third form of negotiation, transparent negotiation [64], is a license for an

intermediary cache to act as an agent, on behalf of other agents, for selecting a better

representation and initiating requests to retrieve that representation. The request may be

resolved internally by another cache hit, and thus it is possible that no additional network

request will be made. In so doing, however, they are performing server-driven negotiation,

and must therefore add the appropriate Vary information so that other outbound caches

won’t be confused.

6.3.3 Performance

HTTP/1.1 focused on improving the semantics of communication between components,

but there were also some improvements to user-perceived performance, albeit limited by

the requirement of syntax compatibility with HTTP/1.0.

6.3.3.1 Persistent Connections

Although early HTTP’s single request/response per connection behavior made for simple

implementations, it resulted in inefficient use of the underlying TCP transport due to the
127

overhead of per-interaction set-up costs and the nature of TCP’s slow-start congestion

control algorithm [63, 125]. As a result, several extensions were proposed to combine

multiple requests and responses within a single connection.

The first proposal was to define a new set of methods for encapsulating multiple

requests within a single message (MGET, MHEAD, etc.) and returning the response as a

MIME multipart. This was rejected because it violated several of the REST constraints.

First, the client would need to know all of the requests it wanted to package before the first

request could be written to the network, since a request body must be length-delimited by

a content-length field set in the initial request header fields. Second, intermediaries would

have to extract each of the messages to determine which ones it could satisfy locally.

Finally, it effectively doubles the number of request methods and complicates

mechanisms for selectively denying access to certain methods.

Instead, we adopted a form of persistent connections, which uses length-delimited

messages in order to send multiple HTTP messages on a single connection [100]. For

HTTP/1.0, this was done using the “keep-alive” directive within the Connection header

field. Unfortunately, that did not work in general because the header field could be

forwarded by intermediaries to other intermediaries that do not understand keep-alive,

resulting in a dead-lock condition. HTTP/1.1 eventually settled on making persistent

connections the default, thus signaling their presence via the HTTP-version value, and

only using the connection-directive “close” to reverse the default.

It is important to note that persistent connections only became possible after HTTP

messages were redefined to be self-descriptive and independent of the underlying

transport protocol.
128

6.3.3.2 Write-through Caching

HTTP does not support write-back caching. An HTTP cache cannot assume that what gets

written through it is the same as what would be retrievable from a subsequent request for

that resource, and thus it cannot cache a PUT request body and reuse it for a later GET

response. There are two reasons for this rule: 1) metadata might be generated behind-the-

scenes, and 2) access control on later GET requests cannot be determined from the PUT

request. However, since write actions using the Web are extremely rare, the lack of write-

back caching does not have a significant impact on performance.

6.3.4 REST Mismatches in HTTP

There are several architectural mismatches present within HTTP, some due to 3rd-party

extensions that were deployed external to the standards process and others due to the

necessity of remaining compatible with deployed HTTP/1.0 components.

6.3.4.1 Differentiating Non-authoritative Responses

One weakness that still exists in HTTP is that there is no consistent mechanism for

differentiating between authoritative responses, which are generated by the origin server

in response to the current request, and non-authoritative responses that are obtained from

an intermediary or cache without accessing the origin server. The distinction can be

important for applications that require authoritative responses, such as the safety-critical

information appliances used within the health industry, and for those times when an error

response is returned and the client is left wondering whether the error was due to the

origin or to some intermediary. Attempts to solve this using additional status codes did not

succeed, since the authoritative nature is usually orthogonal to the response status.
129

HTTP/1.1 did add a mechanism to control cache behavior such that the desire for an

authoritative response can be indicated. The ’no-cache’ directive on a request message

requires any cache to forward the request toward the origin server even if it has a cached

copy of what is being requested. This allows a client to refresh a cached copy which is

known to be corrupted or stale. However, using this field on a regular basis interferes with

the performance benefits of caching. A more general solution would be to require that

responses be marked as non-authoritative whenever an action does not result in contacting

the origin server. A Warning response header field was defined in HTTP/1.1 for this

purpose (and others), but it has not been widely implemented in practice.

6.3.4.2 Cookies

An example of where an inappropriate extension has been made to the protocol to support

features that contradict the desired properties of the generic interface is the introduction of

site-wide state information in the form of HTTP cookies [73]. Cookie interaction fails to

match REST’s model of application state, often resulting in confusion for the typical

browser application.

An HTTP cookie is opaque data that can be assigned by the origin server to a user

agent by including it within a Set-Cookie response header field, with the intention being

that the user agent should include the same cookie on all future requests to that server until

it is replaced or expires. Such cookies typically contain an array of user-specific

configuration choices, or a token to be matched against the server’s database on future

requests. The problem is that a cookie is defined as being attached to any future requests

for a given set of resource identifiers, usually encompassing an entire site, rather than

being associated with the particular application state (the set of currently rendered
130

representations) on the browser. When the browser’s history functionality (the “Back”

button) is subsequently used to back-up to a view prior to that reflected by the cookie, the

browser’s application state no longer matches the stored state represented within the

cookie. Therefore, the next request sent to the same server will contain a cookie that

misrepresents the current application context, leading to confusion on both sides.

Cookies also violate REST because they allow data to be passed without sufficiently

identifying its semantics, thus becoming a concern for both security and privacy. The

combination of cookies with the Referer [sic] header field makes it possible to track a user

as they browse between sites.

As a result, cookie-based applications on the Web will never be reliable. The same

functionality should have been accomplished via anonymous authentication and true

client-side state. A state mechanism that involves preferences can be more efficiently

implemented using judicious use of context-setting URI rather than cookies, where

judicious means one URI per state rather than an unbounded number of URI due to the

embedding of a user-id. Likewise, the use of cookies to identify a user-specific “shopping

basket” within a server-side database could be more efficiently implemented by defining

the semantics of shopping items within the hypermedia data formats, allowing the user

agent to select and store those items within their own client-side shopping basket,

complete with a URI to be used for check-out when the client is ready to purchase.

6.3.4.3 Mandatory Extensions

HTTP header field names can be extended at will, but only when the information they

contain is not required for proper understanding of the message. Mandatory header field

extensions require a major protocol revision or a substantial change to method semantics,
131

such as that proposed in [94]. This is an aspect of the modern Web architecture which does

not yet match the self-descriptive messaging constraints of the REST architectural style,

primarily because the cost of implementing a mandatory extension framework within the

existing HTTP syntax exceeds any clear benefits that we might gain from mandatory

extensions. However, it is reasonable to expect that mandatory field name extensions will

be supported in the next major revision of HTTP, when the existing constraints on

backwards-compatibility of syntax no longer apply.

6.3.4.4 Mixing Metadata

HTTP is designed to extend the generic connector interface across a network connection.

As such, it is intended to match the characteristics of that interface, including the

delineation of parameters as control data, metadata, and representation. However, two of

the most significant limitations of the HTTP/1.x protocol family are that it fails to

syntactically distinguish between representation metadata and message control

information (both transmitted as header fields) and does not allow metadata to be

effectively layered for message integrity checks.

REST identified these as limitations in the protocol early in the standardization

process, anticipating that they would lead to problems in the deployment of other features,

such as persistent connections and digest authentication. Workarounds were developed,

including adding the Connection header field to identify per-connection control data that

is unsafe to be forwarded by intermediaries, as well as an algorithm for the canonical

treatment of header field digests [46].
132

6.3.4.5 MIME Syntax

HTTP inherited its message syntax from MIME [47] in order to retain commonality with

other Internet protocols and reuse many of the standardized fields for describing media

types in messages. Unfortunately, MIME and HTTP have very different goals, and the

syntax is only designed for MIME’s goals.

