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Abstract

Much recent work on visual recognition aims to

scale up learning to massive, noisily-annotated

datasets. We address the problem of scaling-

up the evaluation of such models to large-scale

datasets with noisy labels. Current protocols for

doing so require a human user to either vet (re-

annotate) a small fraction of the test set and ig-

nore the rest, or else correct errors in annotation

as they are found through manual inspection of

results. In this work, we re-formulate the problem

as one of active testing, and examine strategies for

efficiently querying a user so as to obtain an accu-

rate performance estimate with minimal vetting.

We demonstrate the effectiveness of our proposed

active testing framework on estimating two perfor-

mance metrics, Precision@K and mean Average

Precision, for two popular computer vision tasks,

multi-label classification and instance segmenta-

tion. We further show that our approach is able

to save significant human annotation effort and is

more robust than alternative evaluation protocols.

1. Introduction

Visual recognition is undergoing a period of transformative

progress, due in large part to the success of deep architec-

tures trained on massive datasets with supervision. While

visual data is in ready supply, high-quality supervised la-

bels are not. One attractive solution is the exploration of

unsupervised learning. However, regardless how they are

trained, one still needs to evaluate accuracy of the result-

ing systems. Given the importance of rigorous, empirical

benchmarking, it appears impossible to avoid the costs of

assembling high-quality, human-annotated test data for test

evaluation.

Unfortunately, manually annotating ground-truth for large-

scale test datasets is often prohibitively expensive, particu-
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Figure 1. Classic methods for benchmarking algorithm perfor-

mance require a test-set with high-quality labels. While it is often

easy to obtain large-scale data with noisy labels, test evaluation

is typically carried out on only a small fraction of the data that

has been manually cleaned-up (or “vetted”). We show that one

can obtain dramatically more accurate estimates of performance

by using the vetted-set to train a statistical estimator that both (1)

reports improved estimates and (2) actively selects the next batch

of test data to vet. We demonstrate that such an “active-testing”

process can efficiently benchmark performance and and rank visual

recognition algorithms.

larly for rich annotations required to evaluate object detec-

tion and segmentation. Even simple image tag annotations

pose an incredible cost at scale 1. In contrast, obtaining

noisy or partial annotations is often far cheaper or even

free. For example, numerous social media platforms pro-

duce image and video data that are dynamically annotated

with user-provided tags (Flickr, Vine, Snapchat, Facebook,

YouTube). While much work has explored the use of such

massively-large “webly-supervised” data sources for learn-

ing (Wu et al., 2015; Yu et al., 2014; Li et al., 2017; Veit

et al., 2017), we instead focus on them for evaluation.

How can we exploit such partial or noisy labels during

testing? With a limited budget for vetting noisy ground-

truth labels, one may be tempted to simply evaluate perfor-

mance on a small set of clean data, or alternately just trust

the cheap-but-noisy labels on the whole dataset. However,

such approaches can easily give an inaccurate impression

of system performance. We show in our experiments that

these naive approaches can produce alarmingly-incorrect

estimates of comparative model performance. Even with a

significant fraction of vetted data, naive performance esti-

1For example, NUS-WIDE, (Chua et al., 2009) estimated 3000
man-hours to semi-manually annotate a relatively small set of 81
concepts across 270K images
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mates can incorrectly rank two algorithms in 15% of trials,

while our active testing approach significantly reduces this

misranking error to 3%.

The problem of label noise even exists for “expertly” an-

notated datasets, whose construction involves manual se-

lection of a test set which is deemed representative in

combination with crowd-sourced labeling by multiple ex-

perts (Rashtchian et al., 2010; Khattak & Salleb-Aouissi,

2011). Preserving annotation quality is an area of intense

research within the HCI/crowdsourcing community (Kamar

et al., 2012; Sheshadri & Lease, 2013). In practice, an-

notation errors are often corrected incrementally through

multiple rounds of interactive error discovery and visual

inspection of algorithm test results over the lifetime of the

dataset. For example, in evaluating object detectors, the

careful examination of detector errors on the test set (Hoiem

et al., 2012) often reveals missing annotations in widely-

used benchmarks (Lin et al., 2014; Everingham et al., 2015;

Dollar et al., 2012) and may in turn invoke further iterations

of manual corrections (e.g., (Mathias et al., 2014)). In this

work, we formalize such ad-hoc practices in a framework

we term active testing, and show that significantly improved

estimates of accuracy can be made through simple statistical

models and active annotation strategies.

2. Related Work

Benchmarking: Empirical benchmarking is now widely

considered to be an integral tool in the development of vi-

sion and learning algorithms. Rigorous evaluation, often in

terms of challenge competitions (Russakovsky et al., 2015;

Everingham et al., 2010) on held-out data, serves to for-

mally codify proxies for scientific or application goals and

provides quantitative ways to characterize progress towards

them. The importance and difficulties of test dataset con-

struction and annotation are now readily appreciated (Ponce

et al., 2006; Torralba & Efros, 2011).

