
The Rainbow Skip Graph:

A Fault-Tolerant Constant-Degree

Distributed Data Structure

Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun

Department of Computer Science

University of California, Irvine

Irvine, CA 92697-3425

[goodrich,mjnelson,zhengsun](at)ics.uci.edu

Abstract

We present a distributed data structure, which we call
the rainbow skip graph. To our knowledge, this is the
first peer-to-peer data structure that simultaneously
achieves high fault-tolerance, constant-sized nodes, and
fast update and query times for ordered data. It
is a non-trivial adaptation of the SkipNet/skip-graph
structures of Harvey et al. and Aspnes and Shah, so
as to provide fault-tolerance as these structures do, but
to do so using constant-sized nodes, as in the family
tree structure of Zatloukal and Harvey. It supports
successor queries on a set of n items using O(log n)
messages with high probability, an improvement over
the expected O(log n) messages of the family tree. Our
structure achieves these results by using the following
new constructs:

• Rainbow connections : parallel sets of pointers be-
tween related components of nodes, so as to achieve
good connectivity between “adjacent” components,
using constant-sized nodes.

• Hydra components : highly-connected, highly fault-
tolerant components of constant-sized nodes, which
will contain relatively large connected subcompo-
nents even under the failure of a constant fraction
of the nodes in the component.

We further augment the hydra components in the
rainbow skip graph by using erasure-resilient codes to
ensure that any large subcomponent of nodes in a hydra
component is sufficient to reconstruct all the data stored
in that component. By carefully maintaining the size
of related components and hydra components to be
O(log n), we are able to achieve fast times for updates
and queries in the rainbow skip graph. In addition, we

show how to make the communication complexity for
updates and queries be worst case, at the expense of
more conceptual complexity and a slight degradation in
the node congestion of the data structure.

Categories and Subject Descriptors: E.2 Data
Storage Representations

General Terms: Algorithms, Design.

Keywords: Distributed data structures, peer-to-peer
networks, skip lists, skip graphs, family trees, erasure
codes.

1 Introduction

Distributed peer-to-peer networks present a decentral-
ized, distributed method of storing large data sets. In-
formation is stored at the hosts in such a network and
queries are performed by sending messages between
hosts (sometimes iteratively with the query issuer), so
as to ultimately identify the host(s) that store(s) the re-
quested information. For the sake of efficiency, we desire
that the assignment and indexing of data at the nodes
of such a network be done to facilitate the following
outcomes:

• Small nodes : Each node in the structure should
be small. Ideally, each node should have constant
size, including all of its pointers (which are pairs
(x, a), where x is a host node and a is an address
on that node). This property allows for efficient
space usage, even when many virtual nodes are
aggregated into single physical hosts. (We make
the simplifying assumption in this paper that there
is a one-to-one correspondence between hosts and
nodes, since a blocking strategy such as that done

in the skip-webs framework of Arge et al. [2], can
be used to assign virtual nodes to physical hosts.)

• Fault tolerance: The structure should be able to
adjust to the failure of some nodes, repairing the
structure at small cost in such cases. Ideally, we
should be able to recover the indexing data from
failed nodes, so as to be able to answer queries with
confidence.

• Fast queries and updates : The structure should
support fast queries and insertions/deletions, in
terms of the number of rounds of communication
and number of messages that must be exchanged
in order to complete requested operations. (We
are not counting the internal computation time
at hosts or the query/update issuer, as we expect
that, in typical scenarios, message delays will be
the efficiency bottleneck.)

• Support for ordered data: The structure should
support queries that are based on an ordering of
the data, such as nearest-neighbor searches and
range queries. This feature allows for a richer
set of queries than a simple dictionary that can
only answer membership queries, including those
arising in DNA databases, location-based services,
and prefix searches for file names or data titles.

To help quantify the above desired features, we use
the following parameters, with respect to a distributed
data structure storing a set S of n items:

• M : the memory size of a host, which is measured
by the number of data items (keys), data structure
nodes, pointers, and host IDs that any host can
store.

• Q(n): the query cost—the number of messages
needed to process a query on S.

• U(n): the update cost—the number of messages
needed to insert a new item in the set S or remove
an item from the set S.

• C(n): the congestion per host—the maximum
(taken over all nodes) of the expected fraction of
n random queries that visit any given node in the
structure (so the congestion of a single distributed
binary search tree is Θ(1) and the congestion of n
complete copies of the data set is Θ(1/n)).

We assume that each host has a reference to the place
where any search from that host should begin, i.e., a
starting node for that host (which may be the host
itself).

