
EFFICIENT PARALLEL SOLUTIONS TO GDOMDTRIC PROBLEMS

Mikhail J. atailaht

Michael T. Goodrich

Departmeut of Computer Scieuce
Purdue University

West Lafayette, IN 47907

ABSTRACT

This paper presents new algorithms for solving geornet-

ric problems on a shared memory parallel computer, where

concurrent reads are allowed but no two processors can simul-

taneously attempt to write in the same memory location. The

algorithms are new and are quite different from the known

sequential algorithms. One of our results is au O(logn) time,

O(n) processor algorithm for the convex hull problem. Another

resul t is an O(lognloglogn) t ime, O(n) processor algor i thm

for the problem of selecting a closest pair of points amoDg n

input points.

Key Words. Farallel algorithms, computational geometry,

convex hull problem, closest pair problem.

1. Introduct ion

Since they involve askiag basic questions about sets of poiuts,

lires, polygons, etc, geometric problems arise often iu mauy

applications [7]. We are iuterested in finding parallel algo-

rithms solving some of these problems which are efficient both

in terms of their nuring time and in the number of proces-

sors used. Efficient sequential algorithms for solving geometric

problems often use the divide-and-conquer paradigm: to solve

a problern of size n solve two sub-problems ol size nf 2, ar.d

then "marry" the results of these two recursive calls. Unfor-

tunately, trying to "parallelize' known sequential algorithms

often yields suboptimal parallel solutioos (actually this seems

to be a rule rather than an exception). Such is the case for the

convex hull and the closest pair problems. Indeed, the efrcient

parallel algorithms we give for solving these problems turn out

to be quite difrerent from the kuown sequential algorithms.

Throughout this paper, the computational model used is

the shared memory model in which concurrent reads are al-

lowed, but no two processors sbould attempt to simultaneously

write in the same memory location. We henceforth refer to

this model as the CREW PRAM (Concurrent Read Exclusive

Write Parallel RAM). Using this model of parallel computa-

tion, we are interested in achieving the highest speed-up using

only O(n) processors (this restriction ou the numbers of pro-

cessors is crucial, since the problems we consider can trivially

be solved in logarithmic time if the number of processors used

were of no concerq, e.g. O(n2)). In reference [4], Chow has

given an O(log2 n) time, O(n) processor parallel convex hull

algorithm. This paper improves on that result by giving an

O(logn) time, O(n) processor parallel algorithm for that prob-

T This research was supported by the Ofrce of Naval Re-
search r:nder contract N00014-84-K-0502.

019G391 8/85/OOOO/041 1 $01 .00 0 1985 tEEE

Iem. Our algorithm is optimal with respect to both the time

and number of processors, since this problem has an O(n log n)

time sequential lower bound [tO], and an obvious O(log n) time

lower bound for the parallel machine considered iu this paper.

Arother problem we address is that of firding the closest pair

among a set of n input points. We give an algorithm which

solves the c losest pair problem in O(lognloglogn) t ime using

O(n) processors by exploiting a tech:rique similar to the one

we used to solve the couvex hull problem. Our algorithm for

the closest pair is far more complex than that for tbe couvex

hull, and therefore we begin by presenting the latter.

To simplify the exposition, we assume that no three points

are collinear aod that tbe points have distinct z (resp. y)

coordinates (our results can easily be modifred for tbe general

case). We also frequently make use of the known result that,

on this model of parallel computation, n objects can be sorted

in O(logn) t ime by an n processor machine [6] .

2. Convex Hul l

Given n poiuts iu tbe plane, the convex hull problem is that

of fi-nding which of these points belong to the perimeter of the

smallcst convex region containing all n points. This problem

has applications in many fields, including computer graphics,

computer vision, and statistics [7]. As mentioned earlier, the

convex hull problem has an Q(nlogn) time sequential lower

bound [10], and this bound is achievable [5], [9].
Many authors have addressed the question of frndiug par-

allel solutions to this problem. Chazelle [2] shows how to solve

the problem on a linear array of processors in O(n) time. Miller

and Stout. in reference [8], present a" O(\n) time solution on

an n node mesh-conuected computer. Although both of these

algorithrns are suited for the computational models for which

they were designed, implementing them on a CREW PRAM

would lead to sub-optimal algorithrns. The only known previ-

ous parallel algorithm solving this problem on a CREW PRAM

is due to Chow [4], and nrns in O(log2 n) time using O(n) pro-

cessors. I.n this section we present ir new parallel algorithm

which solves the convex hull problem in O(logn) time ou a

CREW PRAM with O(n) processors. As mentioned earlier,

our algorithm is optimal (to within a constant).