Benchmark evaluation can be framed in terms of the

well-known empirical risk minimization approach to learn-

ing (Vapnik, 1992). Benchmarking seeks to estimate the risk,

defined as the expected loss of an algorithm under the true

data distribution. Since the true distribution is unknown,

the expected risk is estimated by computing loss a finite

sized sample test set. Traditional losses (such as 0-1 error)

decompose over test examples, but we are often interested in

multivariate ranking-based metrics that do not decompose

(such as Precision@K and Average Precision (Joachims,

2005)). Defining and estimating expected risk for such met-

rics is more involved (e.g., Precision@K should be replaced

by precision at a specified quantile (Boyd et al., 2012)) but

generalization bounds are known (Agarwal et al., 2005;

Hill et al., 2002). For simplicity, we focus on the problem

of estimating the empirical risk on a fixed, large but finite
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Figure 2. Vetting Procedure. The figure shows the vetting pro-

cedures for the multi-label classification (top) and instance seg-

mentation (bottom) tasks. The annotations on the left are often

incomplete and noisy, but significantly easier to obtain. These

initial noisy annotations are “vetted” and corrected if necessary

by a human. We quantify human effort in units of the number of

image-label pairs corrected or object segment masks specified.

test set.

Semi-supervised testing: To our knowledge, there have

only been a handful of works specifically studying the prob-

lem of estimating recognition performance on partially la-

beled test data. Anirudh et al. (Anirudh & Turaga, 2014)

study the problem of ’test-driving’ a detector to allow the

users to get a quick sense of the generalizability of the sys-

tem. Closer to our approach is that of Welinder et al. (Welin-

der et al., 2013), who estimate the performance curves using

a generative model for the classifier’s confidence scores.

Their approach leverages ideas from the semi-supervised

learning literature while our approach builds on active learn-

ing.

The problem of estimating benchmark performance from

sampled relevance labels has been explored more exten-

sively in the information retrieval literature where complete

annotation was acknowledged as infeasible. Initial work

focused on deriving labeling strategies that produce low-

variance and unbiased estimates (Yilmaz & Aslam, 2006;

Aslam et al., 2006) and identifying performant retrieval sys-

tems (Moffat et al., 2007). (Sabharwal & Sedghi, 2017) give

error bounds for estimating PR and ROC curves by choosing

samples to label based on the system output ranking. (Gao

et al., 2014) estimate performance using an EM algorithm

to integrate relevance judgements. (Li & Kanoulas, 2017)

and (Rahman et al., 2018) take a strategy similar to ours in

actively selecting test items to label as well as estimating

performance on remaining unlabeled data.

Active learning: Our proposed formulation of active test-

ing is closely related to active learning. From a theoretical

perspective, active learning can provide strong guarantees

of efficiency under certain restrictions (Balcan & Urner,

2016). Human-in-the-loop active learning approaches have

been well explored for addressing training data collection

in visual recognition systems (Branson et al., 2010; Wah

et al., 2011; Vijayanarasimhan & Grauman, 2014). One
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can view active testing as a form of active learning where

the actively-trained model is a statistical predictor of per-

formance on a test set. Active learning is typically cast

within the standard machine-learning paradigm, where the

goal is to (interactively) learn a model that makes accurate

per-example predictions on held-out i.i.d data. In this case,

generalization is of paramount importance. On the other

hand, active-testing interactively learns a model that makes

aggregate statistical predictions over a fixed dataset. This

means that models learned for active-testing (that say, pre-

dict average precision) need not generalize beyond the test

set of interest. This suggests that one can be much more

aggressive in overfitting to the statistics of the data at hand.

3. Framework for Active Testing

In this section, we introduce the general framework for

active testing. Figure 1 depicts the overall flow of our

approach. Our evaluation database initially contains test

examples with inaccurate (noisy) annotations. We select a

batch of data items whose labels will be manually vetted by

an oracle (e.g., in-house annotators or a crowd-sourced plat-

form such as Mechanical Turk). Figure 2 shows examples

of such noisy labels and queries to Oracle. The evaluation

database is then updated with these vetted labels to improve

estimates of test performance. Active testing consists of two

key components: a metric estimator that estimates model

performance from test data with a mix of noisy and vetted

labels, and a vetting strategy which selects the subset of

test data to be labeled in order to achieve the best possible

estimate of the true performance.

3.1. Performance Metric Estimators

We first consider active testing for a simple binary predic-

tion problem and then extend this idea to more complex

benchmarking tasks such as multi-label tag prediction and

instance segmentation. As a running example, assume that

we are evaluating an system that classifies an image (e.g., as

containing a cat or not). The system returns of confidence

score si ∈ R for each test example i ∈ {1 . . . N}. Let yi de-

note a “noisy” binary label for example i (specifying if a cat

is present), where the noise could arise from labeling the test

set using some weak-but-cheap annotation technique (e.g.,

user-provided tags, search engine results, or approximate

annotations). Finally, let zi be the true latent binary label

whose value can be obtained by rigorous human inspection

of the test data item.

