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ABSTRACT

This paper presents new algorithms for solving geomet-
ric problems on a shared memory parallel computer, where
concurrent reads are allowed but no two processors can simul-
taneously attempt to write in the same memory location. The
algorithms are new and are quite different from the known
sequential algorithms. One of our results is an O(logn) time,
O(n) processor algorithm for the convex hull problem. Another
result is an O(log nloglogn) time, O(n) processor algorithm
for the problem of selecting a closest pair of points among n
input points.
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1. Introduction

Since they involve asking basic questions about sets of points,
lines, polygons, etc, geometric problems arise often in many
applications [7]. We are interested in finding parallel algo-
rithms solving some of these problems which are efficient both
in terms of their running time and in the number of proces-
sors used. Efficient sequential algorithms for solving geometric
problems often use the divide-and-conquer paradigm: to solve
a problem of size n solve two sub-problems of size n/2, and
then “marry” the results of these two recursive calls. Unfor-
tunately, trying to “parallelize” known sequential algorithms
often yields suboptimal parallel solutions (actually this seems
to be a rule rather than an exception). Such is the case for the
convex hull and the closest pair problems. Indeed, the efficient
parallel algorithms we give for solving these problems turn out
to be quite different from the known sequential algorithms.
Throughout this paper, the computational model used is
the shared memory model in which concurrent reads are al-
lowed, but no two processors should attempt to simultaneously
write in the same memory location. We henceforth refer to
this model as the CREW PRAM (Concurrent Read Exclusive
Write Parallel RAM). Using this model of parallel computa-
tion, we are interested in achieving the highest speed-up using
only O(n) processors (this restriction on the numbers of pro-
cessors i8 crucial, since the problems we consider can trivially
be solved in logarithmic time if the number of processors used
were of no concern, e.g. O(n?)). In reference {4}, Chow has
given an O(logZn) time, O(n) processor parallel convex hull
algorithm. This paper improves on that result by giving an
O(log n) time, O(n) processor parallel algorithm for that prob-
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lem. Our algorithm is optimal with respect to both the time
and number of processors, since this problem has an Q(nlog n)
time sequential lower bound [10}, and an obvious 2(log n} time
lower bound for the parallel machine considered in this paper.
Another problem we address is that of finding the closest pair
among a set of n input points. We give an algorithm which
solves the closest pair problem in O(log nloglogn) time using
O(n) processors by exploiting a technique similar to the one
we used to solve the convex hull problem. Our algorithm for
the closest pair is far more complex than that for the convex
hull, and therefore we begin by presenting the latter.

To simplify the exposition, we assume that no three points
are collinear and that the points have istinct z (resp. y)
coordinates (our results can easily be modified for the general
case). We also frequently make use of the known result that,
on this model of parallel computation, n objects can be sorted
in O(logn) time by an n processor machine [6].

2. Convex Hull

Given n points in the plane, the convex hull problem is that
of finding which of these points belong to the perimeter of the
smallest convex region containing all n points. This problem
has applications in many fields, including computer graphics,
computer vision, and statistics [7]. As mentioned earlier, the
convex hull problem has an {}(rnlogn) time sequential lower
bound [10], and this bound is achievable [5], [9].

Many authors have addressed the question of finding par-
allel solutions to this problem. Chazelle [2] shows how to solve
the problem on a linear array of processors in O(n) time. Miller
and Stout, in reference [8], present an O{,/n) time solution on
an n node mesh-connected computer. Although both of these
algorithms are suited for the computational models for which
they were designed, implementing them on a CREW PRAM
would lead to sub-optimal algorithms. The only known previ-
ous parallel algorithm solving this problem on a CREW PRAM
is due to Chow [4], and runs in O(log® n) time using O(n) pro-
cessors. In this section we present a new parallel algorithm
which solves the convex hull problem in O(logn) time on a
CREW PRAM with O(n) processors. As mentioned earlier,
our algorithm is optimal (to within a constant).

