
Algorithmica (1993) 9:128-141 Algorithmica
1993 Springer-Verlag New York Inc.

Constructing the Voronoi Diagram of a Set of
Line Segments in Parallel I

Michael T. Goodrich, 2 Colin O'Dfinlaing, 3 and Chee K. Yap*

Abstract. In this paper we give a parallel algorithm for constructing the Voronoi diagram of a
polygonal scene, i.e., a set of line segments in the plane such that no two segments intersect except
possibly at their endpoints. Our algorithm runs in O(log 2 n) time using O(n) processors in the CREW
PRAM model.

Key Words. Voronoi diagram, PRAM, Parallel algorithm.

1. Introduction. Ever since the pioneering work of Shamos [183, the Voronoi
diagram has been recognized as a highly versatile geometric structure in computa-
tional geometry, being the key to the efficient solution of a host of different
problems. In [18] Shamos shows how to construct the Voronoi diagram of a set
of n points in the plane in O(n log n) time, and how this structure can be used to
solve a number of proximity problems in this same bound. Given a set S of points
in the plane, the Voronoi diagram defines a region for each point p in S such that all
the points in that region are closer to p than to any other point in S.

In this paper we address an important generalization of the Voronoi diagram,
namely to the case when the underlying objects are either line segments or points~
This structure has been called the continuous skeleton [10] of the segments and,
for the case when the segments form a simple polygon, the medial axis [5], [13],
[17]. One of the first efficient methods for constructing the Voronoi diagram of
a set of line segments is an algorithm of Lee and Drysdale [14], which runs in
O(n log z n) time. Subsequently, a number of researchers have shown that this can
be improved to | log n) (e.g., Fortune [8], Kirkpatrick [10], and Yap [21]).

We are interested in solving this problem in parallel. This is motivated by the
fact that Voronoi diagram construction cannot be made faster by anything more
than a constant factor over the previous methods without using more than a single
processor, due to known lower bounds [18]. Specifically, the goal of this research
is to find an algorithm that runs as fast as possible and is efficient in the following

1 The research of M. T. Goodrich was supported by NSF under Grants CCR-88t0568 and CCR-
9003299 and by NSF/DARPA under Grant CCR-8908092. C. K. Yap's research was supported in part
by NSF Grants DCR-8401898 and CCR-9002819.
2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21.218, USA.
3 School of Mathematics, University of Dublin, Dublin 2, Irish Republic.
* Courant Institute, New York University, New York, NY 10012, USA.

Received October 1, 1989; revised February 21, 1990. Communicated by Bernard Chazelle.

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 129

sense: in P(n) is its processor complexity, T(n) is its time complexity, and Seq(n) is
the time complexity of the best-known sequential algorithm, then T(n). P(n)=
O(Seq(n) log k n) for some small constant k Eg].

There is no previous parallel algorithm for constructing the Voronoi diagram
of a collection of points and line segments, although there has been work done
on the case when the Voronoi sites are only points. In particular, Aggarwal et al.
Eli show how the Voronoi diagram of a set of points in the plane may be
constructed in O(log 2 n) time using O(n) processors in the CREW PRAM model.
More recently, Cole et aL [7] improve this to O(log2 n) time using O(n/log n)
processors. Neither of these methods seem to generalize easily to construct the
Voronoi diagram of a set of line segments, however.

The traditional approach to Voronoi diagram construction is to divide the set
of objects into two equal-sized subsets $1 and Sz whose separate Voronoi diagrams
can be constructed recursively, and then merge the two diagrams into one. The
essential computation needed to merge the two recursively constructed Voronoi
diagrams is the construction of the contour between $1 and $2, i.e., the locus of
all points that are equidistant from $1 and S 2. This divide-and-conquer approach
is the one used by Kirkpatrick [10], Lee and Drysdale [-14], and Yap E211, for
example. These algorithms differ, however, in how they perform the division. The
method of Lee and Drysdale, as well as that of Kirkpatrick, divide the segments
so that $1 and $2 are disjoint and no segment is cut in two. Yap, on the other
hand, divides S into $1 and $2 by a vertical line L that conceptually "cuts" each
segment it crosses into two pieces. By avoiding unnecessary computations, Yap's
algorithm avoids the O(n2)-time behavior that this approach could exhibit. In all
of these algorithms the method for constructing the contour is based on a search
procedure to find "seed points" on the contour, followed by a method that traces
out the contour starting with the seed points. Although quite elegant in the
sequential setting, these contour-tracing methods seem of little worth in the parallel
setting.

Another interesting approach to the problem of constructing the Voronoi
diagram of a set of line segments is demonstrated by the algorithm by Fortune
[8]. His algorithm uses the well-known "plane-sweeping" technique, where the
plane is conceptually swept with a line L. As L moves across the plane, his
algorithm constructs the Voronoi diagram a short distance behind it. Un-
fortunately, as with the traditional approaches, this approach is quite elegant in
the sequential setting, but appears difficult to translate into an efficient parallel
method.

