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ABSTRACT
We study parallel algorithms for identifying the dead sensors in a
mobile ad hoc wireless network and for resolving broadcast con-
flicts on a multiple access channel (MAC). Our approach involves
the development and application of new group-testing algorithms,
where we are asked to identify all the defective items in a setof
items when we can test arbitrary subsets of items. In the standard
group-testing problem, the result of a test is binary—the tested sub-
set either contains defective items or not. In the versions we study
in this paper, the result of each test is non-binary. For example, it
may indicate whether the number of defective items contained in
the tested subset is zero, one, or at least two (i.e., the results are 0,
1, or 2+). We give adaptive algorithms that are provably more effi-
cient than previous group testing algorithms (even for generalized
response models). We also show how our algorithms can be imple-
mented in parallel, because they possess a property we call concise-
ness, which allows them to be used to solve dead sensor diagnosis
and conflict resolution on a MAC. Dead sensor diagnosis posesan
interesting challenge compared to MAC resolution, becausedead
sensors are not locally detectable, nor are they themselvesactive
participants. Even so, we present algorithms that can be applied
in both contexts that are more efficient than previous methods. We
also give lower bounds for generalized group testing.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management – Eth-
ernet; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.2.1 [Discrete Mathe-
matics]: Combinatorics – Combinatorial algorithms.
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1. INTRODUCTION
Wireless communication has renewed interest in parallel algo-

rithms for dealing with conflicts and failures among collections of
communicating devices. For example, when a collection of wire-
less devices compete to communicate with a particular access point,
the access point becomes a multiple access channel (MAC), which
requires a conflict-resolution method to allow all devices to send
their packets in a timely manner. In large deployments, the need for
conflict resolution among devices may be further complicated by
their physical distribution, as the devices may form an ad hoc wire-
less network. The traditional way a base station communicates with
devices in an ad hoc network is via broadcast-and-respond proto-
cols [17], which have a simple structure: Messages are broadcast
from a base station to then sensors in such a network using a sim-
ple flooding algorithm (e.g., see [19]) and responses to thismessage
are aggregated back along the spanning tree that is formed bythis
broadcast. Because the flooding algorithm is topology-discovering,
the spanning tree defined by the flooding algorithm can be different
with each broadcast. This mutability property is particularly use-
ful for mobile sensors, since their network adjacencies canchange
over time, although we assume they are not moving so fast thatthe
topology of the spanning tree defined by a broadcast changes be-
fore the aggregate response from the broadcast is received back at
the base station. A new challenge arises in this context, however,
when devices fail (e.g., by running down their batteries) and we
wish to efficiently determine the identities of the dead sensors.

1.1 Group Testing
In this paper, we present and analyze new algorithms for group

testing, showing how they can be implemented in parallel to solve
conflict resolution in MACs and dead sensor diagnosis. In the
group testing problem, we are given a set ofn items,d of which
are defective (bounds on the value ofd may or may not be known,
depending on the context). Aconfigurationspecifies which of the
items are defective. Thus, there are

(n
d

)

configurations ofd defec-
tives among then items. To determine which of then items are
defective, we are allowed to sample from the items so as to define
arbitrary subsets that can be tested for contamination. In thestan-
dard group testing problem, each test returns one of two values—
either the subset contains no defectives or it contains at least one
defective. Therefore, there is an information theoretic lower bound
of

lg

(

n
d

)

≈ d lgn

tests, in the worst case, for any binary-result group testing algo-
rithm.



Motivated by the application mentioned above, we consider gen-
eralizations of the standard group testing problem, where there can
be three or more possible results of a contamination test. Internary-
resultgroup testing a result indicates whether the subset contains no
defectives, one defective, or at least two defectives (i.e., the results
are 0, 1, or 2+). Generalizing further, we may allow forcounting
tests that return the exact number of defective items present in the
test. In either case, a one-defective result may either beidentifying,
returning a unique identifier of the defective item, oranonymous,
indicating, but not identifying, that there is one defective item in the
test. We are interested in efficient algorithms and lower bounds for
generalized group testing, as well as useful applications for such
results.

1.2 Multiple Access Channels
In themultiple access channelproblem [6, 12, 13, 14] we have

a setSof n devices that share a communication channel such that
a subsetD of d of the devices wish to use the channel to transmit a
data packet. In any time slice, some subsetT of the devicesSmay
attempt a transmission on the channel. If there is only one remain-
ing devicex from D in T, then it succeeds (and all parties learn the
identity of x). Alternatively, if no device attempts to transmit, then
all parties learn this as well. But if two or more devices attempt to
transmit, then all parties learn only that a conflict has occurred (and
no transmission is successful during this time slice).

1.3 Dead Sensor Diagnosis
In the dead sensor diagnosisproblem, we are given an ad hoc

network ofn sensors, which can communicate with a base station
using a broadcast-and-respond protocol along a broadcast tree that
may be different with each broadcast. Furthermore, we have thatd
of the sensors have failed (e.g.,d batteries may have died, but we
do not necessarily know the value ofd), and we wish to identify
which sensors are dead. The challenge posed by this problem is
complicated by the dynamic nature of the mobile sensors, since
there is no local way to detect dead sensors—they simply become
invisible to the sensors around them and there is no local wayto
distinguish this bad event from the common event of a live sensor
moving out of range of a set of its former neighbors.