We first present some definitions and observations. Let
R be a set of points in the plane.
listing of the points which belong to the convex hull of R by
CH(R). Let u and v be the points of R with the smallest and
largest z-coordinate, respectively. Clearly, u and v are both
in CH(R). They divide C H(R) into two sets: an upper hull.
consisting of points from u to v, inclusive, in the clock-wise

We denote a clock-wise



listing of C H(R), and a lower hull, consisting of points from
v to u, inclusive. We denote a clock-wise listing of the points
in the upper hull of R by U H(R}), and a similar listing of the
points in the lower hull by LH(R). Given a set S of n points
in the plane the following algorithm will compute CH(S).

Algorithm CH:
Input: A set S of n points in the plane.
Output: The list CH(S). That is, the points of the convex
hull of S listed in clock-wise order.
Method: The main idea of our algorithm is to divide the
problem into /n subproblems of size \/n each, solve the sub-
problems recursively in parallel, and combine the solutions to
the subproblems quickly (that is, in O(log n) time) and with
a linear number of processors.

Step 1. Sort the n points by z-coordinate, and partiiion §
into sets Ry, Re,..., R s, each of size V/n, divided
by vertical cut-lines, such that R; is left of R; if
t < 7 (see Figure 2.1).

Recursively solve the convex hull problem for each
R;,ie€{1,2,...,/n},in parallel. After this parallel
recursive call returns we will have C H(R;) for each
R;.

Find the convex hull of § by computing the con-
vex hull of the union of the \/n convex polygons
CH(R,),...,CH(R s;). This is done using algo-
rithm COMBINE which will be described later in
this section.

End of algorithm CH.

Step 2.

Step 3.

Theorem: Algorithm CH finds the convex hull of a set of
n points in the plane in O(logn) time on a CREW PRAM
with O(n) processors.

Proof: We give this proof assuming that algorithm COM-
BINE (used in Step 3) is correct and takes O(logn) time
and O(n) processors. (This will be justified once we describe
algorithm COMBINE later in this section.) That Step 1
can be done in O(logn) time and O(n) processors follows
from the results of reference [6]. Thus the running time,
T(n), of the algorithm can be expressed in the recurrence
relation T(n) = T(\/n) + blogn, which is O(logn). The
number of processors needed, P(n), satisfies the recurrence
P(n) = max{,/mnP(/n), cn}, which is O(n). This completes
the proof, subject to the already stated assumption about
Step 3 and algorithm COMBINE (yet to be described). »

The rest of this section deals with the problem of imple-
menting Step 3 of algorithm CH in time O(logn) and with
O(n) processors. This is done by using algorithm COMBINE,
described below. For convenience, we choose to describe al-
gorithm COMBINE for the problem of computing the upper
hull, since that of computing the lower hull is entirely sym-
metrical. In the algoritbhm description, when we talk about
the “upper” common tangent between CH(R;) and C H(R;),
we mean the common tangent such that both CH(R;) and
CH(R;) are below it. Also, when we say that a point p is
“to the left” of another point g, what we mean is that the
x-coordinate of p is less than that of g.
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Algorithm COMBINE:

Input: The collection of convex polygons
{CH(Rl),CH(Rg),...,CH(R\/;)}. Recall that these input
polygons are separated by vertical lines, and that none of
them has more than \/n vertices. Also recall that CH(R;) is
to the left of CH(R;) if 7 < 7.

Output: The upper convex hull UH(S) of the vertices of the
union of the CH(R;)’s.
Method: The main idea is to find, in parallel for each CH(Ry),
which of its vertices are on U H(S). This is done by assigning
/1 processors to each C H(R;) and having each of these pro-
cessors compute the upper common tangent between C H(R;)
and one of the other input polygons. The details follow.
Step 1. In parallel for each ¢ € {1,2,...,\/n} use /n pro-
cessors to find those points of C H(R;) which belong
to CH(S) by doing the following:

Step 1.1 Find the \/n — 1 upper common tangents be-
tween C H(R;) and the remaining /n — 1 other
input polygons. Let T;; denote the upper com-
mon tangent between CH(R;) and CH(R;),
where T;; is represented by its point of con-
tact with C H(R;) and its point of contact with
CH(R;). A tangent Ty; is easily computed in
O(log n) time by one processor, using the tech-
niques described in reference [3). Therefore all
of Tyy,...,T; m can be computed in Oflogn)
time by the \/n processors assigned to C H(R;).
Let V; be the tangent with smallest slope
in {Te,...,Tei-1} (e, Vi is the smallest-
slope tangent which “comes from the left” of
CH(R;)), and let W; be the tangent with
largest slope in {Tii41,... ,T,-‘\/;} (i.e., Wi is
the largest-slope tangent which “comes from
the right” of CH(R;)). Let v; be the point of
contact of V; with CH(R;), and let w; be the
point of contact of W; with CH(R;). Both V;
and W; can be found in O(logn) time by the
\/n processors assigned to C H(R;).

Since neither V; nor W; can be vertical, they in-

Step 1.2.

Step 1.3.
tersect and form an angle (with interior point-
ing upward). If this angle is less than 180°
(as in Figure 2.2), then none of the points of
UH(R;) belong to UH(S). Otherwise, (as in
Figure 2.3) all the points from v; to w;, inclu-
sive, belong to UH(S).

Step 2. Step 1 has computed, for every + € {1,...,/n},
all the points of CH(R;) which belong to UH(S)
(possibly none). This step compresses each of these
lists into ome list to get UH(S). This can be done
in O(log n}) time and O(n) processors (e.g., by using
parallel sorting).

End of algorithm COMBINE.

That COMBINE runs in time O(logn) and O(n) pro-
cessors should be clear from the comments made in the algo-
rithm description. The correctness of COMBINE depends on
the correctness of Step 1.3. The correctness of Step 1.3 for
the case depicted in Figure 2.2. follows from the fact that,



in that case, the straight-line segment joining the other end-
points of V; and W; (shown dashed in Figure 2.2) is entirely
above CH(R;); hence, no vertex of CH(R;} can belong to
UH(S). The correctness of Step 1.3 for the case depicted in
Figure 2.3 follows from the fact that all the points of the other
C H(R;)’s are below V; and W,. This proves the correctness
of algorithm COMBINE.
The next section deals with the closest-pair problem.

3. Closest Pair

Given n points in the plane, the closest pair problem is that
of choosing two of them that are closest (i.e., the distance
between them is smallest). This problem has applications in
answering basic proximity questions of sets of objects, such as
monitoring airplanes in air-traffic control. We are not aware
of any previous work done in finding parallel solutions to
this problem. A trivial O{logn) time parallel algorithm ex-
ists, but it requires a quadratic number of processors. Here
we are investigating what speed can be achieved with only
O(n) processors. Parallelizing what seems to be the most
promising sequential algorithm, by Bentley and Shamos [1],
on O(n) processors only leads to an O(log?n) time algo-
rithm. Applying a technique similar to the one we used in
the convex hull problem, we show how to solve the problem
in O(lognloglog n) time using O(n) processors on a CREW
PRAM.

As in our solution to the convex hull problem, we will
be dividing the input set of points into \/n subsets divided
by vertical cut-lines. Let R),...,R_; be these subsets in
left-to-right order, i.e. R; is left of R; if 1 < 7. We define
the region-width of a point set R; to be the distance between
the cut-lines separating R; from R;_; and Riy,, respectively.
Note: the region-width of R; and R & is defined to be oo.
We present the closest pair algorithm CP below.

Algorithm CP:
Input: A set § of n points in the plane.
Output: A closest pair of points in §.

