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Abstract denial-of-service attacks or network infrastructure ckta
In ad hoc networks, for example, manufactured false broad-
We present two new approaches to improving the in- casts can be used to run down the batteries of devices being
tegrity of network broadcasts and multicasts with low stor- used as routers. In addition, the network infrastructure it
age and computation overhead. The first approachHéap- self is vulnerable to falsified broadcasts, as the algosthm
frog linking protocol for securing the integrity of packets that form the basis of most routing protocols, such as OSPF
as they traverse a network during a broadcast, such as inand BGP, use broadcasts as a primitive (e.g., see [15, 25]).
the setup phase for link-state routing. This technique al- Indeed, some of these algorithms have been compromised
lows each router to gain confidence about the integrity of by routers that did not follow the respective protocols cor-
a packet before passing it on to the next router; hence, al- rectly. Fortunately, network malfunctions resulting from
lows many integrity violations to be stopped immediately faulty routers have to date been shown to be the result of
in their tracks. The second approach is a novel key pre- misconfigured routers, not malicious attacks. Nevertlseles
distribution scheme that we use in conjunction with a small these failures show the feasibility of malicious broadcast
number of hashed message authentication codes (HMACs)multicast attacks, for they demonstrate that compromising
which allows end-to-end integrity checking as well as im- a single router can undermine the performance of an entire
proved hop-by-hop integrity checking. Our schemes are network.
suited to environments, such as in ad hoc and overlay net- : . : .
We are therefore interested in studying ways of improv-
works, where routers can share only a small number of sym-.

) . __ing the integrity of packets in network broadcasts and mul-
metric keys. Moreover, our protocols do not use encryption .
X . 4 ticasts where routers can store a small number of keys and
(which, of course, can be added as an optional security en-

hancement). Instead, security is based strictly on the fise o can perform a limited number of computations using those

T : - keys. Here we use the term “router” fairly loosely to refer to
one-way hash functions; hence, our algorithms are consid- : . 4
S . . any device that receives and forwards packets in a network
erably faster than those based on traditional public-key si

o : ; broadcast or multicast, even if this routing takes plachat t
nature schemes. This improvementin speed comes with onl o
: : . . pplication layer. Such a network could be an autonomous
modest reductions in the security for broadcasting, as our

- system on the Internet, an ad hoc network, or an overlay net-
schemes can tolerate small numbers of malicious routers,

provided they don't form significant cooperating coalition work used for muItlpasgng Or peer-to-peer appllca_tloms. :
many of these applications, the routers are potentially low

computation devices or have limited computing resources
that they can devote to routing packets. Thus, we desire
) solutions that are efficient. Indeed, we would like to limit
1 Introduction the security computations that routers make for achieving
integrity to use only the fastest of cryptographic primgsy
The integrity of messages in network broadcasts andsuch as one-way hash functions. We are not explicitly re-
multicasts is an essential component of communication, asquiring that we also achieve confidentiality for the broadca
false or modified packets contribute to congestion and net-messages, however, since in many applications integrity is
work overhead. Moreover, falsified packets can be used inmore important than confidentiality.



1.1 Prior Related Work expense of many more hash chains, and his protocol still re-
quires synchronized routers. It is not clear, in fact, wheth

Network broadcast security was first studied in the sem- his scheme would actually be faster than a full-blown digita
inal work of Periman [24] (see also [25]), who studied signature approach, as advocated in the early work of Perl-

flooding algorithms that are resilient to faulty routers.rHe man. Also of related interest, is work of Bradieyal. [2],

schemes are based on using a public-key infrastructureWho discuss ways of improving the security of packet deliv-

where each router is given a public-key/private-key pair €Y. after the routing tables haV(_e been built. In add_ition, Wu
and must sign each message that originates frorhike- et al. [32] and Vetteret al. [31] discuss some practical and

wise, in her schemes, any routgrthat wants to authen- empirical issues in sepuring routing algorithms.
ticate a messag@/ checks the signature of the router Recently, Hu, Perrig, and Johnson [13] show how to use

that originated it. Such a signature-based approach is suffi ch&ins of one-way hash functions to improve the integrity
cient, therefore, to achieve integrity in a broadcast or-mul of the setup packets used to build routing tables for digtanc

ticast algorithm. Even so, several researchers have comYector and path vector routing. Likewise, Zeual. [35]

mented that, from a practical point of view, requiring full ShOW how to use one-way hash chains for hop-by-hop au-
public-key signatures on all broadcast messages is pmbamthentmgtlon. Our first approach complements these recent
not efficient, particularly for environments where routers WO'KS. in that we use small sets of one-way hash functions

are low-computation devices. Signing and checking signa- {0 improve the integrity of packets as they are being used

tures are expensive operations when compared to the sim{Of Proadcasts.

ple table lookups and computations performed in the well- ~ Since our second scheme involves the use of a novel
known routing algorithms. Nevertheless, there has beenfandomized key pre-distribution method, previous work on
considerable previous work discussing the details of pro-"a@ndomized key pre-distribution is also relevant to the top
tocols that would implement integrity through the use of ICS Of this paper. Eschenauer and Gligor [8] propose a
digital signatures, including work by Guerrero-Zapata and randomized key pre-d!strlbutlon schem_e based on creating
Asokan [11], Kentet al. [16], Konhet al.[17], Murphy et a large pool of potential keys and having each device (or

al. [20, 22, 21], Papadimitratos and Haas [23], Sanairi router) select a random subset of this pool as its keys. These
al. [27], and Smitret al.[29]. keys are used for point-to-point unicast routing by having a