Of course, the group controller could send outn broadcasts, each
of which asks an individual sensor to send a “heartbeat” acknowl-
edgment message back as a response. Assuming a reasonable time-
out condition for non-responding sensors, this naive solution to
the dead sensor diagnosis problem could identify the dead sen-
sors using a total ofO(n2) messages spread acrossn communi-
cation rounds, which is, of course, inefficient. (It would violate the
broadcast-and-respond model to have the sensors respond individ-
ually to a single “who’s alive” broadcast, since the responses would
not be aggregated and, in any case, this would require an expected
number ofO(n1.5) messages for a planar sensor network, would re-
quire sensors close to the base station do proportionally more work
(hence, running down their batteries faster), and it would still have
a delay ofO(n) communication rounds at the base station.) Thus,
we are interested in this paper in efficient solutions to the dead sen-
sor diagnosis problem that fit the broadcast-and-respond model.

1.4 Previous Related Work
For group testing, there is a tremendous amount of previous work

on the standard (binary) version of the problem (e.g., see [1, 8, 9,
10, 15, 16, 18, 20, 21, 22]), but we are not familiar with any pre-
vious efforts directed at the (anonymous) generalized group testing
problems we consider in this paper. The standard group testing
problem has been applied to several other problems, including test-

ing DNA clone libraries [11], testing blood samples for diseases,
data forensics [2], and cryptography [7].

In terms of getting as close to the binary-result information-
theoretic lower bound as possible, the best previous algorithms for
the standard group testing problem are all adaptive (as are our al-
gorithms). That is, tests are performed one at a time, with the
processing of a single step usually requiring a parallel invocation
across test elements, such that the results from previous tests al-
lowed be used to guide future tests. When the exact number,d,
of defective items is known, Hwang’s generalized binary splitting
algorithm [15] for the standard group testing problem exceeds the
information theoretic lower bound by at mostd− 1. This algo-
rithm is basically a set ofd parallel binary searches, which start
out together and eventually are split off. Whend is not known to
be an upper bound on the number of defective items, at most one
additional test is required. Alleman [1] gives a split-and-overlap
algorithm for the standard group testing problem that exceeds the
information theoretic lower bound on the number of tests by less
than 0.255d + 1

2 lgd+5.5 for d≤ n/2. The 0.255 is replaced with
0.187 whend ≤ n/38. When no constraint on the number,d, of
defectives is known in advance, Schlaghoff and Triesch [22]give
algorithms that require 1.5 times as many tests as the information
theoretic lower bound ford defective out ofn items.

Work on multiple access channels (MACs) dates back to before
the invention of the Ethernet protocol, and there has been a fair
amount of theoretical work on this problem as well (e.g., see[6, 12,
13, 14]). (Using our terminology, a MAC algorithm is equivalent
to a ternary-result group testing algorithm with identifying results
in the 1-result case.) There is a simple halfway-split binary tree
algorithm that achieves an expected 2.885d number of steps (e.g.,
see [6]), which correspond to group tests in our terminology, to
sendd packets. This algorithm was improved by Hofri [14], using a
biased splitting strategy (which we review below) to achieve an ex-
pected 2.623d steps. The best MAC algorithm we are familiar with
is due to Greenberg and Ladner [12], who claim that their algorithm
uses 2.32d expected number of steps, assumingd is known in ad-
vance. Interestingly, in the lower-bound paper of Greenberg and
Winograd [13], the Greenberg-Ladner paper [12] is referenced as
achieving 2.14d expected tests and, indeed, our analysis confirms
this better bound for their algorithm, ifd is known. Greenberg and
Ladner [12] also present an algorithm for estimatingd if it is not
known in advance and, by our analysis, using this approximation
algorithm with their MAC algorithm achieves 2.25d+O(logd) ex-
pected number of steps (which is also better than the bound claimed
in [12]).

Normally, such concern over small improvements in the constant
factor for a leading term of a complexity bound would be of little
interest. In this case, however, the reciprocal of the constant factor
for this leading term corresponds to the throughput of the MAC;
hence, even small improvements can yield dramatic improvements
in achievable bandwidth. Admittedly, such improvements are not
as applicable to the ways ethernets are used today, since theethernet
protocol is most commonly used for small subnets, with larger net-
works usually connected via routers and switches into a restricted
topology network. Still, with the expanding deployment of wireless
access points, there is a renewed motivation for MAC algorithms,
particularly for environments where there are many wireless de-
vices per access point. In this context, we are not familiar with any
MAC algorithms that achieve our degree of efficiency withoutmak-
ing additional probabilistic assumptions about the natureof packet
traffic (e.g., see [6, 12, 13, 14]).

We believe the dead sensor diagnosis problem is new, but there
is considerable previous work on device fault diagnosis forthe case



in which devices can test each other and label the other device as
“good” or “faulty,” if the group controller can dictate the network’s
topology. For example, Yuanet al. [23] describe an aggregation
protocol that assumes that sensors can detect when neighbors are
faulty. Likewise, Beigelet al. [3, 4, 5] have designed a number
of efficient diagnosis algorithms based on the paradigm of having
devices test each other according to a schedule dictated by agroup
controller.

1.5 Our Results
In this paper, we present algorithms for generalized group test-

ing when the result of each test may be non-binary. The worst-case
performance of our algorithms beats the binary-result information-
theoretic lower bound for standard group testing. (This is not an ac-
tual lower-bound violation, since ternary-result tests provide more
information than do binary-result tests.) We also provide novel
lower bounds for ternary-result group testing, which show that our
algorithmic performance is within a small constant factor of the
lower bound for ternary-result group testing.