In this paper we show how to construct the Voronoi diagram of a set of line
segments in the plane in O(log 2 n) time using O(n) processors in the CREW PRAM
model. Recall that this is the synchronous shared-memory model where processors
can simultaneously access the same memory cell only if they are all trying to read
from it. Thus, our algorithm is efficient, and matches the complexity bounds of
the point-set Voronoi diagram algorithm of Aggarwal, et aL [1].

Our method is based on the approaches used by Yap [21] and Aggarwal et at.
l-l]. Our procedure avoids the sequential bottlenecks of Yap's method, and is

130 M, T. Goodrich, C. O'Dflnlaing, and C. K. Yap

actually simpler than that of Aggarwal et aL This is due primarily to our emphasis
on "primitive regions" as being the basic objects in the subproblem merge
procedure, rather than Voronoi edges, and our use of a method of Atallah et al.
[2] to perform certain point-location queries. In addition, our method avoids the
assumption that the only interest is in constructing the Voronoi diagram clipped
to some "viewing rectangle," as was assumed by Kirkpatrick [t0] and Aggarwal
et al. [1].

In the next section we review some known geometric properties of Voronoi
diagrams. In the subsequent section we give our algorithm for constructing this
diagram, and we give some applications in Section 4.

2. Geometric Preliminaries. In this section we introduce the definitions, nota-
tions, and approaches we use in this paper. Let S be a set of line segments in the
plane. As in [10] and [21] we consider any line segment in S to consist actually
of three distinct objects: the segment's two endpoints and the segment minus its
endpoints (i.e., an open segment). Thus, our objects are open segments and points.
The projection of a point p onto an object s, denoted proj(p, s), is defined to be a
point q in the closure g of s such that the Euclidean distance d(p, q) is minimized
[14]. Note that the projection of a point onto an object is unique, since each of
our primitive objects s is either an open line segments or a point (and if s is a
point, then proj(p, s) = s). Thus, we can extend our distance metric by defining the
distance from a point p to an object s, denoted d(p, s), to be d(p, proj(p, s))~ Given
two objects s 1 and sz, this also allows us to define the bisector of s 1 and s2,
denoted B(sl, s2), to be the locus of all points that are equidistant from sl and s2.
Since our primitive objects are points and open segments, the bisector of two
objects is made up of portions of line segments and parabolic arcs, which may be
infinite or semi-infinite. By a mild abuse of notation, we further extend our distance
metric to define the distance a point p to a set of objects S to be min~s{d(p, s)},
and use d(p, S) to denote this quantity.

As in [21] we say that a set of objects S is proper if for every open segment s
in S the endpoints of s are also in S and no two segments in S cross each other,
i.e., the segments can intersect only at their endpoints. All sets of objects in this
paper are proper, so suppose henceforth that S is such a proper set. There are a
number of ways the Voronoi diagram of S can be defined [10], [14], [21i Wedefine
it to be the subdivision of the plane produced by the locus of all points p such
that d(p, S) is realized by at least two objects in S. The Voronoi diagram of S
contains two-dimensional objects, called Voronoi cells, one-dimensional objects,
called Voronoi ed#es, and zero-dimensional objects, called Voronoi vertices. Each
Voronoi cell consists of all points p such that d(p, S) is realized by exactty one
object s E S; each Voronoi edge consists of all points such that d(p, S) is realized
by exactly two objects; and each Voronoi vertex is a point such that d(p, S) is
realized by at least three objects. It is a trivial observation to note that each
Voronoi edge is a portion of a bisector of two objects, and that each Voronoi
vertex is the intersection of three or more Voronoi edges. We denote the Voronoi
diagram of S by Vor(S). Figure 1 illustrates the Voronoi diagram of a proper set

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 131

Fig. 1. The Voronoi diagram of two segments.

of two segments. In the following lemmas we review some of the well-known
properties of Vor(S).

LEMMA 2.1 [14]. Let V(s) be the cell in Vor(S) for an object s in S. Then, for
any point p in the closure V(s) of l/{s), the closed line segment from p to proj(p, s) is
completely contained in V(s). In addition, for any two points Pl and P2 in V(s), the
segment from Pl to proj(pl , s) and the segment from P21 to proj(p2, s) do not cross.

We refer to the previous lemma as defining the skeleton property of Vor(S). It
generalizes the convexity property obtained should all the objects be points. The
next lemma establishes another convexity property for Vor(S): namely, the re-
lationship between Vor(S) and CH(S), the convex hull of S (the smallest convex
set containing all the objects in S).

LEMMA 2.2 [14]. An object s in S is on the boundary of CH(S) of S if and only
if the Voronoi cell V(s) in Vor(S) is unbounded.

The next lemma gives us an important upper bound on the size of Vor(S).