In MIME, a user agent is sending a bunch of information, which is intended to be

treated as a coherent whole, to an unknown recipient with which they never directly

interact. MIME assumes that the agent would want to send all that information in one

message, since sending multiple messages across Internet mail is less efficient. Thus,

MIME syntax is constructed to package messages within a part or multipart in much the

way postal carriers wrap packages in extra paper.

In HTTP, packaging different objects within a single message doesn't make any sense

other than for secure encapsulation or packaged archives, since it is more efficient to make

separate requests for those documents not already cached. Thus, HTTP applications use

media types like HTML as containers for references to the “package” — a user agent can

then choose what parts of the package to retrieve as separate requests. Although it is

possible that HTTP could use a multipart package in which only the non-URI resources

were included after the first part, there hasn’t been much demand for it.

The problem with MIME syntax is that it assumes the transport is lossy, deliberately

corrupting things like line breaks and content lengths. The syntax is therefore verbose and

inefficient for any system not based on a lossy transport, which makes it inappropriate for

HTTP. Since HTTP/1.1 has the capability to support deployment of incompatible

protocols, retaining the MIME syntax won’t be necessary for the next major version of
133

HTTP, even though it will likely continue to use the many standardized protocol elements

for representation metadata.

6.3.5 Matching Responses to Requests

HTTP messages fail to be self-descriptive when it comes to describing which response

belongs with which request. Early HTTP was based on a single request and response per

connection, so there was no perceived need for message control data that would tie the

response back to the request that invoked it. Therefore, the ordering of requests

determines the ordering of responses, which means that HTTP relies on the transport

connection to determine the match.

HTTP/1.1, though defined to be independent of the transport protocol, still assumes

that communication takes place on a synchronous transport. It could easily be extended to

work on an asynchronous transport, such as e-mail, through the addition of a request

identifier. Such an extension would be useful for agents in a broadcast or multicast

situation, where responses might be received on a channel different from that of the

request. Also, in a situation where many requests are pending, it would allow the server to

choose the order in which responses are transferred, such that smaller or more significant

responses are sent first.

6.4 Technology Transfer

Although REST had its most direct influence over the authoring of Web standards,

validation of its use as an architectural design model came through the deployment of the

standards in the form of commercial-grade implementations.
134

6.4.1 Deployment experience with libwww-perl

My involvement in the definition of Web standards began with development of the

maintenance robot MOMspider [39] and its associated protocol library, libwww-perl.

Modeled after the original libwww developed by Tim Berners-Lee and the WWW project

at CERN, libwww-perl provided a uniform interface for making Web requests and

interpreting Web responses for client applications written in the Perl language [134]. It

was the first Web protocol library to be developed independent of the original CERN

project, reflecting a more modern interpretation of the Web interface than was present in

older code bases. This interface became the basis for designing REST.

libwww-perl consisted of a single request interface that used Perl’s self-evaluating

code features to dynamically load the appropriate transport protocol package based on the

scheme of the requested URI. For example, when asked to make a “GET” request on the

URL <http://www.ebuilt.com/>, libwww-perl would extract the scheme from the URL

(“http”) and use it to construct a call to wwwhttp’request(), using an interface that was

common to all types of resources (HTTP, FTP, WAIS, local files, etc.). In order to achieve

this generic interface, the library treated all calls in much the same way as an HTTP proxy.

It provided an interface using Perl data structures that had the same semantics as an HTTP

request, regardless of the type of resource.

libwww-perl demonstrated the benefits of a generic interface. Within a year of its

initial release, over 600 independent software developers were using the library for their

own client tools, ranging from command-line download scripts to full-blown browsers. It

is currently the basis for most Web system administration tools.
135

6.4.2 Deployment experience with Apache

As the specification effort for HTTP began to take the form of complete specifications, we

needed server software that could both effectively demonstrate the proposed standard

protocol and serve as a test-bed for worthwhile extensions. At the time, the most popular

HTTP server (httpd) was the public domain software developed by Rob McCool at the

National Center for Supercomputing Applications, University of Illinois, Urbana-

Champaign (NCSA). However, development had stalled after Rob left NCSA in mid-

1994, and many webmasters had developed their own extensions and bug fixes that were

in need of a common distribution. A group of us created a mailing list for the purpose of

coordinating our changes as “patches” to the original source. In the process, we created

the Apache HTTP Server Project [89].

The Apache project is a collaborative software development effort aimed at creating a

robust, commercial-grade, full-featured, open-source software implementation of an

HTTP server. The project is jointly managed by a group of volunteers located around the

world, using the Internet and the Web to communicate, plan, and develop the server and

its related documentation. These volunteers are known as the Apache Group. More

recently, the group formed the nonprofit Apache Software Foundation to act as a legal and

financial umbrella organization for supporting continued development of the Apache open

source projects.

Apache became known for both its robust behavior in response to the varied demands

of an Internet service and for its rigorous implementation of the HTTP protocol standards.

I served as the “protocol cop” within the Apache Group, writing code for the core HTTP

parsing functions, supporting the efforts of others by explaining the standards, and acting
136

as an advocate for the Apache developers’ views of “the right way to implement HTTP”

within the standards forums. Many of the lessons described in this chapter were learned as

a result of creating and testing various implementations of HTTP within the Apache

project, and subjecting the theories behind the protocol to the Apache Group’s critical

review.

Apache httpd is widely regarded as one of the most successful software projects, and

one of the first open-source software products to dominate a market in which there exists

significant commercial competition. The July 2000 Netcraft survey of public Internet

websites found over 20 million sites based on the Apache software, representing over 65%

of all sites surveyed [http://www.netcraft.com/survey/]. Apache was the first major server

to support the HTTP/1.1 protocol and is generally considered the reference

implementation against which all client software is tested. The Apache Group received the

1999 ACM Software System Award as recognition of our impact on the standards for the

Web architecture.

6.4.3 Deployment of URI and HTTP/1.1-compliant Software

In addition to Apache, many other projects, both commercial and open-source in nature,

have adopted and deployed software products based on the protocols of the modern Web

architecture. Though it may be only a coincidence, Microsoft Internet Explorer surpassed

Netscape Navigator in the Web browser market share shortly after they were the first

major browser to implement the HTTP/1.1 client standard. In addition, many of the

individual HTTP extensions that were defined during the standardization process, such as

the Host header field, have now reached universal deployment.
137

The REST architectural style succeeded in guiding the design and deployment of the

modern Web architecture. To date, there have been no significant problems caused by the

introduction of the new standards, even though they have been subject to gradual and

fragmented deployment alongside legacy Web applications. Furthermore, the new

standards have had a positive effect on the robustness of the Web and enabled new

methods for improving user-perceived performance through caching hierarchies and

content distribution networks.

6.5 Architectural Lessons

There are a number of general architectural lessons to be learned from the modern Web

architecture and the problems identified by REST.

6.5.1 Advantages of a Network-based API

What distinguishes the modern Web from other middleware [22] is the way in which it

uses HTTP as a network-based Application Programming Interface (API). This was not

always the case. The early Web design made use of a library package, CERN libwww, as

the single implementation library for all clients and servers. CERN libwww provided a

library-based API for building interoperable Web components.