Ternary-result group testing can be applied to multiple access
channels. In this context, we provide new MAC conflict-resolution
algorithms that achieve an expected 2.054d steps ifd is known and
2.08d + O(logd) tests if d is not known. Both of these bounds
improve the previous constant factors for MAC algorithms and are
based on the use of a new deferral technique that demonstrates the
power of procrastination in the context of MAC algorithms. We
also show that our MAC algorithm usesO(d) steps with high prob-
ability, even if we reduce the randomness used, and we provide an
improved algorithm for estimating the value ofd if it is not known
in advance.

Our group testing algorithms can be applied to dead sensor di-
agnosis, where the items are sensors and the defective itemsare
the dead sensors. Our algorithms also areconcise, which implies
that they can be implemented as a parallel algorithm formulated
as a constant-size broadcast query from the base station such that
the aggregated response to such a query can provide the possible
results needed for ternary-result and counting group testing. This
immediately implies efficient parallel algorithms for the dead sen-
sor diagnosis problem based on our ternary-result group testing al-
gorithms. We also provide a novel counting-based group testing
algorithm that uses an expected 1.89d tests to identify thed de-
fective items. In addition, we give new deterministic ternary-result
group-testing algorithms usingO(d lgn) broadcast rounds (which
would use a total ofO(dnlogn) messages for dead sensor diagno-
sis), with constant factors below the lower bound for binary-result
group testing.

2. MOTIVATION AND DEFINITIONS
We have already discussed how collision resolution for a mul-

tiple access channel corresponds to ternary-result (0/1/2+) group
testing, with identifying tests in the 1-result case. In this section,
we discuss further motivation for our other generalizations of group
testing and we give some needed definitions as well.

2.1 Some Definitions for Group Testing
Recall that in the group testing problem we are given a setSof n

items,d of which are defective. We are allowed to form an arbitrary
subset,T ⊆ S, and perform a group test onT which, in the case of
ternary-result group testing, has a ternary outcome. We saythatT
is pureif T contains no defective items,taintedif it contains exactly
one defective item, andimpure if it contains at least two defective
items.

Furthermore, as mentioned above, in the case whenT is tainted,

we distinguish two possible variations in the way the test result is
conveyed to us. We say that the result isidentifyingif it reveals the
specific item,x ∈ T, that is defective. Otherwise, we say that the
result isanonymousif it states thatT is tainted but does not identify
the specific itemx in T that is defective.

Finally, we say that a testing scheme isconciseif each test sub-
setT ⊆ Sthat might be formed by this scheme can be defined with
an O(1)-sized expressionE that allows us to determine, for any
item x∈ S, whetherx is in T in O(1) time using information only
contained inE and x (that is, we allow for a limited amount of
memory to be associated withx itself). For example, a testT might
be defined by a simple regular expression, 101∗10∗∗011, for the
binary representation of the name of eachx in T (we assume that
item names are unique). The applications of MAC conflict resolu-
tion and dead sensor diagnosis both require that the corresponding
testing scheme be concise, so the algorithms can be efficiently im-
plemented in parallel. Incidentally, most MAC algorithms (e.g.,
see [6, 12, 13, 14]) also require that all devices have accessto in-
dependent random bits, but we show that this requirement is not
strictly necessary.

2.2 Group Testing for Packet Resolution in
Multiple Access Channels

In this subsection, we present a simple reduction of probabilistic
MAC conflict resolution solutions to generalized group testing.

In MAC algorithms, each device decides whether to attempt to
send a message based on what has been observed and, if an attempt
is to be made, the decision to send is made by flipping a biased coin
with probability p.

Consider the case in which there aren devices in the system, and
d devices each attempt to transmit with independent probability
p. It is seen that, for largen, this scenario is approximated by
using identifying ternary tests on a size-pn random subset of a set
of n items, d of which are defective. In the MAC situation, the
probability that exactlyi devices will transmit is

PMAC(i) =

(

d
i

)

pi(1− p)d−i .

A conflict arises when two or more devices transmit.
In the testing situation, the probability that exactlyi of the d

defective items are within the randomly selected subset of size pn
is

Ptest(i) =

(

d
i

) i−1

∏
j=0

pn− j
n− j

d−1

∏
j=i

n− pn− j + i
n− j

.

The subset is impure when two or more defective items are in that
subset.

2.3 Group Testing for Dead Sensor Diagnosis
In this subsection, we present some simple reductions of thedead

sensor diagnosis problem to generalized group testing. Allof our
reductions fit the broadcast-and-respond paradigm of sensor com-
munication, where the base station issues a broadcast and receives
back an aggregated response, which is the result of an associative
function applied to the sensor responses, and which is computed
by the sensors routing the combined response back to the basesta-
tion. Because of the assumed simple nature of sensors, we desire
aggregate responses based on the use of simple functions.