1.1 Previous Related Work There is a signifi-
cant and growing literature on distributed peer-to-peer
data structures. For example, there is a considerable
amount of work on variants of Distributed Hash Ta-
bles (DHTs), including Chord [9, 19], Koorde [12], Pas-
try [17], Scribe [18], Symphony [13], and Tapestry [21],
to name just a few. Although they have excellent con-
gestion properties, these structures do not allow for
non-trivial queries on ordered data, such as nearest-
neighbor searching, string prefix searching, or range
queries. Aspnes and Shah [4] present a distributed
data structure, called skip graphs, for searching ordered
data in a peer-to-peer network, based on the random-
ized skip-list data structure [16]. (See Figure 1.) Har-
vey et al. [11] independently present a similar struc-
ture, which they call SkipNet. These structures achieve
O(log n/n) congestion, expected O(log n) query time,
and expected O(log n) update times, using n hosts, each
of size O(log n). Harvey and Munro [10] present a de-
terministic version of SkipNet, showing how to achieve
worst-case O(log n) query times, albeit with increased
update costs, which are O(log2 n), and higher conges-
tion, which is O(log n/n0.68). Zatloukal and Harvey [20]
show how to modify SkipNet to construct a structure
they call family trees, achieving O(log n) expected time
for search and update, while restricting M to be O(1),
which is optimal. Manku, Naor, and Wieder [14] show
how to improve the expected query cost for searching
skip graphs and SkipNet to O(log n/ log log n) by hav-
ing hosts store the pointers from their neighbors to their
neighbor’s neighbors (i.e., neighbors-of-neighbors (NoN)
tables); see also Naor and Wieder [15]. Unfortunately,
this improvement requires that the memory size and ex-
pected update time grow to be O(log2 n), with a similar
degradation in congestion, to O(log2 n/n). Focusing in-
stead on fault tolerance, Awerbuch and Scheideler [5]
show how to combine a skip graph/SkipNet data struc-
ture with a DHT to achieve improved general fault toler-
ance for such structures, but at an expense of a logarith-
mic factor slow-down for queries and updates. Aspnes
et al. [3] show how to trade-off the space complexity of
the skip graph structure with its congestion, by buck-
eting intervals of keys on the “bottom level” of their
structure. Their method reduces the overall space us-
age to O(n), but increases the congestion to O(log2 n/n)
and still requires that M be O(log n). Arge et al. [2]
present a framework, called skip-webs, which general-
izes the skip graph data structure to higher dimensions
and achieves O(log n/ log log n) query times, albeit with
M being O(log n) rather than constant-sized.

Thus, the family tree [20] is the only peer-to-peer
structure we are familiar with that achieves efficient
update and query times for ordered data while bounding

Figure 1: A skip list data structure. Each element exists in the bottom-level list, and each node on one level is
copied to the next higher level with probability 1/2. A search can start at any node and proceed up to the top
level (moving left or right if a node is not copied higher), and then down to the bottom level. In the downward
phase, we search for the query key on a given level and then move down to the next level, and continue searching
until we reach the desired node on the bottom level. The expected query time is O(log n) and the expected space
is O(n).

M to be O(1) and maintaining a good congestion, which
is O(log n/n). Unfortunately, Zatloukal and Harvey do
not present any fault-tolerance properties of the family
tree, and it seems difficult to do so.

1.2 Our Results In this paper, we present rainbow

skip graphs, which are an adaptation of the skip-graph
of Aspnes and Shah [4] designed to reduce the size of
each node to be O(1) while nevertheless keeping the
congestion at O(log n/n) and providing for improved
fault tolerance. Successor queries use O(log n) mes-
sages with high probability, an improvement over the
expected O(log n) messages of the family tree. The up-
date and congestion complexities of our structure are
also optimal (amortized in the update case), to within
constant factors, under the restriction that nodes are
of constant size. In addition, we present a strong ver-
sion of rainbow skip graphs, which achieve good worst-
case bounds for queries and updates (amortized in the
update case), albeit at a slight decrease in congestion,
which is nevertheless not as much as the decrease for de-
terministic SkipNet [10]. In Table 1, we highlight how
our methods compare with previous related solutions.

Our improvements are based on the following two
techniques:

• Rainbow connections : collections of parallel links
between related components in the data structure.
These connections allow for a high degree of con-
nectivity between related components without the
need to use more than a constant amount of mem-
ory per node.

• Hydra components : components of related nodes
organized so that deleting even a constant fraction
of the nodes in the component leaves a relatively
large connected subcomponent.

We use the rainbow connections with the hydra compo-
nents and erasure codes so that we can fully recover from

significant sets of node deletions, even to recover all the
lost data. We present a periodic failure recovery mech-
anism that can, with high probability, restore the cor-
rect stucture even if each node has failed independently
with constant probability less than one. If k nodes have
failed, the repair mechanism uses O(min(n, k log n))
messages over O(log2 n) rounds of message passing.

2 Preliminaries

Before we present our results, we briefly review an
important result for erasure codes.

An (n, c, l, r)-erasure-resilient code consists of an
encoding algorithm and a decoding algorithm. The en-
coding algorithm takes a message of n bits and converts
it into a sequence of l-bit packets whose total size is
cn bits. The decoding algorithm is able to recover the
original message from any set of packets whose total
length is rn. Alon and Luby [1] provide a deterministic
(n, c, l, r)-erasure-resilient code with linear-time encod-
ing and decoding algorithms with l = O(1). Although
these codes are not generally the most practical, they
give the most desirable theoretical results.

3 Non-Redundant Rainbow Skip Graphs

Skip graphs [4, 11] can be viewed as a distributed
extension of skip lists [16]. Both skip lists and skip
graphs consist of a set of increasingly sparse doubly-
linked lists ordered by levels starting at level 0, where
membership of a particular node x in a list at level i is
determined by the first i bits of an infinite sequence
of random bits associated with x, referred to as the
membership vector of x, and denoted by m(x). We
further denote the first i bits of m(x) by m(x)|i. In
the case of skip lists, level i has only one list, for each i,
which contains all elements x s.t. m(x)|i = 1i, i.e., all
elements whose first i coin flips all came up heads. As
this leads to a bottleneck at the single node present in
the uppermost list, skip graphs have 2i lists at level i,

Method M Q(n) U(n) C(n)

skip graphs/SkipNet [4, 11] O(log n) O(log n) w.h.p. O(log n) w.h.p. O(log n/n)

NoN skip-graphs [14, 15] O(log2 n) Õ(log n/ log log n) Õ(log2 n) O(log2 n/n)

family trees [20] O(1) Õ(log n) Õ(log n) O(log n/n)

deterministic SkipNet [10] O(log n) O(log n) O(log2 n) O(n0.32/n)

bucket skip graphs [3] O(log n) Õ(log n) Õ(log n) O(log2 n/n)

skip-webs [2] O(log n) Õ(log n/ log log n) Õ(log n/ log log n) O(log n/n)

rainbow skip graphs O(1) O(log n) w.h.p. O(log n) amort. w.h.p. O(log n/n)

strong rainbow skip graphs O(1) O(log n) O(log n) amort. O(nε/n)

Table 1: Comparison of rainbow skip graphs with previous related structures. We use Õ(∗) to denote an expected
cost bound.