A library-based API provides a set of code entry points and associated symbol/

parameter sets so that a programmer can use someone else’s code to do the dirty work of

maintaining the actual interface between like systems, provided that the programmer

obeys the architectural and language restrictions that come with that code. The assumption

is that all sides of the communication use the same API, and therefore the internals of the

interface are only important to the API developer and not the application developer.
138

The single library approach ended in 1993 because it did not match the social

dynamics of the organizations involved in developing the Web. When the team at NCSA

increased the pace of Web development with a much larger development team than had

ever been present at CERN, the libwww source was “forked” (split into separately

maintained code bases) so that the folks at NCSA would not have to wait for CERN to

catch-up with their improvements. At the same time, independent developers such as

myself began developing protocol libraries for languages and platforms not yet supported

by the CERN code. The design of the Web had to shift from the development of a

reference protocol library to the development of a network-based API, extending the

desired semantics of the Web across multiple platforms and implementations.

A network-based API is an on-the-wire syntax, with defined semantics, for application

interactions. A network-based API does not place any restrictions on the application code

aside from the need to read/write to the network, but does place restrictions on the set of

semantics that can be effectively communicated across the interface. On the plus side,

performance is only bounded by the protocol design and not by any particular

implementation of that design.

A library-based API does a lot more for the programmer, but in doing so creates a

great deal more complexity and baggage than is needed by any one system, is less portable

in a heterogeneous network, and always results in genericity being preferred over

performance. As a side-effect, it also leads to lazy development (blaming the API code for

everything) and failure to account for non-cooperative behavior by other parties in the

communication.
139

However, it is important to keep in mind that there are various layers involved in any

architecture, including that of the modern Web. Systems like the Web use one library API

(sockets) in order to access several network-based APIs (e.g., HTTP and FTP), but the

socket API itself is below the application-layer. Likewise, libwww is an interesting cross-

breed in that it has evolved into a library-based API for accessing a network-based API,

and thus provides reusable code without assuming other communicating applications are

using libwww as well.

This is in contrast to middleware like CORBA [97]. Since CORBA only allows

communication via an ORB, its transfer protocol, IIOP, assumes too much about what the

parties are communicating. HTTP request messages include standardized application

semantics, whereas IIOP messages do not. The “Request” token in IIOP only supplies

directionality so that the ORB can route it according to whether the ORB itself is supposed

to reply (e.g., “LocateRequest”) or if it will be interpreted by an object. The semantics are

expressed by the combination of an object key and operation, which are object-specific

rather than standardized across all objects.

An independent developer can generate the same bits as an IIOP request without using

the same ORB, but the bits themselves are defined by the CORBA API and its Interface

Definition Language (IDL). They need a UUID generated by an IDL compiler, a

structured binary content that mirrors that IDL operation's signature, and the definition of

the reply data type(s) according to the IDL specification. The semantics are thus not

defined by the network interface (IIOP), but by the object's IDL spec. Whether this is a

good thing or not depends on the application — for distributed objects it is a necessity, for

the Web it isn't.
140

Why is this important? Because it differentiates a system where network

intermediaries can be effective agents from a system where they can be, at most, routers.

This kind of difference is also seen in the interpretation of a message as a unit or as a

stream. HTTP allows the recipient or the sender to decide that on their own. CORBA IDL

doesn’t even allow streams (yet), but even when it does get extended to support streams,

both sides of the communication will be tied to the same API, rather than being free to use

whatever is most appropriate for their type of application.

6.5.2 HTTP is not RPC

People often mistakenly refer to HTTP as a remote procedure call (RPC) [23] mechanism

simply because it involves requests and responses. What distinguishes RPC from other

forms of network-based application communication is the notion of invoking a procedure

on the remote machine, wherein the protocol identifies the procedure and passes it a fixed

set of parameters, and then waits for the answer to be supplied within a return message

using the same interface. Remote method invocation (RMI) is similar, except that the

procedure is identified as an {object, method} tuple rather than a service procedure.

Brokered RMI adds name service indirection and a few other tricks, but the interface is

basically the same.

What distinguishes HTTP from RPC isn’t the syntax. It isn’t even the different

characteristics gained from using a stream as a parameter, though that helps to explain

why existing RPC mechanisms were not usable for the Web. What makes HTTP

significantly different from RPC is that the requests are directed to resources using a

generic interface with standard semantics that can be interpreted by intermediaries almost
141

as well as by the machines that originate services. The result is an application that allows

for layers of transformation and indirection that are independent of the information origin,

which is very useful for an Internet-scale, multi-organization, anarchically scalable

information system. RPC mechanisms, in contrast, are defined in terms of language APIs,

not network-based applications.

6.5.3 HTTP is not a Transport Protocol

HTTP is not designed to be a transport protocol. It is a transfer protocol in which the

messages reflect the semantics of the Web architecture by performing actions on resources

through the transfer and manipulation of representations of those resources. It is possible

to achieve a wide range of functionality using this very simple interface, but following the

interface is required in order for HTTP semantics to remain visible to intermediaries.

That is why HTTP goes through firewalls. Most of the recently proposed extensions to

HTTP, aside from WebDAV [60], have merely used HTTP as a way to move other

application protocols through a firewall, which is a fundamentally misguided idea. Not

only does it defeat the purpose of having a firewall, but it won’t work for the long term

because firewall vendors will simply have to perform additional protocol filtering. It

therefore makes no sense to do those extensions on top of HTTP, since the only thing

HTTP accomplishes in that situation is to add overhead from a legacy syntax. A true

application of HTTP maps the protocol user’s actions to something that can be expressed

using HTTP semantics, thus creating a network-based API to services which can be

understood by agents and intermediaries without any knowledge of the application.
142

6.5.4 Design of Media Types

One aspect of REST that is unusual for an architectural style is the degree to which it

influences the definition of data elements within the Web architecture.

6.5.4.1 Application State in a Network-based System

REST defines a model of expected application behavior which supports simple and robust

applications that are largely immune from the partial failure conditions that beset most

network-based applications. However, that doesn’t stop application developers from

introducing features which violate the model. The most frequent violations are in regard to

the constraints on application state and stateless interaction.

Architectural mismatches due to misplaced application state are not limited to HTTP

cookies. The introduction of “frames” to the Hypertext Markup Language (HTML) caused

similar confusion. Frames allow a browser window to be partitioned into subwindows,

each with its own navigational state. Link selections within a subwindow are

indistinguishable from normal transitions, but the resulting response representation is

rendered within the subwindow instead of the full browser application workspace. This is

fine provided that no link exits the realm of information that is intended for subwindow

treatment, but when it does occur the user finds themself viewing one application wedged

within the subcontext of another application.

For both frames and cookies, the failure was in providing indirect application state that

could not be managed or interpreted by the user agent. A design that placed this

information within a primary representation, thereby informing the user agent on how to

manage the hypermedia workspace for a specified realm of resources, could have
143

accomplished the same tasks without violating the REST constraints, while leading to a

better user interface and less interference with caching.

6.5.4.2 Incremental Processing

By including latency reduction as an architectural goal, REST can differentiate media

types (the data format of representations) according to their user-perceived performance.

Size, structure, and capacity for incremental rendering all have an impact on the latency

encountered transferring, rendering, and manipulating representation media types, and

thus can significantly impact system performance.

