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Abstract. We study practically efficient methods for performing combinatorial
group testing. We present efficient non-adaptive and two-stage combinatorial
group testing algorithms, which identify the at most d items out of a given set
of n items that are defective, using fewer tests for all practical set sizes. For ex-
ample, our two-stage algorithm matches the information theoretic lower bound
for the number of tests in a combinatorial group testing regimen.
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1 Introduction

The problem of combinatorial group testing dates back to World War II, for the prob-
lem of determining which in a group of n blood samples contain the syphilis antigen
(hence, are contaminated). Formally, in combinatorial group testing, we are given a set
of n items, at most d of which are defective (or contaminated), and we are interested in
identifying exactly which of the n items are defective. In addition, items can be “sam-
pled” and these samples can be “mixed” together, so tests for contamination can be
applied to arbitrary subsets of these items. The result of a test may be positive, indicat-
ing that at least one of the items of that subset is defective, or negative, indicating that
all items in that subset are good. Example applications that fit this framework include:

– Screening blood samples for diseases. In this application, items are blood samples
and tests are disease detections done on mixtures taken from selected samples.

– Screening vaccines for contamination. In this case, items are vaccines and tests are
cultures done on mixtures of samples taken from selected vaccines.

– Clone libraries for a DNA sequence. Here, the items are DNA subsequences (called
clones) and tests are done on pools of clones to determine which clones contain a
particular DNA sequence (called a probe) [8].

– Data forensics. In this case, items are documents and the tests are applications of
one-way hash functions with known expected values applied to selected collections
of documents.

The primary goal of a testing algorithm is to identify all defective items using as
few tests as possible. That is, we wish to minimize the following function:

– t(n, d): The number of tests needed to identify up to d defectives among n items.
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This minimization may be subject to possibly additional constraints, as well. For exam-
ple, we may wish to identify all the defective items in a single (non-adaptive) round of
testing, we may wish to do this in two (partially-adaptive) rounds, or we may wish to
perform the tests sequentially one after the other in a fully adaptive fashion.

In this paper we are interested in efficient solutions to combinatorial group testing
problems for realistic problem sizes, which could be applied to solve the motivating
examples given above. That is, we wish solutions that minimize t(n, d) for practical
values of n and d as well as asymptotically. Because of the inherent delays that are
built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient
not only in terms of the total number of tests performed, but also for the following
measures:

– A(n, t): The analysis time needed to determine which items are defective.
– S(n, d): The sampling rate—the maximum number of tests any item may be in-

cluded in.

An analysis algorithm is said to be efficient if A(n, t) is O(tn), where n is the number
of items and t is the number of tests conducted. It is time-optimal if A(n, t) is O(t).
Likewise, we desire efficient sampling rates for our algorithms; that is, we desire that
S(n, d) be O(t(n, d)/d). Moreover, we are interested in this paper in solutions that im-
prove previous results, either asymptotically or by constant factors, for realistic problem
sizes. We do not define such “realistic” problem sizes formally, but we may wish to con-
sider as unrealistic a problem that is larger than the total memory capacity (in bytes) of
all CDs and DVDs in the world (< 1025), the number of atomic particles in the earth
(< 1050), or the number of atomic particles in the universe (< 1080).

Viewing Testing Regimens as Matrices. A single round in a combinatorial group testing
algorithm consists of a test regimen and an analysis algorithm (which, in a non-adaptive
(one-stage) algorithm, must identify all the defectives). The test regimen can be mod-
eled by a t × n Boolean matrix, M . Each of the n columns of M corresponds to one
of the n items. Each of the t rows of M represents a test of items whose corresponding
column has a 1-entry in that row. All tests are conducted before the results of any test is
made available. The analysis algorithm uses the results of the t tests to determine which
of the n items are defective.

As described by Du and Hwang [5](p. 133), the matrix M is d-disjunct if the
Boolean sum of any d columns does not contain any other column. In the analysis
of a d-disjunct testing algorithm, items included in a test with negative outcome can be
identified as pure. Using a d-disjunct matrix enables the conclusion that if there are d
or fewer items that cannot be identified as pure in this manner then all those items must
be defective and there are no other defective items. If more than d items remain then at
least d + 1 of them are defective. Thus, using a d-disjunct matrix enables an efficient
analysis algorithm, with A(n, t) being O(tn).