Figure 2: A skip graph. The dashed lines show the separations between the different levels.

which we will index from 0 to 2i − 1. Node x belongs to
the jth list of level i if and only if m(x)|i corresponds
to the binary representation of j. Hence, each node
is present in one list of every level until it eventually
becomes the only member of a singleton list. (See
Figure 2.)

It is useful to observe that the set of all lists to
which a particular node x belongs meets the definition
of a skip list, with membership in level i determined
by comparison to m(x)|i rather than to 1i. With
this observation, the algorithms and time analysis1 for
searching, insertion, and well-behaved deletion in a
skip graph all follow directly from the corresponding
algorithms and analysis of skip lists. Nodes in a skip
graph have out-degree proportional to the height of
their corresponding skip list, which has been shown to
be Θ(log n) with high probability; thus, the storage
requirement of each node includes Θ(log n) address
pointers to other nodes.

In the following subsection, we present a scheme

1For the sake of simplicity, we assume that the nodes in our
network are synchronized; we address in the full version the
concurrency issues that relaxing this assumption requires.

that results in a new overlay structure, which we call
a non-redundant rainbow skip graph. This structure
has the property that each node has constant out-
degree, and hence need store only a constant number
of pointers to other nodes, matching the best-known
results of the family tree [20]. Moreover, as we show,
the non-redundant rainbow skip graph has O(lg n/n)
congestion. In subsequent sections, we show how to
augment the non-redundant rainbow skip graph to
support ill-mannered node deletions, or node failures, in
which a node leaves the network without first notifying
its neighbors and providing the necessary information
to update the graph structure. More significantly,
this scheme will, with high probability, allow us to
efficiently restore the proper structure even if all nodes
simultaneously fail independently with some constant
probability less than one. In particular, we will be
capable of reconnecting components of the graph that
are disconnected after the failures. We refer to this
augmented data structure as the rainbow skip graph.

3.1 The Structure of Non-Redundant Rainbow

Skip Graphs A non-redundant rainbow skip graph
on n nodes consists of a skip graph on Θ(n/logn)

supernodes, where a supernode consists of Θ(log n)
nodes that are maintained in a doubly-linked list that we
will refer to as the core list of the supernode. The nodes
are partitioned into the supernodes according to their
keys so that each supernode represents a contiguous
subsequence of the ordered sequence of all keys. The
smallest key of a supernode S will be referred to as the

key of S, and we use these keys to define the skip graph
on the supernodes. For each supernode S, we associate
a different member of S with each level i of the skip
graph, and call this member the level i representative of

S, which we denote as Si. The level i list to which S
belongs will contain Si. Collectively we refer to these
lists of the skip graph as the level lists. Si, which can be
chosen arbitrarily from among the elements of S, will be
connected to Si+1 and Si−1 which we respectively call
the parent and child of Si. These vertical connections
form another linked list associated with supernode S
that we refer to as the tower list of S. By maintaining
the supernodes so that their size is greater than their
height in the skip graph, each member of a supernode
will belong to at most three lists—the core list, the
tower list, and one level list. The issue of supernode size
and height will arise frequently, and we let S.size and
S.height denote the size and height of S, respectively.
The implicit connections between the nodes in a core list
and their copies in the related tower list form one type
of “rainbow” connections, which motivates the name of
this structure. (See Figure 3.)

Searching in a Non-Redundant Rainbow Skip

Graph. To search for a node with key k from node x,
we find the top-level representative of the supernode
of x and then perform a standard skip graph search
for the predecessor of k in the set of supernode keys.
Once the predecessor of k is found, we linearly scan
through the corresponding supernode until a key with
value k or more is encountered, and return the address
of the corresponding node to node x. Each of these
steps requires O(log n) time, given that we properly
maintain the size of every supernode to be O(log n). We
subsequently address this maintenance in the discussion
of insertion and deletion operations.

Updating a Non-Redundant Rainbow Skip

Graph. The method of maintaining supernode sizes of
O(log n) is essentially the standard merge/split method
such as that used in maintaining B-trees—we set con-
stants c1 and c2 such that the size of a supernode is
always between c1 log n and c2 log n, merging two adja-
cent supernodes whenever one drops to a size less than
c1 log n, and splitting a supernode into two supernodes
whenever it reaches a size of more than c2 log n. The pri-
mary complication with this approach stems from the
distributed setting, in which one cannot efficiently main-

tain the exact value of n at every node—to do so would
require a message to every supernode upon every inser-
tion. The common solution is to estimate the value of
log n locally via some random process.

With some slight modifications to a proof of a
theorem from [20] we can arrive at the following.

Theorem 3.1: In a skip graph on n nodes, the height
of every node is Θ(log n) with high probability.