HTML [18] is an example of a media type that, for the most part, has good latency

characteristics. Information within early HTML could be rendered as it was received,

because all of the rendering information was available early — within the standardized

definitions of the small set of mark-up tags that made up HTML. However, there are

aspects of HTML that were not designed well for latency. Examples include: placement of

embedded metadata within the HEAD of a document, resulting in optional information

needing to be transferred and processed before the rendering engine can read the parts that

display something useful to the user [93]; embedded images without rendering size hints,

requiring that the first few bytes of the image (the part that contains the layout size) be

received before the rest of the surrounding HTML can be displayed; dynamically sized

table columns, requiring that the renderer read and determine sizes for the entire table

before it can start displaying the top; and, lazy rules regarding the parsing of malformed

mark-up syntax, often requiring that the rendering engine parse through an entire file

before it can determine that one key mark-up character is missing.
144

6.5.4.3 Java versus JavaScript

REST can also be used to gain insight into why some media types have had greater

adoption within the Web architecture than others, even when the balance of developer

opinion is not in their favor. The case of Java applets versus JavaScript is one example.

JavaTM [45] is a popular programming language that was originally developed for

applications within television set-top boxes, but first gained notoriety when it was

introduced to the Web as a means for implementing code-on-demand functionality.

Although the language received a tremendous amount of press support from its owner,

Sun Microsystems, Inc., and rave reviews from software developers seeking an alternative

to the C++ language, it has failed to be widely adopted by application developers for code-

on-demand within the Web.

Shortly after Java’s introduction, developers at Netscape Communications

Corporation created a separate language for embedded code-on-demand, originally called

LiveScript, but later changed to the name JavaScript for marketing reasons (the two

languages have relatively little in common other than that) [44]. Although initially derided

for being embedded with HTML and yet not compatible with proper HTML syntax,

JavaScript usage has steadily increased ever since its introduction.

The question is: why is JavaScript more successful on the Web than Java? It certainly

isn’t because of its technical quality as a language, since both its syntax and execution

environment are considered poor when compared to Java. It also isn’t because of

marketing: Sun far outspent Netscape in that regard, and continues to do so. It isn’t

because of any intrinsic characteristics of the languages either, since Java has been more

successful than JavaScript within all other programming areas (stand-alone applications,
145

servlets, etc.). In order to better understand the reasons for this discrepancy, we need to

evaluate Java in terms of its characteristics as a representation media type within REST.

JavaScript better fits the deployment model of Web technology. It has a much lower

entry-barrier, both in terms of its overall complexity as a language and the amount of

initial effort required by a novice programmer to put together their first piece of working

code. JavaScript also has less impact on the visibility of interactions. Independent

organizations can read, verify, and copy the JavaScript source code in the same way that

they could copy HTML. Java, in contrast, is downloaded as binary packaged archives —

the user is therefore left to trust the security restrictions within the Java execution

environment. Likewise, Java has many more features that are considered questionable to

allow within a secure environment, including the ability to send RMI requests back to the

origin server. RMI does not support visibility for intermediaries.

Perhaps the most important distinction between the two, however, is that JavaScript

causes less user-perceived latency. JavaScript is usually downloaded as part of the

primary representation, whereas Java applets require a separate request. Java code, once

converted to the byte code format, is much larger than typical JavaScript. Finally, whereas

JavaScript can be executed while the rest of the HTML page is downloading, Java requires

that the complete package of class files be downloaded and installed before the application

can begin. Java, therefore, does not support incremental rendering.

Once the characteristics of the languages are laid out along the same lines as the

rationale behind REST’s constraints, it becomes much easier to evaluate the technologies

in terms of their behavior within the modern Web architecture.
146

6.6 Summary

This chapter described the experiences and lessons learned from applying REST while

authoring the Internet standards for the Hypertext Transfer Protocol (HTTP) and Uniform

Resource Identifiers (URI). These two specifications define the generic interface used by

all component interactions on the Web. In addition, I have described the experiences and

lessons learned from the deployment of these technologies in the form of the libwww-perl

client library, the Apache HTTP Server Project, and other implementations of the protocol

standards.
147

CONCLUSIONS

Each one of us has, somewhere in his heart, the dream to make a living world,
a universe. Those of us who have been trained as architects have this desire
perhaps at the very center of our lives: that one day, somewhere, somehow, we
shall build one building which is wonderful, beautiful, breathtaking, a place
where people can walk and dream for centuries.

— Christopher Alexander [3]

At the beginning of our efforts within the Internet Engineering Taskforce to define the

existing Hypertext Transfer Protocol (HTTP/1.0) [19] and design the extensions for the

new standards of HTTP/1.1 [42] and Uniform Resource Identifiers (URI) [21], I

recognized the need for a model of how the World Wide Web should work. This idealized

model of the interactions within an overall Web application, referred to as the

Representational State Transfer (REST) architectural style, became the foundation for the

modern Web architecture, providing the guiding principles by which flaws in the

preexisting architecture could be identified and extensions validated prior to deployment.

REST is a coordinated set of architectural constraints that attempts to minimize

latency and network communication while at the same time maximizing the independence

and scalability of component implementations. This is achieved by placing constraints on

connector semantics where other styles have focused on component semantics. REST

enables the caching and reuse of interactions, dynamic substitutability of components, and

processing of actions by intermediaries, thereby meeting the needs of an Internet-scale

distributed hypermedia system.
148

The following contributions to the field of Information and Computer Science have

been made as part of this dissertation:

• a framework for understanding software architecture through architectural styles,
including a consistent set of terminology for describing software architecture;

• a classification of architectural styles for network-based application software by
the architectural properties they would induce when applied to the architecture for
a distributed hypermedia system;

• REST, a novel architectural style for distributed hypermedia systems; and,

• application and evaluation of the REST architectural style in the design and
deployment of the architecture for the modern World Wide Web.

The modern Web is one instance of a REST-style architecture. Although Web-based

applications can include access to other styles of interaction, the central focus of its

protocol and performance concerns is distributed hypermedia. REST elaborates only those

portions of the architecture that are considered essential for Internet-scale distributed

hypermedia interaction. Areas for improvement of the Web architecture can be seen where

existing protocols fail to express all of the potential semantics for component interaction,

and where the details of syntax can be replaced with more efficient forms without

changing the architecture capabilities. Likewise, proposed extensions can be compared to

REST to see if they fit within the architecture; if not, it is more efficient to redirect that

functionality to a system running in parallel with a more applicable architectural style.

In an ideal world, the implementation of a software system would exactly match its

design. Some features of the modern Web architecture do correspond exactly to their

design criteria in REST, such as the use of URI [21] as resource identifiers and the use of

Internet media types [48] to identify representation data formats. However, there are also

some aspects of the modern Web protocols that exist in spite of the architectural design,
149

due to legacy experiments that failed (but must be retained for backwards compatibility)

and extensions deployed by developers unaware of the architectural style. REST provides

a model not only for the development and evaluation of new features, but also for the

identification and understanding of broken features.

The World Wide Web is arguably the world’s largest distributed application.

Understanding the key architectural principles underlying the Web can help explain its

technical success and may lead to improvements in other distributed applications,

particularly those that are amenable to the same or similar methods of interaction. REST

contributes both the rationale behind the modern Web’s software architecture and a

significant lesson in how software engineering principles can be systematically applied in

the design and evaluation of a real software system.