Method: Before giving the details, we present an overview
of the various stages of the algorithm. First, we partition
S into \/n sets, of size \/n each, using vertical cut-lines, and
recursively solve the closest pair problem for each. This gives
us a closest pair of points not separated by a cut-line. For
the combining step to run quickly (i.e., in O(logn) time)
there should not be more than a comstant number of cut-
lines which are “close” to one another. Since this may not
presently be the case, we do not perform a combining step at
this point. Instead, we re-partition S using the COALESCE
algorithm, presented later, which results in a better distri-
bution of the remaining vertical cut-lines. The COALESCE
method works by removing cut-lines which divide point sets
with small region-widths, thereby coalescing the two sets into
one. Even after coalescing, we still do not combine the sub-
problems, because in removing a cut-line we coalesce previ-
ously solved subproblems into conglomerates which must now
be re-solved. Consequently, for each conglomerate point set,
we use the \/n divide-and-conquer technique again, dividing
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the conglomerate horizontally this time, and solving each of
the resulting horizontally divided sets recursively. We divide
the conglomerate point sets horizontally, because, as we will
see, it guarantees that cut-lines will be far enough from each
other so as to allow for a fast combining step. Since we have
already forced the vertical cut-lines to be distributed nicely,
we are now ready to combine the solutions to the subprob-
lems: first combining the solutions to the horizontally di-
vided sets, and then combining the solutions to the vertically
divided sets. This combining step is done using the DIST
algorithm, presented later. A detailed description of the al-
gorithm follows. Let I denote the index set {1,2,...,,/n}.

Step 1. Partition § into point sets Ry, Ry, ..., R\/;;, each of
size \/n, separated by vertical cut-lines, such that
R; 1s left of R; if 4 < j (see Figure 2.1).

Recursively solve the closest pair problem for each
R;, + € I, in parallel. After the parallel recursive

Step 2.

call returns we will have a closest pair of points,
(pi,q:), for each R;. Let &; be the distance between
pi and g;.
Step 3. Find the minimum §é; value, and call it . Let (p, q)
be the pair of points associated with the selected
(minimum) §; value.
Repartition § into {R{, R},..., R}}, | < /n so that
there is never more than 2 vertical cut-lines which

Step 4.

are within § of each other. This is done by using
the COALESCE algorithm, presented later on. Let
I' denote {1,2,...,1}.
Comment: The new partition is created by coalesc-
ing some adjacent point sets by removing cut-lines
which separate sets with region-width less than 4.
Algorithm COALESCE will give the details of how
this is done.
Step 5. In parallel, for each 1 € I' find a closest pair (p!,¢})
in R! by doing the following:
Step 5.1. If R! is one of the original point sets, say Ry
(i.e., R! was not created by coalescing any of
the original point sets), then set 6! to fx, set
(pl:q!) to (pk,qx), and go to Step 6.
Sort the points in R! by y-coordinate and par-
tition R! into point sets ry,rq, ..., T /mi/2) Sepa-
rated by horizontal cut-lines, each of size 2,/n;
(where n; = |R!|), and such that r; is below
re if j < k (see Figure 3.1). Let J; denote
{1,2,...,\/mi/2}.
Recursively solve the closest pair problem for
each r;, 7 € J;, in parallel. After the parallel

Step 5.2.

Step 5.3.

recursive call returns we will have a closest pair
of points (u;,v;), for each r;. Let ¢; be the
distance between u; and v;.
Step 5.4. Find the minimum ¢; value, and call it €. Let
(u,v) be the pair of points associated with the
selected ¢; value.
Comment: (u,v) is a closest pair in R} not sep-
arated by a horizontal cut-line.

Step 5.5. Combine the solutions to the r;’s to find a clos-




est pair {pl.¢t) in R!. This is done by using the
DIST algorithm presented later in this section.
Let »! be the distance between p} and g}.
Stepo 6 Pid the minmum 8! value, and call it 8. Let
{(p'.4") be the pair associated with the selected 6!
valile.
Comment: (p',q') 1s a closest pair in § not separated
Ly a vertical cut-line.
Combine the solutions to the R! sets to find a closest
pair of points in §. This too is done by using the
DIST algorithm.

End of algorithm CP.

Step 7.