M is d-separable (d-separable) if the Boolean sums of d (up to d) columns are
all distinct. The d-separable property implies that each selection of up to d defective
items induces a different set of tests with positive outcomes. Thus, it is possible to
identify which are the up to d defective items by checking, for each possible selection,
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whether its induced positive test set is exactly the obtained positive outcomes. However,
it might not be possible to detect that there are more than d defective items. This analysis
algorithm takes time Θ(nd) or requires a large table mapping t-subsets to d-subsets.

Generally, d-separable matrices can be constructed with fewer rows than can d-
disjunct matrices having the same number of columns. Although the analysis algorithm
described above for d-separable matrices is not efficient, some d-separable matrices that
are not d-disjunct have an efficient analysis algorithm.

Previous Related Work. Combinatorial group testing is a rich research area with many
applications to many other areas, including communications, cryptography, and net-
working [3]. For an excellent discussion of this topic, the reader is referred to the book
by Du and Hwang [5]. For general d, Du and Hwang [5](p. 149) describe a slight modi-
fication of the analysis of a construction due to Hwang and Sós [9] that results in a t×n

d-disjunct matrix, with n ≥ (2/3)3t/16d2
, and so t ≤ 16d2(1 + log3 2 + (log3 2) lg n).

For two-stage testing, Debonis et al. [4] provide a scheme that achieves a number of
tests within a factor of 7.54(1 + o(1)) of the information-theoretic lower bound of
d log(n/d). For d = 2, Kautz and Singleton [10] construct a 2-disjunct matrix with
t = 3q+1 and n = 32q

, for any positive integer q. Macula and Reuter [11] describe a
2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 3q)/2 and
n = 2q − 1, for any positive integer q. For d = 3, Du and Hwang [5](p. 159) describe
the construction of a 3-separable matrix (but do not describe the analysis algorithm)
with t = 4

(
3q
2

)
= 18q2 − 6q and n = 2q − 1, for any positive integer q.

Our Results. In this paper, we consider problems of identifying defectives using non-
adaptive or two-stage protocols with efficient analysis algorithms. We present several
such algorithms that require fewer tests than do previous algorithms for practical-sized
sets, although we omit the proofs of some supporting lemmas in this paper, due to
space constraints. Our general case algorithm, which is based on a method we call
the Chinese Remainder Sieve, improves the construction of Hwang and Sós [9] for all
values of d for real-world problem instances as well as for d ≥ n1/5 and n ≥ e10. Our
two-stage algorithm achieves a bound for t(n, d) that is within a factor of 4(1 + o(1))
of the information-theoretic lower bound. This bound improves the bound achieved by
Debonis et al. [4] by almost a factor of 2. Likewise, our algorithm for d = 2 improves
on the number of tests required for all real-world problem sizes and is time-optimal (that
is, with A(n, t) ∈ O(t)). Our algorithm for d = 3 is the first known time-optimal testing
algorithm for that d-value. Moreover, our algorithms all have efficient sampling rates.

2 The Chinese Remainder Sieve

In this section, we present a solution to the problem for determining which items are de-
fective when we know that there are at most d < n defectives. Using a simple number-
theoretic method, which we call the Chinese Remainder Sieve method, we describe the
construction of a d-disjunct matrix with t = O(d2 log2 n/(log d + log log n)). As we
will show, our bound is superior to that of the method of Hwang and Sós [9], for all
realistic instances of the combinatorial group testing problem.
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Suppose we are given n items, numbered 0, 1, . . . , n − 1, such that at most d <
n are defective. Let {pe1

1 , pe2
2 , . . . , pek

k } be a sequence of powers of distinct primes,
multiplying to at least nd. That is,

∏
j p

ej

j ≥ nd. We construct a t × n matrix M as
the vertical concatenation of k submatrices, M1,M2, . . . , Mk. Each submatrix Mj is
a tj × n testing matrix, where tj = p

ej

j ; hence, t =
∑k

j=1 p
ej

j . We form each row
of Mj by associating it with a non-negative value x less than p

ej

j . Specifically, for
each x, 0 ≤ x < p

ej

j , form a test in Mj consisting of the item indices (in the range
0, 1, . . . , n − 1) that equal x (mod p

ej

j ). For example, if x = 2 and p
ej

j = 32, then the
row for x in Mj has a 1 only in columns 2, 11, 20, and so on.

The following lemma shows that the test matrix M is d-disjunct.

Lemma 1. If there are at most d defective items, and all tests in M are positive for i,
then i is defective.

