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ABSTRACT
We present a framework for designing efficient distributed
data structures for multi-dimensional data. Our structures,
which we call skip-webs, extend and improve previous ran-
domized distributed data structures, including skipnets and
skip graphs. Our framework applies to a general class of data
querying scenarios, which include linear (one-dimensional)
data, such as sorted sets, as well as multi-dimensional data,
such as d-dimensional octrees and digital tries of character
strings defined over a fixed alphabet. We show how to per-
form a query over such a set of n items spread among n
hosts using O(log n/ log log n) messages for one-dimensional
data, or O(log n) messages for fixed-dimensional data, while
using only O(log n) space per host. We also show how to
make such structures dynamic so as to allow for insertions
and deletions in O(log n) messages for quadtrees, octrees,
and digital tries, and O(log n/ log log n) messages for one-
dimensional data. Finally, we show how to apply a blocking
strategy to skip-webs to further improve message complexity
for one-dimensional data when hosts can store more data.

Categories and Subject Descriptors: E.2 Data Storage
Representations

General Terms: Algorithms, Design.

Keywords: Distributed data structures, peer-to-peer net-
works, skip lists, quadtrees, octrees, tries, trapezoidal maps.

1. INTRODUCTION
Peer-to-peer networks offer a decentralized, distributed

way of storing large data sets. They store data at the hosts
in a network and they allow searches to be implemented
by sending messages between hosts, so as to route a query
to the host that stores the requested information. That is,
data is stored at the nodes of a network according to some
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indexing strategy organized over a set of data attributes,
with the desire that users should be able to quickly access
this data using attribute-based queries. In this paper, we
are interested in allowing for a fairly rich set of possible
data queries, including an exact match for a key (e.g., a file
name), a prefix match for a key string, a nearest-neighbor
match for a numerical attribute, a range query over various
numerical attributes, or a point-location query in a geomet-
ric map of attributes. That is, we would like the peer-to-peer
network to support a rich set of possible data types that al-
low for multiple kinds of queries, including set membership,
1-dim. nearest neighbor queries, range queries, string prefix
queries, and point-location queries.

The motivation for such queries include DNA databases,
location-based services, and approximate searches for file
names or data titles. For example, a prefix query for ISBN
numbers in a book database could return all titles by a cer-
tain publisher. Likewise, a nearest-neighbor query in a two-
dimensional point set could reveal the closest open com-
puter kiosk or empty parking space on a college campus.
By allowing for such databases to be stored, searched, and
updated in a distributed peer-to-peer (p2p) network, appli-
cation providers can maximize information availability and
accuracy at low cost to any individual host participant (as-
suming honest participants, of course1).

The key challenges in setting up such p2p networks is to
balance the space and processing loads of the hosts while
providing for low message costs for routing queries and per-
forming insertion and deletion updates in the data set. We
would like the data to be distributed as evenly as possible
across the network, so that the space-usage load of each host
is roughly the same. And we desire that the data manage-
ment be fully decentralized, with hosts able to insert and
delete data they own without employing a centralized data
manager or repository (which would create a single point of
failure). Likewise, we would like the indexing structure to be
distributed in such a way that the query-processing load is
also spread as uniformly as possible across the nodes of the
network. This paper is therefore directed at the study of dis-
tributed peer-to-peer data structures for multi-dimensional
data.

1The security of distributed data structures is an interesting
research topic [1, 8, 19], but is beyond the scope of this
paper.



Figure 1: A skip list data structure. Each element exists in the bottom-level list, and each node on one level
is copied to the next higher level with probability 1/2. A search starts at the top and proceeds as far as it
can on a given level, then drops down to the next level, and continues until it reaches the desired node on
the bottom level. The expected query time is O(log n) and the expected space is O(n).

1.1 Cost Measures and Models for Peer-to-
Peer Data Structures

There are a number of cost measures for quantifying the
quality of a distributed data structure for an p2p network.
First and foremost, we have the following two parameters:

• H : the number of hosts. Each host is a computer on
the network with a unique ID. We assume the network
allows any host to send a message to any other host.
We also assume that hosts do not fail.