For network-based applications, system performance is dominated by network

communication. For a distributed hypermedia system, component interactions consist of

large-grain data transfers rather than computation-intensive tasks. The REST style was

developed in response to those needs. Its focus upon the generic connector interface of

resources and representations has enabled intermediate processing, caching, and

substitutability of components, which in turn has allowed Web-based applications to scale

from 100,000 requests/day in 1994 to 600,000,000 requests/day in 1999.

The REST architectural style has been validated through six years of development of

the HTTP/1.0 [19] and HTTP/1.1 [42] standards, elaboration of the URI [21] and relative

URL [40] standards, and successful deployment of several dozen independently

developed, commercial-grade software systems within the modern Web architecture. It
150

has served as both a model for design guidance and as an acid test for architectural

extensions to the Web protocols.

Future work will focus on extending the architectural guidance toward the

development of a replacement for the HTTP/1.x protocol family, using a more efficient

tokenized syntax, but without losing the desirable properties identified by REST. The

needs of wireless devices, which have many characteristics in common with the principles

behind REST, will motivate further enhancements for application-level protocol design

and architectures involving active intermediaries. There has also been some interest in

extending REST to consider variable request priorities, differentiated quality-of-service,

and representations consisting of continuous data streams, such as those generated by

broadcast audio and video sources.
151

REFERENCES

1. G. D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software Engineering
and Methodology, 4(4), Oct. 1995, pp. 319–364. A shorter version also appeared
as: Using style to understand descriptions of software architecture. In Proceedings
of the First ACM SIGSOFT Symposium on the Foundations of Software
Engineering (SIGSOFT‘93), Los Angeles, CA, Dec. 1993, pp. 9–20.

2. Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985.

3. C. Alexander. The Timeless Way of Building. Oxford University Press, New York,
1979.

4. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and
S. Angel. A Pattern Language. Oxford University Press, New York, 1977.

5. R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3), July 1997. A
shorter version also appeared as: Formalizing architectural connection. In
Proceedings of the 16th International Conference on Software Engineering,
Sorrento, Italy, May 1994, pp. 71–80. Also as: Beyond Definition/Use:
Architectural Interconnection. In Proceedings of the ACM Interface Definition
Language Workshop, Portland, Oregon, SIGPLAN Notices, 29(8), Aug. 1994.

6. G. Andrews. Paradigms for process interaction in distributed programs. ACM
Computing Surveys, 23(1), Mar. 1991, pp. 49–90.

7. F. Anklesaria, et al. The Internet Gopher protocol (a distributed document search
and retrieval protocol). Internet RFC 1436, Mar. 1993.

8. D. J. Barrett, L. A. Clarke, P. L. Tarr, A. E. Wise. A framework for event-based
software integration. ACM Transactions on Software Engineering and
Methodology, 5(4), Oct. 1996, pp. 378–421.

9. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, Reading, Mass., 1998.

10. D. Batory, L. Coglianese, S. Shafer, and W. Tracz. The ADAGE avionics reference
architecture. In Proceedings of AIAA Computing in Aerospace 10, San Antonio,
1995.
152

11. T. Berners-Lee, R. Cailliau, and J.-F. Groff. World Wide Web. Flyer distributed at
the 3rd Joint European Networking Conference, Innsbruck, Austria, May 1992.

12. T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann. World-Wide Web: The
information universe. Electronic Networking: Research, Applications and Policy,
2(1), Meckler Publishing, Westport, CT, Spring 1992, pp. 52–58.

13. T. Berners-Lee and R. Cailliau. World-Wide Web. In Proceedings of Computing in
High Energy Physics 92, Annecy, France, 23–27 Sep. 1992.

14. T. Berners-Lee, R. Cailliau, C. Barker, and J.-F. Groff. W3 Project: Assorted
design notes. Published on the Web, Nov. 1992. Archived at
<http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
WorkingNotes/Overview.html>, Sep. 2000.

15. T. Berners-Lee. Universal Resource Identifiers in WWW. Internet RFC 1630,
June 1994.

16. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and A. Secret. The
World-Wide Web. Communications of the ACM, 37(8), Aug. 1994, pp. 76–82.

17. T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators
(URL). Internet RFC 1738, Dec. 1994.

18. T. Berners-Lee and D. Connolly. Hypertext Markup Language — 2.0. Internet
RFC 1866, Nov. 1995.

19. T. Berners-Lee, R. T. Fielding, and H. F. Nielsen. Hypertext Transfer Protocol —
HTTP/1.0. Internet RFC 1945, May 1996.

20. T. Berners-Lee. WWW: Past, present, and future. IEEE Computer, 29(10),
Oct. 1996, pp. 69–77.

21. T. Berners-Lee, R. T. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic syntax. Internet RFC 2396, Aug. 1998.

22. P. Bernstein. Middleware: A model for distributed systems services.
Communications of the ACM, Feb. 1996, pp. 86–98.

23. A. D. Birrell and B. J. Nelson. Implementing remote procedure call. ACM
Transactions on Computer Systems, 2, Jan. 1984, pp. 39–59.

24. M. Boasson. The artistry of software architecture. IEEE Software, 12(6),
Nov. 1995, pp. 13–16.
153

25. G. Booch. Object-oriented development. IEEE Transactions on Software
Engineering, 12(2), Feb. 1986, pp. 211–221.

26. C. Brooks, M. S. Mazer, S. Meeks, and J. Miller. Application-specific proxy
servers as HTTP stream transducers. In Proceedings of the Fourth International
World Wide Web Conference, Boston, Massachusetts, Dec. 1995, pp. 539–548.

27. F. Buschmann and R. Meunier. A system of patterns. Coplien and Schmidt (eds.),
Pattern Languages of Program Design, Addison-Wesley, 1995, pp. 325–343.

28. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented Software Architecture: A system of patterns. John Wiley & Sons
Ltd., England, 1996.

29. M. R. Cagan. The HP SoftBench Environment: An architecture for a new
qeneration of software tools. Hewlett-Packard Journal, 41(3), June 1990,
pp. 36–47.

30. J. R. Cameron. An overview of JSD. IEEE Transactions on Software Engineering,
12(2), Feb. 1986, pp. 222–240.

31. R. S. Chin and S. T. Chanson. Distributed object-based programming systems.
ACM Computing Surveys, 23(1), Mar. 1991, pp. 91–124.

32. D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new
generation of protocols. In Proceedings of ACM SIGCOMM‘90 Symposium,
Philadelphia, PA, Sep. 1990, pp. 200–208.

33. J. O. Coplien and D. C. Schmidt, ed. Pattern Languages of Program Design.
Addison-Wesley, Reading, Mass., 1995.

34. J. O. Coplien. Idioms and Patterns as Architectural Literature. IEEE Software,
14(1), Jan. 1997, pp. 36–42.

35. E. M. Dashofy, N. Medvidovic, R. N. Taylor. Using off-the-shelf middleware to
implement connectors in distributed software architectures. In Proceedings of the
1999 International Conference on Software Engineering, Los Angeles,
May 16–22, 1999, pp. 3–12.

36. F. Davis, et. al. WAIS Interface Protocol Prototype Functional Specification
(v.1.5). Thinking Machines Corporation, April 1990.

37. F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-
the-small. IEEE Transactions on Software Engineering, SE-2(2), June 1976,
pp. 80–86.
154

38. E. Di Nitto and D. Rosenblum. Exploiting ADLs to specify architectural styles
induced by middleware infrastructures. In Proceedings of the 1999 International
Conference on Software Engineering, Los Angeles, May 16–22, 1999, pp. 13–22.

