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ABSTRACT

We study parallel algorithms for identifying the dead segso a
mobile ad hoc wireless network and for resolving broadcast ¢
flicts on a multiple access channel (MAC). Our approach wves|
the development and application of new group-testing élyos,
where we are asked to identify all the defective items in aoéet
items when we can test arbitrary subsets of items. In thelatdn
group-testing problem, the result of a test is binary—tiséete sub-
set either contains defective items or not. In the versioastudy

in this paper, the result of each test is non-binary. For extanit
may indicate whether the number of defective items conthine
the tested subset is zero, one, or at least two (i.e., théésese O,

1, or 2+). We give adaptive algorithms that are provably more effi-
cient than previous group testing algorithms (even for gaired
response models). We also show how our algorithms can beimpl
mented in parallel, because they possess a property weoalbe-
ness, which allows them to be used to solve dead sensor diagno
and conflict resolution on a MAC. Dead sensor diagnosis pases
interesting challenge compared to MAC resolution, becalesal
sensors are not locally detectable, nor are they themsahtase
participants. Even so, we present algorithms that can bkedpp
in both contexts that are more efficient than previous methwde
also give lower bounds for generalized group testing.

Categories and Subject Descriptors

D.4.4 [Operating System$ Communications Management — Eth-
ernet; F.2.2 Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.20igcrete Mathe-
matics]: Combinatorics — Combinatorial algorithms.
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Algorithms, Performance, Design

Keywords

group testing, multiple access channels, dead sensoratiesgn

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA’'06,July 30—August 2, 2006, Cambridge, Massachusetts, USA.
Copyright 2006 ACM 1-59593-262-3/06/0007$5.00.

1. INTRODUCTION

Wireless communication has renewed interest in paralgg-al
rithms for dealing with conflicts and failures among coliens of
communicating devices. For example, when a collection ogwi
less devices compete to communicate with a particular agu#st,
the access point becomes a multiple access channel (MA@hwh
requires a conflict-resolution method to allow all devices¢nd
their packets in a timely manner. In large deployments, deslrfor
conflict resolution among devices may be further complitédtg
their physical distribution, as the devices may form an aclvioe-
less network. The traditional way a base station commuesoatth
devices in an ad hoc network is via broadcast-and-respaotd-pr
cols [17], which have a simple structure: Messages are besad
from a base station to thesensors in such a network using a sim-
ple flooding algorithm (e.g., see [19]) and responses tatlkeissage
are aggregated back along the spanning tree that is formédsby
broadcast. Because the flooding algorithm is topologyedising,
the spanning tree defined by the flooding algorithm can berdifit
with each broadcast. This mutability property is particylaise-
ful for mobile sensors, since their network adjacenciesatemge
over time, although we assume they are not moving so fasttteat
topology of the spanning tree defined by a broadcast chargges b
fore the aggregate response from the broadcast is receacdad
the base station. A new challenge arises in this contexteheny
when devices fail (e.g., by running down their batteries) are
wish to efficiently determine the identities of the dead sesis

1.1 Group Testing

In this paper, we present and analyze new algorithms forpggrou
testing, showing how they can be implemented in parallebtees
conflict resolution in MACs and dead sensor diagnosis. In the
group testing problem, we are given a setnafems, d of which
are defective (bounds on the valuedbinay or may not be known,
depending on the context). éonfigurationspecifies which of the
items are defective. Thus, there a((]b configurations ofl defec-
tives among then items. To determine which of the items are
defective, we are allowed to sample from the items so as to@lefi
arbitrary subsets that can be tested for contaminatiorhdstan-
dard group testing problem, each test returns one of two values—
either the subset contains no defectives or it containsast lene
defective. Therefore, there is an information theoretredobound

of
Ig (2) ~dlgn

tests, in the worst case, for any binary-result group tgssilgo-
rithm.



Motivated by the application mentioned above, we consider g
eralizations of the standard group testing problem, whezeetcan
be three or more possible results of a contamination tegerary-
resultgroup testing a result indicates whether the subset canain
defectives, one defective, or at least two defectives (he.results
are 0, 1, or 2). Generalizing further, we may allow f@mounting
tests that return the exact number of defective items ptésehe
test. In either case, a one-defective result may eithétdmifying
returning a unique identifier of the defective item,asronymous
indicating, but not identifying, that there is one defeetitem in the
test. We are interested in efficient algorithms and lowemldsufor
generalized group testing, as well as useful applicationstich
results.

1.2 Multiple Access Channels
In the multiple access channgkoblem [6, 12, 13, 14] we have

ing DNA clone libraries [11], testing blood samples for dises,
data forensics [2], and cryptography [7].