Given a concise ternary-result group testing algorithm,A, we
can useA to perform dead sensor diagnosis by simulating each
step ofA with a broadcast and response. BecauseA is concise,
each test inA can be defined by a constant-sized expressionE that
is then broadcast to each live sensor. Moreover, each live sensorx



can determine inO(1) time whether it belongs to the setT defined
by E and can participate in an aggregate response back to the base
station. Thus, the remaining detail is to define possible aggregate
responses that support useful responses, with either identifying or
anonymous results in the tainted cases:

• Count. The first function we consider is a simple count of
the live sensors inT. Each live sensorx can determine if
it belongs toT in O(1) time, since we are restricting our
attention to concise testing algorithms. Likewise, each sen-
sor y routing an answer back to the base station need only
sum the counts it receives from downstream routers (plus 1
if y is in T). This aggregation function supports ternary re-
sponses, since the base station knows|T| and can compare
this value with the count performed by the live sensors. The
count function is associative, and easily fits in the broadcast-
and-respond model, but it does not allow for identifying the
dead sensor in the tainted case.

• Large-ID summation. Suppose that then sensors are as-
signed ID numbers that are guaranteed to all be greater than
2n such that no ID number can be formed as the sum of two
or more other ID numbers. Then a summation of the ID num-
bers of the live sensors inT can be used to perform a ternary-
result test, which will be an identifying test in the case of a
result indicating thatT is tainted. Specifically, the difference
between∑x∈T x and the returned value will either be 0, the
ID of a single sensor, or a value that is the sum of two or more
sensor IDs. Of course, this function requires that sensors can
add integers as large as∑x∈Sx.

Thus, we can use dead sensor diagnosis to motivate identifying
ternary-result(0/1/2+) group testing as well as anonymous count-
ing group testing. Of course, if we combine these two functions
to operated on paired responses, we can implement an identifying
counting group testing algorithm. These aggregation functions are
not meant to be exhaustive.

3. THE BINARY TREE ALGORITHM FOR
TERNARY-RESULT GROUP TESTING

Since it provides a starting point for our more sophisticated al-
gorithms, we review in this section the binary tree algorithm for
ternary-result group testing with identifying results fortainted tests,
which was originally presented in the context of MACs [6]. That is,
we consider the problem of identifying the defective items in a set
of items when we can adaptively test arbitrary subsets and each test
result indicates whether the number of defective items contained in
the tested subset is zero, one, or at least two. We also provide a
simplified analysis of its expected performance.

The main idea of the binary tree algorithm (parameterized byp)
is to partition a set that is known to be impure into two unequal-
sized subsets, of sizesp and q = 1− p of the set’s size, and to
recursively test each of these subsets in an obvious binary tree
fashion. However, the algorithm takes advantage of one simple
optimization—if the first subset in a recursive call turns out to be
pure (that is, the result is 0 defectives), we can avoid the top level
testing of the second subset and go immediately to splittingit in
two and testing the two parts.

The original algorithm usedp = 0.5 and it has been shown [14]
that p≈ .4175 minimizes the expected number of tests. We make
use of the smaller root of the equationp2 = (1− p2)

2, which is

solved byp2 = 3−
√

5
2 ≈ 0.38197, and ofq2 = (1− p2)≈ 0.61803.

The binary tree algorithm begins by testing the set,S, of items.
If the test indicates thatS is pure or tainted, in which case the one

defective item will have been identified, then the algorithmis done.
Otherwise, initialize the setL of identified defective items to empty
and proceed with subroutineIdentify(S)as follows:

1. PartitionS into two subsets,A andB, where|A|= p|S|.

2. Test subsetA.

(a) If A is impure, then recursively invokeIdentify(A).

(b) If A is tainted with itemz, then addz to list L.

3. If A is pure then we know that subsetB is impure, and so
there is no need to testB. Otherwise, test subsetB.

(a) If B is impure, then recursively invokeIdentify(B).

(b) If B is tainted with itemz, then addz to list L.

When partitioningS into A andB, we can selectA as consisting
of those items whose ID values are ranked contiguously, 1 through
p|S|. The items inA, or B, can be specified by giving lower and up-
per limits on ID values. Thus, the binary tree algorithm is concise.

THEOREM 1. w2d lgn+ o(lgn) ternary tests under the iden-
tifying model suffice, in the worst case, to identify all defectives
in a set containing n items of which d are defective, where w2 =
−(1/ lg p2)≈ 0.720210.

PROOF. We analyze the performance of the binary tree algo-
rithm with p = p2. Let Xd(n) be the worst case number of tests re-
quired by algorithmIdentify(S) whenS is a set ofn items of which
d turn out to be defective.

For d = 2 andd = 3, we have the following recurrence. (Note
that sets with 0 or 1 defective items require no further testing, thus
Xd(1) = 1, and that it is assumed thatX3(n)≥ X2(n).)

Xd(n) = max

{

2+Xd(p2n)
1+Xd(q2n)

(1)

If the first term of the recurrence were to be the maximum term,
then Xd(n) = 2+ Xd(p2n) = −(2/ lg p2) lgn. If the second term
of the recurrence were to be the maximum term, thenXd(n) = 1+
Xd(q2n) =−(1/ lgq2) lgn.

We see thatX2(n)= X3(n) =−(1/ lgq2) lgn= 2w2d lgn≈1.4404lgn.
For d≥ 4, we have the following recurrence. (It is assumed that

Xd(n)≥ Xd−1(n).)