Typical benchmark performance metrics can be written as

a function of the true ground-truth labels and system confi-

dences. We focus on metrics that only depend on the rank

ordering of the confidence scores and denote such a metric

generically as Q({zi}) where for simplicity we hide the

dependence on s by assuming that the indices are always

sorted according to si so that s1 ≥ · · · ≥ sN . For ex-

ample, commonly-used metrics for binary labeling include

precision@K and average precision (AP):

Prec@K({z1, . . . , zN}) =
1

K

∑

i≤K

zi (1)

AP ({z1, . . . , zN}) =
1

Np

∑

k

zk

k

∑

i≤k

zi (2)

where Np is the number of positives. We include derivations

in supplmental material.

Estimation with partially vetted data: In practice, not all

the data in our test set will be vetted. Let us divide the test

set into two components, the unvetted set U for which we

only know the approximate noisy labels yi and the vetted set

V , for which we know the ground-truth label. With a slight

abuse of notation, we henceforth treat the true label zi as

a random variable, and denote its observed realization (on

the vetted set) as z̃i. The simplest strategy for estimating

the true performance is to ignore unvetted data and only

measure performance Q on the vetted subset:

Q({z̃i : i ∈ V }) [Vetted Only] (3)

This represents the traditional approach to empirical eval-

uation in which we collect a single, vetted test dataset and

ignore other available test data. This has the advantage that

it is unbiased and converges to the true empirical perfor-

mance as the whole dataset is vetted. The limitation is that

it makes use of only fully-vetted data and the variance in

the estimate can be quite large when the vetting budget is

limited.

A natural alternative is to incorporate the unvetted examples

by simply substituting yi as a “best guess” of the true zi.

We specify this naive assumption in terms of a distribution

over all labels z = {z1, . . . , zN}:

pnaive(z) =
∏

i∈U

δ(zi = yi)
∏

i∈V

δ(zi = z̃i) (4)

where z̃i is the label assigned during vetting. Under this

assumption we can then compute an expected benchmark

performance:

Epnaive(z)

[

Q(z)
]

[Naive Estimator] (5)

which amounts to simply substituting z̃i for vetted examples

and yi for unvetted examples.

Unfortunately, the above performance estimate may be

greatly affected by noise in the nosiy labels yi. For example,

if there are systematic biases in the yi, the performance

estimate will similarly be biased. We also consider more

general scenarios where side information such as features
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Algorithm 1 Active Testing Algorithm

Input: unvetted set U , vetted set V , total budget T , vetting
strategy V S, system scores S = {si}, estimator pest(z)
while T ≥ 0 do

Select a batch B ⊆ U according to vetting strategy V S.
Query oracle to vet B and obtain true annotations z̃.
U = U \B, V = V ∪B
T = T − |B|
Fit estimator pest using U, V, S.

end while
Estimate performance using pest(z)

noisy vetted

Learned AP 
estimate

Naive AP 
estimate

detections

groundtruths

0.45 0.0

0.0 0.82

detections

IoU matrix

groundtruths
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0 1
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groundtruths
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0 1

detections

expected 
matching matrix
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Figure 3. Standard instance segmentation benchmarks ignore un-

vetted data (top pathway) when computing Average Precision. Our

proposed estimator for this task computes an expected probabil-

ity of a match for coarse bounding box annotations when vetted

instance masks aren’t available.

of the test items and distribution of scores of the classifier

under test may also be informative. We thus propose com-

puting the expected performance under a more sophisticated

estimator:

pest(z) =
∏

i∈U

p(zi|O)
∏

i∈V

δ(zi = z̃i) (6)

where O is the total set of all observations available to the

benchmark system (e.g. noisy labels, vetted labels, classifier

scores, data features). We make the plausible assumption

that the distribution of unvetted labels factors conditioned

on O.

Our proposed active testing framework (see Alg 1) estimates

this distribution pest(z) based on available observations

and predicts expected benchmark performance under this

distribution:

Epest(z)

[

Q(z)
]

[Learned Estimator] (7)

Computing expected performance: Given posterior esti-

mates p(zi|O) we can always compute the expected perfor-

mance metric Q by generating samples from these distri-

butions, computing the metric for each joint sample, and

average over samples. Here we introduce two applications

(studied in our experiments) where the metric is linear or

quadratic in z, allowing us to compute the expected perfor-

mance in closed-form.

Multi-label Tags: Multi-label tag prediction is a common

task in video/image retrieval. Following recent work (Joulin

et al., 2016; Gong et al., 2013; Izadinia et al., 2015; Guillau-

min et al., 2009), we measure accuracy with Precision@K -

e.g., what fraction of the top K search results contain the tag

of interest? In this setting, noisy labels yi come from user

provided tags which may contain errors and are typically

incomplete. Conveniently, we can write expected perfor-

mance Eq. 7 for Precision@K for a single tag in closed

form:

E[Prec@K] =
1

K

(

∑

i∈VK

z̃i +
∑

i∈UK

p(zi = 1|O)
)

(8)

where we write VK and UK to denote the vetted and un-

vetted subsets of K highest-scoring examples in the total

set V ∪ U . Some benchmarks compute an aggregate mean

precision over all tags under consideration, but since this

average is linear, one again obtains a closed form estimate.