LEMMA 2.3 [14]. The number o f Voronoi cells, Voronoi edges, and Voronoi
vertices in Vor(S) is O(n), where n is the number of segments in S.

Having reviewed some of the important properties of the Voronoi diagram of a
set of line segments, let us present our method for its construction.

3. Constructing the Voronoi Diagram in Parallel. Let a proper set S of n objects
(points and line segments) in the plane be given. In this section we give the details
of our method for constructing the Voronoi diagram of S.

We begin our construction by placing a vertical dividing line through each point

132 M.T. Goodrich, C. 0'Dhnlaing, and C. K. Yap

object. This divides the plane into at most n regions, which we call slabs. Let T
be a complete binary tree whose leaves are associated, one per leaf, with these
slabs, listed from left to right (in both the tree and the plane). With each internal
node v of Twe associate the slab q/o that is the union of the slabs associated with
descendants v, where we regard the q/o's as closed subsets of the plane, i.e., two
adjacent q/v's share a common boundary. We can perform the construction of T in
O(log n) time using O(n) processors by using the sorting algorithm of Cote [6] to
order the segment endpoints and then using a simple recursive-doubling procedure
[20] to construct T.

Intuitively, the tree Tprovides the schematic for the divide-and-conquer proce-
dure, where the generic problem we wish to solve is the following. Let v be a note
in T, and let S~ denote the set of all the objects of S clipped to ql~, i.e., the set
{s c~ ~ , J s ~ S and s ~ ~o # G;}. By an abuse of notation, we write S ~ ~v. We say
that a segment s spans q[v if the closure of s intersects both vertical boundaries of
q/,,. Consider all the segments of S,, that span qg~. They partition qlo into a
collection of closed regions, called quads (since, for any slab bounded by two
vertical lines, all but the topmost and bottommost regions are quadrilaterals)~ A
quad ~ in ~ is active if ~ contains any segment of S~ that is not part of the
boundary of .~. The generic problem is to compute, for each active quad ~ in ~ ,
a collection of diagrams that contain the Voronoi diagram Vor(S~ c~ ~). We let
VorSet(S~) denote this collection. We ignore the inactive quads in So c~ o/t~, since
their Voronoi diagrams are easily computed as needed in O(1) time each. Note
that VorSet(S) = { Vor(S,oo,m)}, since there is only one active quad in ~oo~r) and
it is the entire plane.

Even though S~ can contain O(n) segments, in order for this approach to result
in an efficient parallel algorithm we must be able to construct VorSet(S~) quickly
using only O(no) processors, where n~ is the number of leaf descendants of v. This
amounts to the parallel analogue of Yap's notion of only performing the
"necessary" constructions.

We give an overview of our method for constructing VorSet(S~) below. The
procedure is invoked by calling it to construct VorSet(S,oo, r)).

THE VorSet(S~) CONSTRUCTION PROCEOURE (High-Level Description).

Step O: Preprocessing. In this step we construct the tree T as described above,
including, for each leaf v in T, the construction of a list End(v), which is the list
of all the segments of S whose closure has an endpoint in ~'~. We also construct
a data structure D, which, given a point p in 9~ 2 and a node v in T, atlows a single
processor to find the two segments bounding the quad in q/~ that contains p in
O(log n) time. We only perform this step the first time the procedure is invoked.
This step can be implemented in O(log n) time using O(n) processors by a method
due to Atallah et al. [2].

Step 1: Recursive Call. If v is a leaf node in T, then we return immediately, for
we have already computed End(v), and qg~ does not have any active quads; hence,
VorSet(S~) is empty. Otherwise, we construct VorSet(Sx) , End(x), VorSet(Sy),
and End(y) recursively in parallel, where x is the left child of v and y is the right

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 133

child of v. Complexity: T(nv/2) time using 2P(n~/2) processors, where T and P are
functions characterizing the running time and the number of processors of
algorithm, respectively.

Comment: The remaining steps of this procedure comprise the subproblem-
merge part of our divide-and-conquer algorithm.

Step 2: Determining active quads in ql v. In this step we use the data structure D
to determine all the active quads in q/,. The essential computation in this step is
to perform a search in D for each endpoint in q/~ of a segment in End(v).
Complexity: O(log n) using O(n) processors.

Comment: For the remainder of this procedure we concentrate on the computa-
tions that need to be performed for a particular active quad ~ in q/~. These steps
are to be performed for each such ~ in parallel.

