
A Conservative Approximation Method for the Verification of
Preemptive Scheduling using Timed Automata

Gabor Madl
University of California, Irvine

Irvine, CA 92697, USA
gabe@ics.uci.edu

Nikil Dutt
University of California, Irvine

Irvine, CA 92697, USA
dutt@ics.uci.edu

Sherif Abdelwahed
Mississippi State University
Starkville, MS 39762, USA

sherif@ece.msstate.edu

Abstract

This paper presents a conservative approximation method
for the real-time verification of asynchronous event-driven
distributed systems. This problem is known to be undecidable
in the generic setting. The proposed approach is based on
composable timed automata models that provide a sufficient
condition to determine schedulability. We demonstrate the
method on a real-time CORBA avionics design.

1. Introduction

Asynchronous event-driven communication is widely used
in modern distributed real-time embedded (DRE) systems.
Reducing synchronizations in event-driven systems can sim-
plify implementation, prevent blocking waits, reduce energy
consumption, and provide better throughput and flexibil-
ity. Providing formal guarantees on real-time properties in
asynchronous event-driven systems, however, remains a key
challenge.

Stopwatch automata [1] were proposed as a model of com-
putation that can express preemptable tasks in asynchronous
event-driven systems. It was shown that reachability analysis
on the composition of stopwatch automata as task graphs
(integration graphs) is undecidable [2], [3] if the following
conditions are met: (1) tasks use event-based asynchronous
triggering (i.e. a target task starts whenever its source
finishes) on a distributed platform, (2) execution times are
specified as continuous-time intervals, (3) preemptions may
occur anytime within the continuous-time execution interval.
In this paper, we refer to systems that satisfy these three
conditions as preemptive event-driven asynchronous real-
time systems with execution intervals (PEARSE). PEARSE
are a subset of DRE systems, that do not require global
synchronization.

This paper presents a conservative approximation method
for the verification of PEARSE models, using timed au-
tomata [4] model checking methods. The reachability prob-
lem is decidable on timed automata, therefore we provide
an implementable method for the automatic real-time veri-
fication of PEARSE models.

The proposed method approximates each stopwatch au-
tomaton (S) using an approximate timed automaton (T ).
We show that the stopwatch automaton accepts all the time
traces that the timed automaton accepts by showing that the
language that T accepts is a subset of the language that
S accepts (L(T ) ⊆ L(S)). This problem is known as the
language inclusion problem [5]. Since L(T ) ⊆ L(S) holds,
there are no timed traces that the timed automaton accepts,
but the stopwatch automaton does not accept, therefore the
approximation is conservative. Accordingly, the proposed
analysis provides a sufficient condition to determine the
schedulability of preemptive event-driven asynchronous real-
time systems with execution intervals (PEARSE).

The remainder of this paper is organized as follows.
Section 2 describes related work; Section 3 reviews the
background for real-time systems’ analysis; Section 4 de-
scribes the problem statement; Section 5 presents the pro-
posed method for the verification of preemptive scheduling,
and proves the conservative nature of the approximation;
Section 6 demonstrates the approach on a real-time CORBA
application and Section 7 presents concluding remarks.

2. Related Work

The reachability problem on the composition of stopwatch
automata as a task graph is undecidable in general, since it
can be mapped to the halting problem [2]. The schedulability
of preemptive multi-processor systems is undecidable using
timed automata in the generic case [3], as timed automata
cannot directly model stopwatches. Therefore, DRE system
designers typically restrict the simultaneous occurrence of
the three conditions used to define PEARSE systems to allow
real-time analysis.

(1) Restricting asynchronous triggering: Time-triggered
approaches [6] are becoming common in mission-critical
systems. Classic schedulability analysis methods provide
sufficient conditions for schedulability [7], [8] in predictable
periodic real-time systems, but they do not address the dy-
namics of events, race conditions, and the non-deterministic
execution order of tasks. These methods are typically overly
conservative or unapplicable for PEARSE.



A generic periodic task and scheduling model for pre-
emptive systems based on timed automata was introduced
in [9]. This work – like the method proposed in this paper –
uses the idea of discretizing timed automata clocks for the
modeling of preemptive systems, but restricts asynchronous
triggering, and is therefore only applicable to periodic task
models. The models described also do not capture execution
intervals and therefore cannot detect non-WCET deadline
misses as shown in Figure 3, and may provide false positives
in asynchronous event-driven systems.

(2) Restricting continuous-time execution intervals:
Synchronous languages [10] propose a common mathe-
matical model for synchronous systems with deterministic
concurrency, but do not address non-deterministic execu-
tion times, arrival times, and asynchronous event-triggering
typical in PEARSE systems. In Giotto [11], deterministic
execution times are enforced to facilitate formal analysis,
based on the concept of logical time. A method based
on stopwatch automata [1] was proposed for the job-shop
scheduling of preemptive systems [12]. This method is
applicable for the real-time verification of PEARSE models,
where execution times are given as constants. This restriction
turns the reachability analysis decidable, as a single simu-
lation trace can verify this model. However, this approach
is too coarse for practical analysis, as execution times are
often non-deterministic in DRE systems.

(3) Restricting preemptions: A method to analyze non-
preemptive scheduling based on timed automata [4] on
single processor architectures was proposed in [13]. A timed
automata-based approach for the thread-level analysis of
DRE systems is presented in [14]. We have presented a for-
mal method for the real-time verification of non-preemptive
DRE systems based on timed automata in [15], and for
performance estimation based on discrete event simulations
in [16]. Our earlier approach for modeling preemptive
systems using timed automata [17] restricts preemptions to
occur at discrete time steps.