We first present some definitions and observations. Let

R be a set of points iu tbe plane. We denote a clock-wise

listing of the points whicb belong to the convex hull of R by

CH(R). Let u and u be the points of R with the smallest aud

largest r-coordinate, respectively. Clearly, u and u are both

in C H(R). They divide C H(R) into two sets: an upper hull.

cousisting of points from u to u, inclusive, in the clock-wisr:

4l l

listing of C H(R), and a lower hull, consisting of points from
u to u, inclusive. We denote a clock-wise listing of the points
in the upper hull of B by U H(R), and a similar listing of the
poiuts in the lower hull by III(8). Given a set S of n points
ir the plane the following algorithm will compute CH(Sl.

Algori thm CH:

Input: A set S of n points in the plane.

Output: The list CE(S). That is, the points of the convex
hull of 5 listed in clock-wise order.

Method: The main idea of our algorithm is to divide the
problem into /i subproblems of. size Ji each, solve the sub-
problerns recursively in parallel, and combine the solutious to
the subproblems quickly (that is, in O(logn) time) and with
a linear uumber of processors.

Step l. Sort tbe n points by z-coordinate, and partirion S
into sets Rr, Rz,. . . , R!6, eacb of size y6, divided
by vertical cut-lines, such that & is left of .R; if
i < j (see Fig:ure 2.1).

Step 2. Recursively solve the convex hull problem for each

&, i € {1, 2, . . , r f r } , inparal le l . Af ter th is paral le l
recursive call returns we will have C H(kl for each

&.
Step 3. Find the convex hull of S by computing the con-

vex hull of the uniou of the .,f convex polygons

C H(Rr), . . . ,C H(Rtr) . This is done using algo-

rithnr COMBIND which will be described later in

this section.

End of algorithm CH.

Theorem: Algorithm CH 6nds the convex hull of a set of
n points in the plaue in O(logn) t ime on a CREW PRAM

with O(n) processors.

Proof: We give this proof assuming that algorithm COM-

BINE (used in Step 3) is correct and takes O(logn) t ime
and O(n) processors. (This will be justified ouce we describe
algorithm COMBINE later in this section.) That Step I
can be done in O(logn) time aud O(n) processors follows
from the results of reference [6]. Thus the ru:rniug time,

T(n), of the algorithm can be expressed in the recurrence

relat ion T(n\ : fQi l + Dlogn, which is O(logn). The

number of processors needed, P(n), satisfies the recurrence

P(n) = n^x{frP(JA, cn}, which is O(n). This completes
tire proof, subject to the already stated assumptiou about
Step 3 and algorithm COMBINE (yet to be described). r

The rest of this section deals with the problem of imple-

menting Step 3 of algorithm CH in time O(logn) and with

O(n) processors. This is done by usin6 algorithm COMBINE,

described below. For convenience, we choose to describe al-
gorithm COMBINE for the problem of computing the upper
hull, since that of computing the lower hull is entirely syrn-
metrical. In tbe algoritbm description, when we tatk about

the "upper" common tangent between C H(Rr) aud CIl(R;),
we mean the common tatrgent such that both CII(.R;) aud
CHIRi) are below it. Also, when we say that a point p is
"to the leftn of another point q, what we mean is that the

x-coordinate of p is less than that of q.

Algorithm COMBINE:

Input: The collection of convex polygons

{C H(RL\, C H(R2), . . . , C H(R6)}. Recall that these input

polygous are separated by vertical lines, and that none of

them has more than r/7 vertices. AIso recall that CII(&) is

ro the left of c H(R1) i f i < i .

Output: The upper cotrvex hull U H(S) of the vertices of the

u-uion of the CII(&')'s.

Method.: The main idea is to find, in parallel for each C H(R.tl
'

which of its vertices are on UI{(S). This is doue by assigniug

',6
processors to each C H(&) aud havilg each of these pro-

cessors compute the upper common tangent between C H(R-t)

and one of the other iuput polygons. The details follow.

Step 1. h paral le l for each i € {1,2, . . . , \ f r \ use \6 pro-

cessors to 6nd those points of C,tI(Bi) which belong

to CII(S) by doing the following:

Step l.l Find the rt - L upper common tangeuts be-

tween CIf(E') and the remaining .fi- I other

input polygons. Let T;i deuote the upper com-

mon tangent between CH(Rt) and C.EI(.Ri),

where {; is represeuted by its point of con-

tact with C H(Rr) and its point of contact with

CH(R). A tangent ?;; is easily cornputed in

O(log n) time by one processor, using the tech-

niques described in reference [3]. Therefore all

of 4r, . . . ,Ti, ,F can be computed in O(log n)

time by the 16processors assigned to CH(R;)'

Step 1.2. Let % be the tangent with smallest slope

io {?. t , . . . ,?. , ; - r } (i . " . , % is tbe smal lest-
slope tangeut which ucomes from the left" of
CH(RiD, and let W; be the tangeut with
largest s lope in {T; , ;1r , . . . ,T; ,6} (i .e. , W; is
the largest-slope tangent which "comes from
the right" of CII(R.')). Let u; be the point of
contact of % with CH(&), and let ra; be the
point of cotrtact of IV; with CH(Rr). Both %
utd W; can be found in O(logn) time by tbe

.fi processors assigned to CH(&).