Motivated by the desire to create efficient and secure sender use a key known to be shared by the receiver, for

broadcast or multicast algorithms, several researchees ha lencryptlon (I)r ;ntﬁgr:cty. Chaletfalr.] [3]E|mﬁrove a”gl‘?‘”a'
designed algorithms that achieve security at computdtiona yze several o the eat_ures 0 t. € Lschenauer-islgor ap-
costs that are argued to be superior to those of Perlman.p.ro"’mh for unicast r.outmg _aIgorlthms, keeping to the ba-
Given that the signature-based design of Perlman is alreadf'ﬁ frarr;newprk of usmg i smgle k_?y p.00|' Zet al. [34] f
highly-secure, this research has used fast cryptographié ow how |mprove_t e key identi |cat|_on computation for
tools, such as one-way hash functions, instead of public-these unicast routing schem(_es by using a pseudo-random
key digital signatures on all messages. Neverthelesse sinc nhumber generator seeded with each node’s ID to choose

there is a natural trade-off between computational spegd an the tfys :Oné thhe key po(c;):_. Det hal. [7] SZOW hpw.to K
security, this research has also involved the introduation ~ €0MPIne the Eschenauer-Gligor scheme and a pairwise key-

additional assumptions about the network or restrictians o generation scheme of Blom [1] to allow unicast rputing \.Nith
the kinds of network attacks that one is likely to encounter. guaranteed shared keys between sender-receiver pairs, us-

The challenge, then, is to create practical and secure broad'ngI less melzrgory.dLli(kewc;_se, _Ik_)iu _and NLng [18] useh"f‘ pool_ed
cast algorithms using fast cryptographic tools while limit polynomial-based key distribution scheme 1o achieve sim-

ing the security assumptions needed for these algorithms tdla‘r fes%"ts- Hwang and K"T.] [1.4] study the connectivity
maintain packet integrity. properties of these key-distribution schemes for establis

Cheung [4] shows how to use hash chaining to secureNd Pairwise secure connections. All of these schemes are

broadcast algorithms, assuming that the routers have Syn_effectlve for unicast routing, but they are not directly &pp

. . : . cable for efficient broadcast or multicast routing.
chronized clocks. His scheme is not timely, however, as
it can only detect attacks long after they have happened.
Hauser, Przygienda, and Tsudik [12] avoid that defect by 1.2 Our Results
using hash chains to instead reveal the status of specific
links in a link-state algorithm. That is, their protocol is In this paper we describe two new approaches to improv-
limited to simple yes-no types of messages. In addition, ing the data integrity of broadcast and multicast algorghm
because of the use of hash chains, they also require that then devices with low storage and computational resources.
routers in the network be synchronized. Zhang [33] extendsAfter a preliminary setup that involves distributing a set
their protocol for more complex messages, but does so at theof small set of secret keys to the routers, our schemes use



simple cryptographic hashed message authentication code2 Leap-Frog Packet Linking
(HMACS) to achieve security.

We begin by discussing a low-cost way of making broad-

Our first approach involves the use of a technique we call €@st flooding and multicast routing more secure.  Our
leap-froglinking between hops of a packet as it is routed, Method involves the use of a novel “leap frog” message-
for it allows parties in a broadcast tree to authenticate 2uthenticating scheme.
messages between every other member in a path from the
source. This scheme achieves data integrity using hashe@.1 The Network Framework
message authentication codes (HMACS) in broadcast mes-
sages under the assumption that there are no two adjacent Let G = (V, E) be a network whose vertices In are
malicious routers that are colluding with each other. Such considered as routers and whose edgeg iare connec-

a strategy would even be effective, for example, for broad- tions between these routers. We assume that the routers
casts and multicasts in peer-to-peer networks, which are no have some convenient addressing mechanism that allows
toriously insecure but are likely to experience few colmsi  us without loss of generality to assume that the routers are
attacks. Our algorithms allow a router to receive messagesnumbered! to n. We assume the network allows for the
from an untrusted neighbor in such a way that the neighborrouting or flooding of messages. We also assume (for the
cannot modify the message contents without being detectedbasic leap-frog scheme) that the network topology is static
The number of keys used per router in this scheme is at most For completeness, let us briefly review the broadcast
its network degree, which is the minimum storage need perflooding algorithm, so that we can identify how data in-
device just to route messages. tegrity plays an important role in its correctness. The flood
ing algorithm is initiated by some routercreating a mes-
sageM that it wishes to send to every other route€GinThe
éypical way the flooding algorithm is implemented is tkat
incrementally assigns sequence numbers to the messages it
sends. So that if the previous message ths¢ént had se-
guence numbet, then the messagd is sent with sequence
number;j 4+ 1 and an identification of the message source,
thatis, as the messag@e j + 1, M). Likewise, every router

2 in G maintains a cachg, that stores the largest sequence
number encountered so far from each recently-encountered
broadcast source router (. Thus, any time a router re-
ceives amessade, j+ 1, M) from an adjacent routerthe