The three restrictions described above involve cost, perfor-
mance, and energy consumption overheads, as deterministic
behavior has to be enforced on a distributed platform.
These costs can often be justified only in the context of
mission-critical systems. In most DRE systems, including
consumer electronics, PEARSE models are commonly used.
The industry practice for the analysis of PEARSE consists
mostly of directed testing and random simulations. Although
this approach may be helpful, it can only show the presence
of timing violations, not their absence.

In this paper we propose a conservative approximation
method that allows the simultaneous use of (1) asynchronous
event-based triggering, (2) continuous-time execution inter-
vals, and (3) preemptions that may happen anytime within
a task’s execution interval. To the best of our knowledge,
the only alternative for the real-time analysis of systems
that use the above three conditions (PEARSE systems) is

stopwatch (hybrid) automata model checking. Preliminary
experiments for approximating stopwatch reachability anal-
ysis using timed automata were described in [18], but the
method is not guaranteed to terminate, since reachability
analysis is undecidable on stopwatch automata in general.

3. Background

Given a finite set of clocks C a valuation for the clocks
is a function v : C → R≥0 that assigns a value for each
clock from the domain of non-negative real numbers. The
valuation of clock ci ∈ C is denoted vi. B(C) is the set of
clock guards γ, that are of the form ci � N, ci − cj � N,
� ∈ {=, <,>,≤,≥}. A valuation v satisfies clock guard γ,
if for all expressions in γ vi � N, vi − vj � N is satisfied,
respectively. Time progress is captured as clock ct with a
constant rate of 1 (v̇t = 1). The initial value of ct is denoted
vt0 , and vt0 = 0.

Definition 1: A stopwatch automaton is a tuple SA =
(L, l0, C,E, Act, Inv) consisting of the following compo-
nents:
• a finite set L of vertices called locations;
• the initial location l0 ∈ L;
• a finite set C of real-valued clocks;
• a finite set of edges E ⊆ L × B(C) × Act × 2C × L

called transitions, where 〈l, γ, α, λ, l′〉 ∈ E;
• a labeling function Act : L× C → {0, 1}, that defines

the rates of clocks (ci ∈ C) in locations as differential
functions v̇i = kl, where kl is a constant 0 or 1 in each
location;

• a labeling function Inv : L→ B(C), that is called the
invariant of the location.

Definition 2: A state of the stopwatch automaton is de-
fined as a pair (l, v) where l ∈ L and v is the valuation of
the clocks in C. The set of states is denoted S.

Definition 3: The semantics of a stopwatch automaton
SA = (L, l0, C,E, Act, Inv) is given as a transition system
TSA = (S, s0,→) where S is the set of states, s0 is the
initial state, and the step relation → is the union of the
jump (discrete) transitions:
• (l, v)

j−→ (l′, v′) if ∃〈l, γ, α, λ, l′〉 ∈ E such that γ and
Inv(l′) are satisfied and v’ = α,

and flow (continuous) transitions:
• (l, v)

f−→ (l, v′) such that for each v′i ∈ v′, v′i = vi +x ·
Act(l, ci), where x ∈ R+ and Act(l, ci) is the labeling
function that defines the rate of clock ci as either 0 or
1 as introduced in Definition 1 (v̇i ∈ {0, 1}).

A run of the SA is a finite or infinite sequence of alternating
discrete and continuous transitions of TSA: ρ : s0

j−→ s1
f−→

s2
j−→ s3 . . . or ρ : s0

f−→ s1
j−→ s2

f−→ s3 . . .
Definition 4: A timed automaton is a subclass of stop-

watch automaton, where the rates of clocks are set to
constant 1 (∀l ∈ L)(∀c ∈ C)Act(l, c) = 1.



4. Problem Formulation

4.1. Stopwatch as a Model for a Preemptable Real-
time Task

A stopwatch is a clock that can be reseted, stopped, and
resumed, providing a simple model for a preemptable real-
time task. The execution time of a task can be represented
as a stopwatch as shown in Figure 1. Time is represented as
clock ct, and the stopwatch clock is csw. The valuation of
these clocks is vt and vsw as defined in Section 3.

The stopwatch makes a transition to the stop location
from its initial (idle) location when it receives an enablei

event that signals that the task is ready for execution. The
? sign after an event denotes an input (receive) event, and
the ! sign after an event denotes an output (send) event as
used in [19]. Whenever the task is scheduled for execution,
the stopwatch makes a transition to the run location, and
whenever the task is preempted, the stopwatch moves to the
stop location. vsw represents the valuation of the stopwatch
clock. We refer to the stopwatch shown in Figure 1 as Task
Stopwatch Automaton (TSA) in this paper. When the task
finishes its execution, the TSA moves to the finish location.
We say that the TSA executes iff it is in the run location,
and it is preempted iff it is in the stop location, and we
refer to the time spent in the run location as execution time.
Figure 1 can be extended to model periodic tasks by adding
a transition to the idle location from the run location instead
of the finish location. In this paper we use the simple one-
time executing task shown in Figure 1 for simplicity.

A task may have a best case execution time (bcet), that
corresponds to the shortest, and a worst case execution time
(wcet), that corresponds to the longest time in which the
task may finish its execution. Time for execution is counted
from the time of the enablei event (vt0), and does not include
time spent in the stop location. The following constraints
are implied by the definitions of the stopwatch model, best
case and worst case times:

0 ≤ vsw ≤ vt, 0 ≤ vsw ≤ wcet, 0 ≤ bcet ≤ wcet (1)

Deadlines, denoted dl for a given task, are constraints on
the maximum time from the time of the enablei event to the
time when the automaton makes a transition to the finish
location.