• M : the maximum memory size of a host. The memory
size is measured by the number of data items, data
structure nodes, pointers, and host IDs that any host
can store.

In addition to the parameters H and M , we have the fol-
lowing cost functions for a distributed data structure storing
a set S of n items in a peer-to-peer network:

• Q(n): the query cost—the number of messages needed
to process a query on S.

• U(n): the update cost—the number of messages needed
to insert a new item in the set S or remove an item
from the set S.

• C(n): the congestion per host—the sum of the number
of references to items stored at the host, the number
of references to items stored at other hosts, and the
number n/H (which measures the expected number
of queries likely to begin at any host, based on the
number of items in the set S).

We assume that each host has a reference to the place where
any search from that host should begin, i.e., a root node for
that host (which may be stored on the host itself).

1.2 Previous Related Work
We are not aware of any previous related work on storing

multi-dimensional data in peer-to-peer networks.
Nevertheless, there are existing efficient structures for stor-

ing and retrieving one-dimensional data in peer-to-peer net-
works. For example, there is a considerable amount of prior

work on variants of Distributed Hash Tables (DHTs), in-
cluding Chord [7, 18], Koorde [11], Pastry [16], Scribe [17],
Symphony [12], and Tapestry [21], to name just a few. These
structures do not allow for sophisticated queries, however,
such as nearest-neighbor searching (even in one-dimension),
string prefix searching, or multi-dimensional point location.

For one-dimensional nearest-neighbor searching, Aspnes
and Shah [3] present a distributed data structure, called
skip graphs, for searching ordered content in a peer-to-peer
network, based on the elegant, randomized skip-list data
structure [15]. (See Figure 1.) Harvey et al. [10] inde-
pendently present a similar structure, which they call Skip-
Net. These structures achieve O(log n) congestion, expected
query time, and expected update times, using n hosts. Har-
vey and Munro [9] present a deterministic version of Skip-
Net, showing how updates can be performed efficiently, al-
beit with higher congestion and update costs, which are
O(log2 n). Zatlukal and Harvey [20] show how to modify
SkipNet, to construct a structure they call family trees, to
achieve O(log n) expected time for search and update, while
restricting the number of pointers from one host to other
hosts to be O(1). Manku, Naor, and Wieder [13] show how
to improve the expected query cost for searching skip graphs
and SkipNet to O(log n/ log log n), by having hosts store the
pointers from their neighbors to their neighbor’s neighbors
(i.e., neighbors-of-neighbors (NoN) tables); see also Naor
and Wieder [14]. Unfortunately, this improvement requires
that the memory size, congestion, and expected update time
grows to be O(log2 n). Focusing instead on fault tolerance,
Awerbuch and Scheideler [4] show how to combine a skip
graph/SkipNet data structure with a DHT to achieve im-
proved fault tolerance2, but at an expense of a logarithmic
factor slow-down for queries and updates. Aspnes et al. [2]
show how to reduce the space complexity of the skip graphs
structure, by bucketing intervals of keys on the “bottom
level” of their structure. Their method improves the ex-
pected bounds for searching and updating, but only by a
constant factor whenever H is Θ(nε), for constant ε > 0.

2Achieving improved fault tolerance in peer-to-peer data
structures for multi-dimensional data is a topic for possi-
ble future research.



Method H M C(n) Q(n) U(n)

skip graphs/SkipNet [3, 10] n O(log n) O(log n) Õ(log n) Õ(log n)

NoN skip-graphs [13, 14] n O(log2 n) O(log2 n) Õ(log n/ log log n) Õ(log2 n)

family trees [20] n O(1) O(log n) Õ(log n) Õ(log n)

deterministic SkipNet [9] n O(log n) O(log n) O(log n) O(log2 n)

bucket skip graphs [2] < n O(n/H + log H) O(n/H + log H) Õ(log H) Õ(log H)

skip-webs n O(log n) O(log n) Õ(log n/ log log n) Õ(log n/ log log n)

bucket skip-webs < n O(n/H + log H) O(n/H + log H) Õ(logM H) Õ(logM H)

Table 1: Comparison of 1-dimensional skip-webs with previous methods for 1-dimensional nearest neighbor
structures. We use Õ(∗) to denote an expected cost bound. The skip-webs and bucket skip-webs solutions
are presented in this paper.