Step 1.3. Since neither V; nor W; catr be vertical, they in-
tersect and forrn an angle (with interior point-
ing upward). If this angle is less thau 180"
(as in Figure 2.2), theu none of the points of
UH(R4) beloug to UH(S). Otherwise, (as in
Figure 2.3) all the points from u; to to;, inclu-
sive, belong to UI{(S).

Step 2. Step I has computed, for every t € {1, . . . ,J i } ,
all the points oI CH(R;) which belong to UH(S)
(possibly none). This step conpresses each of these
lists into oue list to get U,EI(S). This can be done
in O(logn) t ime and O(n) processors (e.9., by using
parallel sorting).

End of algorithm COMBINE.

That COMBIND runs in time O(logn) and O(n) pro-
cessors should be clear from the comments made in the algo-
rithm description. The correctness of COMBINE depends on
the correctness of Step 1.3. The correctness of Step 1.3 for
tbe case depicted in Figure 2.2. follows from the fact that,

412

in that case, the straight-line segment joining the other end-

poiuts of V; ar'dW; (shown dashed in Figure 2.2) is entirely

above CII(B;); heuce, D.o vertex of CH(R;) can belong to

UH(S). The correctness of Step 1.3 for the case depicted in

Figure 2.3 follows from the fact that all the points of the other

C H(Ri)'s are below V; ar.d, W;. This proves the correctness

of algorithm COMBINE.

The next section deals with the closest-pair problem.

3. Closest Pair

Given n points in the plane, the closest pair problem is that

of choosing two of them that are closest (i.e., the distance

between them is smallest). This problem has applications in

answering basic proximity questious of sets of objects, such as

monitoring airplanes in air-traffic control. We are uot aware

of any previous work done in fuding parallel solutions to

this problem. A trivial O(logn) time parallel algorithm ex-

ists, but it requires a quadratic number of processors. Here

we are investigatiug what speed can be achieved with ouly

O(n) processors. Paralleliziog what seems to be the most

promising sequential algorithm, by Bentley and Shamos [l],

ou O(n) processors only leads to an O(log2 n) time algo-

rithm. Applying a tech-nique similar to the one we used in

the convex hull problem, we show how to solve the problem

in O(lognloglogn) t ime usiug O(n) processors on a CREW

PRAM.

As in our solutiou to the convex hull problem, we will

be dividing the input set of poiuts ifio Ji subsets divided

by vert ical cut- l ines. Let f t1, . . . ,Rrfr be these subsets in

left-to-right order, i.e. &. is left of B; if i < 3. We defue

the region-width of a point set B; to be the distance between

the cut-lines separating B; from fti-r and &.+r, respectively.

Note: the region-width of rt1 and .Ru6 is defiaed to be oo.

We present the closest pair algorithm CP below.

Algor i thm CP:

Input: A set S of n points in the plane.

Output: A closest pair of points in .9.

Method: Before giving the details, we present an overview

of the various stages of the algorithm. First, we partition

S into 1fi sets, of size tfr each, using vertical cut-lines, and

recursively solve the closest pair problem for each. This gives

us a closest pair of points not separated by a cut-line. For

the combining step to nrn quickly (i .e. , in O(logn) t ime)

there should not be more than a coastant number of cut-

lines which are uclose' to one another. Since this may not

presently be the case, we do not perform a combining step at

this point. Instead, we re-partitiou S using the COALESCE

algorithm, presented later, which results in a better distri-

bution of the remaining vertical cut-lines. The COALESCE

method works by removing cut-lines which divide point sets

with small region-widths, thereby coalescing the two sets into

one. Even after coalescing, we still do not combine the sub-

problems, because in removing a cut-liue we coalesce previ-

ously solved subproblems into conglomerates which must now

be re-solved. Consequently, for each conglomerate point set,

we use the 1fi divide-and-conquer technique again, dividing

the conglomerate horizoutally this time, and solving each of
the resulting horizontally divided sets recursively. We divide

the conglomerate point sets horizontally, because, as we will

see, it grarantees that cut-lines will be far enough from each

other so as to allow for a fast combining step. Since we have

already forced the vertical cut-lines to be distributed nicely,

we are now ready to combine the solutions to the subprob-

lems: first combiniug the solutions to the horizontally di
vided sets, and then combining the solutions to the vertically

divided sets. This combining step is doue using the DIST

algorithm, presented later. A detailed descriptiou of the al-
gor i thm fol lows. Let f denote the index set {1,2, . . . , , /n}