In terms of getting as close to the binary-result informatio
theoretic lower bound as possible, the best previous dlgosi for
the standard group testing problem are all adaptive (astaralo
gorithms). That is, tests are performed one at a time, with th
processing of a single step usually requiring a parallebéation
across test elements, such that the results from previcts aé&
lowed be used to guide future tests. When the exact nunaber,
of defective items is known, Hwang’s generalized binarytspd
algorithm [15] for the standard group testing problem exrsetbe
information theoretic lower bound by at ma$t- 1. This algo-
rithm is basically a set ofl parallel binary searches, which start
out together and eventually are split off. Whetiis not known to
be an upper bound on the number of defective items, at most one
additional test is required. Alleman [1] gives a split-angerlap

a setSof n devices that share a communication channel such that algorithm for the standard group testing problem that edsdbe

a subseD of d of the devices wish to use the channel to transmit a
data packet. In any time slice, some subBeff the devicesS may
attempt a transmission on the channel. If there is only omaie-

ing devicex from D in T, then it succeeds (and all parties learn the
identity of x). Alternatively, if no device attempts to transmit, then
all parties learn this as well. But if two or more devices e to
transmit, then all parties learn only that a conflict has aszui(and

no transmission is successful during this time slice).

1.3 Dead Sensor Diagnosis

In the dead sensor diagnosigroblem, we are given an ad hoc
network ofn sensors, which can communicate with a base station
using a broadcast-and-respond protocol along a broadeasthiat
may be different with each broadcast. Furthermore, we Heatelt
of the sensors have failed (e.d.batteries may have died, but we
do not necessarily know the value df, and we wish to identify
which sensors are dead. The challenge posed by this proklem i
complicated by the dynamic nature of the mobile sensorgesin
there is no local way to detect dead sensors—they simplyrbeco
invisible to the sensors around them and there is no localtway
distinguish this bad event from the common event of a livesgen
moving out of range of a set of its former neighbors.

Of course, the group controller could send nbiroadcasts, each
of which asks an individual sensor to send a “heartbeat” aekn
edgment message back as a response. Assuming a reasanable ti
out condition for non-responding sensors, this naive gmiuto
the dead sensor diagnosis problem could identify the dead se
sors using a total 0O(n?) messages spread acrassommuni-
cation rounds, which is, of course, inefficient. (It wouldlete the
broadcast-and-respond model to have the sensors resmdividiin
ually to a single “who’s alive” broadcast, since the resgsnsould
not be aggregated and, in any case, this would require arc&xpe
number ofO(n!-%) messages for a planar sensor network, would re-
quire sensors close to the base station do proportionalig mrork
(hence, running down their batteries faster), and it wotildhave
a delay ofO(n) communication rounds at the base station.) Thus,
we are interested in this paper in efficient solutions to #eddsen-
sor diagnosis problem that fit the broadcast-and-respordeimno

1.4 Previous Related Work

For group testing, there is a tremendous amount of previauk w
on the standard (binary) version of the problem (e.g., se8,[9,
10, 15, 16, 18, 20, 21, 22]), but we are not familiar with ang-pr
vious efforts directed at the (anonymous) generalizedmtesting
problems we consider in this paper. The standard grouptesti
problem has been applied to several other problems, ingiueist-

information theoretic lower bound on the number of testsdss|
than 0255 + % lgd+5.5 ford < n/2. The 0.255 is replaced with
0.187 whend < n/38. When no constraint on the numbdr, of
defectives is known in advance, Schlaghoff and Triesch {2}
algorithms that require.% times as many tests as the information
theoretic lower bound fad defective out oh items.

Work on multiple access channels (MACs) dates back to before
the invention of the Ethernet protocol, and there has beaira f
amount of theoretical work on this problem as well (e.g.,[6e#&2,

13, 14]). (Using our terminology, a MAC algorithm is equigat

to a ternary-result group testing algorithm with identifyiresults

in the 1-result case.) There is a simple halfway-split hinase
algorithm that achieves an expecte88d number of steps (e.g.,
see [6]), which correspond to group tests in our termingldgy
sendd packets. This algorithm was improved by Hofri [14], using a
biased splitting strategy (which we review below) to achiam ex-
pected 2623 steps. The best MAC algorithm we are familiar with
is due to Greenberg and Ladner [12], who claim that theirrétlym
uses 232d expected number of steps, assumihig known in ad-
vance. Interestingly, in the lower-bound paper of Greemlzerd
Winograd [13], the Greenberg-Ladner paper [12] is refezdras
achieving 214d expected tests and, indeed, our analysis confirms
this better bound for their algorithm, i is known. Greenberg and
Ladner [12] also present an algorithm for estimatihd it is not
known in advance and, by our analysis, using this approximat
algorithm with their MAC algorithm achieves25d + O(logd) ex-
pected number of steps (which is also better than the boaiet!

in [12]).