Theorem: Algorithm CP finds a closest pair of n points in
the plane in O(log nlog log n) time on a CREW PRAM with

()i} processors.

Proof: Suppose, for the time being, that the algorithms
COALESCE and DIST work correctly (in lemmas 3.1 and
3.2 we will prove this). Then the correctness of algorithm
P follows from a straight-forward induction on n.

We now turn to the time complexity of CP. It easy to see
that steps 1, 3, and 6 run in O(log n) time and O(n) proces-
sors each, since they only involve sorting or finding the min-
unum of O(n) values. Let Tc(n) be the time to re-partition
the \/n point sets using the COALESCE algorithm (Step 4).
Let Tp{n) be the time to perform the combining algorithm
DIST (Step 7). Finally, let S(n;) be the time to perform
Step 5 for R!, where n; = |R!}|. We can then characterize
the running time, T'(n), of the algorithm in the recurrence
relation

T(n) = T(/n) + Tz(n) + r.rg}%({S(n,)} + Tp(n) + bylogn.
We will show mn lemma 3.1 that Te(n) is O(logn). We will
show, in lemma 3.2, that Tp(n) is O(logn), since the CO-
ALEBSCE algorithm forces the maximum number of vertical
cut-lines which are within § of one another to be at most
2. Thus, the new recurrence becomes T(n) = T(\/n) +
wax;er{8(n:)} + b2logn.

To characterize §(n;), consider the running of Step 5
for some 1+ € I'' If R} was one of the original point sets
ithe condition of step 5.1) then S(n,) is O(1). So we have
vet to consider the case when R! was created by coalescing
2 or more of the original point sets. Notice that steps 5.2
sud 5.4 run in O{log n;) time, since they only involve sort-
:uv aud minimizing. Step 5.5 is a call to algorithm DIST

combine the solutions to the /n;/2 subproblems. Thus,
Nt = T(2m;) + Tp(ng) + bs log n;. To prove that Tp(n;)
- fiilug i) we need to show that the maximum number of
L. rizontal cut-lines which are within ¢ of one another is con-
-raut for the point set R]. Since € < §, it is enough to show

sni for 6L
Claim: There are no more than 3 horizontal cut-lines which
w1tlun ¢ of one another in any point set R! which was

it horizontal point sets, 1 € I'.

suppose there are 4 horizontal cut-lines within § of
“orsome R Let Q =rjUr;p1Urjpa, 7€ Ji, be
.uts which are bounded by these lines. Let d be

Proof:

414

the number of original point sets which were coalesced to cre-
ate R!. Then n; = |R!| = d\/n, and |r;| = 2\/n; = 2dl/2nt/4
for all § € J;. Since \/n 2> d, |r;] = 2d, for all 5 € J;. Each
of the d original point sets must have had region-width less
than § to have been coalesced. (This fact will become obvi-
ous in our discussion of the algorithm COALESCE.) Thus,
since the value § was found by solving the closest pair prob-
lem for each original point set, there can be at most 4 points
in @ for any of the d original point sets which were coalesced
to form R! (see Figure 3.2). Thus, |Q| < 4d. But since @
contains 3 r;’s, |@| > 6d. This is obviously a contradiction.
s (of Claim.)

Thus, Step 5.5 runs in O(logn;) time, and $(n;)
T(2,/m) + balogni. Therefore, since n; < n, T(n)
T(/n) + T(2y/n) + bslogn, which implies that T(n) i
O(log nloglogn).