Proof. If all k tests for i (one for each prime power p
ej

j ) are positive, then there exists
at least one defective item. With each positive test that includes i (that is, it has a 1 in
column i), let p

ej

j be the modulus used for this test, and associate with j a defective
index ij that was included in that test (choosing ij arbitrarily in case test j includes
multiple defective indices). For any defective index i′, let Pi′ =

∏
j s.t. ij=i′ p

ej

j . That
is, Pi′ is the product of all the prime powers such that i′ caused a positive test that in-
cluded i for that prime power. Since there are k tests that are positive for i, each p

ej

j

appears in exactly one of these products, Pi′ . So
∏

Pi′ =
∏

p
ej

j ≥ nd. Moreover,

there are at most d products, Pi′ . Therefore, maxi′ Pi′ ≥ (nd)1/d = n; hence, there
exists at least one defective index i′ for which Pi′ ≥ n. By construction, i′ is congru-
ent to the same values to which i is congruent, modulo each of the prime powers in
Pi′ . By the Chinese Remainder Theorem, the solution to these common congruences is
unique modulo the least common multiple of these prime powers, which is Pi′ itself.
Therefore, i is equal to i′ modulo a number that is at least n, so i = i′; hence, i is
defective.

The important role of the Chinese Remainder Theorem in the proof of the above
lemma gives rise to our name for this construction—the Chinese Remainder Sieve.

Analysis. As mentioned above, the total number of tests, t(n, d), constructed in the
Chinese Remainder Sieve is

∑k
j=1 p

ej

j , where
∏

p
ej

j ≥ nd. If we let each ej = 1,

we can simplify our analysis to note that t(n, d) =
∑k

j=1 pj , where pj denotes the

j-th prime number and k is chosen so that
∏k

j=1 pj ≥ nd. To produce a closed-form
upper bound for t(n, d), we make use of the prime counting function, π(x), which is
the number of primes less than or equal to x. We also use the well-known Chebyshev
function, θ(x) =

∑π(x)
j=1 ln pj . In addition, we make use of the following (less well-

known) prime summation function, σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound
the number of tests in the Chinese Remainder Sieve method as t(n, d) ≤ σ(x), where x
is chosen so that θ(x) ≥ d ln n, since ln

∏
pj≤x pj = θ(x). For the Chebyshev function,

it can be shown [1] that θ(x) ≥ x/2 for x > 4 and that θ(x) ∼ x for large x. So if
we let x = �2d ln n�, then θ(x) ≥ d ln n. Thus, we can bound the number of tests in
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our method as t(n, d) ≤ σ(�2d ln n�). To further bound t(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integer x ≥ 2,

σ(x) <
x2

2 ln x

(
1 +

1.2762
ln x

)
.

Proof. Let n = π(x). Dusart [6, 7] shows that, for n ≥ 799, (1/n)
∑n

j=1 pj < pn/2;
that is, the average of the first n primes is half the value of the nth prime. Thus,

σ(x) =
π(x)∑
j=1

pj <
π(x)

2
pn ≤ π(x)

2
x,

for integer x ≥ 6131 (the 799th prime). Dusart [6, 7] also shows that

π(x) <
x

ln x

(
1 +

1.2762
ln x

)
,

for x ≥ 2. Therefore, for integer x ≥ 6131,

σ(x) <
x2

ln x

(
1 +

1.2762
ln x

)
.

In addition, we have verified by an exhaustive computer search that this inequality also
holds for all integers 2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese Remainder Sieve method as follows.

Theorem 1. Given a set of n items, at most d of which are defective, the Chinese Re-
mainder Sieve method can identify the defective items using a number of tests

t(n, d) <
�2d ln n�2

2 ln�2d ln n�
(

1 +
1.2762

ln�2d ln n�
)

.

By calculating the exact numbers of tests required by the Chinese Remainder Sieve
method for particular parameter values and comparing these numbers to the claimed
bounds for Hwang and Sós [9], we see that our algorithm is an improvement when:

• d = 2 and n ≤ 1057 • d = 3 and n ≤ 1066

• d = 4 and n ≤ 1070 • d = 5 and n ≤ 1074

• d = 6 and n ≤ 1077 • d ≥ 7 and n ≤ 1080.