The second approach is diverse key distribution
scheme that uses a small humber of keys per device an
HMACSs to achieve end-to-end integrity checking as well as
improved hop-by-hop integrity checking for network broad-
casts and multicasts. The main idea of this approach is to
distributeL keys to each router in a diverse way, so that the
intersection of the sets of keys between two routers is nei-
ther too small nor too big (we make this notion more formal
in the paper). This approach differs from previous random-
ized key pre-distribution schemes [3, 7, 8], in that it isdzhs

on the use of_ sets ofcoloredkeys, with devices picking routerz first checks ifS,[s] < j + 1. If so, thenz assigns

one color from each_set, rather than a large pool of similar S,[s] = j + 1 andz sends the message j + 1, M) to al
keys from which devices choose a subset. We show that our_; . . .
AT . . of its adjacent routers, except fgr If the test fails, how-
distribution scheme can in fact be done using only a loga- ; .
Lo e ever, thenr assumes it has handled this message before and
rithmic or fewer number of keys. Such a distribution allows it discards the message
a filtering scheme, whereby routers can be confident of the g9e. .
data integrity of packets, subject to the (stronger) assump If all routers perform their respective tasks correctlgrth
. ' o . the flooding algorithm will send the messagg to all the
tion that at most2(log L) malicious routers are colluding nodes inG. Indeed. if the communication Steps are svn-
with each other to spoof this filtering scheme. It also guar- . ) . b y
- chronized and done in parallel, then the messagpropa-

antees that even though we are using only a small number ates out froms in a breadth-first fashion
of keys for authentication, every node in a broadcast or mul- 9 )

ticast will be guaranteed to be able to share a key with the If the security of one or more _routers Is compromised,
. . however, then the flooding algorithm can be successfully
sender (in fact, they will share several keys).

attacked. For example, a routecould spoof the routes

and send its own messade j + 1, M’). If this message
Our protocols do not use encryption (which, of course, reaches a router before the correct message, themill

can be added as an optional security enhancement); theropagate this imposter message and throw away the correct

only cryptographic primitive utilized is the use of one- onewhen it finally arrives. Likewise, a corrupted router can

way hash functions in hashed message authentication codesodify the message itself, the source identification, and/o

(HMACSs). This usage allows our algorithms to be consid- the sequence number of the full message in transit. Each

erably faster than those based on traditional public-kgy si such modification has its own obvious bad effects on the

nature schemes. network. For example, incrementing the sequence number



to j +m for some large numben will effectively block the s. Fortunately, the propagation protocol will allow for afl o
nextm messages from. Indeed, such failures have been these routers to authenticate the message froumder the
documented (e.g., [32, 31]), although many such failures assumption that at the malicious routers along routingpath
can be considered router misconfigurations not maliciousdo not collaborate during the computation.

intent. Of course, from the standpoint of the source rositer Let (s,7 4+ 1, M, hy, ho) be the message that is received
the effect is the same independent of any malicious intent—by a routerz on its link from a routen. If y = s, thenz

all flooding attempts will fail untik completesn attempted  is directly connected te, andh, = 0. But in this caser
flooding messages ersends a sequence number reset com- can directly authenticate the message, since it came lgirect
mand (but note that the existence of unauthenticated resefrom s. In general, for a router that just received this mes-

commands itself presents the possibility for abuse). sage from a neighbarwith y # s, we inductively assume
thath, is the hash valué(s||j + 1||M||k(y)). Sincex is
2.2 The Basic Leap-Frog Protocol in N(y), it shares the ke¥(y) with y’s other neighbors;

hence,: can authenticate the message frpfoy usinghs.

One possible way of avoiding the possible failures that This authentication is sufficient to guarantee correctness
compromised or misconfigured routers can inflict on a @ssuming no more than one router is corrupted at present,
flooding algorithm is to take advantage of a public-key in- €ven thoughe has no way of verifying the value @f;. So
frastructure defined for the routers. In this case, we would to continue the propagation assuming that flooding should
haves digitally sign every flooding message it transmits, continue fromz, the routerz sends out, to the next router
and have every router authenticate a message before send: On the path (in the case of a unicast) or eacthat isz’s
ing it on [24, 25]. Unfortunately, this approach is more com- neighbor (in the flooding case), the message
putationally expensive than a scheme based instead on cryp- . ,
tographic hashing. For example, benchmarking tests (e.g., (5,5 + 1, M, h(M|lj + 1[5 (w)), ha)-
see [6, 26]) support the working assumption that crypto- Note that this message is in the correct format for each such
graphic hgsh funcyons are 5,0QQ to 10,000 times faster than,, for 1, should be the hash valugs||j + 1||M||k(z)),
most public-key signature verification algorithms and 500 hichw can immediately verify, since it knowsz). Note
to 1,000 times faster than RSA signature verification with a fyrther that, just in the flooding case, the first time a router
simple public exponent (such a&’ + 1). w receives this message, it can process it, updating the se-

Our scheme is based on a light-weight cryptographic quence number for and so on. (See Figure 1.)
hashing strategy, which we cd#lap-froglinking. The ini-

tial setup for our scheme involves a simple key distribution
Specifically, we define for each routethe setV (z), which
contains the vertices (routers) hthat are neighbors af
(which does not include the vertaxtself). That s,

N(z) = {y: (z,y) € E andy # z}.

The security of our scheme is derived from a secretiey

that is shared by all the verticesMi(z), but not byz itself.

These keys can be created in a setup phase, when the rout- Figure 1. lllustrating leap-frog packet linking.