Step 3: The Vertical Merge. Note that an active quad ~ of ~ is composed of a
contiguous series of quads of ~#x (none of which was necessarily active), together
with a similar series of quads of og~. Let ~L (resp. ~R) denote the union of the quads
in ogx (resp. ~y) contained in 2. In this step we construct the Voronoi diagrams
V L = Vor(Sv ~-~L) and V R = Vor(S v ~ ~R). Complexity: O(log n) time using O(n~)
processors (total, for all ,~'s),

Step 4: The Horizontal Merge. In this step we merge VL and V R into the Voronoi
diagram of the segments in ~. This step is the most important step in the
construction, and is implemented through the use of a number of subprocedures.
In this spirit of [1], [10], and [211 we divide each cell V(s) of V L into primitive
regions, or prims for short, by adding edges, called spokes [103, from s to the
Voronoi edges of l/(s). We construct point-location data structures for V L and VR,
and use these data structures to determine which prims of VL and Vk intersect the
contour between V L and V~. This then allows us to construct the contour from
these prims. Once the contour is constructed, we merge the part of V L left of the
contour, the contour itself, and the part of VR right of the contour to give us the
Voronoi diagram of the segments in ~. Complexity: O(log n) time using O(no)
processors (total, for all ~'s).
End of High-Level Description.

Assuming that we can perform each of the above steps correctly in the stated
time and processor bounds, then the total running time of the construction is char-
acterized by the recurrence relation T(nv) = T(n~/2) + c log n for some constant c.
This implies that T(n) is O(log 2 n). Similarly, the number of processors is char-
acterized by the relation P(n) = max{2P(n/2), dn}, for some constant d, which has
the solution P(n) = O(n).

In the sections that follow we give the details of each of the steps above.
We begin with Step 2.

3.1. Step 2: Determining Active Quads in og~. Let us assume recursively that we
have constructed VorSet(S~), End(x), VorSet(Sy), and End(y), where x is the left
child of v and y is the right child of v. In addition, we assume that for each segment
s in End(x) (resp. End(y)) we have a pointer from s to the name of the Voronoi

134 M.T. Goodrich, C. 0'Dflnlaing, and C. K Yap

cell in VorSet(S~) (resp. VorSet(Sy)) that contains s. In this step we identify all the
active quads in ~ . We begin by constructing End(v) = End(x) ~ End(y). For each
endpoint p of the closure of a segment in End(v), if p is inside the slab ~gv, then
use the data structure D to determine the quad ~ in ~ that contains p. This takes
O(log n) time for each p in End(v). Use the results of these queries to construct,
for each p, the pair (2, s), where ~ is the quad containing p and s is the segment
that has p as an endpoint. Each such ~ is active by definition.

To complete the computation for this step, then, we must collect, for each active
quad ~ in ~ , all the objects that intersect 2. We do this by sorting all the (& s)
pairs by their first coordinate, which takes O(log n~) time using O(n~) processors
[6], and follow that by a simple parallel prefix computation. For each such 2,
this gives us the names of all the segments in S~ that have an endpoint in 2. In
addition, using the pointer information stored for each endpoint, we have, for each
active quad 2, all the members of VorSet(Sx) and VorSet(Sy) that lie in ~. This
step takes a total of O(log n) time using O(n~) processors.

Recall that for the remainder of this algorithm description we concentrate on
the computations needed for a particular active quad ~ in S~, the understanding
being that we are performing these steps for each such active quad in parallel.

3.2. Step 3: The Vertical Merge. We have already noted that ~ is composed of
a contiguous series of quads of q/x (none of which is necessarily active in ~r
together with a similar series of quads of qly. Let ~L (resp. ~R) denote the union
of the quads of ~//x (resp. ~//v) in 2. Constructing ~L and ~R can easily be done in
O(log n~) time using 0(] Sv c~ ~[) processors. In this step we construct the Voronoi
diagrams VL = Vor(S~ c~ 2) and VR = Vor(Sy c~ 2).

Let us concentrate on l/~, since the method for building VR is similar. The method
is quite simple. Compute the Voronoi diagram for each empty quad in ~L (empty
with respect to ~) in 0(1) time using a single processor by the sequential method
of Yap [21]. The Voronoi diagram of each empty quad is simply the Voronoi
diagram for the two segments that bound the quad (and is similar to that given
in Figure 1). If the quad is the topmost or bottommost in o#~, then there is only
one bounding segment. In any case, the diagram consist of only 0(1) edges.

Then, to construct VL, we simply "concatenate" all the Voronoi diagrams in
~L, as in [21]. Since the endpoints of the segments defining the active quads in
J//x terminate on the boundaries of ~ , , there is no interference between adjacent
diagrams in -~L" Thus, joining all the diagrams in ~L can be accomplished simply
by ordering them by their intersections along the boundaries of q/x. This takes at
most O(logn) time using O(IS~C~LI) processors, for we can using the sorting
method of Cole [6] to put all the diagrams in the correct order.