Of course, these are the most likely cases for any expected actual instance of the
combinatorial group testing problem. In addition, our analysis shows that our method
is superior to the claimed bounds of Hwang and Sós [9] for d ≥ n1/5 and n ≥ e10.
Less precisely, we can say that t(n, d) is O(d2 log2 n/(log d + log log n)), that S(n, d)
is O(d log n/(log d+log log n), and A(n, t) is O(tn), which is O(d2n log2 n/(log d+
log log n)).
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3 A Two-Stage Rake-and-Winnow Protocol

In this section, we present a randomized construction for two-stage group testing. This
two-stage method uses a number of tests within a constant factor of the information-
theoretic lower bound. It improves previous upper bounds [4] by almost a factor of 2.
In addition, it has an efficient sampling rate, with S(n, d) being only O(log(n/d)). All
the constant factors “hiding” behind the big-ohs in these bounds are small.

Preliminaries. One of the important tools we use in our analysis is the following lemma
for bounding the tail of a certain distribution. It is a form of Chernoff bound [12].

Lemma 3. Let X be the sum of n independent indicator random variables, such that
X =

∑n
i=1 Xi, where each Xi = 1 with probability pi, for i = 1, 2, . . . , n. If E[X] =∑n

i=1 pi ≤ µ̂ < 1, then, for any integer k > 0, Pr(X ≥ k) ≤ (eµ̂/k)k.

Proof. Let µ = E[X] be the actual expected value of X . Then, by a well-known Cher-
noff bound [12], for any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ

.

(The bound in [12] is for strict inequality, but the same bound holds for nonstrict in-
equality.) We are interested in the case when (1 + δ)µ = k, that is, when 1 + δ = k/µ.
Observing that δ < 1 + δ, we can therefore deduce that

Pr(X ≥ k) ≤
[

ek/µ

(k/µ)k/µ

]µ

=
ek

(k/µ)k
=

(eµ

k

)k

.

Finally, noting that µ ≤ µ̂, Pr(X ≥ k) ≤ (eµ̂/k)k.

Lemma 4. If d < n, then
(
n
d

)
< (en/d)d.

Identifying Defective Items in Two Stages. As with our Chinese Remainder Sieve
method, our randomized combinatorial group testing construction is based on the use of
a Boolean matrix M where columns correspond to items and rows correspond to tests,
so that if M [i, j] = 1, then item j is included in test j. Let C denote the set of columns
of M . Given a set D of d columns in M , and a specific column j ∈ C − D, we say
that j is distinguishable from D if there is a row i of M such that M [i, j] = 1 but i
contains a 0 in each of the columns in D. Such a property is useful in the context of
group testing, for the set D could correspond to the defective items and if a column j
is distinguishable from the set D, then there would be a test in our regimen that would
determine that the item corresponding to column j is not defective.

An alternate and equivalent definition [5](p. 165) for a matrix M to be d-disjunct
is if, for any d-sized subset D of C, each column in C − D is distinguishable from
D. Such a matrix determines a powerful group testing regimen, but, unfortunately,
building such a matrix requires M to have Ω(d2 log n/ log d) rows, by a result of
Ruszinkó [13](see also [5], p. 139). The best known constructions have Θ(d2 log(n/d))
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rows [5], which is a factor of d greater than information-theoretic lower bound, which
is Ω(d log(n/d)).

Instead of trying to use a matrix M to determine all the defectives immediately, we
will settle for a weaker property for M , which nevertheless is still powerful enough to
define a good group testing regimen. We say that M is (d, k)-resolvable if, for any d-
sized subset D of C, there are fewer than k columns in C−D that are not distinguishable
from D. Such a matrix defines a powerful group testing regimen, for defining tests
according to the rows of a d-resolvable matrix allows us to restrict the set of defective
items to a group D′ of smaller than d + k size. Given this set, we can then perform an
additional round of individual tests on all the items in D′. This two-stage approach is
sometimes called the trivial two-stage algorithm; we refer to this two-stage algorithm
as the rake-and-winnow approach.

Thus, a (d, k)-resolvable matrix determines a powerful group testing regimen. Of
course, a matrix is d-disjunct if and only if it is (d, 1)-resolvable. Unfortunately, as
mentioned above, constructing a (d, 1)-resolvable matrix requires that the number of
rows (which correspond to tests) be significantly greater than the information theoretical
lower bound. Nevertheless, if we are willing to use a (d, k)-resolvable matrix, for a
reasonably small value of k, we can come within a constant factor of the information
theoretical lower bound.