39. R. T. Fielding. Maintaining distributed hypertext infostructures: Welcome to
MOMspider’s web. Computer Networks and ISDN Systems, 27(2), Nov. 1994,
pp. 193–204.

40. R. T. Fielding. Relative Uniform Resource Locators. Internet RFC 1808,
June 1995.

41. R. T. Fielding, E. J. Whitehead, Jr., K. M. Anderson, G. Bolcer, P. Oreizy, and
R. N. Taylor. Web-based development of complex information products.
Communications of the ACM, 41(8), Aug. 1998, pp. 84–92.

42. R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. Internet RFC 2616,
June 1999. [Obsoletes RFC 2068, Jan. 1997.]

43. R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture.
In Proceedings of the 2000 International Conference on Software Engineering
(ICSE 2000), Limerick, Ireland, June 2000, pp. 407–416.

44. D. Flanagan. JavaScript: The Definitive Guide, 3rd edition. O’Reilly &
Associates, Sebastopol, CA, 1998.

45. D. Flanagan. JavaTM in a Nutshell, 3rd edition. O’Reilly & Associates, Sebastopol,
CA, 1999.

46. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
E. Sink, and L. Stewart. HTTP Authentication: Basic and Digest Access
Authentication. Internet RFC 2617, June 1999.

47. N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies. Internet RFC 2045, Nov. 1996.

48. N. Freed, J. Klensin, and J. Postel. Multipurpose Internet Mail Extensions (MIME)
Part Four: Registration Procedures. Internet RFC 2048, Nov. 1996.

49. M. Fridrich and W. Older. Helix: The architecture of the XMS distributed file
system. IEEE Software, 2, May 1985, pp. 21–29.

50. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE
Transactions on Software Engineering, 24(5), May 1998, pp. 342–361.
155

51. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading, Mass., 1995.

52. D. Garlan and E. Ilias. Low-cost, adaptable tool integration policies for integrated
environments. In Proceedings of the ACM SIGSOFT ‘90: Fourth Symposium on
Software Development Environments, Dec. 1990, pp. 1–10.

53. D. Garlan and M. Shaw. An introduction to software architecture. Ambriola &
Tortola (eds.), Advances in Software Engineering & Knowledge Engineering,
vol. II, World Scientific Pub Co., Singapore, 1993, pp. 1–39.

54. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of the Second ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SIGSOFT‘94), New Orleans, Dec. 1994,
pp. 175–188.

55. D. Garlan and D. E. Perry. Introduction to the special issue on software
architecture. IEEE Transactions on Software Engineering, 21(4), Apr. 1995,
pp. 269–274.

56. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch, or, Why it’s hard
to build systems out of existing parts. In Proceedings of the 17th International
Conference on Software Engineering, Seattle, WA, 1995. Also appears as:
Architectural mismatch: Why reuse is so hard. IEEE Software, 12(6), Nov. 1995,
pp. 17–26.

57. D. Garlan, R. Monroe, and D. Wile. ACME: An architecture description language.
In Proceedings of CASCON‘97, Nov. 1997.

58. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice-Hall, 1991.

59. S. Glassman. A caching relay for the World Wide Web. Computer Networks and
ISDN Systems, 27(2), Nov. 1994, pp. 165–173.

60. Y. Goland, E. J. Whitehead, Jr., A. Faizi, S. Carter, and D. Jensen. HTTP
Extensions for Distributed Authoring — WEBDAV. Internet RFC 2518,
Feb. 1999.

61. K. Grønbaek and R. H. Trigg. Design issues for a Dexter-based hypermedia
system. Communications of the ACM, 37(2), Feb. 1994, pp. 41–49.

62. B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Balabanovic. A
domain-specific software architecture for adaptive intelligent systems. IEEE
Transactions on Software Engineering, 21(4), Apr. 1995, pp. 288–301.
156

63. J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of HTTP
over several transport protocols. IEEE/ACM Transactions on Networking, 5(5),
Oct. 1997, pp. 616–630.

64. K. Holtman and A. Mutz. Transparent content negotiation in HTTP. Internet
RFC 2295, Mar. 1998.

65. P. Inverardi and A. L. Wolf. Formal specification and analysis of software
architectures using the chemical abstract machine model. IEEE Transactions on
Software Engineering, 21(4), Apr. 1995, pp. 373–386.

66. ISO/IEC JTC1/SC21/WG7. Reference Model of Open Distributed Processing.
ITU-T X.901: ISO/IEC 10746-1, 07 June 1995.

67. M. Jackson. Problems, methods, and specialization. IEEE Software, 11(6),
[condensed from Software Engineering Journal], Nov. 1994. pp. 57–62.

68. R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: A method for analyzing
the properties of software architectures. In Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 81–90.

69. R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G. Woods. Experience
with performing architecture tradeoff analysis. In Proceedings of the 1999
International Conference on Software Engineering, Los Angeles, May 16–22,
1999, pp. 54–63.

70. N. L. Kerth and W. Cunningham. Using patterns to improve our architectural
vision. IEEE Software, 14(1), Jan. 1997, pp. 53–59.

71. R. Khare and S. Lawrence. Upgrading to TLS within HTTP/1.1. Internet
RFC 2817, May 2000.

72. G. E. Krasner and S. T. Pope. A cookbook for using the Model-View-Controller
user interface paradigm in Smalltalk-80. Journal of Object Oriented
Programming, 1(3), Aug.–Sep. 1988, pp. 26–49.

73. D. Kristol and L. Montulli. HTTP State Management Mechanism. Internet
RFC 2109, Feb. 1997.

74. P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6),
Nov. 1995, pp. 42–50.

75. D. Le Métayer. Describing software architectural styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7), July 1998, pp. 521–533.
157

76. W. C. Loerke. On Style in Architecture. F. Wilson, Architecture: Fundamental
Issues, Van Nostrand Reinhold, New York, 1990, pp. 203–218.

77. D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4), Apr. 1995, pp. 336–355.

78. D. C. Luckham and J. Vera. An event-based architecture definition language.
IEEE Transactions on Software Engineering, 21(9), Sep. 1995, pp. 717–734.

79. A. Luotonen and K. Altis. World-Wide Web proxies. Computer Networks and
ISDN Systems, 27(2), Nov. 1994, pp. 147–154.

80. P. Maes. Concepts and experiments in computational reflection. In Proceedings of
OOPSLA ‘87, Orlando, Florida, Oct. 1987, pp. 147–155.

81. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of the 5th European Software Engineering
Conference (ESEC‘95), Sitges, Spain, Sep. 1995, pp. 137–153.

82. J. Magee and J. Kramer. Dynamic structure in software architectures. In
Proceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering (SIGSOFT‘96), San Francisco, Oct. 1996, pp. 3–14.

83. F. Manola. Technologies for a Web object model. IEEE Internet Computing, 3(1),
Jan.–Feb. 1999, pp. 38–47.

84. H. Maurer. HyperWave: The Next-Generation Web Solution. Addison-Wesley,
Harlow, England, 1996.

85. M. J. Maybee, D. H. Heimbigner, and L. J. Osterweil. Multilanguage
interoperability in distributed systems: Experience Report. In Proceedings 18th
International Conference on Software Engineering, Berlin, Germany, Mar. 1996.