Step l . Part i t ion,9 into point sets Rr, R2,. . . , R,/ ; ,each of

size y6, separated by vertical cut-lines, such that

,Q is left of B; if r' < j (see Figure 2.1).

Step 2. Recursively solve the closest pair problem for each

Ri, i e /, in parallel. After the parallel recursive

call returns we will have a closest pair of points,

(p;,q;), for each R;. Let 6, be the distance between
pi ard qi.

Step 3. Find the minimum d; value, and call it 6. Let (p,q)

be the pair of points associated with the selected

(minimum) 6; value.

Step 4. Repartition ,9 into {A!, R:r, . - , R!), I < r/i so that

there is never more thau 2 vertical cut-lines which

are within 6 of each other. This is done by using

the COALESCE algorithm, presented later on. Let

f 'denote {1,2, . . . , / } .

Comment: The new partition is created by coalesc-

iog some adjacent point sets by removing cut-lines

which separate sets with region-width less thau 6.

Algorithm COALESCE will give the details of how

this is doue.

Step 5. I.u parallel, for each i € I' find a closest pair (pi, qi)

iu Ej by doing the following:

Step 5.1. If ftj is one of tbe original point sets, say Rp

(i.e., rtj was not created by coalescing any of

the original point sets), then set 6j to 61, set

(pl ,q l) to (pr,qr) , and go to Step 6.

Step 5.2. Sort the points in B.l by y-coordinate and par-

tition Bj into point sets rr, r2, . . . ,rtF/2, sepa-

rated by horizontal cut-lines, each of size 2r1/i-n;

(where n; = l.Bll), and such that r; is below

rp il j < & (see Figure 3.1). Let J; denote

{1,2, . . . , ,F12}.
Step 5.3. Recursively solve the closest pair problem for

each r1, i e J;, in parallel. After the parallel

recursive call returns we will have a closest pair

of points (ui ,u i) , for each r i . Let e; be the

distance betweeu ui and ui.

Step 5.4. Find the minimum ei value, and call it e. Let

(u, u) be the pair of points associated with the

selected 6j value.

Comment: (u, u) is a closest pair in Bj not sep-

arated by a horizontal cut-liue.

Step 5.5. Combine the solutions to the r1's to find aclos-

4t3

(. : t t) : ! i f (p l . q l) iu l? j . This is done by using the

DIST rr lgor i tLnr presented later in tb is sect ion.

Lr. t t l bc tLc distance betweenpl u"d ql .

: r ' , . t , I r r r r , i t i r r r r i i r r innuu r i , f value, and cal l i t 6 ' . Let

1p' . ,7 ') Lr , tLt : pair associated with the selected 6j

\ ' i r l r l (.
(; , , tn i t t :nt : (p ' , q ') i t a c losest pair in S not separated

Ly a vcrt ic:r l cut- l iue.

St, 'p 7. (lornl ; iue the solut ions to the Bj sets to f iad aclosest

p:r i r of poiuts in,5. This too is done by usiug the

DIST algor i thm.

Enri of a lgor i thm CP.

Theorern: Algorithm CP finds a closest pair of n points in

t l ; , t , I :ure in O(lognloglogn) t ime ou a CREW PRAM witb

/ .) i r i) processors.

Proof: Suppose, for the time being, that the algorithms
(j()ALESCE and DIST work correct ly (in lemmas 3.1 and

3.2 we will prove this). Then the correctness of algorithm
(rP follows from a straight-forward iuduction ou n.

We now turn to the tinre complexity of CP. It easy to see

th:r t steps 1,3, and 6 mn iu O(logn) t ime and O(n) proces-

sors each, since they only involve sorting or fi-uding the min-

i rnrrm of O(n) values. Let ?6(n) be the t ime to re-part i t ion

tb,t' 16, point sets using the COALESCE algorithm (Step a).

Ltt Tp(n) be the time to perform the combining algorithm

DIST (Step 7). Final ly, let S(n;) be the t ime to perform

Stt'p 5 for ,Q,1, where nJ = lRjl. We can then characterize

fh' lrrrnllg time, ?(n), of the algorithm in the recurrence
rt ' lat iou

rft) = r(JD + Tq(n) + ary{s(n;)} + Tp(n) * b1 log n.