Xd(n) = max







2+Xi(p2n)+Xd−i (q2n), for 1≤ i ≤ d−2
2+Xd(p2n)
1+Xd(q2n)

(2)

ConsiderXd(n) = xlgn+o(lgn), and we shall solve forx.
Assume that, for even 1< i < d, Xi(n) = w2i lgn+ o(lgn), and

that, for odd 1< i < d, Xi(n) = w2(i−1) lgn+o(lgn).
Consider anyd≥ 4. If the first term of the recurrence were to be

the maximum term, thenx≥ (d−1)w2 > 2.16, sinced ≥ 4. If the
second term were to be the maximum term, thenx = −2/ lg p2 ≈
1.44. If the third term were to be the maximum term, thenx =
−1/ lgq2 ≈ 1.44.

Thus, the first term is the maximum term and

Xd(n)≈ dX2(n)/2 = w2d lgn, for evend,

Xd(n)≈ (d−1)X2(n)/2 = w2(d−1) lgn, for oddd.



Thus, the binary tree algorithm has good worst-case performance.
It also has good average-case performance, as the followingtheo-
rem shows1.

THEOREM 2. On average, when p= p2, Identify requires fewer
than2.631d ternary tests to identify all defectives in a set contain-
ing n items of which d are defective, for n>> d. Thus, the binary
tree algorithm requires fewer than1+2.631d ternary tests.

PROOF. Provided in the full version.

Using different values ofp yields different results. To mini-
mize E2, a value ofp =

√
2− 1≈ 0.4142 is best [14], requiring

3.414 tests. To minimizeE3, p≈ 0.4226 is best and requires 5.884
tests. To minimizeE4, p≈ 0.4197 is best and requires 8.482 tests.
p = p∗ ≈ 0.41750778 is asymptotically optimal for larged. The
curves are fairly flat, so, although one could tunep depending on
the expected distribution of the values ofd, choosingp = p∗ is a
good choice for most distributions and, as noted by Hofri [14], is
optimal for the naturally arising distribution, when the defective
items are i.i.d., requiring≈ 2.6229d tests.

4. THE DEFERRAL ALGORITHM
In this section, we describe how to substantially improve onthe

average case of the binary tree algorithm under the assumption that
we have a good approximation on the number,d, of defective items.
This algorithm is especially useful for the Multiple AccessChannel
problem.

The main idea of our algorithm, which we callDeferral, begins
by using an approach used by Greenberg and Ladner [12] where
we use knowledge of the approximate number of defective items
to randomly partition the set of items into a set,L, of buckets such
that the expected number of defective items in each bucket isa
constant. This process is called aspreadingaction and, for|L|= sd,
the parameters is called thespread factor. Greenberg and Ladner’s
algorithm performs a spreading action using an appropriatespread
factor (they recommends = 0.8), performs a test on each bucket,
and then applies the binary tree algorithm to each bucket that has a
2+ result.

Our approach does something similar, but augments it with a
new deferral technique that may at first seem counter-intuitive. We
also perform a spreading action, perform a test for each bucket,
and apply the binary tree algorithm recursively to any bucket with
a 2+ result, except that we cut recursive calls short in certain cases
and defer to the future all items whose status remains unclear from
all such calls. We then recursively apply the entire algorithm on
these deferred items. As we show in our analysis, this is a case
when procrastination provides asymptotic improvements, for this
deferral algorithm has a better average-case performance than does
the direct do-it-now approach of Greenberg and Ladner.

Deferral proceeds as follows.

1. Initialize a deferral bucket to empty.

2. For each bucketK in set L, identify some of the defective
items inK (and defer others) as follows.

TestK. If the test shows thatK is pure or tainted, all de-
fective items ofK will have been identified. Otherwise,
use algorithmBucketSearchon bucketK.

1This theorem simplifies a result of [14] and it implies a random-
ized algorithm with the same performance if we preface the binary
tree algorithm with an initial random permutation of the items.

3. Finally, if the deferral bucket is non-empty then recursively
applyDeferral to the set of items in the deferral bucket.

Algorithm BucketSearchproceeds as follows.

1. PartitionK into a first portionA having fractionp of the items
in K, and a second portionB having the remainder fraction
q = 1− p of K’s items.

2. TestA. One of three results will occur:

(a) If A is pure, then recursively invokeBucketSearch(B).

(b) If A is tainted, then the lone defective item inA will
have been identified. In this case, testB and, only when
B is impure, recursively invokeBucketSearch(B).

(c) If A is impure, recursively invokeBucketSearch(A). Fi-
nally, mergeB with the deferral bucket.

It might not be immediately obvious, but this algorithm can be
made concise, usingO(1) words of memory per test element (one
of which, for example, can keep the state of whether an item is
being deferred or not).

4.1 Analysis of the Deferral Algorithm
Let Ps(k) be the probability of a bucket containing exactlyk de-

fective items, given that we are using|L|= sdbuckets,i.e., we have
a spread factor ofs. Then

Ps(k) =

(

d
k

)(

1
sd

)k (

1− 1
sd

)d−k

≈ 1

k!ske1/s

For example, if we use a spread factor ofs = .75, thenPs(0) <
0.2636,Ps(1) < 0.3515,Ps(2) < 0.2344,. . . , Ps(6) < 0.0021, and
Ps(7) < 0.0004. We observe that we expect that 99.9% of all buck-
ets contain fewer than seven defective items in this case (and this
is true for all spread factors greater than 0.5). Furthermore,Ps(i)
is monotonic decreasing fori > 2. Therefore, in analyzing the ex-
pected behavior of algorithms that use a spreading step witha rea-
sonable spread factor, the expected number of tests is dominated by
the expected number of tests performed on buckets with fewerthan
seven defective items.