1.3 Our Results
In this paper, we present a framework for designing ran-

domized distributed data structure that improves previous
skip-graph/SkipNet approaches and extends their area of
applicability to multi-dimensional data sets. The queries
allowed include one-dimensional nearest neighbor queries,
string searching over fixed alphabets, and multi-dimensional
searching and point location. Our structure, which we call
skip-webs, matches the O(log n/ log log n) expected query
time of NoN skip-graphs [13, 14] for one-dimensional data,
while maintaining the O(log n) memory size and expected
query cost of traditional skip graphs [3] and SkipNet [10].
We also introduce a bucketed version of our skip-web struc-
ture, which improves the overall space bounds of our struc-
ture, while also significantly improving the expected query
and update times. Indeed, if the memory size M of our hosts
is O(nε), for constant ε > 0, then our methods result in
expected constant-cost methods for performing queries and
updates. In Table 1, we highlight how our methods com-
pare with previous solutions for one-dimensional nearest-
neighbor searches.

In addition to improving previous randomized distributed
data structures for one-dimensional data, we also extend
the areas of applicability for such structures, by introducing
a general framework for constructing distributed structures
for multi-dimensional data sets, including d-dimensional point
sets, sets of character strings over fixed alphabets, and (trape-
zoidal) maps of planar subdivisions defined by disjoint line
segments in the plane (e.g., as would be created by a cam-
pus or city map in a geographic information system). Our
approach is based on viewing the nodes and links of an un-
derlying data structures as having ranges (that is, sets) as-
sociated with them. By then applying a random selection
process to these range spaces we produce a distributed data
structure (with low congestion) that is able to perform effi-
cient queries on the underlying structure. For example, we
can locate a point in a distributed two-dimensional quadtree
of n points using only O(log n) messages, even if the un-
derlying quadtree has O(n) depth, providing a distributed
analogue to the skip quadtree data structure of Eppstein et
al. [6].

2. THE SKIP-WEB FRAMEWORK
The skip-web framework applies to a wide variety of data

querying scenarios. In this section, we define the conditions

that a data querying scenario must satisfy in order to allow
for a skip-web implementation. Intuitively, our conditions
apply to any data structure built deterministically from an
input set S using nodes and links between those nodes. Our
scheme builds a hierarchical, distributed structure in a way
that allows for fast queries.

2.1 Range-Determined Link Structures
We consider the input set of n items to be a ground set S

of items taken from some universe U . In order for the skip-
web framework to apply, we require that S and U define
a unique link structure [5]. That is, the universe U and
the elements of S determine a unique data structure D(S)
consisting of nodes and links connecting pairs of those nodes.
Furthermore, we assume that each node and link in D(S) is
associated with a range (that is, a set) of values from U and
there is an incidence between a node and a link if and only
if their respective ranges have a non-empty intersection.

For example, if U is a one-dimensional total order and S
is a finite subset of U , then D could be an ordered linked list
on the elements from S. In this case, the range associated
with each node would be a unique element from S and the
range associated with a link joining two nodes storing x
and y, respectively, would be the interval [x, y]. Such a
linked list D(S) is therefore a unique link structure with
the incidences of its nodes and links being defined by their
associated ranges. In general, we call such a structure a
range-determined link structure.

As another example, consider D(S) as a digital trie for
a set S of n character strings, defined for a fixed alphabet.
The range associated with a node v in D(S) would natu-
rally correspond to the singleton set containing the string
that leads to v in D(S). Likewise, the range associated with
an edge (v, w) in D(S) would naturally correspond to the
set of all strings of the form xy, where x is the string that
leads to v and y is a (possibly empty) prefix of the string
associated with the edge (v, w). Thus, the intersection re-
lationships between these sets of strings gives rise to the
incidences between the nodes and links in D(S).

2.2 Defining a Set-Halving Lemma
Let S be a ground set of n items taken from some universe

U , and let D(S) be the range-determined link structure for
S. Further, let T be a subset of S and let D(T ) be the
range-determined link structure for S (defined by the same
data-structure construction function, D).