Definition 5: A real-time task is schedulable if it always
finishes its execution before its respective deadline. A task
is then schedulable iff vt ≤ dl when vsw = wcet.
The alphabet of the TSA is Σ = {start, stop, enablei,
enablej}. The start and stop events are controlled by a (set
of) scheduler(s), the task receives the enablei event from its
source task, and sends out the enablej event when it finishes
its execution. See Section 4.2 for the formal definition of
composition rules.

Figure 1. Task Stopwatch Automaton (TSA) – Model of
a Preemptable Real-time Task

A timed word is of the form (σ0, τ0)(σ1, τ1) . . . (σn, τn),
where σ0, σ1, . . . , σn ∈ Σ denote events, and
τ1, τ2, . . . , τn ∈ R≥0 denote the timestamps of events.
The set of timed words is the timed language on which the
TSA operates. We can express the syntax of the (untimed)
language that the TSA accepts using the following regular
expression:

SL(S) = enablei start (stop start)∗ enablej (2)

The timestamps of all events have to be less than dl in a
timed word in order for the TSA to accept the word. We
denote the timestamps of events in the [0 . . .dl] interval as
τ1, τ2, . . . , τe, where τ1 denotes the enablei event, and te
denotes the last start event. Note that e is always an even
number according to Equation 2. The TSA accepts the timed
language L(S) as described in Equation 2, and satisfies the
following constraint:

e
2∑

i=1

τ2i − τ2i−1 ≤ dl− wcet (3)

Equation 3 states that a task is schedulable if it spends at
most dl - wcet time in the stop location in the TSA within
the [0, dl] interval for clock ct, since in this case it can
execute for wcet time before its deadline. Figure 2 shows
the constraints implied on the TSA clock for a schedulable
task. vsw is in the [0, wcet] domain, vt is in the [0, dl]
domain, and the slope of vsw is at most 1 (v̇sw ∈ {0, 1}).
The valid clock assignments define a parallelogram, and all
other assignments result in possible deadline violations. Note
that since this model is an initialized stopwatch automaton,
reachability is decidable [20], therefore we can verify the



Figure 2. Clock Constraints on Stopwatches for
Schedulability

schedulability of a single preemptable task, given that we
know when start/stop events occur. The darker lines show
a few stopwatch clock valuation traces that model the
execution of schedulable real-time tasks.

4.2. Composable Stopwatch Automata as a Model
for PEARSE

In Section 4.1 we described how TSA can model a pre-
emptable real-time task. In this section we consider how the
composition of stopwatches can represent PEARSE. In this
paper we represent PEARSE as task graphs GS = (XS , ES),
where the set of vertices represent real-time tasks modeled as
stopwatches, and edges represent dependencies between the
tasks ES ⊆ XS×XS . A vertex with no incoming edge(s) is
a source, and a vertex with no outgoing edge(s) is a terminal.
This task graph model is a subclass of integration graphs
defined in [2]. In our model, each hybrid automaton in the
integration graph is a TSA.

There are two ways in which TSA models compose in GS ;
serial and parallel composition. When parallel composition
is used, the composed automata operate independently from
each other. In graph GS , two TSA compose using parallel
composition, if none of them is reachable from the other
on a directed path. We denote parallel composition between
two vertices xi, xj ∈ XS as xi ⊕ xj . The ⊕ operator is
associative, distributive and commutative.

Assume that there is an edge in graph GS between
two vertices (xi, xj) ∈ ES , so task xj depends on task
xi. Then the enablej transition in TSAi, and the enablei

transition in TSAj can only be taken simultaneously. We
refer to this case as serial composition, and define it as
follows. Denote the language of xi as L(S)i, and the
language of xj as L(S)j . Denote the alphabet of xi as
Σi = {starti, stopi, enableii , enableji}, and the alphabet of xj

as Σj = {startj, stopj, enableij , enablejj}. By definition, the
serial composition of xi and xj means that the timestamp
of enableji , and the timestamp of enableij is the same. We
denote serial composition between two vertices xi, xj ∈ VS

as xi ⊗ xj . The ⊗ operator is associative, distributive, but
not commutative, since if xi depends on xj is not the same
case as when xj depends on xi.

Figure 3. Motivating Example for a Non-WCET Dead-
line Miss

For the sake of simplicity we do not consider buffers
or communication delays between tasks. Further, without
losing generality, we disallow multiple sources to tasks
(∀(xa, xb, xj ∈ VS)((xa, xj) ∈ ES ∧ (xb, xj) ∈ ES) →
xa = xb), each task may depend on at most one task directly.
We do allow multiple dependents for tasks, as these can be
modeled as synchronizations between transitions, and do not
require buffers.

We point out that this model can be easily extended to
include FIFO channels modeled as timed automata, that can
express many-to-many connections, and communication de-
lays as well. Moreover, the model can be extended to include
periodic tasks modeled as timed automata that broadcast
enablei events with some rate. The start and stop events
may be controlled by a (set of) scheduler(s), providing a
model of computation that can express PEARSE in a formal
setting. Please see [15] for an approach to model real-time
CORBA applications using timed automata as a model of
computation for real-time analysis.

4.3. Problem Description

Integration graphs may be used to compose stopwatches
using events, to express PEARSE as a network of stopwatch
models using preemptive scheduling. Although the reacha-
bility analysis of a single initialized stopwatch automaton
is decidable [20], reachability analysis on integration graphs
is undecidable in general, more specifically if the condi-
tions defining PEARSE are met: (1) tasks use event-based
asynchronous triggering (i.e. a target task starts whenever
its source finishes) on a distributed platform, (2) execu-
tion times are specified as continuous-time intervals, (3)
preemptions may occur anytime within the continuous-time
execution interval [2], [3].