3.3. Step 4: The Horizontal Merge. In this step we merge the Voronoi diagrams
VL and VR into the diagram Vor(S~ c~ 2). Let us restrict our attention to VL for
the time being, with the understanding that for each computation we perform for
V L we perform the analogous computation for V R. In the spirit of [1], [10], and
[21] we divide each cell V(s) of ~ into primitive regions, or prims for short, by
adding edges from s to the Voronoi edges of ~(s). The added edges are called

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 135

Fig. 2. The spokes and prims in a quad.

spokes [10]. Specifically, we add an edge from each Voronoi vertex of V(s) to its
projection on s. In addition, for each point object s in Sv c~ ~L we determine the
first point of V L that is intersected by a horizontal ray emanating from s to the
left and to the right, respectively. If the line from s to this point does not cross
any other spokes, then we also call this edge a spoke. Note: if the horizontal ray
emanating from s does not intersect any part of VL nor any other spokes, then we
still call this (semi-infinite) edge a spoke. We call each piece of a Voronoi edge
between two consecutive spoke endpoints a semiedge. (See Figure 2 for an example
decomposition.) Since we add at most two spokes for each Voronoi vertex, we
multiply the total size of the augmented diagrams V L and VR by at most a constant
factor.

Recall that the important computation we perform in this step is the construc-
tion of the contour between VL and V R. Before we describe our method for doing
this, let us study some propert iesof the contour that are crucial to motivating our
method and for proving it correct.

LEMMA 3.t. Let c~ and ~ be two prims such that there are Voronoi cells V(s,)
and V(sp) in VL and VR, respectively, such that ~ c V(s,) and ~ c V(s~). Let b~, p =
B(s~, s~) c~ ~ c~ ~, where B(s~, s~) is the bisector o f s~ and sp. I f b~, p is nonempty,
then b,, ~ defines a piece o f the contour.

PROOF. Let p be a point on b~. a. Since b~, ~ is contained in c~ c~/~, there are no
objects in V L (resp. VR) closer to p than s o (resp. sp). Moreover, since b,, a is contained
in B(s~, sa), d(p, s~) = d(p, sa). Thus, d(p, Sx) = d(p, Sy). Therefore, p is on the contour
between V L and VR. []

This lemma immediately implies a method for constructing the contour in
O(log n) time with a quadratic number of processors--simply compute b~, a for
each pair (e, fi). We do not have this many processors at our disposal, however,
Thus, we must be more clever in how we exploit this lemma. The following lemmas

136 M.T. Goodrich, C. O'D0nlaing, and C. K. Yap

establish additional properties of the contour that lead to a solution using only
a linear number of processors.

LEMMA 3.2. The contour is monotone with respect to the y-axis.

PROOF. Since our objects are points and open line segments, the monotonicity of
the contour follows immediately from a similar lemma by Yap [21] (he also
included semicircles as objects). El]

LEMMA 3.3. The contour intersects each spoke at most once.

PROOF. Suppose the contour intersects a spoke e more than once. Clearly, e is not
a horizontal spoke, since if e were horizontal, this would contradict the mono-
tonicity of the contour with respect to the y-axis as shown in Lemma 3.2. Let s
be the object incident to e, and let V(s) denote the Voronoi cell for s. The contour
partitions the plane into "halves", and in so doing determines a new Voronoi cell
for s (call it V'(s)), which is defined by all the points in V(s) that are also in the "half"
that contains s. Note that since e is not a horizontal spoke, for each point p on
e, the projection of p and s is the endpoint of e on s, i.e., proj(p, s) = e r~ s for
each p ~ e. Moreover, by the skeleton property (as defined in Lemma 2.1), the line
segment from any such p to its projection proj(p, s) is completely contained in
V(s). Since the contour intersects e more than once, the intersection of e with
V'(s) must be disconnected, but this contradicts the skeleton property of
the Voronoi diagram. Thus, the contour could not have intersected e more than
once. []

LEMMA 3.4. The contour intersects each Voronoi semiedge at most once.

PROOF. Suppose the contour intersects some Voronoi semiedge e more than once.
Without loss of generality, e is in V R. Let al and a2 be the two prims that are
adjacent to e in VR. We use s~ and s 2 to denote the objects in S v defining ~1 and
~2, respectively.

Case 1: ~1 and ~2 are bounded. Let a, b, c, and d denote the spokes of ~ and
~2 so that a clockwise listing of the edges bounding ~1 w~2 would be
(sl, a, b, s2, d, c). (See Figure 3(a).) As mentioned before, the contour partitions the
plane into "halves." In so doing, it determines two new Voronoi cells for sl and
s2, Hsl) and V'(s2), which are defined by taking the "half" that contains sl and
s2 and intersecting it with the old Voronoi cells for sl and s z, respectively~ By the
previous lemma, the contour can intersect each of a, b, c, and d at most once. In
addition, since s I and s 2 are both in the same "half" of the plane determined by
the contour, if the contour enters a~ w 5 2 at a point on b (resp. c), then it must
exit at a point on a (resp. d). We claim that the contour intersects e exactly once
between its intersections with b and a (and similarly between its intersections with
c and d). Otherwise, it must intersect e an odd number of times, say at points Pl,
P2 Pzk+ 1, where k _> 1. However, the portion of the contour from p~ and P2,

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 137

(a) (b)

Fig. 3. Illustrating a possible contour (a) and a contour that is impossible (b).

together with the portion of e between Pl and Pz, defines a disconnected piece of
either V'(sl) or V'(s2), which contradicts the skeleton property (see Figure 3(b)).