Wc rvill slrow iu lemma 3.1 tbat Tay(n) is O{logn). We will

sLow, in lemma 3.2, that ?p(n) is O(logn), s ince the CO-

ALESCE algorithm forces the maximum number of vertical

crit-lires which are within 6 of one another to be at most

?. Tlrus, the new recurrence becomes T(n) = fQA +

rrrr .x;6r,{ ,9(n;)} + 62 log n.

To characterize S(n;), consider the mnniug of Step 5

i ,r :-onre ; e I' . If .Rj was one of the original point sets

l rLc condi t ion of step 5.1) then S(n;) is O(l) . So we have

'.' ' t to cousider the case when Rj was created by coalescing

2 or nrore of the original point sets. Notice that steps 5.2

:'r,l 5.4 mn in O(logn;) time, since they only iDvolve sort-

:rr ald minirnizing. Step 5.5 is a call to algorithm DIST
' , ()nrbioe the solutions to the u@/2 subproblems. Thus,

. \ r i , r : T(zrF) +?p(n;) *03 logn, ' . Toprovethat?p(n;)

. - r t r l . , { t r ;) we need to show that the maximum number of

l, :i;rontal cut-lines which are within e of one another is con-

-'.rt for the point set .Rj. Since e < 6, it is enough to show
'r , : . f " r 6.

('laim: Thcre are tro more than 3 horizontal cut-lines which

.- . r i '] rur 6 of one anotber in any point set Bf which was

' : i r : . ' h.r izontal point sets, d €, [' .

I ' roof : : : i , l) t rsr ' there are 4 hor izontal cut- l ines wi th in d of
: . ' t . | ' . r : s ' ,nre .Rl . Let Q : r iUr i1rUr i+2, j € J; , be

' : : . : t : * 'L icL are bourded by these l ines. Let d be

the uunrber of original poitrt sets which were coalesced to cl'e-

ate Bj. Then nr : lR:l : d\fr,and lr; l :2\F - 2dt/2nr/a,

foral l j€J; . Since r t>d, l r i l 2.zd, foral lx€J; . Each

of the d original point sets must have had region-width less

than t to have been coalesced. (This fact will become obvi

ous in our discussion of tbe algorithm COALESCE') Thus'

since the value 6 was found by solving the closest pair prob-

lem for each origiral point set, tbere can be at most 4 points

iu Q for a,uy of the d original point sets which were coalesced

to form Aj (see Figure 3.2). Thus, lQl < 4d. But since Q

contains 3 r;'s, lQl > 6d. This is obviously a contradiction.

r (of Claim.)

Thus, Step 5.5 runs iu O(logn;) t ime, and S(n;) :

f(z\F) * 6rlogn;. Therefore, since n; 3 n, T(n) <

rGft) + rPJd * 65 logn, which implies that ?(n) is

O(log n log log n).

To prove that the number of processors needed is O(n)

we will consider each part of the algorithm separately. As

already mentioned, the number ofprocessors for steps 1,3 and

6 is O(n). Let P6(n) be the number of processors needed for

tlre COALESCE algorithm to re-partition the Ji poiot sets

(Step 4), and let Pp(n) be the number of processors needed

for the combining algorithm DIST (Step 7). Finally, let Q(n;)
be the number of processors needed to solve Step 5 for a point

set Ej, i € /'. Theu the total number of processors needed

satisfies the recurrence relation

P(n) =max{c1n,, / ;P(r f r) , r" (") , D Q(n;) , Pp(n)} '
ieI '

In lemmas 3.1 aud 3.2 we will show that both P6(n) and
Pp(n) are O(n). Concentrat ing on Q(n;) , note that the sort-
iug and min-finding steps in 5.1, 5.2, and 5.4 need only O(n;)
processors, as does the call to algorithm DIST in Step 5.b.
Thus, Q(n;) = max{czn;, +'FP(Z,,F)}. Using the fact

jout t r . r , n; : n, we get, bv induct ion, that P(n) is o(n).

We now need to show that the al6orithms DIST and
COALESCE work within the claimed time and processor
bounds. We start with DIST. Recall that this is the com-
biuing algorithm used in algorithm CP. Simply stated, the
problem it solves is the following: given a collection of poiut
sets separated by parallel cut-liues and a closest pair of points
not separated by a cut-line, find a closest pair ofpoints in the
union of all the poiut sets. For couvenience, we describe the
algorithm for the case when the cut-lines are vertical, since
the case when they are horizoutal is entirely symmetrical.