Instance segmentation: Instance segmentation is another

natural task for which to apply active testing. It is well

known that human annotation is prohibitively expensive –

(Cordts et al., 2016) reports that an average of more than

1.5 hours is required to annotate a single image. Widely

used benchmarks such as (Cordts et al., 2016) release small

fraction of images annotated with high quality, along with

a larger set of noisy or “coarse”-quality annotations. Other

instance segmentation datasets such as COCO (Lin et al.,

2014) are constructed stage-wise by first creating a detection

dataset which only indicates rectangular bounding boxes

around each object which are subsequently refined into a

precise instance segmentations. Fig. 3 shows an example of

a partially vetted image in which some instances are only

indicated by a bounding box (noisy), while others have a

detailed mask (vetted).

When computing Average Precision, a predicted instance

segmentation is considered a true positive if it has sufficient

intersection-over-union (IoU) overlap with a ground-truth in-

stance. In this setting, we let the variable zi indicate that pre-

dicted instance i is matched to a ground-truth instance and

has an above threshold overlap. Assuming independence of

zi’s, the expected AP can be written as (see supplement for

proof):

E[AP ] =
1

Np

(

∑

k∈V

z̃kE[Prec@k]

+
∑

k∈U

p(zk = 1|O)E[Prec@k]
)

(9)

In practice, standard instance segmentation benchmarks are

somewhat more complicated. In particular, they enforce

one-to-one matching between detections and ground-truth.

For example, if two detections overlap a ground-truth in-

stance, only one is counted as a true positive while the other
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Top-10 images retrieved by system for ‘animal’

Naive Estimator
Prec@10=40.00%

Learned Estimator
Prec@10=63.25%

noisy

vetted

Figure 4. Estimating Prec@K. Images at left are the top K=10 entries returned by the system being evaluated. The image border denotes

the current label and vetting status (solid blue/red = vetted positive/negative, and dotted blue/red = noisy positive/negative). Estimates

of precision can be significantly improved by using a learned estimator trained on the statistics of examples that have already been

vetted. Current approaches that evaluate on vetted-only or vetted+noisy labels (naive) produce poor estimates of precision (30% and 40%

respectively). Our learned estimator is much closer to the true precision (63% vs 80% respectively).

is scored as a false positive. This also holds for multi-class

detections - if a detection is labeled as a dog (by matching

to a ground-truth dog), it can no longer be labeled as cat.

While this interdependence can in principle be modeled by

the conditioning variables O which could include informa-

tion about which class detections overlap, in practice our

estimators for p(zi = 1|O) do not take this into account.

Nevertheless, we show that such estimators provide remark-

ably good estimates of performance.

Fitting estimators to partially vetted data: We alternate

between vetting small batches of data and refitting the esti-

mator to the vetted set. For multi-label tagging, we update

estimates for the prior probability that a noisy tag for a

particular category will be flipped when vetted p(z̃i 6= yi).
For instance segmentation, we train a per-category classifier

that uses sizes of the predicted and unvetted ground-truth

bounding box to predict whether a detected instance will

overlap the ground-truth. We discuss the specifics of fitting

these particular estimators in the experimental results.

3.2. Vetting Strategies

The second component of the active testing system is a

strategy for choosing the “next” data samples to vet. The

goal of such a strategy is to produce accurate estimates of

benchmark performance with fewest number of vettings.

An alternate, but closely related goal, is to determine the

benchmark rankings of a set of recognition systems being

compared. The success of a given strategy depends on the

distribution of the data, the chosen estimator, and the sys-

tem(s) under test. We consider several selection strategies,

motivated by existing data collection practice and modeled

after active learning, which adapt to these statistics in order

to improve efficiency.

Random Sampling: The simplest vetting strategy is to

choose test examples to vet at random. The distribution of

examples across categories often follows a long-tail distribu-

tion. To achieve faster uniform convergence of performance

estimates across all categories, we use a hierarchical sam-

pling approach in which we first sample a category and then

select a sub-batch of test examples to vet from that category.

This mirrors the way, e.g. image classification and detection

datasets are manually curated to assure a minimum number

of examples per category.

Most-Confident Mistake (MCM): This strategy selects

unvetted examples for which the system under test reports

a high-confidence detection/classification score, but which

are considered a mistake according to the current metric

estimator. Specifically, we focus on the strategy of selecting

Most-confident Negative which is applicable to image/video

tagging where the set of user-provided tags are often incom-

plete. The intuition is that, if a high-performance system

believes that the current sample is a positive with high proba-

bility, it’s likely that the noisy label is at fault. This strategy

is motivated by experience with object detection bench-

marks where, e.g., visualizing high-confident false positive

face detections often reveals missing annotations in the test

set (Mathias et al., 2014).