ing devices are first deployed, or can be maintained by a We show the hopsin the route from  Ato E us-

network administrator. Note, in addition, thate N () if ing solid lines. The leap-frog linking in the in-

and only ify € N(y). tegrity validation is shown using dotted lines.
Now, whens wishes to send the messabyeas a flooding

message to a neighboring routerjt sends

This simple protocol has a number of performance ad-
(5,7 + 1, M, h(s||j + 1||M]||k(z)),0), vantages. First, from a security standpoint, invertingrat-fi
ing collisions for a cryptographic hash function is compu-
whereh is a cryptographic hash function that is collision tationally difficult. Thus, it is infeasible for a router take
resistant (e.g., see [28]). Any routeadjacentte in G can a hash authentication value without knowing the shared key
immediately verify the authenticity of this message (excep of its neighbors, should it attempt to alter the contentfief t
for the value of this application of), for this message is messagé/.
coming tox along the direct connection from But nodes Another advantage of this protocol is its computational
at distances greater thanfrom s cannot authenticate this efficiency. The only additional work needed for a router
message so easily when it is coming from a router other thanx to complete its processing for a flooding message is for



x to perform one hash computation for each of the edgesG that are given coloi, fori = 1,2,...,¢, with ¢ > 2.
of GG that are incident or:. That is,x need only perform  As a preprocessing step, we create a secretikdyr the
degree(z) hash computations, whedlegree(x) denotesthe  colori. We do not share this color with the memberd/pf
degree of:. Likewise,z need only storéegree(z) keys in however. Instead, we shake with all the vertices that are
order to perform this protocol (which is the minimum stor- notassigned colot.

age needed just to forward broadcast flooding messages). When a routes wishes to route or flood a message
Typically, for communication networks, the degree of a with a new sequence numbgr+ 1, in this new secure
router is kept bounded by a constant. Thus, this work andscheme, it creates a full message as

storage compares quite favorably in practice to what would

be required to verify a full-blown digital signature from a (s,d+1, M, hq,ha,... he),

message’s source.

The leap-frog routing process can detect a router mal-Where eacth; = h(s|[j + 1||M]|k;). There is one problem
function in the flooding algorithm, for any router that for s to build this message, however. It does not know the
does not follow the protocol will be discovered by one of Value ofk;, wherei is the color fors. So, it will set that
its neighborse. Assuming that: andy do not collude to hash value t@. Then,s sends this message to each of its

suppress the discovery gfs mistake in this case, then neighbors.

can report tos or even a network administrator that some- ~ Suppose now that a routerreceives a message of the
thing is potentially wrong withy. For in this casey has form

clearly not followed the protocol. In addition, note thath (s,7+1,M,hy,ha,... he)

discovery will occurin just one message hop from from its neighbors. In this casex can verify the au-

. L thenticity of the message immediately, since it is coming
2.3 Chromatic Leap-Frog Packet Linking along the direct link froms. Thus, in this case; does not
need to perform any hash computations to validate the mes-
In some contexts it might be too expensive for a router sage. Still, there is one hash entry that is missing in this
to perform as many hash computations as it has neighborsnessage (and is currently set to zero): namkly= 0,
in the case of a broadcast flooding message. Thus, wewnhere: is the color ofs. In this case, the router com-
might wonder whether it is possible to reduce the number of putesh; = h(s||j + 1||M||k;), since it must necessarily
hashes that an intermediate router needs to do to one eveshare the value of;, by the definition of a vertex col-
for flooding messages. In this subsection we describe howoring. The routerr then sends out the (revised) message
to achieve such a result, albeit at the expense of increas{s, j + 1, M, hq, ha, ..., h¢).
ing the size of the message that is sent (but still keeping the  Suppose then that a routereceives a message, j +
storage per device to be at most equal to its network degree)1, M, hy, ho, . .., h.) from its neighbory # s. In this case
Since our method is based on a coloring of the verticé$,of ~ we can inductively assume that each of thevalues is de-
we refer to this scheme as tbleromatic leap-frogpproach.  fined. Moreoverx can verify this message by testing if
In this scheme, we change the preprocessing step to thak; = h(s||j + 1||M]|k;), where: is the color fory. If this
of computing a small-sized coloring of the verticesGh test succeeds, thenaccepts the message as valid and sends
so that no two adjacent nodes are assigned the same coloit on to all of its neighbors except, to continue the broad-
Algorithms for computing or approximating such colorings cast. In this scheme, the message is easily authenticated,
are known for a wide variety of graphs. For example, ev- sincey could not manufacture the value iof.
ery tree can be colored with two colors. Such colorings  If a router modifies the contents dff, the identity of
might prove useful in applying our scheme to multicasting s, or the value ofj + 1, this alteration will be discovered
algorithms, since multicasting communications often take in one hop. Nevertheless, we cannot immediately implicate
place in trees. In addition, every planar graph can be col-a routerz if its neighbory discovers an invalick; value,
ored with four colors with some difficulty and easily with wheres is the color ofx. The reason is that another router,
five. Such graphs could arise naturally from distributed w, earlier in the flooding could have simply modified this
sensor networks. Finally, it is easy to color a graph that h; value, without changing, j + 1, or M. Such a modifi-
has maximum degreé using at most/ + 1 colors by a cation will of course be discovered lyy buty cannot know
straightforward greedy algorithm. This last class of gsaph which previous router performed such a modification. Thus,
is perhaps the most important for general networking ap-we can detect modifications to content in one hop, but we
plications, as most communications networks bound their cannot necessarily detect modificationsitovalues in one
degree by a constant. hop. Even so, if there is at most one corrupted routér,in
Let the set of colors used to colérbe simply numbered  then we will discover a message modification if it occurs.
from 1 to ¢ and let us denote withy; the set of vertices in  If the actual identification of a corrupted router is impotta



for a particular application, however, then it might be bett  needed to construct such a digest, depending on the size of
to use the non-chromatic leap-frog scheme, since it catcheshe messagé/.
and identifies a corrupted router in one hop.

Alg. | 10B 100B 1KB 10KB 100KB

2.4 Dealing with Network Updates MDS | .046 .46 4.6 46 460
SHALl | .147 1.47 14.7 147 1,470

Since networks are rarely static, it is natural to address  Table 1. Running times, in microseconds, for
the computations that are needed for leap-frog linking to  computing a digest of a message of various
deal with network updates. Since there is no revocation sjzes, based on the Crypto++ 5.2.1 Bench-
mechanism in our scheme, deleting nodes and edges from marks [6].
the network requires no changes.