Ideally we would simply use S.height as the esti-
mate for log n. However, the height of a node can po-
tentially change dramatically when its neighbor at the
highest level is deleted, or when a new neighbor is in-
serted. This creates the potential for a cascading series
of supernode merges and splits due solely to changes
in this local probabilistic estimate of log n, which com-
plicates the otherwise-straightforward amortization ar-
gument. For simplicity, we deal with this complication
by maintaining an estimate log n′ that is common to
every node, in the following manner: whenever some
supernode has a height that is outside of the range
[13 log n′, 6 logn′], we recompute the current number of
nodes in the structure, n′′, (requiring Θ(n) messages),
set n′ = n′′, and rebuild the entire structure. With
high probability, Theorem 3.1 guarantees that we re-
build only after the size of the structure has increased
from n′ to (n′)2 or has decreased to nearly (n′)1/3. In ei-
ther case, this implies that, with high probability, Ω(n′′)
operations have been performed, which will suffice to
yield an amortized cost of O(log n).

We can now describe the insertion procedure. To
insert a node x with key k we first search for the
predecessor of k and insert x into the corresponding
supernode S. If S.size exceeds 9 logn′, then we split
S into two equal-sized supernodes. The supernode
containing the larger keys of S must then be inserted
into the skip graph; it can be inserted by the standard
insertion procedure of a skip graph, except that at
each level, a different representative is inserted into the
corresponding list. We omit the details of this operation
as it is a relatively straightforward adaptation of the
skip graph method.

Similarly, if, upon deleting a node, S.size falls below
3 logn′, then we merge S with one of it’s neighbors, or
simply transfer a fraction of the neighbor’s nodes to S if
the total number of nodes between them exceeds 9 log n.
If S is merged with its neighbor, then the old supernode
is deleted from the skip graph.

The following theorem, which is proven in the
appendix, bounds the congestion of a non-redundant
rainbow skip graph.

Theorem 3.2: The congestion of an n node non-
redundant rainbow skip graph is O(log n/n).

4 Hydra Components

We now describe hydra components—collections of
nodes organized in such a way that if each member fails
independently with constant probability p, then with
high probability the nodes that remain can collectively
compute the critical network-structure information of
all the nodes in that component, including those which
have failed. This “critical information” should consist
of whatever information is necessary in order to remove
local failed nodes from the overlay network and recom-
pute correct links for the nodes that remain. Although
in principal these failure-resilient blocks can be designed
to handle any constant failure probability less than 1,
for simplicity we define them to handle a failure proba-
bility of 1/2.

To do so, we make use of a 2d-regular graph
structure consisting of the union of d Hamiltonian
cycles. The set of all such graphs on n vertices is
denoted by Hn,d. A (µ, d, δ)-hydra-component consists
of a sequence of µ nodes logically connected according
to a random element of Hµ,d, with each node storing
an equal share of a message encoded by a suitably-
chosen (n, c, l, r)-erasure-resilient code. The parameters
of the erasure-resilient code should be chosen in such
a way that the entire message can be reconstructed
from the collective shares of information stored by any
set of δµ nodes, i.e., such that r

c = δ. The message
that is encoded will be the critical information of the
component. Clearly if the critical information consists
of M bits, then by evenly distributing the packets of the
encoded message across all the nodes, O(M/µ) space is
used per node, given that δ is a constant. In addition to
this space, O(µ) space will be needed to store structures
associated with the erasure-resilient code. However,
in our applications µ will be no larger than the space
needed for O(1) pointers, i.e., no more than O(log n).

To achieve a high-probability bound on recovery,
we rely upon the fact that random elements of Hµ,d

are likely to be good expanders. In particular we make
use of a theorem from [8], which is an adaptation of
a theorem from [7, 6]. We state the theorem below,
without proof.

Theorem 4.1: [8] Let V be a set of µ vertices, and let
0 < γ, λ < 1. Let G be a member of Hµ,d defined by the
union of d independent randomly-chosen Hamiltonian
cycles on V . Then, for all subsets W of V with λµ
vertices, G induces at least one connected component
on W of size greater than γλµ with probability at least

1 − eµ[(1+λ) ln 2+d(α ln α+β ln β−(1−λ) ln(1−λ))]+O(1),

where α = 1 − 1−γ
2 λ and β = 1 − 1+γ

2 λ.

With suitably chosen µ, λ, and γ, Theorem 4.1 will
guarantee that with high probability at least γλµ nodes
are connected, conditioned on the event that λµ nodes
of the component have not failed. By applying Chernoff
bounds it can be shown that this event occurs with high
probability for suitably chosen µ and λ. These facts will
directly yield the following theorem, which is proven in
the appendix.

Theorem 4.2: For any constant k, there exist con-
stants d, β, and δ such that with probability 1−O(1

nk)
the critical information of a (β log n,d,δ) hydra compo-
nent can be recovered in O(log n) time when each node
of the component is failed with probability 1

2 .

For the remainder of the paper, when we use the
term “hydra component” we will implicitly mean the
(Θ(log n), Θ(1), Θ(1)) hydra components described in
the proof of Theorem 4.2 unless otherwise stated.

5 Rainbow Skip Graphs

Having defined a hydra component, what remains is
to describe how the nodes of a non-redundant skip
graph are partitioned into hydra components to yield
the complete rainbow skip graph.