Our construction of a (d, k)-resolvable matrix is based on a simple, randomized
sample-injection strategy, which itself is based on the approach popularized by the
Bloom filter [2]. This novel approach also allows us to provide a strong worst-case
bound for the sample rate, S(n, d), of our method. Given a parameter t, which is a
multiple of d that will be set in the analysis, we construct a 2t × n matrix M in a
column-wise fashion. For each column j of M , we choose t/d rows at random and we
set the values of these entries to 1. The other entries in column j are set to 0. In other
words, we “inject” the sample j into each of the t/d random tests we pick for the cor-
responding column (since rows of M correspond to tests and the columns correspond
to samples). Note, then, that for any set of d defective samples, there are at most t tests
that will have positive outcomes and, therefore, at least t tests that will have negative
outcomes. The columns that correspond to samples that are distinguishable from the de-
fectives ones can be immediately identified. The remaining issue, then, is to determine
the value of t needed so that, for a given value of k, M is a (d, k)-resolvable matrix
with high probability.

Let D be a fixed set of d defectives samples. For each (column) item i in C −D, let
Xi denote the indicator random variable that is 1 if i is falsely identified as a positive
sample by M (that is, i is not included in the set of (negative) items distinguished from
those in D), and is 0 otherwise. Observe that the Xi’s are independent, since Xi depends
only on whether the choice of rows we picked for column i collide with the at most t
rows of M that we picked for the columns corresponding to items in D. Furthermore,
this observation implies that any Xi is 1 (a false positive) with probability at most 2−t/d.
Therefore, the expected value of X , E[X], is at most µ̂ = n/2t/d. This fact allows us to
apply Lemma 3 to bound the probability that M does not satisfy the (d, k)-resolvable
property for this particular choice, D, of d defective samples. In particular,
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Pr(X ≥ k) ≤
(

eµ̂

k

)k

=

(
en
k

)k

2(t/d)k
.

Note that this bound immediately implies that if k = 1 and t ≥ d(e + 1) log n, then M
will be completely (d, 1)-resolvable with high probability (1 − 1/n) for any particular
set of defective items, D.

We are interested, however, in a bound implying that for any subset D of d defectives
(of which there are

(
n
d

)
< (en/d)d, by Lemma 4), our matrix M is (d, k)-resolvable

with high probability, that is, probability at least 1 − 1/n. That is, we are interested in
the value of t such that the above probability bound is (en/d)−d/n. From the above
probability bound, therefore, we are interested in a value of t such that

2(t/d)k ≥
(en

d

)d (en

k

)k

n.

This bound will hold whenever t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.
Thus, we have the following.

Theorem 2. If t ≥ (d2/k) log(en/d)+d log(en/k)+(d/k) log n, then a 2t×n random
matrix M constructed by sample-injection is (d, k)-resolvable with high probability,
that is, with probability at least 1 − 1/n.

As mentioned above, a productive way of using the sample-injection construction is
to build a (d, k)-resolvable matrix M for a reasonably small value of k. We can then use
this matrix as the first round in a two-round rake-and-winnow testing strategy, where
the second round simply involves our individual testing of the at most d + k samples
left as potential positive samples from the first round.

Corollary 1. If t ≥ 2d log(en/d)+log n, then the 2t×n random matrix M constructed
by sample-injection is (d, d)-resolvable with high probability.

This corollary implies that we can construct a rake-and-winnow algorithm where
the first stage involves performing O(d log(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, and the second round involves
individually testing at most 2d samples.

4 Improved Bounds for Small d Values

In this section, we consider efficient algorithms for the special cases when d = 2 and
d = 3. We present time-optimal algorithms for these cases; that is, with A(n, t) being
O(t). Our algorithm for d = 3 is the first known such algorithm.

Finding up to Two Defectives. Consider the problem of determining which items are
defective when we know that there are at most two defectives. We describe a 2-separable
matrix and a time-optimal analysis algorithm with t = (q2 +5q)/2 and n = 3q, for any
positive integer q.

Let the number of items be n = 3q, and let the item indices be expressed in radix 3.
Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1, 2}.
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Hereafter, X ranges over the item index numbers {0, . . . n − 1}, p ranges over the
radix positions {0, . . . q − 1}, and v ranges over the digit values {0, 1, 2}.

For our construction, matrix M is partitioned into submatrices B and C. Matrix B
is the submatrix of M consisting of its first 3q rows. Row 〈p, v〉 of B is associated with
radix position p and value v. B[〈p, v〉,X] = 1 iff Xp = v.