Inserting new nodes and edges with respect to the ba-
sic leap-frog linking scheme requires some work, however.

Adding a new node:, with neighbor setV(z), to the net- Moreover, since the prime alternative to the leap-frog
work requires that the administrator compute a new key Scheme is full digital signatures, we show in Table 2 the
k(z) and distribute it to all the nodes iV (z). Likewise, ~ benchmarktimes for digital signatures.
adding a new edgér, y) to the network requires that the
administrator informe: of k(y) and informy of k(z). These Alg. Sign | Verify
communications are assumed to be done out of band (or us- RSA 1024| 4,750 | 180
ing encryption). RSA 2048 | 28,130| 450
Inserting a new node with respect to chromatic leap- DSA1024| 2,180 | 2,490

frog linking is more efficient than in the basic scheme. In
this case, we assigna colori that is different from all of
2’s neighbors and we communicatettall the of color keys
except for the key;.

Adding a new edgéz, y) in the chromatic scheme is
potentially more problematic. i: andy are colored dif-
ferently, then there is nothing to do, with respect to theskey
stored at: andy. The previously-distributed color keys will
still work. But if 2 andy are currently the same color, then

we need to recolor the graph and distribute new color keysEfficiency. In the standard leap-frog scheme, a router
based on this new coloring. needs to perform a number of hash computations equal to

é’ts degree in order to forward a broadcast message to its

where the network topology is fairly static. Incidentally, neighbors. That is, a router processing a broadcast per-

our scheme based on diverse key distributions, which Wefor_mrs]t()i cryptorg];raphic hall(shes_, whﬁtéshthe_mljmlr)]er ok’s
describe in Section 3, is more tolerant of arbitrary network neighbors In the r.1etwor ' Usmgt € egnshct at comput-
topology changes ing a cryptographic hash functionis000 times faster than

a digital signature check, we can conclude for the additiona
. . time required for authenticating a digest, that leap-frog i

2.5 Evaluation and Analysis tegrity checking is faster than digital signature checking

whenever the degree of routers in the network is less than

The principle advantage of the leap-frog scheme is that1, 000, which should be the case in most instances. Be-

allows for immediate integrity checking, without waiting ing more specific, each of thehashes must be performed
for the future revelation of the pre-image of a one-way on a string of roughly 50 bytes. Table 3 shows the esti-
hash function (as in the previous schemes based on hasmated time needed to perfom these hashes as a function of
chains [13, 35]). Thus, comparing with a previous solution d, the degree of the router. The setup for performing the ba-
for immediate integrity checking, we compare our solutions sic leap-frog scheme is just a single hash, of course, which
with the public-key signature scheme of Perlman [24] (see is benchmarked as .23 microseconds for MD5 or .74 mi-
also [25]). In either case, whether we are using an HMAC croseconds for SHAL [6].
or digital signature to authenticate a message, we are most The additional time for the routing step in the chro-
likely going to be first producing a digest of the message us- matic version of leap-frog integrity checking will always
ing a cryptographic hash function. Table 1 shows estimates,be faster than digital signature checking, of course, since
based on the Crypto++ 5.2.1 Benchmarks [6], of the time each router need perform only one hash computations per

Table 2. Digital signature computation and
verification times, in microseconds, based on

the Crypto++ 5.2.1 Benchmarks [6], for a di-
gested message.

Thus, the leap-frog schemes are best suited to context



5 10 20 50 100 200 caught.

MD5 | 1.15 23 4.6 115 23 46 Of course, if two malicious routets andy are adjacent
SHAl1 | 3.7 74 147 36.8 735 147 and colluding, then: can change a message and compute an
_ ) HMAC for it using k(y). If y is then willing to compute an
Table 3. Times for performing d hashes on HMAC for this changed message using a kéy) and send
50 B data, in microseconds, based on the this to a third router, thenz will accept the false message.
Crypto++ 5.2.1 Benchmarks [6]. Indeed, if the colluding and adjacent routerandy simply

report their respective neighbor keyér) andk(y) to the
other, then either. or y can create a falsified message with-
out any additional help from the other router. So we must

broadcast message—either to authenticate the message ugssume in the leap-frog scheme that malicious routers do
ing the color key of the sending router (which that router not collude. This is likely a reasonable assumption in prac-
doesn’t know) or one to produce an HMAC with the color tice, and we should not be surprised that this scheme has
key of the sending router (in the direct connection to the reduced security over a scheme based on public-key digital
sender case). That is, the verfication step for the chromaticsignature verification, which would be many times slower.
leap-frog scheme involves computing a single hash, which

is benchmarked as .23 microseconds for MD5 or .74 mi- 3 Diverse Key Distribution

croseconds for SHAL [6]. The setup step for the chromatic

leap-frog scheme requires- 1 hashes, wheréis the num- Let us now discuss the techniquedifersekey distribu-
ber of colors used in our scheme. Thus, we can use Table Jjo, - As mentioned above, the main idea of this technique
to estimate the additional setup time for performing a broad s 4 gistribute a small number of keys to each router so that

cast_m the Chfom"’?“? Ieap—frog scheme. every pair of routers shares a set keys, but it would take a
Like standard digital signatures, the leap-frog scheme re-cnsiderable number of routers to collude to cover all of
quires a non-trivial static key pre-distribution to the tens, these keys.