Let 9β log(n′) be the minimum size of each hydra
component, which will be at least β log n with high
probability. The maximum size of a hydra component
will be maintained as 27β log(n′). The elements of
the level lists are partitioned into hydra components
with respect to their order in the lists - elements of a
contiguous sublist will be placed together in a hydra
component. We call such hydras the level-list hydras.
Naturally sometimes a list, or the remaining end of a
list, will be too small to fill an entire hydra component.
In such cases, the partition will span into the beginning
of the next list of the same level, i.e., if a hydra
component containing the end of the jth list of level i is
smaller than 9β log(n′), then the hydra component will
also contain the beginning of the (j+1)-th list of level i,
or the 0th list of level i−1 if j = 2i−1. The core lists and
tower lists will be partitioned in a similar manner, but
we group the core list and tower list of each supernode
together as a pair since they are inherently tied together
through the supernodes, one being a subset of the other.
We call these hydras the supernode hydras. Again when
the hydra is too small, supernodes adjacent with respect
to their keys are grouped together.

The primary critical information that will be asso-
ciated with every hydra component is an ordered list
of the addresses of every node in the component. This
information will ensure that the unfailed nodes of a com-
ponent can restore connectivity to each other locally. In
the case of the level-list hydras, the critical information

will also include the addresses of the parents and chil-
dren of every element. Additionally, every pair of ad-
jacent level-list hydras L and R will be linked together
by “rainbow connections”, which amount to storing the
addresses of all elements of R in the critical information
of L and vice-versa. In total the critical information
consists of O(log n) pointers, which when distributed
evenly as encoded packets to the Θ(log n) members re-
quires space corresponding to O(1) pointers.

Hydra components are maintained in the same way
as supernodes, with the same merge/split mechanism.
By design, the cost of a split or merge amortizes to
a constant amount of overhead. Whenever a node
is added or removed from a hydra component, we
must recompute and redistribute the encoded critical
information of that hydra and all (of the constant
number of) hydras to which it is linked, requiring time
proportional to the size of the hydra. Noting that every
node in the rainbow skip graph belongs to a constant
number of hydra components, we arrive at the following.

Theorem 5.1: The amortized message cost of inser-
tion and well-behaved deletion, U(n), in a hydra-
augmented rainbow skip graph is O(log n) with high
probability.

Proof. Omitted in this extended abstract.

We now describe the procedure to restore the struc-
ture after some number of nodes have failed. For sim-
plicity we assume that no additional failures occur dur-
ing the repair process; otherwise, it would be necessary
to extend the model to reflect the rate at which nodes
are failing with respect to time.

We initially assume that no supernode drops below
the minimum size constraints. The goal will be to re-
place each failed representative with a new node from
the same supernode. In parallel, each hydra H in which
at least one node has failed recovers its critical infor-
mation. The core-list information of each supernode S
is first used to determine new representatives at each
level i with a failed representative. This new Si is then
linked to Si−1 and Si+1.

With the parent/child information now corrected,
what remains is to repair the sibling pointers of each
level list. As a basis, we repair level 0 by using the
rainbow connections to identify some unfailed member
of each supernode that neighbors a failed representative
S0. These nodes are sent replacement messages that
indicate the new S0, which is then connected to the
appropriate neighbors.

The other lists are then repaired sequentially by
order of increasing level. Suppose that the lists of level
i are being repaired, and hence that the lists at levels

0 through i − 1 have already been repaired. Let S be
some supernode which contains a failed representative
at level i. To restore the proper structure, we wish to
pass an insertion message to the neighbors of S at level
i that contains the address of the new Si. We use Si−1

to enter the list at level i − 1 and pass replacement
messages to its left and right neighbors, which forward
the messages until nodes belonging to the same level i
list are reached. With high probability the distance to
these nodes is O(log n).

Once all levels are repaired, the hydra codes are
recomputed, completing the repair process. Careful
accounting of all actions described above yields the
following theorem.

Theorem 5.2: The failure recovery procedure restores
the correct structure of the rainbow skip graph with
high probability using O(log2 n) rounds of message
passing and O(min(n, k log n)) messages, where k is the
number of nodes that failed.

6 Strong Rainbow Skip Graphs

Our rainbow skip graph has O(log n) search time w.h.p.
Although the random construction of the hydra compo-
nents is critical for the rainbow skip graph to be failure-
resilient, we are still able to de-randomize other parts
of the structure to get an efficient worst-case search
time. The resulting data structure, which we call the
strong rainbow skip graph, will function as a determin-
istic peer of the family tree [20] (which is non-trivial to
de-randomize), and will additionally provide powerful
failure-resilience. The idea is to integrate the randomly
constructed hydra components into a deterministic non-
redundant rainbow skip graph in the same way it is in-
tegrated into a randomized non-redundant rainbow skip
graph. This can be done once we have a deterministic
skip graph at hand, noting that the method of partition-
ing and constructing hydra components is independent
of the underlying skip graph. Doing this will, in ad-
dition to guaranteeing a worst case search time, yield
a tighter size for the supernodes and more freedom to
rebuild than that of the ordinary rainbow skip graph .

Size of Supernodes. Let n be the number of keys
when the current skip graph was built and l = log n.
We maintain a supernode size between [l, 3l − 2]. If a
deletion turns a supernode S into l − 1 size, then S
either borrows a key from the next block S′ if there are
at least l + 1 keys in S′, or merges with S′ into a new
supernode of size 2l− 1. Similarly, if an insertion turns
S into size 3l − 1, S either gives the additional key to
S′ if S′ contains at most 3l − 3 keys, or merges with
S′ and then splits into three supernodes of size 2l − 1.
Thus any newly generated supernode is of size 2l − 1,

so it will tolerate at least l insertions or deletions before
the next merge or split.