In this paper we propose a conservative approximation
method for the verification of preemptive scheduling in
PEARSE designs. We approximate stopwatch automata us-
ing timed automata by discretizing clocks, to “store” time
passed before a preemption. The practical benefit of this
method is that we provide a decidable technique for the
real-time verification of PEARSE.

In event-driven systems it is not enough to consider
the worst case times of tasks in general. Consider the
simple example shown in Figure 3. Task A is running
on machine_1, and tasks B and C are running on
machine_2. Task A starts at time 0, and may finish its
execution time anytime within the [2, 6] interval. Task B



starts its execution whenever task A finishes its execution,
and executes for 1 time unit. Task C starts its execution at
time 4, and executes for 1 time unit. We assume that task
B has higher priority than task C, and that the deadlines
for task B and task C are 1.2 time units. The system is
schedulable when task A executes for its bcet time as
shown in the left of Figure 3, and it is schedulable when
task A executes for its wcet time as shown in the middle
of Figure 3. However, if task A finishes its execution at time
5.5, task C will miss its deadline as it has to wait for task
B. Therefore, the analysis has to capture execution intervals
in continuous time, otherwise it may lead to false positives;
unschedulable designs that cannot be detected at design time.

We achieve this goal by mapping preemptive scheduling
to non-preemptive scheduling. Timed automata can express
non-preemptive scheduling with execution intervals [13],
[15], and reachability analysis is decidable on timed au-
tomata [4].

5. Conservative Approximation of Integration
Graphs

In this section we describe the conservative approximation
method for the reachability analysis of integration graphs.
We implement this approximation in two steps. In the
first step, we map each TSA in graph GS (defined in
Section 4.2) to a timed automaton. We refer to this timed
automaton as Task Timed Automaton (TTA) (described in
detail in Section 5.1). In the second step we consider how
approximation errors can be considered in the analysis of
task graphs. We denote the language that the TTA accepts
as L(T ). Then we show that L(T ) ⊆ L(S), that implies the
conservative nature of the approximation.

5.1. Mapping the TSA to TTA

In this section we show how the TSA can be mapped
to the TTA. We represent preemptable tasks as TSA as
shown in Figure 1. We introduce a generic timed automaton
template for preemptable tasks as shown in Figure 4. The
locations denoted as runx,y in Figure4 represent the run
location of the TSA, the stopx,y locations represent locations
where the task is preempted (location stop in Figure 1).
The x index represents discrete checkpoints denoting time
passed, and y represents the number of preemptions en-
countered during the run of the TTA. We say that the TTA
executes iff it is in a runx,y location, and it is preempted iff
it is in a stopx,y location, and we refer to the time spent in
runx,y locations as execution time.

We denote the time unit used for the discretization as
tu. We partition the wcet time of a task to n equal-size
intervals, and a smaller interval representing the fraction of
the division of wcet by tu. If tu is a divisor of wcet,
then the locations runn,y representing the fractions are not

required, and the value of n and m needs to be decreased
by 1 in all guards in Figure 4. We define the constants used
in the template as follows:

n = bwcet
tu
c, 1 ≤ m ≤ dl

tu
, k = bbcet

tu
c (4)

Key restriction: Since the TTA is an approximation of the
TSA, it can only express bounded numbers of preemptions
(per task). Note that this bound does not restrict periodic
execution. If the execution of the task graph is repeatedly
triggered by a periodic (or aperiodic) event, the task can get
preempted limited times during a single execution of the
task graph. However, there is no bound on the number of
executions, and thus the overall number of preemptions.

The constant m represents the maximum number of
preemptions that the TTA can capture. This is a weak
restriction, as in practical systems tasks are not preempted
infinitely often. In fact, frequent preemptions can signifi-
cantly degrade the system performance and therefore should
be avoided by design. Moreover, since task graphs (and
dependencies between tasks) are fixed, one can calculate
how many times a task may get preempted during a single
execution of the task graph. The value of m is not affected by
how many times the task graph is executed, or whether the
design is periodic. The value of m is proportional to dl

tu
, and

the maximum value of m is dl
tu

. We prove this statement at
the end of Section 5.2, where we describe the timed language
that the TTA accepts.

Each runx,y location represents tu time spent executing,
due to the invariants vta ≤ tu (see Definition 1). Since the
difference between the wcet and bcet time of a task may
be larger than the time unit tu used for the discretization, we
may need to introduce transitions from several runx,y, x ∈
{0 . . . n− 1}, y ∈ {0 . . .m} locations, to provide a way for
the automaton to jump to the finish location (shown as curvy
arrows in Figure 4). We introduce a transition from each
runx,y, k ≤ x+ y location to the finish location, where the
constant k from Equation 4 is used to calculate the indeces of
runx,y locations from which the finish location is reachable,
as the example shows in Figure 4.

The model shown in Figure 4 does not use any variables
other than the valuation of a single clock (vta), and the
valuation of the global time clock (vt). The constants m,n, k
used in the guards can be computed before the verification
process, and therefore do not require extensions to timed
automata [4]. However, there exist some extensions to timed
automata that allow the use of integer variables, and the
value of k, n,m can be encoded in integer variables, and
therefore pre-computing these constants is not required when
using modern model checkers such as UPPAAL [19] or the
Verimag IF toolset [21].