Maximum Expected Estimator Change (MEEC): In ad-

dition to utilizing the confidence scores produced by the sys-

tem under test, it is natural to also consider the uncertainty

in the learned estimator pest(z). Exploiting the analogy of

active testing with active learning, it is natural to vet samples

that are most confusing to the current estimator (e.g., with

largest entropy), or ones that will likely generate a large

update to the estimator (e.g., largest information gain).

Specifically, we explore a active selection strategy based

on maximum expected model change (Settles, 2010), which

in our case corresponds to selecting a sample that yields

the largest expected change in our estimate of Q. Let

Ep(z|V )[Q(z)] be the expected performance based on the

distribution p(z|V ) estimated from the current vetted set V .

Ep(z|V,zi)[Q(z)] be the expected performance after vetting

example i and updating the estimator based on the outcome.

The actual change in the estimate of Q depends on the
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(a) Micro-Videos (b) NUS-WIDE

Figure 5. Results for multi-label classification task. The figures show the mean and standard deviation of the estimated Precision@48

at different amount of annotation efforts. Using a fairly simple estimator and vetting strategy, the proposed framework can estimate

the performance very closely to the true values. For references, the precision@48 averaged across classes is 20.06% and 19.88% for

Microvideos and NUS-WIDE respectively.

realization of the random variable zi:

∆i(zi) =
∣

∣

∣
Ep(z|V,zi)[Q(z)]− Ep(z|V )[Q(z)]

∣

∣

∣
(10)

We can choose the example i with the largest expected

change, using the current estimate of the distribution

over zi ∼ p(zi|V ) to compute the expected change

Ep(zi|V ) [∆i(zi)].

For Prec@K, this expected change is given by:

Ep(zi|V ) [∆i(zi)] =
2

K
pi(1− pi) (11)

where we write pi = p(zi = 1|O). Interestingly, selecting

the sample yielded the maximum expected change in the

estimator corresponds to a standard maximum entropy selec-

tion criteria for active learning. Similarly, in the supplement

we show that for AP :

Ep(zi|V ) [∆i(zi)] =
1

Np

ripi(1− pi) (12)

where ri is the proportion of unvetted examples scoring

higher than example i. In this case, we select an example to

vet which has high-entropy and for which there is a relatively

small proportion of higher-scoring unvetted examples.

4. Experiments

We validate our active testing framework on two specific ap-

plications, multi-label classification and instance segmenta-

tion. For each of these applications, we describe the datasets

and systems evaluated and the specifics of the estimators

and vetting strategies used.

4.1. Active Testing for Multi-label Classification

NUS-WIDE: This dataset contains 269,648 Flickr images

with 5018 unique tags. The authors also provide a ’semi-

complete’ ground-truth via manual annotations for 81 con-

cepts. We removed images that are no longer available and

images that doesn’t contain one of the 81 tags. We are

left with around 100K images spanning across 81 concepts.

(Izadinia et al., 2015) analyzed the noisy and missing label

statistics for this dataset. Given that the tag is relevant to the

image, there is only 38% chance that it will appear in the

noisy tag list. If the tag does not apply, there’s 1% chance

that it appears anyway. They posited that the missing tags

are either non-entry level categories (e.g., person) or they

are not important in the scene (e.g., clouds and buildings).

Micro-videos: Micro-videos have recently become a preva-

lent form of media on many social platforms, such as Vine,

Instagram, and Snapchat. (Nguyen et al., 2016) formu-

lated a multi-label video-retrieval/annotation task for a large

collection of Vine videos. They introduce a micro-video

dataset, MV-85k containing 260K videos with 58K tags.

This dataset, however, only provides exhaustive vetting for

a small subset of tags on a small subset of videos. We vet-

ted 26K video-tag pairs from this dataset, spanning 17503

videos and 875 tags. Since tags provided by users have little

constraints, this dataset suffers from both under-tagging and

over-tagging. Under-tagging comes from not-yet popular

concepts, while over-tagging comes from the spamming of

extra tags In our experiments we use a subset of 75 tags.

Recognition systems: To obtain the classification results,

we implement two multi-label classification algorithms for

images (NUSWIDE) and videos (Microvideos). For NUS-

WIDE, we trained a multi-label logistic regression model

built on the pretrained ResNet-50 (He et al., 2016) features.

For Micro-videos, we follow the state-of-the-art video action

recognition framework (Wang et al., 2016) modified for the

multi-label setting to use multiple logistic cross-entropy

losses.
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Learned Estimators: We use Precision@48 as a evaluation

metric. For tagging, we estimate the posterior over unvetted

tags, p(zi|O), based on two pieces of observed information:

the statistics of noisy labels yi on vetted examples, and the

system confidence score, si. This posterior probability can

be derived as (see supplement for proof):

p(zi|si, yi) =
p(yi|zi)p(zi|si)

∑

v∈{0,1} p(yi|zi = v)p(zi = v|si)
(13)

Given some vetted data, we fit the tag-flipping priors p(yi|zi)
by standard maximum likelihood estimation (counting fre-

quencies). The posterior probabilities of the true label given

the classifier confidence score, p(zi|si), is fit using logistic

regression.