namely each of the keys for each neighbor set. Such a distri-

bution scheme might be appropriate for a LAN or even a setg 4 Achieving Diversity Through Overlapping
of wireless base stations. Thus, leap-frog checking would and Uncensorable Key Sets

be an efficient means to achieve integrity in network broad-
casts. But leap-frog checking is not an efficient solution in Let us begin with a few definitions. Ld€ be a set of
dynamic networks, including peer-to-peer and ad hoc net- keys that are to be distributed to a $e0f n devices so that
works, where routers can be added to the network dynam-

ically. For such dynamic scenarios, the integrity checking each device in 5 will store a setk; of L keys fromX.
scheme we describe in Section 3 would be a better choice. We say that such a key distributiondsoverlappingif the

number of keys shared by any two devices is at |datat
is,

Security. We claim that our leap-frog schemes can detect KN K;| > d,

the existence of a malicious router that attempts to modify a _ . ' C
broadcast message from a different sender or that attemptgOr i # j. We define such a key distribution to e

- ) " “Uncensorablif, for any two devices andj, the number
to inject a spoofed message with a source ID other than it- : . ;
i . ; of other devices needed to cover all of the keys in the inter-
self. This claim can of course be extended to multiple ma-

licious routers, assuming that they do not collude (that is, section ofi andj’s key sets is at leagf, that is, we need at

a malicious router is willing to implicate a malicious route leasty sets iy, K., ..., Ki, sothat

other than itself). . Qf course, |f the network_s not bicon- KinK; €Ki, UKy, U---UK,,.

nected and a malicious router is an articulation point, then

it can drop messages without being detected. So let us asA key distribution{K1, s, ..., K,} is (d, g)-diverseif it

sume that the network is biconnected (which is usually the is d-overlapping and-uncensorable. The goal, of course,

case in practice). is to construct &d, g)-diverse key distribution of small size,
Assuming that a router has no knowledge of the key [, but with d andg being as large as possible. Before we

k(x) shared byr's neighbors (or the key; corresponding  describe a way of constructing such a key distribution, get u

toz’s color), the message sentbyontains akeyed HMAC  describe how we could use it to achieve improved integrity
that uses a key unknown 1g but known to the predecessor in network routing.

and successor af on this path. Thus, without inverting a 1 — TR .

. . . - Our definition of ag-uncensorable key distribution is equivalent to
cryptogrgphlc hash function, if modifies a broadcas_t MES- 4 (2, g — 1)-cover-free set system, using the terminology of Stinebn
sage or ifx attempts to send a spoofed message, it will be al. [30].




3.2 Broadcastingamong Devices Having a Diverse
Key Distribution

A (d, g)-diverse key distribution allows us to have a rich

and robust set of keys to use in HMACs for any message

that is to be broadcast in our network. For example, sup-
pose a device;j, wants to broadcast a messafje The
device: can simply use all of the keys in ifS; set, creating
an HMAC for each one (this requirdscalls to a one-way
hash function). A devicg receiving the messagd and its
HMACSs can then be assured that it has at lddstys in its

KC; set that it shares with) hence, these keys can be used to
validate at least! of the HMACs thati sent (this takes be-
tweend and [ calls to a one-way hash function). Moreover,
should all these HMACs (using keys #6; N ;) turn out

to be valid, then the devicgcan place considerable trust in
the integrity of the messag¥, for it would take at leasy

of the routers on the path froimo j to collude in order to
changeM to some alternatd/’ in way that could still be
validated with all of the keys i/C; N IC;. (See Figure 2.)

Ka = {A0, B1, CO, DO, E1}

3

<

- \KE:{AO, B0, C1, DO, EO}
NP Ks = {A1, B1, CO, D1, EO}

N 4

%

74

Figure 2. An illustration of using HMACs with

a diverse key distribution. Notice that the

keys B1 and CO are shared between Alice and
Bob but not Eve.

3.3 Achieving Greater Integrity Through Inter-
mediate Validations

The above scheme has the nice property that honest in
termediate routers, sitting between the devicasdj, need
do no additional work for the sake of validation. They just
need to forward the packets froito j. We can optionally
add intermediate validation to our scheme, however, with
modest overhead. This would allow us, for example, to stop
falsified packets supposedly being sent frota j long be-
fore they reachj. The idea would be to have each inter-
mediate routern check the validity of the message coming
from+ using the keys in the s&t; N/C,,, (or even just a small
random sample from this set, since this validation will be re

peated by the other honest routers on the path frim). If

the devicem discovers that the message has been compro-
mised, then device: can simply discard the packet, saving
devicej (and the other downstream routers) the trouble.

3.4 Constructing a Diverse Key Distribution

Of course, the efficiency of using HMACs with a diverse
key distribution depends on our being able to create such
a distribution using a small universk, of keys. That is,
we would like L to be small, while allowing forl andg to
be relatively large. Fortunately, we can create such a key
distribution without too much overhead, for we show in this
section that can distribute to each routersuitably-chosen
random seftC; of L keys, taken from a universg of 2L
keys, in way that is likely to béd, g)-diverse, wherd_ is
O(logn), dis Q(logn), andg is (log L).

Such a distribution would go as follows. We begin by
setting L as a security parameter, but keepihgto be
O(logn), wheren is the number of routers. For example,
as we show later in this section, we could chods® be
20 to achieve a 97% likelihood of detecting any falsified
packet, or we could sdt to be8[logn] to achieve a near
certain probability of detecting any falsified packet. Give
the security parametel, we createlC to be a set oRL
randomly-chosen keys. This will be our key universe.