Figure 4. Task Timed Automaton (TTA) – Approximating a Preemptable Real-time Task

5.2. Analysis of the Timed Automaton Approxima-
tion

In Section 5.1 we presented the construction rules for the
approximation of the TSA using the TTA. In this section we
prove the conservative nature of the approximation using the
language inclusion problem.

The alphabet of the TTA is the alphabet of the TSA, Σ
= {start, stop, enablei, enablej}. However, the TTA can
only capture a bounded number of preemptions (per task).
The syntax of the (untimed) TTA language can be described
using regular expressions as follows:

SL(T ) = enablei start (stop start)0...m enablej (5)

We see that SL(T ) ⊆ SL(S). The runx,y locations of the TTA
represent “checkpoints” in time; they store the discrete clock
value and the number of preemptions occured during the
execution of the task. If a task is in the runa,b location, then
it has executed for at least a · tu time, and has encountered
b preemptions.

Definition 6: We define the valuation vx = vta+x, where
vta is the valuation of cta as in Figure 4, and x is the index
of locations runx,y or stopx,y, where the automaton resides.
Valuation vx has a discrete-time component, that stores
the checkpoints that have already been encountered, and
a continuous-time component, that measures the time be-
tween checkpoints. Since timed automaton clocks cannot
be resumed like a stopwatch, the valuation vx is only an
approximation of vsw, that models the actual execution time
accurately. Note that vx is not used in the TTA model
directly, we define it for the sole purpose of measuring the
imprecision of using vx to approximate clock value vsw. To
establish the relationship between the TSA and the TTA, we

compare them on timed words that follow the syntax of the
(untimed) regular expression SL(T ). We assume that both
the TSA and the TTA receive events in the same order, and
with the same timestamps.

Proposition 1: For any timed word r that follows the
syntax of the (untimed) regular expression SL(T ), during
the co-simulation of word r on both the TSA and the TTA
vsw − m · tu ≤ vx ≤ vsw holds from time 0 to the
timestamp of the last event, where vsw is the valuation of
TSA clock csw shown in Figure 1, vx is the valuation defined
in Definition 6, and m is the number of stop events in the
timed word (the number of preemptions).

Proof: Since both the TSA and the TTA receive events
with the same timestamps, their transitions will happen
simultaneously. Whenever the TSA receives a start event,
it makes a transition to the run location, and whenever
it receives a stop event it moves to the stop location.
Similarly, whenever the TTA receives a start event, it makes
a transition to one of the runx,y locations, and whenever it
receives a stop event it moves to one of the stopx,y locations.

The stopwatch clock valuation vsw increases with a slope
of 1 between start and stop events in the run location, and
is constant between stop and start events. The valuation
vx also increases with a slope of 1 between start and stop
events in the runx,y locations, due to the continuous-value
timed automaton clock valuation vta shown in Figure 4.
Whenever a preemption happens, vta is reset (shown in
Figure 4). Therefore, with each preemption, valuation vx

loses the value stored in the continuous-time component (vta

becomes 0), whereas clock vsw keeps its value, therefore,
vx ≤ vsw.

When the TTA receives a stop event, the clock valuation
vta is in the [0, tu] interval, due to the invariants vta ≤ tu.



Since the clock is reset, vx decreases by at most tu time,
while vsw hold its value when a preemption occurs. If there
are m preemptions, the clock value vx may decrease by at
most m · tu time compared to clock value vsw, therefore
vsw −m · tu ≤ vx. �

Proposition 1 is the key to quantify the imprecision of the
timed automaton approximation. It shows that valuation vx

increases slower than – or in the case when no preemptions
occur with the same slope as – clock value vsw due to the
fact that the TTA does not keep track of the time spent in the
runx,y location where it has received the stop event. These
results imply that for the same timed word, it takes at least
as much time for the valuation vx to reach a given value, as
it does for the stopwatch clock valuation vsw.

Recall that wcet and bcet denote the longest and
shortest possible execution times of a task, respectively, not
including the time spent in the stop location. If we denote
the time that the TSA has spent in the run location as τrun,
then vsw = τrun, based on the fact that vsw is simply a
function of vt.

In the TTA model we also use the wcet, bcet parame-
ters to obtain guards on transitions. Proposition 1 shows that
valuation vx follows clock value vsw with some imprecision.
The time that the TTA spends in runx,y locations equals
τrun, because anytime the TTA receives a start event it
makes a transition to a runx,y location, and anytime it
receives a stop event it moves to a stopx,y location, just
like the TSA does. Therefore, according to Proposition 1,
vsw −m · tu ≤ vx ≤ vsw = τrun.

Definition 7: We refer to the valuation of global time
clock (vt) when vx = wcet as actual worst case execution
time, and denote it as twcet. The valuation of global time
clock (vt) when vx = bcet is referred to as actual worst
case execution time, and denoted as twcet

Proposition 2: For any timed word r that follows the
syntax of the (untimed) regular expression SL(T ), if vx =
wcet holds anytime during the run of word r on the TTA,
then wcet ≤ twcet.

Proof: The invariants vta ≤ tu in the TTA imply that the
TTA spends at most tu time in each runx,y location. Time
spent in stopx,y locations is not part of the execution time
and therefore does not contribute to twcet (only to the dead-
line). Moreover, we reset the continuous-time component
(clock valuation vta in Figure 4) whenever we leave a stopx,y

location, therefore the value of clock valuation vx when it
leaves the stop location is less than or equal to its value
when it entered the location. Neither twcet, nor vx increases
by passing through stopx,y locations, and therefore we can
abstract these location out here. If the TTA receives no stop
events, it spends tu time in n locations, then wcet− n · tu
time in the last location, therefore if no preemptions occur,
twcet is wcet in the TTA.