Matrix C is the submatrix of M consisting of its last
(
q
2

)
rows. Row 〈p, p′〉 of C is

associated with distinct radix positions p and p′, where p < p′. C[〈p, p′〉,X] = 1 iff
Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items
having a 1-entry in row 〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing
row 〈p, p′〉 in C. Let test1(p) be the number of different values held by defectives in
radix position p. test1(p) can be computed by testB(p, 0)+ testB(p, 1)+ testB(p, 2).

The analysis algorithm is shown in the Appendix in Figure 1.
It is easy to determine how many defective items are present. There are no defective

items when test1(0) = 0. There is only one defective item when test1(p) = 1 for all
p, since if there were two defective items then there must be at least one position p in
which their indices differ and test1(p) would then have value 2. The one defective item
has index D = Dq−1 · · ·D0, where digit Dp is the value v for which testB(p, v) = 1.

Otherwise, there must be 2 defective items, D = Dq−1 · · ·D0 and E =
Eq−1 · · ·E0. We iteratively determine the values of the digits of indices D and E.

For radix positions in which defective items exist for only one value of that digit,
both D and E must have that value for that digit. For each other radix position, two
distinct values for that digit occur in the defective items.

The first radix position in which D and E differ is recorded in the variable p∗ and
the value of that digit in D (respectively, E) is recorded in v∗

1 (respectively, v∗
2).

For any subsequent position p in which D and E differ, the digit values of the
defectives in that position are va and vb, which are two distinct values from {0, 1, 2},
as are v∗

1 and v∗
2 , and therefore there must be at least one value in common between

{va, vb} and {v∗
1 , v∗

2}.
Let a common value be va and, without loss of generality, let va = v∗

1 .

Lemma 5. The digit assignment for p is Dp = va and Ep = vb iff testC(p∗, p) = 1.

We have determined the values of defectives D and E for all positions – those where
they are the same and those where they differ. For each position, only a constant amount
of work is required to determine the assignment of digit values. Therefore, we have
proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algorithm can be
constructed with t = (q2 + 5q)/2 and n = 3q , for any positive integer q.

Comparison of the Number of Tests Required for d = 2 Method. For all n ≤ 363, our
d = 2 algorithm uses the smallest number of tests. For higher values of n ≤ 3130,
the Kautz/Singleton and our d = 2 and general (Chinese Remainder Sieve) algorithms
alternate being dominant. For all n ≥ 3131, the Hwang/Sós algorithm uses the fewest
tests.
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Finding up to Three Defectives. Consider the problem of determining which items
are defective when we know that there are at most three defectives. We describe a 3-
separable matrix and a time-optimal analysis algorithm with t = 2q2 − 2q and n = 2q,
for any positive integer q.

Let the number of items be n = 2q, and let the item indices be expressed in radix 2.
Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1}.

Hereafter, X ranges over the item index numbers {0, . . . n − 1}, p ranges over the
radix positions {0, . . . q − 1}, and v ranges over the digit values {0, 1}.

Matrix M has 2q2 − 2q rows. Row 〈p, p′, v, v′〉 of M is associated with distinct
radix positions p and p′, where p < p′, and with values v and v′, each of which is in
{0,1}. M [〈p, p′, v, v′〉,X] = 1 iff Xp = v and Xp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items
having a 1-entry in row 〈p, p′, v, v′〉 in M . For p′ > p, define testM (p′, p, v′, v) =
testM (p, p′, v, v′).

The following three functions can be computed in terms of testM .

– testB(p, v) has value 1 (0) if there are (not) any defectives having value v in radix
position p. Hence, testB(0, v) = 0 if testM (0, 1, v, 0)+ testM (0, 1, v, 1) = 0, and
1 otherwise. For p > 0, testB(p, v) = 0 if testM (p, 0, v, 0)+testM (p, 0, v, 1) = 0,
and 1 otherwise.

– test1(p) is the number of different binary values held by defectives in radix position
p. Thus, test1(p) = testB(p, 0) + testB(p, 1).

– test2(p, p′) is the number of different ordered pairs of binary values held by defec-
tives in the designated ordered pair of radix positions. Therefore, test2(p, p′) =
testM (p, p′, 0, 0) + testM (p, p′, 0, 1) + testM (p, p′, 1, 0) + testM (p, p′, 1, 1).