To prove that the number of processors needed is O(n)
we will consider each part of the algorithm separately. As
already mentioned, the number of processors for steps 1,3 and
6 is O(n). Let Pc(n) be the number of processors needed for
the COALESCE algorithm to re-partition the /n point sets
(Step 4), and let Pp(n) be the number of processors needed
for the combining algorithm DIST (Step 7). Finally, let Q(n,)
be the number of processors needed to solve Step 5 for a point
set R!, i € I'' Then the total number of processors needed

satisfies the recurrence relation

@ A

P(n) = max{cyn, VAP(V/A), Po(n), Y Q(n:), Pp(n)}.

el

In lemmas 3.1 and 3.2 we will show that both Pc(n) and
Pp(n) are O(n). Concentrating on Q(n;), note that the sort-
ing and min-finding steps in 5.1, 5.2, and 5.4 need only O(n,)
processors, as does the call to algorithm DIST in Step 5.5.
Thus, Q(n;) = max{esn;, L,/mP(2,/m;)}. Using the fact
that 37.c; ni = n, we get, by induction, that P(n) is O(n).
a

We now need to show that the algorithms DIST and
COALESCE work within the claimed time and processor
We start with DIST. Recall that this is the com-
bining algorithm used in algorithm CP. Simply stated, the
problem it solves is the following: given a collection of point
sets separated by parallel cut-lines and a closest pair of points
not separated by a cut-line, find a closest pair of points in the
union of all the point sets. For convenience, we describe the

bounds.

algorithm for the case when the cut-lines are vertical, since
the case when they are horizontal is entirely symmetrical.

Algorithm DIST:

Input: A collection of point sets {Ry, Rz,..., R}, separated
by vertical cut-lines Ly, L, ..., Lg—y, such that R; is left of
R; if £ < 7, and L; is the line that separates R; and Ry,
We are also given (u, v), a closest pair of points not separated
by a cut-line in H, where H = RiUR,U---U R;. Moreover,
there is a constant ¢ such that there are no more than ¢ cut-
lines which are within § of each other, where § is the distance
between u and v.

Output: A closest pair of points in H.

Method: Before giving the details we present a brief overview




of the algorithm. The algorithm is based on the fact that the
only way a closest pair of points in H can be closer than (1, v)
is if there is a pair of points which are separated by at least
one cut-line and closer than 6 to one another. In parallel for
each point p € H, we find all points which could possibly be
within § of p and are separated from p by a cut-line. Call this
set of points N(p). As we will show, there will only be o(1)
such points in N(p) for any p. So, in O(1) time we can then
find the point closest to p in N(p). Call the distance between
p and this point d(p). Then, by taking the minimum of all
the d(p)’s and comparing it to §, we can find a closest pair
of points in H.

To make the description clearer we make the following
definitions. We define the left §-window of R;, denoted X;, to
be the set of points in R; which are within é of L;_; (i.e., R;’s
left cut-line). We define the right 6-window of R;, denoted
Y:, symmetrically, to be the set of points in R; which are
within & of L; (i.e., R;’s right cut-line). Note that B, has no
left window and that Ry has no right window. Let I denote
{1,2,...,k}, and let n; = |Ry.

Step 1. In parallel for each ¢ € I sort the points of X;, the
left 6-window of R;, by y-coordinate. Also do this
for the points in Y;, the right §-window of each R;.

Step 2. In parallel for every point p € H find dy(p), the
distance between p and, if it exists, a closest point
in the set of all points which could possibly be within
6 of p and are separated from p by a cut-line to the

right of p, by doing the following:

Step 2.1. Let R; be the point set containing p. If p is not
in Y;, the right §-window of R;, then set d(p)
to co and go to Step 3, because there can be no
point right of p which is closer than § to p and
separated from p by a cut-line.

For each left §-window X; which is right of R;
(i.e., i < j < k) such that L;_, (R;’s left cut-
line) is within 6 of L; (R,’s right cut-line), per-
form a binary search on X, selecting all points

Step 2.2.

with y-coordinate within 6§ of p’s y-coordinate
(see Figure 3.3). Call this set of points Ny (p).
Note that there can be at most ¢ such X;’s.
Also, the intersection of Ny (p) and any X; con-
tains at most 6 points (see Figure 3.4). There-
fore, the size of Ny (p) is O(1).

If Ny (p) # 0, then find a point g, (p) in Ny (p)
which is closest to p, and let dy(p) be the dis-
tance between p and q, (p). If Ny {p) = @, then
set dy (p) to co.

Step 2.3.