Thus, if the contour intersects e more than once, it must intersect e exactly twice,
once between its intersections with b and a, and again between its intersections with
c and d (see Figure 3(a)). So the contour intersects the edges bounding ~1 and c~ 2
in the order (b, e, a, c, e, d) or (a, e, b, d, e, c). Suppose the order is (b, e, a, c, e, d).
Then the contour enters ~1 at a point on e, exits at a point on a, enters ~1 again
at a point on c, and exits a~ for the final time at a point on e. Since the contour
is monotone with respect to the y-axis (by Lemma 3.2), this implies that there is
a horizontal line segment from an endpoint of s~ to e that lies entirely inside cq.
But this contradicts our method for constructing prims, for such a horizontal
segment would have cut el into two prims. A similar argument proves that the
sequence (a, e, b, d, e, c) is not possible. Therefore, the contour can intersect e at
most once.

Case 2: c~ t or ~z is unbounded. The proof for this case follows from an argument
similar to that above, although it requires placing some segment endpoints at
infinity. We leave the details to the reader. []

Given the two previous lemmas, it is an immediate corollary that the contour
can intersect any prim in at most one continuous segment. This property is
essential to our method for performing the horizontal merge, which we now
describe.

Assume, recursively, that we have available CH L = CH(Sv n ~L) and CH R =

CH(Sv ~ ~R). We begin by computing the convex hull of CHL w CHR, by comput-
ing the upper and lower common supporting tangents of CHL and CHR. This
can be done in O(1) time with O(I CHL[+ J CHRI) processors using the method of
Atallah and Goodrich [3] or Wagener [19]. We know from Lemma 2.2 that the
contour must begin with the bisector of the two upper tangent points, and end
with the bisector of the two lower tangent points. Let p and q be the two upper
tangent points, with p being an object in V L and q being an object in V R. We can
compute the uppermost vertex of the contour by intersecting B(p, q) with V L and

138 M.T. Goodrich, C. O'Dfinlaing, and C. K. Yap

V R, and taking the intersection point that is highest. Using a similar method, we
can determine the lowermost vertex of the contour. Let Jig be the region of the
plane delimited by two horizontal lines 11 and 12, where 11 is above the uppermost
vertex of the contour, and 12 is below the lowermost vertex of the contour.
Construct V[= VL C~ ~f and V~ = VR • SCg, i.e., clip VL and VR to ~ but do not
discard V L and VR. Intuitively, W is the viewing strip for the merge, since all the
vertices of the contour must lie inside ~ .

Construct planar point-location data structures DE and DR for V[and V~t,
respectively. The structure D E (resp. DR) allows us to determine for any point p
the cell of V[(resp. V~) containing p. The construction of DL and DR can be done
in O(log n) time with O(n) processors using a slightly modified versioi~ of the
method of Atallah et aL [2]. Given a planar subdivision Wmade up of straight
line segments, their method constructs a data structure than can answer the
following type of queries: given a point p, locate the segments of W that are
immediately above and below p, By associating with each segment of Wthe names
of the faces that lie on either side it, a planar point-location data structure is
obtained, because one can simply read off the face containing a point p given the
segments immediately above and below p. Even though their method was intended
for subdivisions of straight line segments, we can extend their method :to a
subdivision W' made up of curve segments. The essential properties of segments
that Atallah et aL exploited were

(1) that segments are monotone with respect to both the x- and y-axes and
(2) given a point p and segment s, one can easily test if p is above s or not.

V~ and V~ are made up of line segments and parabolic segments. So, to apply
their method we may have to cut some parabolic segments in two at their maxima
or minima points (with respect to either the x- or y-axis). We can easily test if a
point p is above such a segment or not. Note: we only perform such segment cuts
to implement the method of Atallah et aL; in all the other steps in our algorithm
we consider each such segment to be completely intact. So, to sum up, after
performing a simple preprocessing step, we can apply the method of Ataltah et
aL as if all the segments were straight line segments, giving the data structures DE
and D R .

Construct each prim, clipped to ~ . For each spoke edge e of V R we determine
if e is intersected by the contour by testing if the far endpoint p of e is closer to
Sv n-~e than it is to S v ~ ~R. This can be done in O(log n) time with a single
processor using the data structure D L just constructed. Similarly, for each spoke
edge e of V L we determine if e is intersected by the contour.