86. N. Medvidovic and R. N. Taylor. A framework for classifying and comparing
architecture description languages. In Proceedings of the 6th European Software
Engineering Conference held jointly with the 5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Zurich, Switzerland, Sep. 1997,
pp. 60–76.

87. N. Medvidovic. Architecture-based Specification-time Software Evolution. Ph.D.
Dissertation, University of California, Irvine, Dec. 1998.

88. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and environment
for architecture-based software development and evolution. In Proceedings of the
158

1999 International Conference on Software Engineering, Los Angeles,
May 16–22, 1999, pp. 44–53.

89. A. Mockus, R. T. Fielding, and J. Herbsleb. A case study of open source software
development: The Apache server. In Proceedings of the 2000 International
Conference on Software Engineering (ICSE 2000), Limerick, Ireland, June 2000,
pp. 263–272.

90. J. Mogul, R. Fielding, J. Gettys, and H. Frystyk. Use and Interpretation of HTTP
Version Numbers. Internet RFC 2145, May 1997.

91. R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. Architectural Styles,
Design Patterns, and Objects. IEEE Software, 14(1), Jan. 1997, pp. 43–52.

92. M. Moriconi, X. Qian, and R. A. Riemenscheider. Correct architecture refinement.
IEEE Transactions on Software Engineering, 21(4), Apr. 1995, pp. 356–372.

93. H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H. Lie, and C. Lilley.
Network Performance Effects of HTTP/1.1, CSS1, and PNG. Proceedings of ACM
SIGCOMM ’97, Cannes, France, Sep. 1997.

94. H. F. Nielsen, P. Leach, and S. Lawrence. HTTP extension framework, Internet
RFC 2774, Feb. 2000.

95. H. Penny Nii. Blackboard systems. AI Magazine, 7(3):38–53 and 7(4):82–107,
1986.

96. Object Management Group. Object Management Architecture Guide, Rev. 3.0.
Soley & Stone (eds.), New York: J. Wiley, 3rd ed., 1995.

97. Object Management Group. The Common Object Request Broker: Architecture
and Specification (CORBA 2.1). <http://www.omg.org/>, Aug. 1997.

98. P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software
evolution. In Proceedings of the 1998 International Conference on Software
Engineering, Kyoto, Japan, Apr. 1998.

99. P. Oreizy. Decentralized software evolution. Unpublished manuscript (Phase II
Survey Paper), Dec. 1998.

100. V. N. Padmanabhan and J. C. Mogul. Improving HTTP latency. Computer
Networks and ISDN Systems, 28, Dec. 1995, pp. 25–35.

101. D. L. Parnas. Information distribution aspects of design methodology. In
Proceedings of IFIP Congress 71, Ljubljana, Aug. 1971, pp. 339–344.
159

102. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), Dec. 1972, pp. 1053–1058.

103. D. L. Parnas. Designing software for ease of extension and contraction. IEEE
Transactions on Software Engineering, SE-5(3), Mar. 1979.

104. D. L. Parnas, P. C. Clements, and D. M. Weiss. The modular structure of complex
systems. IEEE Transactions on Software Engineering, SE-11(3), 1985,
pp. 259–266.

105. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4), Oct. 1992, pp. 40–52.

106. J. Postel and J. Reynolds. TELNET Protocol Specification. Internet STD 8,
RFC 854, May 1983.

107. J. Postel and J. Reynolds. File Transfer Protocol. Internet STD 9, RFC 959,
Oct. 1985.

108. D. Pountain and C. Szyperski. Extensible software systems. Byte, May 1994,
pp. 57–62.

109. R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal of
Systems and Software, 6(4), Nov. 1986, pp. 307–334.

110. J. M. Purtilo. The Polylith software bus. ACM Transactions on Programming
Languages and Systems, 16(1), Jan. 1994, pp. 151–174.

111. M. Python. The Architects Sketch. Monty Python’s Flying Circus TV Show,
Episode 17, Sep. 1970. Transcript at <http://www.stone-dead.asn.au/sketches/
architec.htm>.

112. J. Rasure and M. Young. Open environment for image processing and software
development. In Proceedings of the 1992 SPIE/IS&T Symposium on Electronic
Imaging, Vol. 1659, Feb. 1992.

113. S. P. Reiss. Connecting tools using message passing in the Field environment.
IEEE Software, 7(4), July 1990, pp. 57–67.

114. D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event
observation and notification. In Proceedings of the 6th European Software
Engineering Conference held jointly with the 5th ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Zurich, Switzerland, Sep. 1997,
pp. 344–360.
160

115. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and
implementation of the Sun network filesystem. In Proceedings of the Usenix
Conference, June 1985, pp. 119–130.

116. M. Shapiro. Structure and encapsulation in distributed systems: The proxy
principle. In Proceedings of the 6th International Conference on Distributed
Computing Systems, Cambridge, MA, May 1986, pp. 198–204.

117. M. Shaw. Toward higher-level abstractions for software systems. Data &
Knowledge Engineering, 5, 1990, pp. 119–128.

118. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnick.
Abstractions for software architecture and tools to support them. IEEE
Transactions on Software Engineering, 21(4), Apr. 1995, pp. 314–335.

119. M. Shaw. Comparing architectural design styles. IEEE Software, 12(6), Nov.
1995, pp. 27–41.

120. M. Shaw. Some patterns for software architecture. Vlissides, Coplien & Kerth
(eds.), Pattern Languages of Program Design, Vol. 2, Addison-Wesley, 1996,
pp. 255–269.

121. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

122. M. Shaw and P. Clements. A field guide to boxology: Preliminary classification of
architectural styles for software systems. In Proceedings of the Twenty-First
Annual International Computer Software and Applications Conference
(COMPSAC‘97), Washington, D.C., Aug. 1997, pp. 6–13.

123. A. Sinha. Client-server computing. Communications of the ACM, 35(7), July 1992,
pp. 77–98.

124. K. Sollins and L. Masinter. Functional requirements for Uniform Resource Names.
Internet RFC 1737, Dec. 1994.

125. S. E. Spero. Analysis of HTTP performance problems. Published on the Web,
<http://metalab.unc.edu/mdma-release/http-prob.html>, 1994.

126. K. J. Sullivan and D. Notkin. Reconciling environment integration and software
evolution. ACM Transactions on Software Engineering and Methodology, 1(3),
July 1992, pp. 229–268.

127. A. S. Tanenbaum and R. van Renesse. Distributed operating systems. ACM
Computing Surveys, 17(4), Dec. 1985, pp. 419–470.
161

128. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr., J. E. Robbins,
K. A. Nies, P. Oreizy, and D. L. Dubrow. A component- and message-based
architectural style for GUI software. IEEE Transactions on Software Engineering,
22(6), June 1996, pp. 390–406.

129. W. Tephenhart and J. J. Cusick. A unified object topology. IEEE Software, 14(1),
Jan. 1997, pp. 31–35.

130. W. Tracz. DSSA (domain-specific software architecture) pedagogical example.
Software Engineering Notes, 20(3), July 1995, pp. 49–62.

131. A. Umar. Object-Oriented Client/Server Internet Environments. Prentice Hall
PTR, 1997.

132. S. Vestal. MetaH programmer’s manual, version 1.09. Technical Report,
Honeywell Technology Center, Apr. 1996.

133. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on distributed
computing. Technical Report SMLI TR-94-29, Sun Microsystems Laboratories,
Inc., Nov. 1994.