Algor i thm DIST:

Input: A col lect ion of point sets { f t1, R2,. . . , .Rp}, separated
by vert ical cut- l ines Lt ,Lz, . . . ,Lr t , such that &. is lef t of
.R, if i < t, and tr; is the line that separates & and &+r.
We are also given {u, u), a closest pair ofpoints not separated
by a cut- l ine iu .E[, where H : RrU R2U.. .U Rr. Moreover,
there is a constant d such that there are no more than c cut-
lines which are within d of each other, where 6 is the distance
between u and u.

Ovtput: A closest pair of points in .EI.

Method: Before giving the details we present a brief overview

4t4

of the algorithm. The algorithm is based on the fact that the
only way a closest pair of points in .EI can be closer than (u, u)
is if there is a pair of points which are separated by at least
one cut-line and closer than d to one another. I-n parallel for
each point p € H , we fi-nd all points which could possibly be
within d of p and are separated frorn p by a cut-line. Call this
set of points iV(p). A" we will show, there will only be O(l)
such points in N(p) for any p. So, in O(l) time we cau then
fi.nd the point closest to p in ff(p). Call the distance between
p and this point d(p). Then, by taking the minimum of all
the d(p)'s and comparing it to t, we can find a closest pair
of points in rll.

To make the description clearer we make the following
defrnitious. We defiae the left 6 -uindou of R.;, denoted X;, to
be the set of points in fti which are within 6 ol L;_y (i.e., .&,.,s
left cut-line). We define the right 6-uindow of R;, denoted
Y;, symmetrically, to be the set of points in .R; which are
within 6 of .L; (i.e., R.'s right cut-liue). Note that .Rr has no
left wirrdow aud that .81 has no right window. Let f denote

{1,2, . . . , n} , and let n; : l ,e. / .

Step l. In parallel for each j € I sort the points of X;, the
left 6-window of A;, by y-coordinate. Also do this
for the points in Y;, the right 6-wiudow of each R..

Step 2. I:r parallel for every point p € I/ find dy(p), the
distance between p and, if it exists, a closest point
in the set of all points which could possibly be within
d of p and are separated from p by a cut-line to the
right of p, by doing the following:

Step 2.1. Let ft,.be the point set coutaining p. If p is not
in Y;, the right 6-wiudow of e, then set d(p)
to m and go to Step 3, because there can be no
point right of p which is closer than 6 to r and
separated from p by a cut-line.

Step 2.2. For each left 6-window X; which is right of ft
(i.e., i < j < ,t) such that Li_r (.8;,s left cur-
liue) is within 6 of .L; (R;'s right cut-line), per-
form a binary search ou X;, selecting all points
with y-coordinate within d of p's y-coordinate
(see Figure 8.3). Call this set of points Ny(p).
Note that there can be at most c such X1,s.
Also, the intersection of Ny (p) and any X; con-
tains at most 6 points (see Figure 8.4). There-
fore, the s ize of l fy(p) is O(l) .

Step 2.3. If /Vy(p) I 0, then fird a point q" (p) in Ny(p)
which is closest to p, aud let dy(p) be the dis-
tance between p nd e, (p). If Ny(p) : 0, then
set dy(p) to oo.

Step 3. Perform the procedure analogous to Step 2 to find
dy(p) and, if dx(p) < oo, q,(p) for each p e H.
This can be done by substituting each iustance of
the word "left' by uright,, each "X' by "y,, and
vice-versa, in Step 2.

Step 4. Let d(p) be the smal ler o ldy(p) and d26(p), and, i f
d(p) < a, let q(p) be rhe closer to p ol qr(p) u"d
q" (p). Find the minimum d(p) value (for all p € _[t),
and call this value 6t. lf.6, (oo, then let (p,q(p))

be the pair of poiots associated with this value (i.e.,
the distance betweeo p and q(p) is 6,. A closest pair
of points in.EI is (p,q(p)) i l 6 ' < 6, otherwise i t is
(u,

') '
End of algorithm DIST.

Lemma 3.1: Suppose we are given a collection of point
sets {R1, R2,. . . , Rs} separated by f t - I vert ical cut- l ines,
and a closest pair of points (u, u) not separated by a cut-line.
Moreover, suppose tbere is a constant c such that there are
Do more than c cut-lines wbich are within f of oue auother.
Then the algorithm DIST wilt find a closest pair of poiats iu
}1 in O(log n) t ime on a CREW PRAM with O(n) processors,
where -EI : RtU Rz U . . .U Rr, and n : l I f l .