Size of the Skip Graph. A newly rebuilt skip
graph has n keys and n/ logn supernodes. We can
rebuild it as soon as it grows to n′ = n or shrinks
to n′ = n/2 logn supernodes. (As in the randomized
case, the number of supernodes can be estimated by the
height of each tower list so there is no need of any global
information.) This provides that before a rebuild there
have been at least (n′ − n′/ logn) supernode insertions
or n′ supernode deletions, so that the time for rebuild,
which is O(n′ log n), only requests constant credits from
each insertion and deletion. On the other hand, in order
to keep the O(log n) search time, the current skip graph
can accommodate as many as n′′ = nc or as few as
n′′ = n1/c supernodes. Therefore we can rebuild at any
point between n′ and n′′ without affecting either the
amortized update time or the worst-case search time.

Theorem 6.1: If there is a deterministic skip graph
with Q query time, U update time, and C congestion,
then there is a strong rainbow skip graph with Q query
time, amortized U update time, C congestion, and
resilience to node failures with any constant probability.

6.1 A Deterministic Skip Graph with Near

Optimal Congestion Harvey and Munro [10] gave a
deterministic SkipNet with O(log n) search time and
O(log2 n) update time, which could be used in the
construction in Theorem 6.1. However each node
in [10] has three parents and two to five children so
that the congestion at a top level node could be as
bad as (1/3)log5 n = n− log5 3 = n−0.68. Here we
provide another deterministic skip graph with the same
search and update time but only (1/2)log2(k+1)/k n =
n−1/(1+log((k+1)/k)) congestion, where each node has two
parents and only (2 + 1/k) children in average. The
optimal congestion of a skip graph is O(log n/n).

Macro Structure. Like in a randomized skip
graph or SkipNet, the macro structure of our new de-
terministic skip graph is still an upside-down tree con-
sisting of sublists, where there are 2i sublists at the i-th
level. Each sublist has a father (0) list and a mother (1)
list in the level above it. Each key x still has a mem-
bership string whose first i bits determine the sublist at
level i to which the copy of x at this level belongs. How-
ever, some bits of the string might be blurred, by which
we mean that x is present but not counted at these lev-
els when we balance the skip graph. Furthermore, some
bits might be undetermined, meaning that x is not yet
inserted into these levels and they hence have no value.
Naturally, if bit i is undetermined, then any bit j > i is
also undetermined.

The balance property of this skip graph is then
that, in any sublist at any level, consecutive non-blurred
nodes promote to the father list and the mother list
alternatingly, and the blurred nodes are spread more
than k steps apart. We may think of these normal
nodes as promoting to the next level in pairs, where
in each pair of sibling nodes one goes to the father and
the other goes to the mother, and call one the dual of
the other. As defined, a blurred node may promote to
either father or mother, or neither of them (when the
next digit is undetermined).

Theorem 6.2: (Height is near perfect.) The height of
any tower in the skip graph is between log n

1+log((k+1)/k)

and log n
1+log((k+1)/(k+2)) .

Proof. If there are m normal nodes and 0 to m/k (the
max. possible) blurred nodes at level i, then there are
at most (m/2 + m/k) and at least m/2 nodes in either
of its parent lists at level i + 1. So the shrinking ratio
from the size of a child list to that of a parent list is
between (1 + 1/k)/(1/2 + 1/k) = 2(k + 1)/(k + 2) and
(1 + 1/k)/(1/2) = 2(k + 1)/k, so that the height of any
skip list inside this skip graph is between log2(k+1)/k n =

log n
1+log((k+1)/k) and log2(k+1)/(k+2) n = log n

1+log((k+1)/(k+2)) .

Theorem 6.3: (Congestion is near optimal.) The
maximum congestion at any tower, i.e., the congestion
of the skip graph, is at most O(log n/n1−ε) = O(nε/n)
with ε only depending on k.

Proof. We calculate the congestion at each node and
then sum it for each tower. Let S and T be the start
and destination of randomly chosen search. In a per-
fect skip graph with two parents and two children for
each node, the congestion at a node xi at level i is
the probability of S being inside the left or right sub-
tree of xi (which is 2i/n) times the probability of T
being outside that subtree (relaxed to 1 and ignored)
times the probability of choosing the right search tree
involving xi (which is 1/2i), so it is 1/n. In our
skip graph, the probability of S being inside a sub-
tree of xi is at most (2(k + 1)/k)i/n, so the conges-
tion is O((1/2)log2(k+1)/k n) = O(n−1/(1+log((k+1)/k))) by
repeating the above calculation.

In the appendix we show how to update this skip
graph to maintain the balance property, as well as
how to achieve O(log n) update times using two-level
grouping.

Acknowledgments This research is supported in part
by the NSF under grants CCR-0098068, CCR-0225642, and
CCR-0312760.

References

[1] N. Alon and M. Luby. A linear time erasure-resilient
code with nearly optimal recovery. IEEE Transactions
on Information Theory, 42, 1996.

[2] L. Arge, D. Eppstein, and M. T. Goodrich. Skip-
webs: Efficient distributed data structures for multi-
dimensional data sets. In 24th ACM Symp. on Princi-
ples of Distributed Computing (PODC), 2005.

[3] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load bal-
ancing and locality in range-queriable data structures.
In Proceedings of the Symposium on Principles of Dis-
tributed Computing (PODC), 2004.

[4] J. Aspnes and G. Shah. Skip graphs. In Proc. ACM-
SIAM Symposium on Discrete Algorithms, pages 384–
393, 2003.

[5] B. Awerbuch and C. Scheideler. Peer-to-peer systems
for prefix search. In Proceedings of the Symposium on
Principles of Distributed Computing (PODC), 2003.