Step 3. Perform the procedure analogous to Step 2 to find
dx(p) and, if dx(p) < oo, q,(p) for each p € H.
This can be done by substituting each instance of
the word “left” by “right,” each “X” by “Y,” and
vice-versa, in Step 2.

Let d(p) be the smaller of dy (p) and dx(p), and, if
d(p) < oo, let g(p) be the closer to p of ¢, (p) and
gy (p). Find the minimum d(p) value (for all p € H),
and call this value §'. If §' < oo, then let (p,q(p))

Step 4.
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be the pair of points associated with this value (i.e.,
the distance between p and g{p) is 6. A closest pair
of points in H is (p,q(p)) if 6' < 6, otherwise it is
(u,v).

End of algorithm DIST.

Lemma 3.1: Suppose we are given a collection of point
sets {Ry,Ra,..., Ry} separated by k — 1 vertical cut-lines,
and a closest pair of points (u, v) not separated by a cut-line.
Moreover, suppose there is a constant ¢ such that there are
no more than ¢ cut-lines which are within é of one another.
Then the algorithm DIST will find a closest pair of points in
H in O(log n) time on a CREW PRAM with O(n) processors,
where H =Ry UR;U---UR;, and n = |H|.

Proof: We first prove that algorithm DIST is correct. Let §
be the distance between u and v. Since we are given a closest
pair of points not separated by a cut-line as input (namely,
(u,v)}, either (u,v) is a closest pair in H or there is a pair
of points separated by a cut-line and closer than (u,v). Let
5(6,p) denote the 26 by 26 square centered at p. For all
the Ly distance metrics the §-neighborhood of a point pisa
subset of §(é,p). Thus, if we are seagching for points in H
which could possibly be closer than § to a point p, as in Steps
2 and 3, we can restrict our attention to points which are in
§(8,p)NH. Notice that from the constructions of steps 2 and
3, if a point is contained in S(6,p) N H, it is also contained
in either Ny (p), Nx(p), or R;, where p € R;. Thus, if there
are any points closer than § to p and separated from p by
a cut-line, they will be discovered in steps 2 and 3. There

can be no points closer than § to p in R;. Therefore, in Step
4, when we find a closest pair from among all pairs found in
steps 2 and 3, we get a closest pair separated by a cut-line.
Comparing this pair to (u,v) correctly gives a closest pair of
points in H.

We have yet to show that the algorithm runs within the
specified time and processor bounds. Step 1 can be done in
O(log n) time on O(n) processors, since it involves sorting n;
elements for all ¢ € I, in parallel, where n = Zie[ n,. Simi-
larly, Step 4 runs in O(logn) time on O(n) processors, since
it involves finding the minimum of as many as n elements.
Step 2 is performed in parallel for all p € H; hence, its run-
ning time is the maximum time spent for any p € H. The
maximum number of times we can perform the binary search
in Step 2.2 for any p is clearly ¢, the maximum number of
cut-lines which are within § of one another. Since each binary
search runs in O(logn) time, and ¢ is a constant, the total
running time for Step 2.2 is O(logn). In Step 2.3, there will
uever be more than a constant number of points (6) selected
from any §-window, because § is the distance between a clos-
est pair of points not separated by a cut-line, and there are
no cut-lines in §-windows (see Figure 3.4). Also, there are
at most ¢ point sets which intersect Ny (p) for any p. Thus,
there are at most O(1) points in Ny (p) for any p; hence, Step
2.3 runs in O(1) time. Summing the times for the substeps of
Step 2 gives us that Step 2 runs in O(logn) time. Similarly
for Step 3. Thus the algorithm DIST runs in O(log n) time.