The analysis algorithm is shown in the Appendix in Figure 1.
We determine the number of defective items and the value of their digits. There are

no defective items when test1(0) = 0. At each radix position p in which test1(p) = 1,
all defective items have the same value of that digit. If all defectives agree on all digit
values, then there is only one defective. Otherwise there are at least two defectives, and
we need to consider how to assign digit values for only the set of positions P in which
there is at least one defective having each of the two possible binary digit values.

Lemma 6. There are only two defectives if and only if, for p, p′ ∈ P, test2(p, p′) = 2.

Accordingly, if there is no pair of positions for which test2 has value 3, we can
conclude that there are only two defectives. Otherwise, there are positions p1, p2 for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combination be v1, v2. Thus, while position p1 uniquely
identifies one defective, say D, as the only defective having value v1 at that position,
position p2 uniquely identifies one of the other defectives, say E, as having value v2.

Lemma 7. If the position p∗ uniquely identifies the defective X to have value v∗, then
the value of the defective X at any other position p will be that value v such that
testM (p∗, p, v∗, v) = 1.
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if test1(0) = 0 then
return there are no defective items

p∗ ← −1
for p ← 0 to q − 1 do

if test1(p) = 1 then
Let Dp and Ep be the (same)

value v such that testB(p, v) = 1
else // test1(p) has value 2

Let v1, v2 be the two values
of v such that testB(p, v) = 1

if p∗ < 0 then
p∗ ← p
v∗
1 ← Dp ← v1

v∗
2 ← Ep ← v2

else
if testC(p∗, p) = 1

and ( v∗
1 = v1 or v∗

2 = v2 ) then
Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return one defective, D

else
return two defectives, D and E

if test1(0) = 0 then
return there are no defective items

P ← ∅
for p ← 0 to q − 1 do

if test1(p) = 1 then
Let Dp, Ep, and Fp be the (same)

value v such that testB(p, v) = 1
else P ← P ∪ {p}

if P = ∅ then return there is one defective item D
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p
v∗ ← Dp ← 0

else if testM (p∗, p, v∗, 0) = 1 then
Dp ← 0

else Dp ← 1
Ep ← 1 − Dp

return there are two defective items D, E
else

Let p1, p2 be positions s.t. test2(p1, p2) = 3
Let v1, v2 be values s.t. testM (p1, p2, v1, v2) = 0
Dp1 ← v1

Fp1 ← Ep1 ← 1 − v1

Ep2 ← v2

Fp2 ← Dp2 ← 1 − v2

for p ∈ P − {p1, p2} do
if testM (p1, p, v1, 0) = 1 then

Dp ← 0
else Dp ← 1
if testM (p2, p, v2, 0) = 1 then

Ep ← 0
else Ep ← 1
v ← Ep

if testM (p1, p, 1 − v1, 1 − v) = 1 then
Fp ← 1 − v

else Fp ← v
return there are three defective items D, E, and F

(a) (b)

Fig. 1. Analysis algorithms. (a) for up to 2 defectives; (b) for up to 3 defectives

Since we have positions that uniquely identify D and E, we can determine the values
of all their other digits and the only remaining problem is to determine the values of the
digits of defective F .
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Since position p1 uniquely identifies D, we know that Fp1 = v1. For any other
position p, after determining that Ep = v, we note that if testM (p1, p, v1, v) = 1 then
there must be at least one defective, X , for which Xp1 = v1 and Xp = v. Defective D
is ruled out since Dp1 = v1, and defective E is ruled out since Ep = v. Therefore, it
must be that Fp = v. Otherwise, if that testM = 0 then Fp = v, since Fp = v would
have caused testM = 1.

We have determined the values of defectives D, E and F for all positions. For each
position, only a constant amount of work is required to determine the assignment of
digit values. Therefore, we have proven the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algorithm can be
constructed with t = 2q2 − 2q and n = 2q, for any positive integer q.

Comparison of the Number of Tests Required for d = 3 Method. The general d al-
gorithm due to Hwang and Sós [9] requires fewer tests than does the algorithm for
d = 3 suggested by Du and Hwang [5]. For n < 1010, our (d = 3) algorithm requires
even fewer tests and our general (Chinese Remainder Sieve) algorithm fewest. How-
ever, asymptotically Hwang/Sós uses the fewest tests. We note that, unlike these other
efficient algorithms, our (d = 3) algorithm is time-optimal.
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