4.1.1 Analyzing the Expected Number of Tests per
Bucket

We begin by estimating the expected number,Ed, of tests per-
formed in a bucket containingd defectives (not counting the global
test for the bucket or future deferred tests for items currently in
the bucket). Certainly,Ed ≤ E′d, whereE′d is the expected number
of tests in the standard binary tree algorithm, since every test per-
formed by the deferral binary tree algorithm would also be made
by the standard algorithm. Moreover, for large values ofd, this
estimate will be sufficient for our purposes.

Therefore, we concentrate on boundingEd for small values ofd.
By construction,E0 = E1 = 0. Ford > 1, we consider the casesx-y
that arise when partitioning a set containingd defective items into
two subsets that turn out to contain, respectively,x andy defective
items. Ifd = 2, then the 2-0 case entails 1 test and a recursive call
(and a deferral of a pure set), the 1-1 case entails 2 tests, and the
0-2 case entails 1 test and a recursive call. Thus, lettingq = 1− p,

E2 = p2(E2 +1)+2pq(2)+q2(E2 +1)

= p2E2 +(p2 +2pq+q2)+2pq+q2E2

≤ 1+2pq

1− p2−q2 =
1+2pq

2pq
.



Likewise, if d = 3, the 3-0 case entails 1 test and a recursive call
(and a deferral of a pure set), the 2-1 case entails 1 test and arecur-
sive call on a 2-defective set (and a deferral of a 1-defective set),
the 1-2 case entails 2 tests and a recursive call on a 2-defective set,
and the 0-3 case entails 1 test and a recursive call. Thus,

E3 = p3(E3 +1)+3p2q(E2 +1)+3pq2(E2 +2)+q3(E3 +1)

≤ 1+3pq2 +(3p2q+3pq2)E2

1− p3−q3 .

Similarly,

E4 ≤ 1+4pq3 +(4p3q+4pq3)E3 +6p2q2E2

1− p4−q4 .

Likewise,

E5 ≤ 1+5pq4 +(5p4q+5pq4)E4 +10p3q2E3 +10p2q3E2

1− p5−q5 .

Moreover,

E6≤
1+6pq5 +(6p5q+6pq5)E5 +15p4q2E4 +20p3q3E3 +15p2q4E2

1− p6−q6 .

Finally (which will be sufficient for our analysis),

E7 ≤

1+7pq6 +(7p6q+7pq6)E6 +21p5q2E5 +35p4q3E4

+35p3q4E3 +21p2q5E2

1− p7−q7 .

But this is only for the first round. We still need to account for
the expected number of defective items deferred from this round to
future rounds.

4.1.2 Analyzing the Expected Number of Deferred
Defective Items

LetDd denote the expected number of defective items deferred in
a bucket withd defective items. Certainly, since we are guaranteed
to find at least 2 defective items for any bucket withd ≥ 2, we
can boundDd ≤ d−2 for d ≥ 2. Moreover, we trivially have that
D0 = D1 = 0. We derive a more accurate bound onDd for some
small values ofd, beginning withD3.

Whend = 3, the 3-0, 1-2, and 0-3 cases all entail recursive calls,
but only the 2-1 case causes a defective item to be deferred. Thus,

D3 = p3D3 +3p2q+q3D3≤
3p2q

1− p3−q3 = p.

For d = 4, the 4-0 and 0-4 cases both entail recursive calls, the
3-1 case entails a 3-defective recursive call and 1 deferral, the 2-
2 case entails 2 deferrals, and the 1-3 case entails a 3-defective
recursive call. Thus,

D4 = p4D4 +4p3q+(4p3q+4pq3)D3 +12p2q2 +q4D4

≤ 4p3q+12p2q2 +(4p3q+4pq3)D3

1− p4−q4 .

Likewise,

D5 ≤
5p4q+20p3q2 +30p2q3 +(5p4q+5pq4)D4 +10p3q2D3

1− p5−q5 .

Finally (which will be sufficient for our analysis),

D6 ≤

6p5q+30p4q2 +60p3q3 +60p2q3 +(6p5q+6pq5)D5

+15p4q2D4 +20p3q3D3

1− p6−q6 .

It does not result in elegant equations, but we can nevertheless
combine this analysis with the previous bounds onEd andPs(k) to
derive the expected number of tests performed by our algorithm.
For example, with a spread factor ofs= 0.8 and a split parameter
of p = 0.479, we obtain that the expected number of tests is less
than 2.054d.

4.2 Estimating the Number of Defectives
Greenberg and Ladner [12] give a simple repeated doubling al-

gorithm for estimating the number of defectives,d, in a set. Their
algorithm repeatedly selects a random set of sizen/2i , for i =
1,2, . . . , until a test results in a non-collision (that is, a 0- or 1-
result), and then it sets its estimate of the number of defectives as
d̂ = 2i . Unfortunately, this simple approximation is not sufficiently
accurate for our purposes, so we provide in this section a simple
improvement of the doubling algorithm, which increases theaccu-
racy of the estimate while only increasing the number of tests by a
small additive factor.

We begin by applying the simple doubling algorithm. This algo-
rithm is 99.9% likely to useO(logd) tests and produce an estimate,
d̂, such thatd/32≤ d̂≤ 32d. However, the estimate is within a fac-
tor of 2 of d only about 75% of the time. (It varies, approximately
65% to 90%, depending on how closed is to a power of 2.) While
this is insufficient to produce a useful estimate ofd for the sake of
computing a spread factor, it is sufficient as a first step for coming
up with a better approximation ford.