Proof: We frrst prove that algorithm DIST is correct. Let d
be the distance between u and u. Since we are given a closest
pair of points not separated by a cut-line as input (namely,
(u,u)) , e i ther (u,u) is a c losest pair in I f or there is a pair
of points separated by a cut- l ine and closer than (u,u). Let
,9(6,p) denote the 2d by 26 square centered at p. For all
the tr1 distance metrics the d-neighborhood of a point p is a
subset of S(d,p). Thus, if we are sealching for points in If
which could possibly be closer than 6 to a poirt p, as iu Steps
2 and 3, we can restrict our attention to points which are in
S(6,p)nI1. Not ice that f rom the construct ions ofsteps 2 and
3, i f a point is coutained in S(d,p) n.EI, i t is a lso contained
in eitirer Ny(p), Nx(p), or &, where p e B;. Thus, if there
are any points closer tban 6 to p and separated fron p by
a cut-line, they will be discovered in steps 2 and 3. There

can be no points closer than d to p in r!. Therefore, iu Step
4, when we find a closest pair from alnong all pairs found in
steps 2 and 3, we get a closest pair separated by a cut-line.
Comparing this pair to (u, u) correctly gives a closest pair of
points in .E[.

We have yet to show that the algorithm rrns within the
specified time and processor bounds. Step I cau be done in
O(log n) t ime on O(n) processors, s ince i t involves sort ing n;
elements for all i € I, in parallel, where n : D;er n;. Simi-
larly, Step 4 nr-ns in O(logn) time on O(n) processors, since
it involves fiading the minimum of as many as n elements.
Step 2 is performed in parallel for all p € If; hence, its nrn-
ning time is the maximum time spent for any p € .EI. The
maximum number of times we can perform the binary search
in Step 2.2 for any p is clearly c, the maximum number of
cut-lines which are within 6 ofone another. Since each binary
search ru:rs in O(logn) time, and c is a constant, the total
run:r ing t ime for Step 2.2 is O(logn). h Step 2.3, tbere wi l l
uever be more than a constaut number of points (6) selected
from any 6-window, because 6 is the distance betweeu a clos-
est pair of poiuts not separated by a cut-line, and there are
no cut-lines iu d-windows (see Figure 3.4). Also, there are
at most c poiut sets which intersect Nv(p) for zrny p. Thus,
there are at most O(l) points in Ny(p) for anyp; heuce, Step
2.3 mns in O(l) time. Summing the times for the substeps of
Step 2 gives us that Step 2 nrns in O(logn) time. Similarly
for Step 3. Thus the algorithm DIST mns in O(logn) time.

T\rning to the processor bouuds, notice that we dedi-

415

cate olre processor to at worst every point in .El in Step 2;

hcnce, will need O(n) processors for this step in the worst

case. Similarly for Step 3. We have already observed that

Steps I and 4 require O(n) processors. Thus, algorithm DIST

requires O(n) processors. r

Since the algorithrn DIST requires that there is a cou-

stant c such that there are no more than c cut-lines which are

within 6 of one another, we need to have some way of taking

a general collection of point sets and turning it into one for

which this is tme. Giveu aoy collection of point sets divided

by vertical lines, as in the beginuiug of the algorithm CP, the

algorithm COALESCE will produce a collection such that

there are ro more than 2 cut-lines within 6 of one another.

Algor i thm COALESCE:

Input: The collection of poiut sets D = {Rr, R", . . . ,BJr}
separated by vertical cut-lines. Recall that & is left of B; if

i < j, and that when COALESCE is called CP has already

corrrputed 6.

Output: A col lect ion 8 ' : {Bi , R4, . . . , Ri} ,1 S./ i , in which

there is never more than 2 cut-lines which are within 6 of one

another. -

Method: We divide the problem into two subproblems, solve

the the re-partioning problem recursively, and combine the

two subproblems in constant time. For simplicity of expres-

sion let k: fr.
Step 1. Let [: {Rr, R2,. . . , .R1}. Div ide the col lect ion D

into two contigrous collectious nt : {El, . . . , Rt/z}

and tr2 : {Rttz+t,. . . , Rr} ([1 being to the left of

So l .

Comment: Ryphas the same region-width in 81 as

it does in [. Similarly, Rlp11has the same regiou-

width iu Dz as it does iu D.

Step 2. Recursively re-partition [1 and D2 in parallel. After

the parallel recursive call returns there will be no

two adjacent point sets in D1, or in [2, which both

have region-width less thau d.

Step 3. If the region-width of the rightmost poiat set in D1

and the region-width of the leftmost point set in 82

are both less than 6, then coalesce them into one

point set by removing the cut-line between them.

Otherwise, do nothing.

Dnd of a lgor i thm COALESCE.