4.2. Object Instance Detection and Segmentation

COCO Minival: For instance segmentation, we use ‘mini-

val2014’ subset of the COCO dataset (Lin et al., 2014).

This subset contains 5k images spanning over 80 categories.

We report the standard COCO metric: Average Precision

(averaged over all IoU thresholds).

To systematically analyze the impact of evaluation on noise

and vetting, we focus evaluation efforts on the high quality

test set, but simulate noisy annotations by replacing actual

instance segmentation masks by their tight-fitting bound-

ing box (the unvetted “noisy” set). We then simulate ac-

tive testing where certain instances are vetted, meaning the

bounding-box is replaced by the true segmentation mask.

Detection Systems: We did not implement instance seg-

mentation algorithms ourselves, but instead utilized three

sets of detection mask results produced by the authors of

Mask R-CNN (He et al., 2017). These were produced

by variants of the instance segmentation systems proposed

in (Xie et al., 2017; Lin et al., 2017; He et al., 2017).

Learned Estimators: To compute the probability whether

a detection will pass the IoU threshold with a bounding box

unvetted ground-truth instance (p(zi|O) in Eq. 9), we train

a χ2-SVM using the vetted portion of the database. The

features for an example includes the category id, the ‘noisy’

IoU estimate, the size of the bounding box containing the

detection mask and the size of ground-truth bounding box.

The training label is true whether the true IoU estimate, com-

puted using the vetted ground-truth mask and the detection

masks, is above a certain input IoU threshold.

4.3. Efficiency of active testing estimates

We measure the estimation accuracy of different combina-

tion of vetting strategies and estimators at different amount

of vetting efforts. We compute the absolute error between

the estimated metric and the true (fully vetted) metric and

average over all classes. Averaging the absolute estimation

error across classes prevents over-estimation for one class

Figure 6. Decoupling the effect of model change and vetting effort

for NUS-WIDE. This figure shows the reduction in estimation

errors. The vertical drop at the same % vetted point indicates the

reduction due to estimator quality. The slope between adjacent

points indicates value of vetting examples. A steeper slope means

the strategy is able to obtain a better set. In some sense, traditional

active learning is concerned primarily with the vertical drop (i.e.

a better model/predictor), while active testing also takes direct

advantage of the slope (i.e. more vetted labels).

Figure 7. Results for instance segmentation. With 50% of in-

stances vetted, our best model’s estimation is 1% AP off from

the true values with the standard deviation ≤ 1%. A smart es-

timator with a smarter querying strategy can make the approach

more robust and efficient. Our approach has better approxima-

tion and is less prone to sample bias compared to the standard

approach(”random image”+ ”only vetted”).

canceling out under-estimation from another class. We plot

the mean and the standard deviation over 50 simulation runs

of each active testing approach.

Performance estimation: Figure 5 shows the results for

estimating Prec@48 for NUSWIDE and Microvideos. The

x-axis indicates the percentage of the top-k lists that are

vetted. For the Prec@K metric, it is only necessary to vet

100% of the top-k lists rather than 100% of the whole test

set2. A ’random’ strategy with a ‘naive’ estimator follows a

2The “vetted only” estimator is not applicable in this domain
until at least K examples in each short list have been vetted and
hence doesn’t appear in the plots.
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Figure 8. Relative performance differences and their relative ranking for multiple input systems. The left plot shows the mean squared

errors between the current difference to the true difference. The right plot shows how often the ranking orders between two input

algorithms are flipped. Both figures suggest that our active testing framework is a more robust and efficient approach toward comparing

models. With 50% of the data vetted, standard approaches that evaluate on only vetted data (black curve) incorrectly rank algorithms 16%

of the time, while our learned estimators with active vetting (red curve) reduce this error to 3% of the time.

linear trend since each batch of vetted examples contributes

on average the same reduction in estimation error. The

most confident mistake (mcm) heuristic works very well

for Microvideos due to the substantial amount of under-

tagging. However, in more reasonable balanced settings

such as NUS-WIDE, this heuristic does not perform as well.

The MCM vetting strategy does not pair well with a learned

estimator due to its biased sampling which quickly results

in priors that overestimate the number missing tags. In

contrast, the random and active MEEC vetting strategies

offer good samples for learning a good estimator. At 50%

vetting effort, MEEC sampling with a learned estimator on

average can achieve within 2-3% of the real estimates.

Figure 6 highlights the relative value of establishing the

true vetted label versus the value of vetted data in updating

the estimator. In some sense, traditional active learning

is concerned primarily with the vertical drop (i.e. a better

model/estimator), while active testing also takes direct ad-

vantage of the slope (i.e. more vetted labels). The initial

learned estimates have larger error due to small sample size,

but the fitting during the first few vetting batches rapidly

improves the estimator quality. Past 40% vetting effort, the

estimator model parameters stabilize and remaining vetting

serves to correct labels whose true value can’t be predicted

given the low-complexity of the estimator.