Let us, therefore, assume we have computed the estimated̂. We
next perform a sequence of experiments, fori = j , j +1, . . . , where
experimenti involves choosing a constant number,c, of random
subsets of sizen/2i/a and performing a test for each one, where
j = max{1,a(logd̂ − 5)} with a a small integer such as 2 or 4.
We stop the sequence of experiments as soon as one of thec tests
returns a non-collision result (i.e., a result of 0 or 1). We then use
the value ofi to produce a refined estimate,d̂′, for d. We used̂′ =
f (a,c) ·2i/a, where f is a normalizing function so that E[d̂′] = d.

The probability that allc subsets for experimenti contain colli-
sions quickly approaches 1−

(

1− (t +1)e−t
)c, wheret = d/2i/a.

This fact can then be used to find a good estimate ofd, based on
the values ofa andc. For example, whena = 2 andc = 16, then
the best estimate of̂d′ is 2i/2+2. Whena = 4 andc = 8, using
f (a,c) = 4.3 results in the estimate being within a factor of 2 of
d about 99.3% of the time (varying about 98% to 100%, depend-
ing on d). Moreover, combining this estimate algorithm with our
deferred binary tree algorithm results in a testing algorithm that
uses an expected 2.08d + O(logd) tests, and which does not need
to know the value ofd in advance.

4.3 Reducing the Randomness of the Deferral
Algorithm

In this subsection, we show how to reduce the randomness needed
for the deferral algorithm, while keeping it concise. In particular,
we do not needO(logn) random bits associated with each defec-
tive item; we can use an expectedO(logn) random bits associated
with a group controller instead. Moreover, even with this reduced
randomness, we show that we will make onlyO(d) tests, with high
probability, 1−O(1/d).

The main idea of our modified algorithm is to apply theDeferral
algorithm, as described above, but use a random hash function to
define the top-level partitioning to be performed. Indeed, the top-
level distribution of our algorithm is closely related to the hashing
of d out of n elements into a table of sizeO(d), in that mapping
items to cells without collisions is quite helpful (corresponding to
identifying tests in our case). The main difference betweenour



Algorithm AN ( S)
// Given: setSof items
// Return: identity of all defective items

if test(S)≤ 1 then identify the defective via binary search andexit
list L← /0
Reduce(S)
if list L has only 2 sets,A andB then Final2(A,B)
elseFinal3(L)

SubroutineReduce( S)
// Given: setSof items that includes at least 2 defective items
// Return: list L of disjoint subsets ofS that each contain one defective item

p2← 0.38196601
PartitionS into two subsets,A andB, where|A|= p2|S|
t1← test(A)
if t1 ≥ 2 then Reduce(A)
if t1 = 1 then addA to list L
if t1 = 0 then t2← 2

else t2← test(B)
if t2 ≥ 2 then Reduce(B)
if t2 = 1 then addB to list L

SubroutineFinal2 ( A,B )
// Given: two disjoint tainted sets
// Return: identity of the 2 defective items

p3← 0.3176722 //q3 = (1− p3)
while |A|> 1 and |B|> 1

// Start with sets(A,B) having sizes(x,y)
PartitionA into A1 andA2, where|A1|= p3|A|
PartitionB into B1 andB2, where|B1|= p3|B|
t1← test(A1∪B1)
if t1 = 0 then 〈A,B〉← 〈A2,B2〉 // R0: sizes(q3x,q3y), 1 test
else if t1 = 1 then

t2← test(A1)
if t2 = 0 then 〈A,B〉← 〈A2,B1〉 // R1: sizes(q3x, p3y), 2 tests
else 〈A,B〉← 〈A1,B2〉 // R1: sizes(p3x,q3y), 2 tests

else/* ( t1 = 2) */ 〈A,B〉← 〈A1,B1〉 // R2: sizes(p3x, p3y), 1 test
use binary search to identify defectives in the (at most 1) set of A andB whose size> 1

Figure 1: Analysis algorithm using anonymous ternary tests

problem and the hashing problem is that, in the case of a collision
(corresponding to an impure test set in our case), we do not know
which items or even how many items have collided. We provide the
details of this algorithm and its analysis in the full version, proving
the following:

THEOREM 3. Given a set of n items with d defectives, the num-
ber of tests performed by the reduced-randomness ternary-result
group testing algorithm is O(d) with probability1−O(1/d).

5. OUR ANONYMOUS ALGORITHM
In this section, we discuss an efficient concise deterministic ternary-

result group testing algorithm for the case in which a test ofa
tainted set does not identify the defective item.

Consider algorithmAN(S), shown in Figures 1 and 2.
SubroutineReducereduces the original problem to one of iden-

tifying the d defective items in a collectionL of d tainted sub-
sets. Note thatReduceis essentially our earlierIdentifyalgorithm,
in which testing a tainted set immediately identified the defective
item. Here, we require additional testing to identify the defective
item. Whend = 2, subroutineFinal2 iterates reducing the size of

the two sets inL until they are singletons. Whend≥ 3, subroutine
Final3 iterates reducing the size of three of the sets inL until at
most two of thed sets are non-singleton, and then utilizes either
Final2 or binary search to reduce the remaining set(s) to become
singleton(s).