[6] R. Beigel, W. Hurwood, and N. Kahale. Fault diagnosis
in a flash. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 571–580, 1995.

[7] R. Beigel, G. Margulis, and D. A. Spielman. Fault
diagnosis in a small constant number of parallel testing
rounds. In ACM Symposium on Parallel Algorithms
and Architectures (SPAA), pages 21–29, 1993.

[8] W. Du and M. T. G. and. Pipelining algorithms for
cheater detection in computational grids. In ACM-
SIAM Symp. on Discrete Algorithms (SODA), page
under submission, 2006.

[9] P. Ganesan and G. S. Manku. Optimal routing in
Chord. In 15th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), pages 169–178, 2004.

[10] N. Harvey and J. Munro. Deterministic SkipNet. In
Twenty Second ACM Symp. on Priciples of Distributed
Computing (PODC), pages 152–153, 2003.

[11] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
and A. Wolman. SkipNet: A scalable overlay network
with practical locality properties. In USENIX Symp.
on Internet Technologies and Systems, Lecture Notes
in Computer Science, 2003.

[12] F. Kaashoek and D. R. Karger. Koorde: A simple
degree-optimal distributed hash table. In 2nd Int.
Workshop on Peer-to-Peer Systems, 2003.

[13] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. In 4th USENIX
Symp. on Internet Technologies and Systems, 2003.

[14] G. S. Manku, M. Naor, and U. Wieder. Know thy
neighbor’s neighbor: the power of lookahead in ran-
domized P2P networks. In Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC),
pages 54–63, 2004.

[15] M. Naor and U. Wieder. Know thy neighbor’s neighbor:
Better routing in skip-graphs and small worlds. In 3rd
Int. Workshop on Peer-to-Peer Systems, 2004.

[16] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. Commun. ACM, 33(6):668–676, 1990.

[17] A. Rowstron and P. Druschel. Pastry: Scalable,

decentralized object location, and routing for large-
scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–??, 2001.

[18] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The design of a large-scale
event notification infrastructure. In Networked Group
Communication, pages 30–43, 2001.

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In Proceedings
of the 2001 ACM SIGCOMM Conference, pages 149–
160, 2001.

[20] K. C. Zatloukal and N. J. A. Harvey. Family trees: An
ordered dictionary with optimal congestion, locality,
degree, and search time. In 15th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 301–310, 2004.

[21] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

A Some Proofs and Other Omitted Details

In this appendix, we include some proofs and other
details omitted from the body of this extended abstract.

A.1 Proofs for Congestion and Fault Tolerance

In this section, we include the proofs of two theorems
regarding (randomized) rainbow skip graphs.

Theorem A.1: The congestion of an n node non-
redundant rainbow skip graph is O(log n/n).

Proof. There are three phases to the search: first,
traversing the tower list to the top-level representative;
second, traversing the level-lists to find the supernode
with key nearest the destination; third, to traverse the
core list of this supernode until finding the actual goal.
Only an O(log n

n)-fraction of queries will pass through a
particular node u with key k(u) in phases one and three
because only that fraction of keys belong to the same
supernode as x. To analyze the fraction of queries that
pass through u in the second phase, we consider first
the probability that a search with a particular start and
destination pair (s,t) passes through node u, and then
bound the average over all choices of (s,t). Let i be the
level at which u is a representative in the skip graph.
Note that a query from s to t will pass through node u
only if the following two conditions hold:

(1) m(s)|i = m(u)|i
(2) 6 ∃ v s.t. k(u) < k(v) ≤ k(t) and m(v)|i + 1 =

m(s)|i + 1 ; that is, there is no node between u and t
that is present in level i + 1 of the start’s skip list.

These events are independent and thus the proba-
bility that they hold is exactly 1

2i (1 − 1
2i+1)d, where d

denotes the number of supernodes whose keys are be-
tween k(u) and k(t). Note that the particular choice of

s plays no role in this probability. We thus average only
over the choices of t. Noting further that for each dis-
tance d there are only O(log n) nodes whose supernodes
fall at a distance of exactly d, we change the summa-
tion to be over d, yielding the following bound on the
congestion of u:

congestion(u) ≤ c log n
n

1
2i

∑
∞

d=0(1 − 1
2i+1)d

≤ c log n
n

1
2i 2

i+1 (geometric series)

= 2c log n
n

Theorem A.2: For any constant k, there exist con-
stants d, β, and δ such that with probability 1−O(1

nk)
the critical information of a (β log n,d,δ) hydra compo-
nent can be recovered in O(log n) time when each node
of the component is failed with probability 1

2 .

Proof. We state first the following lemma, which follows
from the direct application of a Chernoff bound.

Lemma A.1: If each node of a component of β log n
nodes fails independently with probability 1

2 , then the
number of non-failing nodes is no less than λµ with
probability at least

1 − (
eδ

(1 + δ)(1+δ)
)

β log n
2

where δ = 1 − 2λ.
Setting β to 40 and λ to 3

10 provides a lower bound
of 1 − O(1

n2) on the probability that at least 3
10 of the

nodes do not fail. Theorem 4.1 can now be applied,
with µ = β log n, γ = 1

2 , and d = 47, to guarantee that
there is a connected component amongst the 3

10 -fraction

of unfailed nodes of size 3µ
20 with probability 1−O(1

n2).
Thus the probability that the conditions of Theorem 4.1
and Lemma A.1 both hold is 1 − O(1

n2) for the given
values of the parameters. This can be extended to other
values of k, for example by changing β by a factor of k

2 .
By employing an intelligent flooding mechanism,

the packets held by the 3β log n
20 connected nodes can be

collected together in O(log n) messages. The erasure-
resilient code can then be used to reconstruct the critical
information by choosing parameters of the code so that
δ = r

c = 3
20 .