We pair up the keys ik into L pairs, with one mem-
ber of each pair being viewed as a-bit” key and the
other being viewed as d “bit” key. We number these pairs
1,2,..., L. We then assign to each device random string
of L bits, b1bs ... by, and we build the set; by selecting
the keys fromkC that correspond to the bits in this string.
That is, ifb; = 0, then we include iriC; the -th 0-bit key;
otherwise, ifb; = 1, then we include inC; the [-th 1-bit
key. This simple random selection process is related to the
randomized bucketed key assignment scheme of Getray
al. [9] and is likely to give us a diverse key distribution.

Theorem 1: For any pair of devices andj, |IC; N K;| >
L/8, with high probability. The probability this inequality
doesn’t hold is less thary 2%/4.

Proof: Since the keys iifC; and; are selected according
to the bits in randoni-bit strings, the expected size |&f; N

K| is L/2. By a Chernoff Bound (e.g., see [19]),

40\ /8
PI‘(|’C1 ﬂ’Cj| < L/S) < <€_3> )

wheree is the base of the natural logarithm. Using the ap-
proximatione = 2.71828. . ., we can simplify this as

PI‘(lICi ﬂK:jl < L/S) < W



So, for example, if we like to guarantee that any two key pool from which they will sample keys for each de-
routers share at lea8tkeys with 97% likelihood, then we  vice. For example, they advocate creating a key pool of
should choosé > 20. Likewise, if want to guarantee that size roughlylOn for use withn devices. Our key pool is

two routers sharg n keys with probability at least much smaller, as we advocate a key pool of i{éogn)
for creating &log n, loglog n)-diverse distribution of keys.
1_ %7 Thus, the key-pool overhead in our scheme improves on
n

that of Eschenauer and Gligor [8] by an exponential fac-
tor. To be fair, we should mention that the goals of Es-
chenauer and Gligor's scheme are different than ours, since
their scheme is focused on secure point-to-point message
integrity, whereas we are interested in this paper on nétwor
broadcast integrity.

Second, Eschenauer and Gligor [8] perform key distri-
Theorem 2: For any subset’; of N keys taken from a set  bution by having devices select a set of keys randomly from
KC;, the expected number of othEr; sets needed to cover the pool, whereas we assign keys according to a random
K} is Q(log N). bit ID assigned to the device. This difference is admittedly
subtle, but it allows for the possibility in our scheme that
Proof: Since the odds of matching a particular key after g system manager could use a deterministically-chosen set
tries is1 — 1/2™, the probability of matching alV keys  of error-correcting codes to determine the keys per device,

then we should choosk > 8logn. Thus, we can use this
theorem and the security paramefeto derive bounds on
the d-overlap of our key distribution. The next theorem al-
lows us to derive similar bounds on thaincensorability of
our key distribution.

afterm tries is v thereby avoiding the use of randomization. We leave as an
1— 1 open problem, therefore, the construction of a set of error-
2m ' correcting codes that determinéd g)-diverse set of keys
For this probability to react /2, m needs to b&)(log N). for large values o0& andg.
O In terms of implementation, the setup for a broadcast in

our scheme using @, g)-diverse key distribution requires
So, we can conclude, then, that a randomly chosen keyd hashes, and the verification step requiddsashes, each

distribution, as described above, will be likely to @& g)- on strings of size roughly 50 bytes. Thus, we can reuse the
diverse, where we can, for example, choose the parametergstimates from Table 3 to estimate both the setup and verifi-
so thatL is ©(log n), d is Q(log n), andg is Q(log L). cation times for this scheme. For example] i 20 andy is

50, then the additional setup time is 36.8 microseconds for
3.5 Dealing with Network Updates SHAL1 hashing and the additional time for the verification

step is 14.7 microseconds.

Unlike our leap-frog scheme, the diverse key distribu-
tion scheme is quite tolerant of network updates. Adding
anew noder to the network requires only that we provide gecyrity. As mentioned above, if the nodes in our net-
a with L keys so as to maintain tf{é, g)-diverse property ek have a(d, g)-diverse set of keys, then, in order to in-
forthe set of distributed k_eys. _The_random|ze_d_ construct!o ject a spoofed message or modify an existing message, an
described above does this, with high probability (assuming adversary would have to captuyéey sets (or havg nodes
the current number of nodes is proportional to the original .q|jude to perform the requested action). Moreover, in or-
number), and it does not require any changes to existingyer t fasify the broadcast of a message sent from riode
keys. Likewise, adding or removing edges in the network 4 received by nodg the set ofy malicious nodes would
requires no changes to the key sets. have to be positioned along the path fromo ;.

3.6 Evaluation and Analysis
o _ . 4 Applications
Let us analyze the efficiency and security of our diverse
key distribution scheme.

In this section we detail how the above data integrity
Efficiency. In terms of efficiency, the prime competitor techniques for routing packets can be used in conjunction
with our key distribution scheme is the key distribution with simple data validation protocols for securing the well
scheme of Eschenauer and Gligor [8]. Their scheme dif- known link-state and distance-vector algorithms for build
fers from ours in two ways. First, they create a large ing routing tables.