Create a directed graph GM = (VM , EM ) such, that for
each runx,y location add a vertex vx,y in graph GM . For

all vertices vx,y, x ∈ 0 . . . n − 1, y ∈ 0 . . .m − 1 add a
directed edge from vx,y to vx+1,y , and a directed edge from
vx,y to vx,y+1. Add a terminal vertex z to graph GM , and
add edges from each vn,y to z. We only add edges from
vn,y locations because we are interested in the worst case
execution time of the task, and therefore we require the
automaton to go through (at least) n runx,y locations. The
edges in GM specify the order in which runx,y locations
can follow each other in the TTA, the source represents the
initial idle location, and the terminal represents the finish
location. The graph GM is an abstract model of the TTA
shown in Figure 4. The shortest path in GM from v0,0 to
t is the s, v0,0, v1,0, . . . vn,0, t path, that corresponds to the
case when the TTA receives no stop events. Anytime the
TTA receives a stop event, it needs to go through additional
runx,y locations, and therefore twcet increases. �

Proposition 3: For any timed word r that follows the
syntax of the (untimed) regular expression SL(T ), if vx =
bcet holds anytime during the run of word r on the TTA,
then tbcet ≤ bcet.

Proof: We build on the GM graph introduced in Propo-
sition 2. Since we are interested in the best case, we add
an edge from each vx,y vertex to t, where k ≤ x + y, not
just from vn,y vertices. Since we introduced edges from each
runx,y, k ≤ x+y vertex, the shortest path from s to t is k+2
(k · vx,y vertices, plus start (s) and terminal (t)locations),
regardless of the value of y, that represents the number of
preemptions. Each vertex represents a runx,y location, where
we spend at most tu time, due to the invariant vta ≤ tu,
and therefore vt is at most k · tu when the TTA reaches
a location that has a transition to the finish location. The
guard on all transitions from runx,y locations to the finish
location is bcet− k · tu, and bcet− k · tu + k · tu = bcet,
therefore tbcet is bcet or less in the TTA. �

Now that we established the relation between the TSA and
the TTA, we focus on the language that the TTA accepts.
The timestamps of all events have to be less than dl in a
timed word in order for the TSA to accept the word. We
discard the enablej event, since it might not correspond to
the worst case. Similarly to the notations used with the TSA,
we denote the timestamps of events in the [0 . . .dl] interval
as t1, t2, . . . , te, where t1 denotes the enablei event, and te
denotes the last start event.

The number of preemptions m = e
2 in Proposition 1, since

every second event is a stop event (and e is even). Therefore,∑ e
2
i=1 tu = m·tu, corresponding to the maximum difference

between clocks csw and vx on any timed word over Σ,
as shown in Proposition 1. Accordingly, we conclude, that
the TTA accepts the timed language that has a syntax
as described in Equation 5, and satisfies the following
constraint:

e
2∑

i=1

τ2i − τ2i−1 + tu ≤ dl− wcet (6)



Equation 6 states that a task is schedulable if it spends
at most dl − wcet − m · tu time in stopx,y locations in
the TTA within the [0, dl] interval, since in this case it
can execute for wcet time before its deadline. We need to
subtract m ·tu from the available time to compensate for the
imprecision of the timed automata approximation described
in Proposition 1.

We now show that the maximum value of m is dl
tu

in
Equation 4. From Equation 6 we see that the maximum
value for m defined in Equation 4 is dl

tu
, since the number of

preemptions m = e
2 , therefore in this case

∑ dl
tu
i=1 tu = dl ≥

dl− wcet, therefore the constraint specified in Equation 6
will never be satisfied when the number of preemptions
encountered is more than dl

tu
.

5.3. Language Inclusion Problem for a Single
TTA/TSA Pair

The language inclusion problem for stopwatch automata
can be described as follows; given two stopwatch automata
T and S, are all timed traces accepted by T also accepted
by S? For the proof we proceed with the common method
of complementation and emptiness checking of the intersec-
tion [5]: L(T ) ⊆ L(S) iff L(T ) ∩ L(S) = ∅.

Theorem 1: The TSA accepts the timed language over Σ
that the TTA accepts: L(T ) ⊆ L(S).

Proof: SL(T ) ⊆ SL(S), therefore it is sufficient to show
that L(T ) ⊆ L(S) holds over timed words that can be
expressed using the (untimed) syntax SL(T ). Let tstop denote
the expression

∑ e
2
i=1 τ2i − τ2i−1, the time that the TSA

spends in the stop location. The timestamps of events are the
same in the TTA and TSA traces, as we compare the timed
languages L(T ) and L(S) word by word. Then, the time
constraints on the timed language L(T ) ∩ L(S) can be ex-
pressed as tstop+

∑ e
2
i=1 tu ≤ dl−wcet∩tstop > dl−wcet.

Since tu ∈ R≥0, therefore 0 ≤
∑ e

2
i=1 tu. Since tstop cannot

be both smaller than or equal to dl - wcet and less than
dl - wcet, therefore the intersection of L(S) and L(T ) is
the empty set, that implies that the TSA accepts the timed
language over Σ that the TTA accepts, and L(T ) ⊆ L(S)
holds. �

5.4. The Effects of Composing TTA on the Approx-
imation

We now show that since twcet of the TTA is larger than
twcet of its corresponding TSA, and tbcet of the TTA is
smaller than tbcet of its corresponding TSA, therefore the
composition of TTA models is a conservative approximation
of the composition of TSA.