Figure 2: A one-dimensional skip-web. Each node is copied to the next level 0-list or 1-list, respectively, with
probability 1/2. The different levels of the skip-web are separated by dashed lines. Note that if we follow
pointers down from any top-level node, the structure “looks” like a skip-list. The nodes shown in gray could
belong to a single host in the skip-web. (A skip-graph instead stores “towers” of nodes with the same key at
the same host.)

We say that a range Q for a node or link in D(T ) conflicts
with a range R for a node or link in D(S) if Q ∩ R 6= ∅ (it
is possible that Q = R, which we still count as a conflict).
For a given range Q for D(T ), we let C(Q,S) denote the set
of all ranges for D(S) that conflict with Q. We call this set
the conflict list for Q.

The range-determined link structures we consider in this
paper all have an important property with respect to the
way that ranges conflict when we randomly halve a given
ground set. In particular, we utilize the following:

• Template for a Set Halving Lemma: Given a set S
of n items taken from U , let T be a subset of n/2
items chosen uniformly at random from S. If there
exists a constant c > 0 such that we can show that
E(|C(Q, S)|) ≤ c, for any item q ∈ U and for the
maximal range Q of D(T ) containing q, then we say
that U and D have a set halving lemma.

We demonstrate set halving lemmas for a number of range-
determined link structures, including:

1. compressed quadtrees and octrees for points in Rd

2. compressed digital tries for character strings over fixed
alphabets

3. linked lists of sorted sets

4. Trapezoidal diagrams of non-crossing sets of line seg-
ments in the plane.

For example, we have the following:

Lemma 1. Let U be a total order, let S be a set of n items
from U , let q be an arbitrary item in U , and let T be a subset
of n/2 items chosen uniformly at random from S. Further,
let D be the range-determined linked structured defined by a
doubly-linked list, and let Q be the maximal range in D(T )
containing q. Then E(|C(Q, S)|) is O(1).

Proof. For any x in S, the probability that x belongs
to Q is 2−|[q,x)∩S|. Thus, E(|Q ∩ S|) is a sum of inverse
powers of two, in which each power appears at most twice;
therefore, E(|Q ∩ S|) ≤ 4. |C(Q, S)| ≤ 2|Q ∩ S| − 1, so
E(|C(Q, S)|) ≤ 2E(|Q ∩ S|) − 1 <= 7.

This is the set halving lemma for a sorted linked list.
Rather than immediately showing that the remaining range-
determined link structures above also have set halving lem-
mas, let us continue our discussion with the way a range-
determined link structure with a set halving lemma can be
used to construct an efficient distributed data structure. We
use the sorted linked list as a running example, but the con-
struction applies to other link structures as well.

2.3 Skip-Web Levels
Suppose, then, that we are given a set S of n elements,

taken from a universe U , with a range-determined link struc-
ture D with a set-halving lemma. We define S0 = S to be
the level-0 subset of S and we let D(S0) be the level-0 struc-
ture for S0. For example, with a set S0 taken from a total
order, D(S0) is the sorted linked list defined on S0.

Suppose we have inductively defined a level-i set Sb, where
b is an (i + 1)-bit binary string. We generate a new random
bit for each x in Sb. If the bit for x is 0, then we include x in a
set, Sb0; otherwise, we include x in a set, Sb1. For each range
Q for D(Sb0) we store hyperlink pointers to the nodes and
links for the ranges in C(Q,Sb), that is, the ranges in D(Sb)
that conflict with Q. In this case, a pointer consists of a pair
(h, a), where h is the ID of a host and a is an address on that
host where the item being referred to is stored (we assume
that links have an address). Likewise, for each range Q in
D(Sb1) we store hyperlink pointers to the ranges in C(Q,Sb),
i.e., in D(Sb), that conflict with Q. We repeat this process
until we define sets with dlog ne-bit indices. The expected
size of each top-level structure is O(1), if the total number
of levels is O(log n). (See Figure 2.)