For each prim e in VL that is intersected by the contour, we determine the prims
of VL that the contour intersects immediately before and after it intersects ~,
assuming that the vertices of the contour are to be listed by decreasing y-
coordinates. This is a well-defined relationship, by Lemmas 3.2-3.4. Moreover, it
can easily be determined in O(1) time. In particular, let e be a prim that is
intersected by the contour. Note that ~ is bounded by three edges (not counting
the object bounding c~), and two of these edges are spokes. By the previous
computation, we have determined which of ~.'s spokes are intersected by the

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 139

contour. If only one spoke is intersected by the contour, then the contour must
necessarily intersect the Voronoi semi-edge bounding c~. In any case, it is easy to
determine which other prims are before and after e as they intersect the contour
given that we know which of the three edges bounding c~ intersect the contour.
Thus, we can easily build a linked list that represents the ordering of the prims
of V L that intersect the contour. We use this linear ordering to construct an array
A L of all the prims in VL that intersect the contour in the order they are intersected
by it. This can be done in O(log n) time using O(I VL]) processors by a simple
list-ranking technique [20]. By a similar construction, we can build an array AR
of all the prims in VR that intersect the contour in the order they are intersected
by it.

We use the arrays AL and AR to construct the contour. The method is similar
to that of Aggarwal et al. [1], and is as follows. Let e be the median prim in AL
and let s~ be the object that defines e. For each prim fl in A R construct the bisector
B(s~, sr of s~ and s~, where sr is the object that defines ft. Then, for each bisector
B(s,, sB), compute the intersection b,.p = F(s~, s~) c~ ~ c~ ft. This takes O(1) time with
O(IAL] + bARD processors. From Lemma 3.1 we know that if b=.r is nonempty,
then it defines part of the contour. Moreover, from Lemmas 3.2 and 3.4, the
collection of fl's in A R such that b~.r is nonempty defines a contiguous interval I
of prims in the list A R. This is because the contour is y-monotone, it intersects
each prim in A R once, and it intersects ~ in one continuous piece; hence, this piece
must lie in contiguous prims of A R. In addition, this implies that the prims above
I in A R can only interact with the prims in AL above e, and the prims below I in
AR can only interact wth the prims in AL below ~. Thus, we can recurse on each
such pair of prim collections in parallel to construct the entire contour. This entire
computation takes O(log n) time with O(n) processors.

Given the contour C between V L and V R we can construct the Voronoi diagram
Vor(S~ c~ ~) by taking the portions of VL to the left of C and the portions of VR
to the right of C and "sewing" them together along C. This is a simple operation
to perform, since we know, for each prim e intersecting the contour, the position
in C where e's intersection occurs. We also know, for each Voronoi edge e on the
boundary of e, whether or not e intersects the contour and if so, where its
intersection occurs in C. Thus, for each Voronoi edge e in V L and V R w e know if
e is in Vor(S n ~) or not. We can then compress out all the e's that are not a part
of Vor(Sv c~ ~). Moreover, for each e that intersects C we can update the fields in
e,s data record to store correctly the Voronoi vertices in Vor(S, c~ ~) to which e
is adjacent. This procedure requires O(log n) time using O(ISv c~ ~L] + ISv c~ ~RI)
processors. Thus, we have the following:

THEOREM 3.5. The Voronoi diagram of a proper set of n planar line segments can
be constructed in O(log 2 n) time with O(n) processors in the C R E W P R A M model.

4. Applications. Constructing a Voronoi diagram is often a preprocessing step
for solving various problems in robot motion planning, computer vision, and
geometric operations research. In this section we review two such problems,

140 M.T. Goodrich, C. 0'Dfintaing, and C. K. Yap

showing that, in each case, Voronoi diagram construction is the bottleneck
computation for an efficient parallel solution.

The first problem is that of finding a robust path for a robot, modeied by a
circular disk, traveling through a scene containing polygonal obstacles [16i. More
precisely, suppose we are given a scene S made up of nonintersecting polygonal
objects and wish to move a robot r modelled as a circular disk from some start
position p~ to some target position Pt. O'Dflnlaing and Yap [16] show that a
robust path can be found by tracing a path with r's center that starts from Ps,
moves to an edge of the Voronoi cell containing p~, moves along the edges of the
Voronoi diagram of S to an edge of the Voronoi celt containing Pt, and then moves
to Pt. Care must be taken however, that an edge e is never traversed such that
the minimum distance from e to the segments it bisects is less than the radius of
r. To implement this approach in parallel the Voronoi diagram of S can be
constructed as given above, and then mark as "removed" each edge e such than
the minimum distance from e to the segments it bisects is less than the radius of
r. Then a spanning tree of the edges that remain can be formed and a path from
an edge of the Voronoi cell containing p~ to the cell containing Pt can be
constructed using the methods of Atallah and Vishkin I"4], assuming such a path
exists. If no such path exists, then this method will correctly find this out. This
results in an algorithm that runs in O(log 2 n) time using O(n) processors in the
CREW PRAM model.