Turning to the processor bounds, notice that we dedi-



cate one processor to at worst every point in H in Step 2;
hence, will need O(n) processors for this step in the worst
case. Similarly for Step 3. We have already observed that
Steps 1 and 4 require O(n) processors. Thus, algorithm DIST
requires O(n) processors. m

Since the algorithm DIST requires that there is a con-
stant ¢ such that there are no more than ¢ cut-lines which are
within 6 of one another, we need to have some way of taking
a general collection of point sets and turning it into one for
which this is true. Given any collection of point sets divided
by vertical lines, as in the beginning of the algorithm CP, the
algorithm COALESCE will produce a collection such that
there are no more than 2 cut-lines within § of one another.

Algorithm COALESCE:
Input: The collection of point sets R = {Rl,Rg,A..,Rﬁ}
separated by vertical cut-lines. Recall that R; is left of R; if
1 < 3, and that when COALESCE is called CP has already
computed é.
Output: A collection ®' = {R{,R},..., R{},| < /n, in which
there is never more than 2 cut-lines which are within é of one
another. .
Method: We divide the problem into two subproblems, solve
the the re-partioning problem recursively, and combine the
two subproblems in constant time. For simplicity of expres-
sion let k = \/n.

Step 1. Let ® = {R1, Ra,..., Rx}. Divide the collection R

into two contiguous collections R; = {Ry, ..., Ry 2}
and Ry = {Ry/241,..., Rx} (R; being to the left of
R2).
Comment: Ry, has the same region-width in ®; as
it does in R. Similarly, Ry /54, has the same region-
width in R, as it does in R.
Recursively re-partition R, and R, in parallel. After
the parallel recursive call returns there will be no
two adjacent point sets in ®;, or in Rz, which both
have region-width less than 6.

Step 2.

Step 3. If the region-width of the rightmost point set in ®;
and the region-width of the leftmost point set in Ro
are both less than §, then coalesce them into one
point set by removing the cut-line between them.

Otherwise, do nothing.
End of algorithm COALESCE.

Lemma 3.2: Given the collection of point sets R =
{R1,R;,... ,R\/;} and the real number § > 0, the algorithm
COALESCE constructs a collection ® = {R},R},..., R},
I < \/r_z, such that there are at most 2 cut-lines which are
within § of one another, and runs in O(logn) time on a
CREW PRAM with O{n) processors.

Proof: The correctness of this algorithm is easily justi-
fied by a simple inductive argument based on n. To see
than this re-partitioning algorithm runs in the specified time
bound notice that, since Step 1 and 3 run in O(1) time,
the time required for DIST, T(n), satisfies the recurrence
T(n) = T(n/2) + b, which implies that T(n) is O(logn). For
the processor bound, P(n), notice that Steps 1 and 3 can eas-
ily be done with O(n) processors, while Step 2 needs 2P(n/2)
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processors. Thus, the number of processors required satisfies
the recurrence P(n) = max{2P(n/2},cn}, which implies that
P(n)is O(n). =

The main result of this section is an algorithm (CP)
to solve the the closest pair problem on n points in
O(lognloglogn) time on a CREW PRAM with O(n) pro-
cessors. Our algorithm will work with any of the L; distance
metrics.

4. Conclusion

We gave eflicient parallel algorithms for solving two ge-
ometric problems: We have shown how to solve the convex
hull problem in O(log n) time and the closest pair problem in
O(log nloglog ) time on a CREW PRAM with O(n) proces-
sors. We suspect that the technique we used will be helpful
in tackling other geometric problems as well.
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Figure 2.2: An illustration of the case when none of UH(R;) are in
UH(S}, because V; and W, form an angle which is less than 18¢°. .

Figure 2.3: The points p,, ps, and p4 are in UH(S), because V; and
W; form an angle which is at least 180°.
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Figure 3.2: The upper bound on number of points in Q which were
all in one of the origingal point sets is 4.
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Figure 3.3: The binary search is for finding the set of points Ny ()
in the shaded region. In this case, the processor for p need only
examine the left §-windows of R;,, and Riy2. The point labeled
. g, (p) is the closest point to p in Ny (p).
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Figure 3.1: A horizontal partitioning of a point set R with n; = 36. ,'_ 6 _"

Figure 3.4: The upper bound on number of points selected from one

d-window is 6.
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