4.1 Achieving Integrity in the Setup for Link- 4.2.1 Reviewing the Distance-Vector Algorithm

State Routin
g Initially, each router set®, [y] equal to the weighty(z, y),

of the link fromx to y, if there is such a link. If there is no

Having discussed how to efficiently secure a broadcastSUch link, thenz setsD,[y] = +oc. In each round each
flooding message, we observe that this approach can pdouterz sends its dlstance_ vector to each of |ts_ neighbors.
used for the setup of the link-state algorithm. This algo- 1N€n each router updates its tables by performing the fol-
rithm is the basis of the well-known and highly-used OSPF [0Wing computation:
routing protocol. In this algorithm, we build at each router ~ for each routey adjacent tor do

in a networkG a table, which indicates the distance to every for each other router do
other router in7, together with an indication of which link if Dy[w] > w(z,y) + Dy[w] then
to follow out of z to traverse the shortest path to another {Itis faster to first go tgy on the way tow.}
router. That is, we stor®, andC, at a routerr so that SetD,[w] = w(z,y) + Dy[w]
D,[y] is the distance to routey from = and C,[y] is the SetCylw] =y
link to follow from z to traverse a shortest path framnio y. and if
end for

These tables are built by a simple setup process, which
we can now make secure using the leap-frog or diverse key
distribution schemes described above. The setup begins by f we examine closely the computation that is performed
having each router poll each of its neighbors;, to deter- at_a_ routerz, it can bg modeled as that of computing the
mine the state of the link from to y. This determination ~ Minimum of a collection of values that are senttdrom

assigns a distance weight to the link framto y, which ~ adjacentrouters (thatis, the(z,y) + D, [w] values), plus
can be0 or 1 if we are interested in simply if the link is SOMe comparisons, arithmetic, and assignments. Thus, to

up or down, or it can be a numerical score of the current S€cure the distance-vector algorithm, the essential ctanpu
bandwidth or latency of this link. In any case, after each tion is that of verifying that the router has correctly com-
routerz has determined the states of all its adjacent links, it Puted this minimum value. We shall use the leap-frog idea
floods the network with a message that contains a vector oft achieve this goal.

all the distances it determined to its neighbors. Under our

protected scheme, we now perform this flooding algorithm 4 2 5 Securing the Setup for the Distance-Vector Algo-
using the leap-frog, chromatic leap-frog, or diverse kesy di rithm

tribution methods. Once this computation completes cor-

rectly, we compute the vectof$, andC, for each router Since the main algorithmic portion in testing the correstne
by a simple local application of the well-known Dijkstra’s of a round of the distance-vector algorithm involves vetlida
shortest path algorithm (e.qg., see [5, 10]). ing the computation of a minimum of a collection of values,

Thus, simply by utilizing a secure flooding algorithm we €t us focus more specifically on this problem. Suppose,
can secure the setup for the link-state routing algorithea. S then, that we have a nodethat is adjacent to a collection
curing the setup for another well-known routing algorithm ©f N0d€Syo, y1, - .., ya—1, and each nodg; sends tor a
takes a little more effort than this, however, as we explore Valu€ai. The taske is to perform is to compute
in the next section.

end for

m= z':o,If,l.l.I.l,d—l{ai}’
4.2 Achieving Integrity in the Setup for Distance-  in a way that all they,’s are assured that the computation
Vector Routing was done correctly. As in the previous sections, we will as-

sume that at most one router will be corrupted during the
computation (but we have to prevent and/or detect any fall-
Another important routing setup algorithm is the out from this corruption). In this case, the router that we
distance-vector algorithm, which is the basis of the well- consider as possibly corruptedistself. The neighbors of
known RIP protocol. As with the link-state algorithm, the = must be able therefore to verify every computation that
setup for distance-vector algorithm creates for each route = is to perform. To aid in this verification, we assume a
x in G a vector,D,, of distances fronx to all other routers,  preprocessing step has shared a kéy) with all d of the
and a vector’,,, which indicates which link to follow from  neighbors ofz, that is, the members a¥(z), but is not
x to traverse a shortest path to a given router. Rather tharknown byz.
compute these tables all at once, however, the distance vec- The algorithm that will use to computen is the trivial
tor algorithm produces them in a series of rounds. minimum-finding algorithm, where iteratively computes
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forj =0,...,d — 1. Thus, the output from this algorithm
is simplym = mg4_1. The secure version of this algorithm

proceeds in four communication rounds: References

1. Each routery; sends its valuex; to z, as A; =

(a5, has||k(2)), fori = 0,1,....d — 1. g

2. The routerr computes then,; values and sends the
messagen; 1, M, Ai—1 mod d» Ai+1 mod 4) t0 €aCHh
yi. The validity of A;_1 modd and Ais1 mod a) iS [l
checked by each such using the secret ke¥(x).
Likewise, eachy; checks thatn; = min{m;_1,a;}.

3. If the check succeeds, each routgr sends its (3]
verification of this computation tar as B; =
(“yes”, i, m;, h(“yes”||m;||i||k(x))). (For added se-
curity y; can seed this otherwise short message with a
random number.)

(4]

4. The router sends the message (5]
(Bi—1 mod ds Bi+1mod 4) 10 e€achy,. Each such
y; checks the validity of these messages and that they [6]
all indicated “yes” as their answer to the checkags
computation. This completes the computation.

In essence, the above algorithm is checking each step of [7]
2’s iterative computation of then,;'s. But rather than do
this checking sequentially, which would tak¥d) rounds,
we do this check in parallel, i@ (1) rounds. (8]

5 Conclusion
9]
We have described two techniques—leap-frog packet
linking and diverse key distributions—for improving the in
tegrity of network broadcasts and multicasts, and we have
given applications of these techniques to the setup algo-
rithms for the link-state and distance vector routing algo- [11]
rithms.
During routing phases, these two techniques offer use-
ful tradeoffs. Leap-frog packet linking adds only two ad- [12]
ditional values to the payload of a packet and can tolerate
no adjacent colluding malicious routers on a path. The di-
verse key distribution technique, on the other hand, adds[13]
up to O(logn) values to the data payload, but can toler-
ate small colluding sets of malicious routers. Both of these
techniques, however, provide data integrity at low storage
and computational overhead per device.
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