The second problem is finding the maximum-flow path of a liquid flowing
through a polygonal pipe with a uniform capacity defined on its interior [15], In
[15] Mitchell studies the following problem: we are given a pipe P modeled as
a simple polygon and two distinguished edges e S and e t on P, and wish to find a
maximum flow from es to e t through P, where the interior of P has a uniform
capacity. Mitchell shows that, as in the traditional maximum-flow problem, this
problem has a max-flow/min-cut property. In particular, he shows that if the
removal of e s and ef is imagined as splitting the boundary of P into two chains,
then the maximum-flow is equal to the length of the shortest segment inside P
that joins the two chains. Moreover, this segment is bisected by some edge on the
Voronoi diagram of P. Thus, to implement this procedure in parallel, one might
begin by performing a parallel prefix computation [1t] , [12] on the boundary of
P to determine the two chains resulting from the "removal" of e s and % Then the
Voronoi diagram of P can be constructed as given above, and, for each Vornoi
edge e that bisects objects on opposite chains, determine a shortest segment that
joins these objects. Then by a simple rain-finding procedure over all such e's which
of these segments is the min-cut edge can be determined. Given this edge, a
maximum flow can be constructed using a procdure similar to that used to solve
the robot motion problem. This also results in a solution running in O(log 2 n) time
using O(n) processors in the CREW PRAM model.

References

[1] A. Agarwat, B. Chazelle, L. Guibas, C. O'Dfinlaing, and C. Yap, Parallel Con-iputational
Geometry, Algorithmica, 3(3) (1988), 293-328.

Constructing the Voronoi Diagram of a Set of Line Segments in Parallel 141

[2] M.J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-and-Conquer: A Technique for
Designing Parallel Algorithms, SIAM J. Comput., 18(3) (1989), 499-532.

[3] M.J. Atattah and M. T. Goodrich, Parallel Algorithms for Some Functions of Two Convex
Polygons, Algorithmica, 4 (1988), 535-548.

[4] M.J. Atallah and U. Vishkin, Finding Euler Tours in Parallel, J. Comput. System Sci., 29 (1985),
330-337.

[5] H. Blum, A Transformation for Extracting New Descriptors of Shape, Proc. Syrup. on Models
for Perception of Speech and Visual Form (W. Whaten-Dunn, ed.), M.I.T. Press, Cambridge, MA,
1967, pp. 362-380.

[6] R. Cole, Parallel Merge Sort, SIAM J. Comput., 17(4) (1988), 770-785.
[7] R. Cole, M. T. Goodrich, and C. O'Dfinlaing, Merging Free Trees in Parallel for Efficient

Voronoi Diagram Construction, Proc. 17th Internat. Conf. on Automata, Languages , and
Programming, 1990.

[8] S. Fortune, A Sweepline Algorithm for Voronoi Diagrams, Algorithmica, 2 (1987), 153-174.
[9] R. M. Karp and V. Rarnachandran, A Survey of Parallel Algorithms for Shared-Memory

Machines, in Handbook of Theoretical Computer Science, North-Holland, Amsterdam, to
appear.

[10] D.G. Kirkpatrick, Efficient Computation of Continuous Skeletons, Proc. 20th IEEE Syrup. on
Foundations of Computer Science, 1979, pp. 18-27.

[11] C.P. Kruskal, L. Rudolph, and M. Snir, The Power of Parallel Prefix, Proc. 1985 IEEE Internat.
Conf on Parallel Processing, 1985, pp. 180-185.

[12] R.E. Ladner and M. J. Fischer, Parallel Prefix Computation, J. Assoc. Comput. Mach., 27 (1980),
83t 838.

[13] D.T. Lee, Medial Axis Transformation of a Planar Shape, IEEE Trans. Pattern Anal. Mach.
IntelI., 4(4) (1982), 363-369.

[14] D.T. Lee and R. L. Drysdale, III, Generalization of Voronoi Diagrams in the Plane, SIAM or.
Comput., 10(1) (1981), 73-87.

[15] J.S.B. Mitchell, On Maximum Flows in Polyhedral Domains, Proc. 4th A CM Syrup. on Comput.
Geometry, 1988, pp. 341-351.

[16] C. O'Dfinlaing and C. Yap, A "Retraction" Method for Planning the Motion of a Disc,
J. Algorithms , 6 (1985), 104-111.

[17] F .P . Preparata, The Medial Axis of a Simple Polygon, Proc. 6th Symp. on Mathematical
Foundations of Computer Scienee, 1977, pp. 443-450.

[18] M.I. Shamos, Geometric Complexity, Proc. 7th ACM Symp. on Theory of Computing, 1975,
pp. 224-233.

[19] H. Wagener, Optimally Parallel Algorithms for Convex Hull Determination, unpublished
manuscript, September 1985.

[20] J.C. WyUie, The Complexity of Parallel Computation, Ph.D. thesis, Technical Report TR 79-387,
Department of Computer Science, Cornell University, 1979.

[21] C.K. Yap, An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments,
Discrete Comput. Geom., 2 (1987), 365-393.