Lemma 3.2: Given the collection of point sets S =

{Rt, nr, . . . , R,n} and the real number 6 > 0, the algorithm

COALESCE constructs a col lect ion n ' : {Bi ,4, . . ,Ri} ,

I < Ji, such that there are at most 2 cut-lines which are

within d of one another, and nrns in O(logn) time on a

CREW PRAM with O(n) processors.

Proof: The correctness of this algorithm is easily justi-

fied by a simple inductive argument based on n. To see

than this re-partitioning algorithm runs in the specified time

bound notice that, since Step I and 3 run iu O(1) time,

the time required for DIST, ?(n), satisfies the recurrence

T(n) =r@12)+ 6, which impl ies that ?(n) is o(losn). For

the processor bound, P(n), notice that Steps I and 3 can eas-

ily be done with O(n) processors, while Step 2 needs 2P(nl2\

processors. Thus, the number of processors required satisfies

tlre recurrence P(n) = max{zP(n12),cn}, which implies that
P(n) is o(n). t

The main result of this section is an algorithm (CP)

to solve the the closest pair problem on n points in

O(lognloglogn) t ime ou a CREW PRAM with O(n) pro-

cessors. Our algorithm will work with any of the .Lp distance

metr ics.

4. Conclusion

We gave efrcient parallel algorithms for solving two ge-

ometric problems: We have shown how to solve the convex

hull problem in O(log n) time and the closest pair problem in

O(log n log log n) t ime on a CREW PRAM with O(n) proces-

sors. We suspect that the technique we used will be helpful

in tackling other geometric problems as well.

Acknowledgment

We would like to tbank Greg Sh^.non for his comments and

careful readins of an earlier draft of this work.

References

[l] J. L. Bentley and M. I. Shamos, "Divide-Aad-Conquer
in Multidimensional Space,' Symp. on Theory ol Comp.,

1976, pp. 220-230.

[2] B. Chazelle, "Computational Geometry on a Systofc
Chip," IEEE Trons. on Computera, Vol. C-33, No. g,

September, 1984, pp. 774-785.

[3] B. Chazelle and D. Dobkin, "Detection is Easier than
Cornputation," Symp. on Theory ol Comp., L980,
pp. 146 153.

[4] A. Chow, "Parallel Algorithms for Geometric Prob-
lems," PhD Thesis, University of Illiuois, Urbasa-Cham-
pain. December, 1981.

[5] R. L. Graham, uAn Efficient Algorithm for Determining
the Convex Hull of a Finite Planar Set," Inform. Pro-
ceating Lettere, Vol. l, pp. f32-133, 1972.

[6] T. Leighton, "Tight Bounds on the Complexity of Par-
allel Sorting," IEEE Trons. on Computera, vol. C-34,
no.4, Apr i l 1985, Pp.344-354.

[7] D. T. Lee and F .P. Preparata, "Computational
Geometry-A Survey," IEEE Trona. on Computeta,
Vol. C-33, No. 12, December, 1984, pp. 1072 1101.

[8] R. Miller and Q .F. Stout, uComputational Geometry on
a Mesh-Con.ected Cornputer," Proc. of 1g8l Int. Conf.
on Porollel Processing,pp. 66-73.

[9] F. P. Preparata, "An Optimal Real-Time Algorithm for
Planar Convex Hrlls," Comm. ACM,Yol.22, No. 7, July
1979, pp. 402-405.

[10] A. C. Yao, uA Lower Bound to Finding Convex Hulls,"
J. ACM, Vol. 28, 1981, pp. 780-787.

4t6

Figuree

Rr R, Ia Is

Figure 2.1: A partitioning of S into u6 sets, an example with n = 2b.

Figure 2.2: An illustration of the case when none of LrIl(R;) are in
UH(Sl, because V, and Il'; form an angle which is less than lg0o.

Figure 2.3: The poiuts pz, p3. and. pa are in I/If(S), because 1,, and
![! form an angle which is at least lg0o.

wbich wereinQFigure 3.2: Tbe
all in one of the

a

D

a

Rt+z

T

d ---l

l-
I
,^

i
l

I' *T"
- l

<---'{-- r'

. l

r l

Rj wi th n; = lg.

f-,--f ,-1
Figure 3.3: Tbe binary seareh is for finding the set of points ly'y {p)in the shaded region. In this case, the processor for p need only
examine ihe left d-windows of R;11 and .R;..2. The polnt labeled
q, (p) is the closest point to p in ,V1 (p).

f - o-J
l l

Figure 3.4: Tbe upper bound on number of points selected from one
d-window is 6.

Dr . t+s

--T--
I

6
l '
a----r---
I
6

t

Figurc 3.1: A horizontal partitioning of a point set

417