Figure 7 shows similar results for estimating the mAP for

instance segmentation on COCO. The current ‘gold stan-

dard’ approach of estimating performance based only on the

vetted subset of images leads to large errors in estimation

accuracy and high variance from from small sample sizes.

In the active testing framework, input algorithms are tested

using the whole dataset (vetted and unvetted). Naive esti-

mation is noticeably more accurate than vetted only and the

learned estimator with uncertainty sampling further reduces

both the absolute error and the variance.

Model ranking: The benefits of active testing are high-

lighted further when we consider the problem of ranking

system performance. We are often interested not in the ab-

solute performance number, but rather in the performance

gap between different systems. We find that active testing

is also valuable in this setting. Figure 8 shows the error

in estimating the performance gap between two different

instance segmentation systems as a function of the amount

data vetted. This follows a similar trend as the single model

performance estimation plot. Importantly, it highlights that

only evaluating vetted data, though unbiased, typically pro-

duces a large error in in performance gap between models

to high variance in the estimate of each individual mod-

els performance. In particular, if we use these estimates

to rank two models, we will often make errors in model

ranking even when relatively large amounts of the data have

been vetted. Using stronger estimators, actively guided

by MEEC sampling provide accurate rankings with sub-

stantially less vetting effort. With 50% of the data vetted,

standard approaches that evaluate on only vetted data (black

curve) incorrectly rank algorithms 15% of the time, while

our learned estimators with active vetting (red curve) reduce

this error to 3% of the time.

Conclusions We have introduced a general framework for

active testing that minimizes human vetting effort by ac-

tively selecting test examples to label and using performance

estimators that adapt to the statistics of the test data and the

systems under test. Simple implementations of this concept

demonstrate the potential for radically decreasing the human

labeling effort needed to evaluate system performance for

standard computer vision tasks. We anticipate this will have

substantial practical value in the ongoing construction of

such benchmarks.
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1. Expected Precision and Average Precision

Let Precision and Recall at K be defined as

Pk =
1

k

∑

i≤k

zi (1)

and,

Rk =
1

Np

∑

i≤k

zi (2)

where Np is the number of positive instances in the whole

set. The average precision is given by integrating precision

with respect to recall:

AP =
∑

k

(Rk −Rk−1)Pk

=
∑

k

( 1

Np

zk

)

Pk

=
∑

k

( 1

Np

zk

)(1

k

∑

i≤k

zi

)

=
1

Np

∑

k

zk

k

∑

i≤k

zi (3)

We would like to compute expectations when some zi are

unobserved. For notational convenience, let pi = P (zi =
1|O) when zi is unobserved and z̃i be the observed value

when the ground-truth associated with example i is vetted.
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th International Conference on Machine
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We can then compute expected Prec@K as:

E[Prec@K] =
1

K

∑

i≤K

E[zi]

=
1

K





∑

i≤K,i∈V

z̃i +
∑

i≤K,i∈U

pi



 (4)

And the expected change for this metric is given by:

Ep(zi|V ) [∆i(zi)] = pi
1

K
|1− pi|+ (1− pi)

1

K
|0− pi|

=
2

K
pi(1− pi) (5)

where we write pi = p(zi = 1|O).

Expected AP is more interesting because it includes prod-

ucts of of the zi.

E[AP ] =
1

Np

∑

k

1

k
E[zk

∑

i≤k

zi]

=
1

Np

∑

k

1

k

∑

i≤k

E[zkzi]

We note that in our application of evaluating instance seg-

mentation, the quantity Np is known prior to vetting. In

other settings, it may also be a random variable that de-

pends on the vetting outcomes. In the following derivation,

we temporarily drop the constant 1
Np

to reduce notational

clutter.

Assuming independence of zi and zk, we have:

E[zi] = pi

E[zizk] = pipk

Expanding the vetted and unvetted terms we can compute:

E[AP ] =
∑

k

1

k

∑

i≤k

E[zkzi]

=
∑

k∈V

1

k
(

∑

i≤k,i∈V

zkzi) +
∑

k∈V

1

k
(

∑

i≤k,i∈U

zkpi)

+
∑

k∈U

1

k
(

∑

i≤k,i∈V

pkzi) +
∑

k∈U

1

k
(

∑

i≤k,i∈U

pkpi)
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which can be written a bit more compactly as:

E[AP ] =
(

∑

k∈V

(
zk

k
E[Prec@k]) +

∑

k∈U

(
pk

k
E[Prec@k])

)

We would like to compute the change in E[AP ] when we

vet some example. Before vetting sample j, we have:

E[AP ] =
∑

k∈V

1

k





∑

i≤k,i∈V

zkzi





+
∑

k∈V

1

k





∑

i≤k,i∈U\j

zkpi + zkpjδ[j ≤ k]