Theorem 1 shows that the TSA accepts the language
that the TTA accepts (L(T ) ⊆ L(S)). As described in
Section 4, the composition of TSA as a task graph turns

reachability analysis undecidable [2], which motivated our
work to approximate TSA task graphs using TTA task
graphs. In this Section we show that the composition of
TTA as a task graph (denoted as GS in Section 4.2) does
not invalidate the results of Theorem 1. For the conservative
approximation of TSA task graphs, we replace each TSA
in the task graph with a TTA. We denote this graph as
GT = (XT , ET ), where each vertex in set XT is a TTA. As
each timed automaton is also a stopwatch automaton, TTA
compose using events the same way as TSA do. Graphs
GS and GT are a representation of applying the ⊕ parallel
composition operator, and the ⊗ serial composition operator
to TSA and TTA models, respectively. Therefore, we need to
consider how these operators may influence the timestamps
of events.

When parallel composition is used between two automata
(xk⊕xl), xk ∈ XT , xl ∈ XT , then the two automata do not
depend on each other and can be analyzed independently.
Therefore, the parallel composition of TSA and TTA models
does not influence the timestamps of events.

We now consider the case when serial composition is
used between two automata (xk ⊗ xl), xk ∈ XT , xl ∈ XT .
Denote the language of xk as L(T )k, and the language
of xl as L(T )l. Denote the alphabet of xk as Σk =
{startk, stopk, enablekk

, enablelk}, and the alphabet of xl as
Σl = {startl, stopl, enablekl

, enablell}. Since the timestamp
of enablelk , and the timestamp of enablekl

is the same by
definition, therefore the timestamps of events in Σl may be
influenced by the timestamp of enablelk .

The enablelk event signals the end of the execution of
TTAk, and is raised when vx is within the [bcetk, wcetk]
interval. Therefore, the timestamp of enablelk is influenced
by the imprecision between vx and vsw described in Propo-
sition 1. Proposition 2 shows, that if vxk

= wcetk holds,
then wcetk ≤ twcetk

. Also, Proposition 3 shows, that if
vxk

= bcetk holds, then tbcetk
≤ bcetk. Therefore, if

vxk
= wcetk holds for a TTA, then the timestamp of

enablelk is in the [tbcetk
, twcetk

] real-valued interval, and
[bcetk, wcetk] ⊆ [tbcetk

, twcetk
]. This implies that TTAk

can generate all the timestamps for event enablelk , that its
corresponding TSAk model can generate, if vxk

= wcetk
can be satisfied. If it cannot, then the TTA will report the task
as unschedulable (that may or may not be true). Therefore,
the proposed approximation method provides a sufficient,
but not necessary condition, in general, to determine the
schedulability of TSA models composed using the ⊕ and ⊗
operators.

6. Practical Application

We applied the proposed conservative approximation
method to analyze a PEARSE design shown in Figure 5,
loosely based on a real-time CORBA avionics applica-
tion [15]. Tasks represent software components, and are



Figure 5. Real-time CORBA Avionics Application

denoted as T, FIFO event channels are denoted B. Timers
send out events periodically, driving the computation in
the design. Arrows represent dependencies between tasks.
Tasks are mapped to threads as defined by the dashed lines.
Within each thread, fixed-priority non-preemptive schedul-
ing is used, and fixed-priority preemptive scheduling is used
between threads. Both CPU_2 and CPU_3 use preemptive
scheduling. FIFOs are scheduled non-concurrently (i.e. they
are always ready to execute). Communication between soft-
ware tasks is fully asynchronous and event-driven. Overall,
there are 11 tasks in the design and 11 FIFO buffers, that
execute on 5 threads on 3 CPUs. Execution parameters for
tasks are shown in Table 1.

Each task is represented as a TTA, and FIFOs are modeled
as timed automata that buffer events. We can only illustrate
the size and design of the model used for the analysis. Our
approach for modeling FIFOs and scheduling policies is
described in detail in [15]. We introduce an error location
for each TTA to ensure that the model deadlocks whenever
the deadline is exceeded. Thus, when no deadlocks occur
then all deadlines are met.

We have checked the schedulability of the timed au-
tomata model using the the UPPAAL model checker [19]
by issuing the A[] not deadlock macro (experiment
1). We then ran experiments where in each step we halved
both the BCET and WCET of a single task (first gps, then
airframe etc.) We used the highest possible precision
for preemptive tasks, the value of the clock is saved at every
integer value during the execution of a task. Experiments
were executed on an Intel Core i7 i920 processor running
at 4GHz, using 6GB three-channel RAM. Model checking
time for the 12 experiments is shown in Figure 6, and the
memory used is shown in Figure 7.

Both the verification time and memory consumption vary

Timer Period
Rategen_1x 1000
Rategen_2xa 500
Rategen_2xb 500
Rategen_4xa 250
Rategen_4xb 250

Task WCET BCET Deadline
gps 21 18 100

airframe 53 50 100
pilot_wayp... 37 35 300

routes 18 15 250
display_device 26 26 250
af_monitor 33 32 150
nav_display 14 12 150
nav_steering 69 65 150
navigator... 42 42 100
pilot_control 43 37 80
tactical_st... 58 52 100

Table 1. Parameters for the Real-time CORBA Case
Study Shown in Figure 5

as a function of non-determinism, which is influenced by
many factors, including the actual execution parameters,
the size of execution intervals, the number of concurrently
executing tasks, as well as the number of tasks. That said,
complexity cannot simply be judged as a factor of size.