A.2 Update Operations in a Deterministic

Rainbow Skip Graph In this subsection, we give the
details for updating a deterministic rainbow skip graph.

Swap. To swap two neighbor nodes at level i means
to exchange their membership strings from the digit i+1
above (as long as the digits are determined, including
the blurred digits). This changes neither the structure
of the skip graph nor the valid search property, since

the two being neighbors at level i means that one can
replace the other at any level above i.

Unblur or Promote in Pairs. If, in any sublist,
there are two blurred nodes within k steps away, and
they promote to different parents, then we can un-blur
them both and fix the balance property, if it is violated,
by O(k) swaps. This works regardless of whether there
is an odd or even number of normal nodes in between
the two blurred nodes. For example, if we use f and
m to indicate that a node promotes to father list or
mother list, and f(b) means it is blurred and promotes
to the father list, then a sublist [x1 = f, x2 = f(b), x3 =
m, x4 = f, x5 = m, x6 = m(b), x7 = f] will be fixed by
swapping (x2, x3), (x4, x5) after unblurring x2 and x6,
and a sublist [x1 = f, x2 = f(b), x3 = m, x4 = f, x5 =
m, x6 = f, x7 = m(b), x8 = m] will be fixed by swapping
(x2, x3), (x4, x5) and (x6, x7) after unblurring x2 and x7.
A blurred node with the next digit undetermined can be
promoted together with another blurred node regardless
of which parent the latter promotes to. However, if
there are two blurred nodes going to the same parent,
then we cannot un-blur them together no matter how
close they are. It will turn out that a node is blurred
only during the deletion, and that we can control the
deletion so that if a node is going to be blurred and
there exists another blurred node nearby, we can blur
either the node or its dual so that the newly blurred
node can always be coupled with the existing blurred
one.

The unblurring of a blurred node with the next
digit determined doesn’t cause any change to the upper
level. However the promotion of a blurred node with the
next digit undetermined, which unblurs this node at the
current level and inserts (determines) a blurred node at
the upper level, will propagate if the newly inserted node
is within k steps to another blurred node in the same
sublist.

Insertion. To insert a key we first insert into
the bottom list a blurred node and assign to it an
empty membership string with all digits undetermined.
We then propagate the promotions until the balance
property is restored.

Deletion. We delete the copies of the key x from
the bottom level to the top. At each level i, if there is
no blurred node within k steps from xi or its dual, then
delete xi and blur the dual of it. In the second case, if
there is a blurred node yi within k steps that promotes
to the same parent as xi, then delete xi and unblur yi,
and accordingly fix the segment between yi and the dual
of xi by O(k) swaps. In the last case, if the blurred node
yi within k steps promotes to a different parent than xi,
swap xi with its dual to make it the second case.

Theorem A.3: Swap takes O(log n) time. Insertion

and Deletion take O(log2 n) time each.

Proof. The running time for a swap is obvious since the
two strings have log n digits to exchange where exchang-
ing a digit causes O(1) pointer changes. To each inser-
tion we assign O(log2 n) credits to the inserted blurred
node at bottom level, O(log n) for each undetermined
digit of its membership string. A deletion takes O(k)
swaps and blurs one node at each level, to which we also
assign O(log n) credits. Therefore insertion and dele-
tion each take O(log2 n) time and each existing blurred
node (bit) or undetermined digit carries O(log n) credits
for the future propagation of unblurrings/promotions to
charge.

A.3 Getting O(log n) Update Time with 2-Level

Grouping A direct grouping of keys into supernodes
and integration of hydra components into the above
deterministic skip graph results in a rainbow skip graph
with amortized O(log2 n) update time, as mentioned in
Theorem 6.1. To make the amortized update time work
out to O(log n), we propose a 2-grouping instead of the
1-grouping used before. That is, instead of grouping
the keys into supernodes of size O(log n) we should
group them into supernodes of size O((log2 n)). To
maintain the O(log n) search time, each supernode of
size O(log2 n) is further grouped into a list of O(log n)
sublists each of size O(log n), where all keys in the
first sublist are smaller than all keys in the second list,
etc. This way, to search for a key inside a supernode
we linearly traverse two lists of size O(log n). With
splitting and merging the sublists inside a supernode
in the same way a supernode is split or merged, we
should be performing a supernode insertion or deletion
only once every Θ(log2 n) insertion or deletion of keys,
which makes the update time amortize to O(log n).
We associate each sublist in a supernode with the i-
th level representative of this supernode in the skip
graph, and use any of the keys in the sublist to be
the representative. By maintaining O(log n)-sized hydra
components, we can follow the same argument to see
that the amortized update time after integrating hydra
components is still O(log n). The 2-grouping will bring
one more factor of log n to the congestion because the
number of keys associated to a supernode has increased
by a factor of log n. Theoretically this factor of log n can
be covered by the nε in Table 1. Moreover, since now
we have a sublist of O(log n) candidate representatives
for each node in the skip graph and only one of them
is used, we are indeed able to cancel this increase of
congestion by rotating the representative among the
O(log n) candidates after each search passes this node.

Figure 3: A non-redundant rainbow skip graph. The lists on each level are shown in dashed ovals. The core lists
on the bottom level are sown as sets of contiguous squares. The rainbow connections between one core list and
its related tower list are also shown.