+
∑

k∈U\j

1

k





∑

i≤k,i∈V

pkzi



+
1

j





∑

i≤j,i∈V

pjzi





+
∑

k∈U\j

1

k





∑

i≤k,i∈U\j

pkpi + pkpjδ[j ≤ k]





+
1

j





∑

i∈U\j,i≤j

pjpi + pjpj





After vetting the example j, we have:

E[AP |zj ] =
∑

k∈V

1

k

∑

i≤k,i∈V

zkzi

+
∑

k∈V

1

k





∑

i≤k,i∈U\j

zkpi + zkzjδ[j ≤ k]





+
∑

k∈U\j

1

k





∑

i≤k,i∈V

pkzi



+
1

j





∑

i≤j,i∈V

zjzi





+
∑

k∈U\j

1

k





∑

i≤k,i∈U\j

pkpi + pkzjδ[j ≤ k]





+
1

j





∑

i≤j,i∈U\j

zjpi + zjzj





The difference between these estimates is,

∆(zj) = E[AP |zj ]− E[AP ]

=
∑

k∈V

1

k
zk(zj − pj)δ[j ≤ k] +

1

j

∑

i≤j,i∈V

(zj − pj)zi +

∑

k∈U\j

1

k
[pk(zj − pj)δ[j ≤ k]] +

1

j





∑

i≤j,i∈U\j

(zjpi + zjzj − pjpi − pjpj)





The expected reduction given our estimator for zj is

E[∆] = pj∆(zj = 1) + (1− pj)∆(zj = 0)

where:

∆(zj = 0) =
∑

k∈V

1

k
zk(−pj)δ[j ≤ k] +

1

j

∑

i≤j,i∈V

(−pj)zi +

∑

k∈U\j

1

k
pk(−pj)δ[j ≤ k] +

1

j





∑

i≤j,i∈U\j

(−pjpi − pjpj)





∆(zj = 1) =
∑

k∈V

1

k
zk(1− pj)δ[j ≤ k] +

1

j

∑

i≤j,i∈V

(1− pj)zi +

∑

k∈U\j

1

k
pk(1− pj)δ[j ≤ k] +

1

j





∑

i≤j,i∈U\j

(pi + 1− pjpi − pjpj)





Let’s just look at the first pair of corresponding terms of

E[∆],

(1−pj)
∑

k∈V

1

k
zk(−pj)δ[j ≤ k]+pj

∑

k∈V

1

k
zk(1−pj)δ[j ≤ k]
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It is clear to see that the above summation equals 0. This is

also true for the second and third terms,

(1− pj)
1

j

∑

i≤j,i∈V

(−pj)zi + pj
1

j

∑

i≤j,i∈V

(1− pj)zi

(1−pj)
∑

k∈U\j

1

k
pk(−pj)δ[j ≤ k]+pj

∑

k∈U\j

1

k
pk(1−pj)δ[j ≤ k]

Only the last pair of terms remains, and simplifies as:

E[∆] = −
1

j

∑

i≤j,i∈U\j

p3j − pj + p2j (1− pj)

= −
1

j

∑

i≤j,i∈U\j

p3j − pj + p2j − p3j

= −
1

j

∑

i≤j,i∈U\j

−pj + p2j

=
1

j

∑

i≤j,i∈U\j

pj(1− pj)

Let rj be the proportion of unvetted examples scoring higher

than example j:

rj =
|{i ∈ U : i ≤ j}|

|{i ∈ U ∪ V : i ≤ j}|

=
1

j

∑

i<j

δ(i ∈ U)

Putting back in the constant scaling yields the expression

given in the paper:

E[∆] =
1

Np

1

j

∑

i≤j,i∈U\j

pj(1− pj)

=
1

Np

rjpj(1− pj)

The term is largest when pj is 0.5 and decrease as it ap-

proaches 0 or 1. The term also decreases when there are

many unvetted examples that score higher than j since they

have relatively more impact on the AP.

2. Estimator for multilabel classification

Here we derive the basis for Equation 4 in the main paper.

p(zi|yi, si) =
p(zi, yi, si)

∑

v∈{0,1} p(zi = v, yi, si)

=
p(yi|zi, si)p(zi|si)

∑

v∈{0,1} p(yi|zi, si)p(zi|si)

We assume that given the true label, zi, the observed label

yi is conditionally independent of the classifier score, si.

With p(yi|zi, si) = p(yi|zi), the expression simplifies to,

p(zi|yi, si) =
p(yi|zi)p(zi|si)

∑

v∈{0,1} p(yi|zi)p(zi|si)

3. Additional Results

Figure 1 shows the results of estimating absolute preci-

sion@48 for the multilabel classification tasks on both NUS-

WIDE and Microvideos datasets. In contrast, plots in the

main paper show the total absolute error from the true value.
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Figure 1. Results for multi-label classification task. The figures show the mean and standard deviation of the estimated Precision@K at

different amount of annotation efforts. Using a fairly simple estimator and vetting strategy, the proposed framework can estimate the

performance very closely to the true values.