In experiment 3, where the WCET and BCET parame-
ters for the airframe task are halved (to 27 and 25,
respectively), the change results in a deadline miss in the
nav_display task. This means that we did not find a
sufficient condition for schedulability, and the design may
or may not be schedulable. All other experiments proved the
design schedulable with the given parameters. Decreasing
the execution parameters for the tactical_steering
task greatly increased verification time and memory con-
sumption. The cause of the complexity increase is unknown
to us, but we suspect that the changes have increased the
non-determinism in the model (i.e. by introducing race
conditions, or non-deterministic execution order).

Several improvements may increase scalability in real-life
problems. First of all, the proposed method allows for hier-
archical model checking, since preemptive components can
be encapsulated into non-preemptive “wrappers”, acting as a
black box. Since intervals for communication are captured,
there is no need to model all components at once. We plan to
investigate this direction in the future. Second, UPPAAL does
not take advantage of multi-core processors or distributed
clusters. Model-checking algorithms that are CPU-bound
rather than memory-bound – such as the algorithm described
in [16] – have the potential to leverage multi-core hardware
and may provide better performance in the future. There is
room for optimization in current model checkers. Given the
resources, the real-time verification of large-scale designs is
within reach.



Figure 6. Model Checking Time

7. Concluding remarks

This paper presents a conservative approximation method
for the verification of preemptive event-driven asynchronous
real-time systems with execution intervals (PEARSE). The
proposed method is based on timed automata model check-
ing methods, and inherently captures asynchrony and depen-
dencies between tasks and provides a way for the formal
analysis of practical embedded systems. We have shown
that the approximation provides a sufficient, but not required
condition to determine the schedulability of distributed asyn-
chronous event-driven systems using preemptive scheduling.
The practical application of the method was shown on a real-
time CORBA avionics application.

References

[1] J. McManis and P. Varaiya, “Suspension Automata: A De-
cidable Class of Hybrid Automata,” in Proceedings of CAV,
1994, pp. 105–117.

[2] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine, “Decidable
Integration Graphs,” Information and Computation, vol. 150,
no. 2, pp. 209–243, 1999.

[3] P. Krcal, M. Stigge, and W. Yi, “Multi-Processor Schedula-
bility Analysis of Preemptive Real-Time Tasks with Variable
Execution Times,” in Proceedings of FORMATS, 2007, pp.
274–289.

[4] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical Computer Science, vol. 126, no. 2, pp. 183–235,
1994.

[5] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman, Intro-
duction to Automata Theory, Languages and Computability.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[6] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,”
Proceedings of the IEEE, Special Issue on Modeling and
Design of Embedded Software, Oct. 2001.

[7] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” J.
ACM, vol. 20, no. 1, pp. 46–61, 1973.

[8] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza, A Prac-
titioners’ Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Kluwer Aca-
demic Publishers, 1993.

Figure 7. Model Checking Memory Consumption

[9] T. Gerdsmeier and R. Cardell-Oliver, “Analysis of Scheduling
Behaviour using Generic Timed Automata,” Electronic Notes
in Theoretical Computer Science, vol. 42, 2001.

[10] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone, “The Synchronous Languages
12 Years Later,” Proceedings of the IEEE, vol. 91, pp. 64–
83, 2003.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “GIOTTO:
A time-triggered language for embedded programming,” Pro-
ceedings of the IEEE, vol. 91, pp. 84–99, 2003.

[12] Y. Abdeddaı̈m and O. Maler, “Preemptive job-shop schedul-
ing using stopwatch automata,” in Proceedings of TACAS,
2002, pp. 113–126.

[13] C. Ericsson, A. Wall, and W. Yi, “Timed Automata as Task
Models for Event-Driven Systems,” in Proceedings of RTSCA
’99, 1999.

[14] V. Subramonian, C. Gill, C. Sanchez, and H. Sipma,
“Reusable Models for Timing and Liveness Analysis of
Middleware for Distributed Real-Time Embedded Systems,”
in Proceedings of EMSOFT, October 2006, pp. 252–261.

[15] G. Madl, S. Abdelwahed, and D. C. Schmidt, “Verifying
Distributed Real-time Properties of Embedded Systems via
Graph Transformations and Model Checking,” Real-Time
Systems, vol. 33, pp. 77–100, Jul 2006.

[16] G. Madl, N. Dutt, and S. Abdelwahed, “Performance Estima-
tion of Distributed Real-time Embedded Systems by Discrete
Event Simulations,” in Proceedings of EMSOFT, October
2007, pp. 183–192.

[17] G. Madl and S. Abdelwahed, “Model-based Analysis of
Distributed Real-time Embedded System Composition,” in
Proceedings of EMSOFT, 2005, pp. 371–374.

[18] F. Cassez and K. Larsen, “The impressive power of stop-
watches,” in Proceedings of CONCUR, 2000, pp. 138–152.

[19] P. Pettersson and K. G. Larsen., “UPPAAL2k,” Bulletin of
the European Association for Theoretical Computer Science,
vol. 70, pp. 40–44, feb 2000.

[20] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya,
“What’s decidable about hybrid automata?” Journal of Com-
puter and System Sciences, vol. 57, no. 1, pp. 94–124, 1998.

[21] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis, “The
IF Toolset,” Formal Methods for the Design of Real-Time
Systems, LNCS 3185, pp. 237–267, Sep 2004.


	Introduction
	Related Work
	Background
	Problem Formulation
	Stopwatch as a Model for a Preemptable Real-time Task
	Composable Stopwatch Automata as a Model for PEARSE
	Problem Description

	Conservative Approximation of Integration Graphs
	Mapping the TSA to TTA
	Analysis of the Timed Automaton Approximation
	Language Inclusion Problem for a Single TTA/TSA Pair
	The Effects of Composing TTA on the Approximation

	Practical Application
	Concluding remarks
	References