2.4 Distributed Blocking
Given a range-determined link structure and a ground set

S with a set-halving lemma, the final ingredient for con-
structing a skip web is to assign the nodes and links of the
various levels to hosts in the network. For now, let us sim-
ply assume that this assignment is arbitrary; so that each
host on the network gets O(M) nodes and links from among
the O(n log n) possible. So, for example, if M = log n,
then we can use n hosts to store the data structure using
O(log n) space per node. This allocation, and the generality
of the skip-web approach, leads to fast query times for sev-
eral multi-dimensional distributed search problems, which
we detail in Section 3.

2.4.1 Improved Blocking for One-Dimensional Data
For one-dimensional data, the above arbitrary blocking

approach would match the performance of skip-graph [3]
and SkipNet [10] structures. We can improve this blocking
strategy for one-dimensional data, however, by a more clever
approach, thereby constructing a distributed data structure
for one-dimensional data that is more efficient than skip-
graphs and SkipNet and faster than family trees [20]. As
with these other structures, the queries our structure sup-
ports are one-dimensional nearest-neighbor queries, which is
equivalent to a one-dimensional point-location query, that is,
given a point x in U , find a range R for a node or link in
D(S) that contains x. For any universe U of one-dimensional
data and link structure D based on a doubly-linked list, we
desire that the expected number of messages to answer a
range-containment query is O(log n/ log M), where M is the
memory size of each host.

Suppose, then, that we are given a set S of n elements
taken from a one-dimensional universe U , and we use an
ordered doubly-linked list D as our range-determined link
structure. By Lemma 1, this set and structure have a set-
halving lemma. As in the general case, we define S0 = S to
be the level-0 subset of S and we let D(S0) be the level-0
structure for S0, which, in this case, is a simple linked list
on S0.

Recall that we inductively defined a level-i sets Sb, where
b is an (i + 1)-bit binary string using random sampling. We
store the data structure nodes and links of each D(Sb) in a
hierarchical, stratified fashion. We define level i set as basic
if i is a multiple of L = dlog Me. If Sb is a basic set, then
we divide D(Sb) into M/L blocks of contiguous ranges, that
is, a contiguous portion of the nodes and links in the linked
list D(Sb).

Let R be the contiguous set of ranges of a basic D(Sb)
stored on some host h. We also store at h all the ranges of
D(Sb0) that conflict with ranges in R as well as the ranges of
P(Sb1) that conflict with ranges in R. In fact, we store at h
the ranges in D(Sb00), D(Sb01), DP (Sb10), and D(Sb11) that
conflict with ranges on the next lower level, and we continue
this process for all the non-basic levels above i. (Note that
copies of some of these ranges may be stored on multiple
hosts, but these overlapping copies will only increase the
total space by a constant factor, since these sets of ranges
are contiguous and compact.) This construction requires
space proportional to M , as required. The number of hosts
needed is H ≤ cn log n/M , for some constant c. Thus, H
is n if we choose M to be O(log n). The in-degree and out-
degree of each nodes is O(M), as well.

2.5 Answering Queries
To answer a query q (which may be over multiple at-

tributes) in a skip-web we begin with the “root” nodes and
links of a level-k D(Sb) stored on the host originating the
query. We search in D(Sb) as far as we can for q, stopping at
a node or link whose range R includes q or intersects q. We
then follow the hyperlinks for R to the nodes of the level-
(k− 1) structure, possibly stored at another host. If the hy-
perlinks are stored on our current host, then we follow these
connections internally. Otherwise, following these hyper-
links is done by sending a message for q to the host(s) stor-
ing the hyperlinks, asking the host(s) to process the query
as far as they can internally and then return either an an-
swer or hyperlinks to other hosts at which we can continue
the search. We continue following all the active hyperlinks
in this way, possibly sending messages to other hosts, until
we complete all the processing for the query q.