134. L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl, 2nd ed. O’Reilly
& Associates, 1996.

135. E. J. Whitehead, Jr., R. T. Fielding, and K. M. Anderson. Fusing WWW and link
server technology: One approach. In Proceedings of the 2nd Workshop on Open
Hypermedia Systems, Hypertext’96, Washington, DC, Mar. 1996, pp. 81–86.

136. A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy. Organization-based analysis of Web-object
sharing and caching. In Proceedings of the 2nd USENIX Conference on Internet
Technologies and Systems (USITS), Oct. 1999.

137. W. Zimmer. Relationships between design patterns. Coplien and Schmidt (eds.),
Pattern Languages of Program Design, Addison-Wesley, 1995, pp. 345–364.

138. H. Zimmerman. OSI reference model — The ISO model of architecture for open
systems interconnection. IEEE Transactions on Communications, 28, Apr. 1980,
pp. 425–432.
162

	Architectural Styles and the Design of Network-based Software Architectures
	DEDICATION
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	Education
	Professional Experience
	Publications
	Refereed Journal Articles
	Refereed Conference Publications
	Industry Standards
	Industry Articles
	Non-Refereed Publications
	Published Software Packages

	Formal Presentations
	Professional Activities
	Professional Associations
	Honors, Awards, Fellowships

	ABSTRACT OF THE DISSERTATION
	INTRODUCTION
	Software Architecture
	1.1 Run-time Abstraction
	1.2 Elements
	1.2.1 Components
	1.2.2 Connectors
	1.2.3 Data

	1.3 Configurations
	1.4 Properties
	1.5 Styles
	1.6 Patterns and Pattern Languages
	1.7 Views
	1.8 Related Work
	1.8.1 Design Methodologies
	1.8.2 Handbooks for Design, Design Patterns, and Pattern Languages
	1.8.3 Reference Models and Domain-specific Software Architectures (DSSA)
	1.8.4 Architecture Description Languages (ADL)
	1.8.5 Formal Architectural Models

	1.9 Summary

	Network-based Application Architectures
	2.1 Scope
	2.1.1 Network-based vs. Distributed
	2.1.2 Application Software vs. Networking Software

	2.2 Evaluating the Design of Application Architectures
	2.3 Architectural Properties of Key Interest
	2.3.1 Performance
	2.3.1.1 Network Performance
	2.3.1.2 User-perceived Performance
	2.3.1.3 Network Efficiency

	2.3.2 Scalability
	2.3.3 Simplicity
	2.3.4 Modifiability
	2.3.4.1 Evolvability
	2.3.4.2 Extensibility
	2.3.4.3 Customizability
	2.3.4.4 Configurability
	2.3.4.5 Reusability

	2.3.5 Visibility
	2.3.6 Portability
	2.3.7 Reliability

	2.4 Summary

	Network-based Architectural Styles
	3.1 Classification Methodology
	3.1.1 Selection of Architectural Styles for Classification
	3.1.2 Style-induced Architectural Properties
	3.1.3 Visualization

	3.2 Data-flow Styles
	3.2.1 Pipe and Filter (PF)
	3.2.2 Uniform Pipe and Filter (UPF)

	3.3 Replication Styles
	3.3.1 Replicated Repository (RR)
	3.3.2 Cache ($)

	3.4 Hierarchical Styles
	3.4.1 Client-Server (CS)
	3.4.2 Layered System (LS) and Layered-Client-Server (LCS)
	3.4.3 Client-Stateless-Server (CSS)
	3.4.4 Client-Cache-Stateless-Server (C$SS)
	3.4.5 Layered-Client-Cache-Stateless-Server (LC$SS)
	3.4.6 Remote Session (RS)
	3.4.7 Remote Data Access (RDA)

	3.5 Mobile Code Styles
	3.5.1 Virtual Machine (VM)
	3.5.2 Remote Evaluation (REV)
	3.5.3 Code on Demand (COD)
	3.5.4 Layered-Code-on-Demand-Client-Cache-Stateless-Server (LCODC$SS)
	3.5.5 Mobile Agent (MA)

	3.6 Peer-to-Peer Styles
	3.6.1 Event-based Integration (EBI)
	3.6.2 C2
	3.6.3 Distributed Objects
	3.6.4 Brokered Distributed Objects

	3.7 Limitations
	3.8 Related Work
	3.8.1 Classification of Architectural Styles and Patterns
	3.8.2 Distributed Systems and Programming Paradigms
	3.8.3 Middleware

	3.9 Summary

	Designing the Web Architecture: Problems and Insights
	4.1 WWW Application Domain Requirements
	4.1.1 Low Entry-barrier
	4.1.2 Extensibility
	4.1.3 Distributed Hypermedia
	4.1.4 Internet-scale
	4.1.4.1 Anarchic Scalability
	4.1.4.2 Independent Deployment

	4.2 Problem
	4.3 Approach
	4.4 Summary

	Representational State Transfer (REST)
	5.1 Deriving REST
	5.1.1 Starting with the Null Style
	5.1.2 Client-Server
	5.1.3 Stateless
	5.1.4 Cache
	5.1.5 Uniform Interface
	5.1.6 Layered System
	5.1.7 Code-On-Demand
	5.1.8 Style Derivation Summary

	5.2 REST Architectural Elements
	5.2.1 Data Elements
	5.2.1.1 Resources and Resource Identifiers
	5.2.1.2 Representations

	5.2.2 Connectors
	5.2.3 Components

	5.3 REST Architectural Views
	5.3.1 Process View
	5.3.2 Connector View
	5.3.3 Data View

	5.4 Related Work
	5.5 Summary

	Experience and Evaluation
	6.1 Standardizing the Web
	6.2 REST Applied to URI
	6.2.1 Redefinition of Resource
	6.2.2 Manipulating Shadows
	6.2.3 Remote Authoring
	6.2.4 Binding Semantics to URI
	6.2.5 REST Mismatches in URI

	6.3 REST Applied to HTTP
	6.3.1 Extensibility
	6.3.1.1 Protocol Versioning
	6.3.1.2 Extensible Protocol Elements
	6.3.1.3 Upgrade

	6.3.2 Self-descriptive Messages
	6.3.2.1 Host
	6.3.2.2 Layered Encodings
	6.3.2.3 Semantic Independence
	6.3.2.4 Transport Independence
	6.3.2.5 Size Limits
	6.3.2.6 Cache Control
	6.3.2.7 Content Negotiation

	6.3.3 Performance
	6.3.3.1 Persistent Connections
	6.3.3.2 Write-through Caching

	6.3.4 REST Mismatches in HTTP
	6.3.4.1 Differentiating Non-authoritative Responses
	6.3.4.2 Cookies
	6.3.4.3 Mandatory Extensions
	6.3.4.4 Mixing Metadata
	6.3.4.5 MIME Syntax

	6.3.5 Matching Responses to Requests

	6.4 Technology Transfer
	6.4.1 Deployment experience with libwww-perl
	6.4.2 Deployment experience with Apache
	6.4.3 Deployment of URI and HTTP/1.1-compliant Software

	6.5 Architectural Lessons
	6.5.1 Advantages of a Network-based API
	6.5.2 HTTP is not RPC
	6.5.3 HTTP is not a Transport Protocol
	6.5.4 Design of Media Types
	6.5.4.1 Application State in a Network-based System
	6.5.4.2 Incremental Processing
	6.5.4.3 Java versus JavaScript

	6.6 Summary

	CONCLUSIONS
	REFERENCES