All subsets can be selected so that the items of each subset have
ID value ranks that are contiguous. All tests involve the union of
at most three subsets, each of which can be specified as consisting
of items whose ID values are in a specified range. Thus, algorithm
AN is concise.

5.1 Analysis of Algorithm AN

Let Wd(n), for d > 1, be the worst-case numbers of tests made
by AN(S) when|S| = n and there turns out to bed defectives. We
provide the analysis and prove the correctness of theANalgorithm
in the full version, proving the following theorem:

THEOREM 4. W2(n)≤ 1.8756lgn+o(lgn)
and, for d≥ 3,

Wd(n)≤ (0.3307+0.7202d) lg n+o(lgn).



SubroutineFinal3 ( L )
// Given: list L of d≥ 3 disjoint tainted sets
// Return: identity of thed defective items

p4← 0.27550804 //q4 = (1− p4)
while ∃ at least three non-singleton sets inL

〈a,b,c〉 ← indices of the largest three non-singleton sets inL
// Start with sets(La,Lb,Lc) having sizes(x,y,z)

PartitionLa into A1 andA2, where|A1|= p4|La|
PartitionLb into B1 andB2, where|B1|= p4|Lb|
PartitionLc into C1 andC2, where|C1|= p4|Lc|
t1← test(A1∪B1∪C1)
if t1 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B2,C2〉 // R0: sizes(q4x,q4y,q4z), 1 test
else ift1 = 1 then

t2← test(A1∪B2)
if t2 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B1,C2〉 // R1: sizes(q4x, p4y,q4z), 2 tests
else ift2 = 1 then 〈La,Lb,Lc〉 ← 〈A2,B2,C1〉 // R1: sizes(q4x,q4y, p4z), 2 tests
else/* ( t2 = 2) */ 〈La,Lb,Lc〉 ← 〈A1,B2,C2〉 // R1: sizes(p4x,q4y,q4z), 2 tests

else// (t1 = 2)
t2← test(A1∪B2)
if t2 = 0 then 〈La,Lb,Lc〉 ← 〈A2,B1,C1〉 // R2: sizes(q4x, p4y, p4z), 2 tests
else ift2 = 1 then

t3← test(C1)
if t3 = 0 then 〈La,Lb,Lc〉 ← 〈A1,B1,C2〉 // R2: sizes(p4x, p4y,q4z), 3 tests
else 〈La,Lb,Lc〉 ← 〈A1,B1,C1〉 // R3: sizes(p4x, p4y, p4z), 3 tests

else/* ( t2 = 2) */ 〈La,Lb,Lc〉 ← 〈A1,B2,C1〉 // R2: sizes(p4x,q4y, p4z), 2 tests
if ∃ two non-singleton sets (A andB) in L then Final2(A,B)
else if∃ one non-singleton set,A, in L then identify A’s defective by using binary search

Figure 2: Final subroutine whend≥ 3



6. LOWER BOUNDS
Let Td(n) be the worst-case minimum number of tests required

by any algorithm that uses ternary tests under the anonymousmodel
to identify all defective items in a set containingn items of which
d are defective. The following is an immediate corollary of Theo-
rem 4.

COROLLARY 1.

T2(n)≤ 1.8756lgn+o(lgn)

and, for d≥ 3,

Td(n)≤ (0.3307+0.7202d) lg n+o(lgn).

We prove the following theorem in the full version.

THEOREM 5.

T2(n)≥ 1.8133lgn,

T3(n)≥ 2.1507lgn,

and, for d≥ 4,

Td(n)≥ 0.6309d lg n.

7. USING COUNTING QUERIES
In this section, we discuss a variant of our testing algorithm for

the case when the queries provide an exact count of the numberof
defectives in a test set, and the result in the case of a 1-result iden-
tifies the defective item in the test set. As we show, the expected
performance of this algorithm is significantly better than that of the
ternary-result group testing algorithm.

We apply an initial spreading action to distribute items across
a set of buckets and we then perform a test for each bucket. The
main difference is in the binary tree algorithm we then applyto
each bucketB whose test indicates it hast ≥ 2 defective items:

1. We set a partition factor,p, according to the analysis, and we
split B into subsetsB1 andB2 so thatB1 hasp|B| items from
B andB2 has the remaining items.

2. We perform a test forB1 and, if the number,t1, of defective
items inB1 is at least two, then we recursively search inB1.

3. If the (possibly recursive) testing ofB1 has revealed allt de-
fective items fromB, then we skip the testing ofB2, for it
contains no defective items in this case.

4. Otherwise, if the test forB1 revealedt1 = t − 1 defectives,
then we immediately testB2 to identify its one defective item.

5. If, on the other hand, the test forB1 revealedt1 defectives,
with

0≤ t1 < t−1,

then we recursively search inB2 (without performing a global
test forB2, since we know it must have at least 2 defectives).

Note that no deferral is needed in this algorithm.

7.1 Analysis of the Counting Algorithm
In the full version, we provide a set of bounds, similar to those

given above for the ternary-result algorithm, on the expected num-
ber of tests performed for small-sized buckets. These bounds can
then be combined with an analysis (as given above) for bounding
the number of buckets of various sizes to derive an expected bound
on the number of tests performed by our algorithm. For example,
if we choose a spread factor of

s= 0.58

and a split parameter

p = .4715,

then we find that

Ed ≤ 1.896d,

which is significantly better than that obtained by the ternary-result
group testing algorithm.
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