The key observation for analyzing the message complex-
ity for answering such a query is to note that we have to
consider an expected constant number of conflicting ranges
in going from one level to the next (by following hyper-
links leading from this level to ultimately yield answers) will
be processed, e.g., just one hyperlink in a one-dimensional
nearest-neighbor search. In the case of general skip-web
structures, this implies a query time of O(log n) message per
answer. In the case of bucketed one-dimensional data, we
note that we need follow an expected constant number of ex-
ternal hyperlinks (to new hosts to determine which pointer
to follow in our search) for basic levels. The pointers we
need to follow for non-basic levels need not branch out to
other hosts, by construction. Thus, for example, if M is
O(log n), then we can answer nearest-neighbor queries using
O(log n/ log log n) expected message complexity. We sum-
marize:

Theorem 2. Given a set S of n elements taken from
a universe U , and having a range-determined link struc-
ture with a set-halving lemma, then we can construct a dis-
tributed skip-web structure that uses n hosts, with mem-
ory size O(log n), congestion O(log n), and query complex-
ity O(log n), which can be improved to O(log n/ log log n) for
one-dimensional data.

For general values of the host memory size, M , when we
are storing one-dimensional data, we get a structure we call
the bucket skip-web, whose performance is as mentioned in
Table 1.

3. MULTI-DIMENSIONAL SKIP WEBS
Having discussed the general skip-web framework and how

to optimize it for one-dimensional data, we discuss in this
section how to construct distributed skip webs for specific
multi-dimensional data sets.

3.1 d-Dimensional Point Sets: Quadtrees and
Octrees

In this section, we outline a construction of a skip-web for
compressed quadtrees and octrees in d-dimensional space,
for any fixed constant d ≥ 2. A quadtree (for two-dimensional
data) or octree (for higher dimensions) is defined in terms
of a set S of n points and a bounding hypercube (a square
in two-dimensions). The root r of the tree is associated
with the bounding cube. This cube is subdivided into 2d
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Figure 3: Illustrating the halving lemma for quadtrees. (a) the regions for a compressed quadtree defined on
a set S of points; (b) the compressed quadtree for the points in S; (c) an example random subset T of the
points in S and their associated quadtree regions; (d) the compressed quadtree for the points in T .

subcubes with side-length half of that of the bounding cube
and each non-empty subcube is a child of r and is the root
of a tree that is recursively subdivided in the same manner.
This tree is then converted into a compressed version by
compressing chains of nodes with only one child into edges.
This tree has O(n) nodes and links, but can have depth
O(n) in the worst case. More importantly, for the context
of this paper, a compressed quadtree or octree is a range-
determined link structure.

By showing that quadtrees and octrees have a set-halving
lemma, we show that we can build a skip-web structure for
multi-dimensional point sets that can perform point-location
in the subdivision of space defined by the hypercubes as-
sociated with nodes in the tree. This point location can
be done with O(log n) messages and, as Eppstein et al. [6]
show, such point location queries can be used to answer ap-
proximate nearest-neighbor queries and approximate range
searches in d-dimensional space. In the case of defining a
range-determined link structure from a quadtree or octree,
the range associated with each node is its associated cube
and the range associated with a link is that of the child

node for that link. We can define a set-halving lemma for
quadtrees and octrees as follows. (See Figure 3.)

Lemma 3. Let S be any set of n points in d-dimensional
space, for fixed constant d ≥ 2, let T be formed by choos-
ing each member of S independently with probability 1/2,
and let C be a (hyper)cube associated with a node in the
quadtree/octree D(T ). Then the expected number of node
hypercubes in D(S) that conflict with C is O(1).

Proof. Follows from results from Eppstein et al. [6].

This lemma and the skip-web framework implies that we
can perform point-location queries in a network of n hosts
with O(log n) messages (even if the underlying quadtree or
octree has depth O(n)).

3.2 Character Strings: Tries
We have already discussed above that a compressed trie

defined by a set S of n character strings defined over a fixed
alphabet is a range-determined link structure. In this sec-
tion, we show that tries defined over such a set S has a
set-halving lemma.



Figure 4: An example trapezoidal map.

Lemma 4. Let S be any set of n character strings over
a fixed alphabet, let T be formed by choosing each member
of S independently with probability 1/2, and let s be a set
of strings associated with a node or link in D(T ). Then the
expected number of ranges (i.e., nodes and links) in D(S)
that conflict with s is O(1).

Proof. Consider an edge of D(T ). Each such edge cor-
responds to a path P in D(S), which could just be the same
edge. Note that if P is more than a single edge, then each
node along P branches to at least one string in S−T . More-
over, the string(s) for any such node are disjoint from the
string(s) for any other node missing from D(T ) but in D(S).
Since each string has a probability of 1/2 of being in S −T ,
this implies that the expected number of nodes along P is
O(1).

Applying this lemma to the skip-web framework implies
that we can perform trie searches for an arbitrary character
string using O(log n) messages, even if the underlying trie
has depth O(n). The subqueries performed by each host
in this case involves finding the first place where a query
substring differs with the string defined by a substring asso-
ciated with a link in a trie.

3.3 Trapezoidal Maps
In this section, we outline a construction of a skip-web

for trapezoidal maps. A trapezoidal map D(S) for a set S
of non-crossing line segments in the plane is a subdivision
of the plane defined by the input segments and additional
segments formed by extending vertical rays up and down
from each segment endpoint until it hits another segment
or extends to infinity. (See Figure 4.) As with our other
skip-web applications, we begin with a set-splitting lemma.

Lemma 5. Let S be any set of disjoint line segments, let
x be any point in the complement of S, let T be formed by

choosing each member of S independently with probability
1/2, and let t be the trapezoid containing x in D(T ). Then
the expected number of trapezoids in D(S) that conflict with
t is O(1).

Proof. First note that, for any trapezoid t in D(T ), the
number of conflicts is exactly 1 + a + 2b + 3c, where a is
the number of segments of S that cut all the way across
t and have no endpoints interior to t, b is the number of
segments of S with one endpoint interior to t, and c is the
number of segments of S with both endpoints interior to
t. This equation can be shown by induction on |S − T |: if
|S − T | = 0, the number of conflicts is 1 (t conflicts with
itself) and each additional segment added to get from T to
S increases the number of conflicting trapezoids by one (if
it cuts t and has no vertex in t), by two (if it has one vertex
in t), or three (if it has both vertices in t).

To show that the expected values of a, b, and c are O(1),
let us consider bounding a (the methods for b and c are
similar). Given a trapezoid t of D(T ), note that in order for
t to exist in D(T ) none of the segments of S that intersect
the interior of t could have been chosen to be in T . The
expected value of a for t, therefore, can be bounded by

n�

i=0

iPr(none of i segments cutting t were chosen to be in T ).

Since each segment of S has probability 1/2 of being chosen
to be in T , this bound is at most

n�

i=0

i

2i
,

which is O(1).



4. UPDATES IN A SKIP-WEB
Having described how a skip-web structure can be used

for efficiently performing query routing, we describe in this
section how to efficiently perform updates in a skip-web.
For the sake of simplicity, we restrict our attention here to
the insertion of a new element of the ground set S, assuming
that there is only a single update being performed at a time,
that all updates eventually complete, and that queries are
temporarily blocked at nodes being updated (until the up-
date completes). Deletion is similar (and actually simpler).

Suppose some host h in our peer-to-peer network wishes to
insert a new element x of the ground set S. We begin by per-
forming a search to locate x in the level-0 structure, D(S).
We then update this structure to construct D(S ∪{x}). For
one-dimensional linked lists, quadtrees, octrees, and tries,
this update involves the insertion of O(1) nodes and links.
For a trapezoidal map, it could involve the creation of an
output-sensitive number of new nodes and links, however,
so let us assume for this application that we are considering
the insertion of a new trapezoid (which we would amortize
against the output-sensitive term in an insertion bound).
So let us assume that the number of new nodes and links
created by the insertion is O(1).

Having added the new nodes and links to go from D(S) to
D(S∪{x}), we then generate dlog ne random bits, which will
determine which higher-level structures x should be added
to. We add x to the structures for these levels in a bottom-
up fashion, starting from the nodes and links conflicting with
the O(1) nodes and links that we replaced when adding x to
S. Given these conflicts, we can “move up” to the higher-
level structure, add new nodes and links for the insertion
of x, and then continue the bottom-up procedure. By our
assumption, the number of messages needed to update each
level is O(1); hence, the expected message complexity is
O(log n). In fact, in the case of one-dimensional data, the
expected message complexity is O(log n/ log log n), since we
only need to send new messages to the structures on ba-
sic levels (any block splits we need to make as the result
of an insertion can be amortized against O(log n) previous
insertions that led to that split).
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