Normally, such concern over small improvements in the ortst
factor for a leading term of a complexity bound would be dfdit
interest. In this case, however, the reciprocal of the @rdactor
for this leading term corresponds to the throughput of theQyiA
hence, even small improvements can yield dramatic imprevésn
in achievable bandwidth. Admittedly, such improvements ramt
as applicable to the ways ethernets are used today, sinethrmet
protocol is most commonly used for small subnets, with lang-
works usually connected via routers and switches into aice=d
topology network. Still, with the expanding deployment dfeless
access points, there is a renewed motivation for MAC algord,
particularly for environments where there are many wirelds-
vices per access point. In this context, we are not familigtn any
MAC algorithms that achieve our degree of efficiency withoatk-
ing additional probabilistic assumptions about the natfirgacket
traffic (e.g., see [6, 12, 13, 14]).

We believe the dead sensor diagnosis problem is new, b ther
is considerable previous work on device fault diagnosigtfercase



in which devices can test each other and label the other eegc
“good” or “faulty,” if the group controller can dictate thetwork’s
topology. For example, Yuaet al. [23] describe an aggregation
protocol that assumes that sensors can detect when nesghatmor
faulty. Likewise, Beigelet al. [3, 4, 5] have designed a number
of efficient diagnosis algorithms based on the paradigm winiga
devices test each other according to a schedule dictatedjimup
controller.

1.5 Our Results

In this paper, we present algorithms for generalized gresp t
ing when the result of each test may be non-binary. The wearse-
performance of our algorithms beats the binary-resultrimégion-
theoretic lower bound for standard group testing. (Thi®isam ac-
tual lower-bound violation, since ternary-result testsvle more
information than do binary-result tests.) We also provideeah
lower bounds for ternary-result group testing, which shoat bur
algorithmic performance is within a small constant factbtthe
lower bound for ternary-result group testing.

Ternary-result group testing can be applied to multipleeasc
channels. In this context, we provide new MAC conflict-regioh
algorithms that achieve an expecte@34d steps ifd is known and
2.08d + O(logd) tests ifd is not known. Both of these bounds
improve the previous constant factors for MAC algorithmd are
based on the use of a new deferral technique that demorssthate
power of procrastination in the context of MAC algorithms.e W
also show that our MAC algorithm us€§d) steps with high prob-
ability, even if we reduce the randomness used, and we pand
improved algorithm for estimating the value @ff it is not known
in advance.

Our group testing algorithms can be applied to dead sensor di
agnosis, where the items are sensors and the defective @mms
the dead sensors. Our algorithms also @macise which implies
that they can be implemented as a parallel algorithm fortadla
as a constant-size broadcast query from the base statibrtisatc
the aggregated response to such a query can provide thélpossi
results needed for ternary-result and counting grouprtgsfrhis
immediately implies efficient parallel algorithms for theadi sen-
sor diagnosis problem based on our ternary-result grotimgesl-
gorithms. We also provide a novel counting-based groupntpst
algorithm that uses an expecteddd tests to identify thed de-
fective items. In addition, we give new deterministic tesreesult
group-testing algorithms usin@(dIgn) broadcast rounds (which
would use a total 0O(dnlogn) messages for dead sensor diagno-
sis), with constant factors below the lower bound for bingayult
group testing.

2. MOTIVATION AND DEFINITIONS

We have already discussed how collision resolution for a mul
tiple access channel corresponds to ternary-resyit/@+) group
testing, with identifying tests in the 1-result case. Irsthéction,
we discuss further motivation for our other generalizagiohgroup
testing and we give some needed definitions as well.

2.1 Some Definitions for Group Testing

Recall that in the group testing problem we are given &8
items,d of which are defective. We are allowed to form an arbitrary
subset,T C S, and perform a group test dnwhich, in the case of
ternary-result group testing, has a ternary outcome. Wehsajl
is pureif T contains no defective itemigintedif it contains exactly
one defective item, aniinpureif it contains at least two defective
items.

Furthermore, as mentioned above, in the case \Whertainted,

we distinguish two possible variations in the way the testitas
conveyed to us. We say that the resuldientifyingif it reveals the
specific itemx € T, that is defective. Otherwise, we say that the
result isanonymousf it states thafT is tainted but does not identify
the specific itemxin T that is defective.

Finally, we say that a testing schemecanciseif each test sub-
setT C Sthat might be formed by this scheme can be defined with
an O(1)-sized expressiof that allows us to determine, for any
itemx € S whetherxis in T in O(1) time using information only
contained inE andx (that is, we allow for a limited amount of
memory to be associated wittitself). For example, a te§t might
be defined by a simple regular expression, 400 x011, for the
binary representation of the name of eacin T (we assume that
item names are unique). The applications of MAC conflict lkeso
tion and dead sensor diagnosis both require that the comdsyy
testing scheme be concise, so the algorithms can be efficient
plemented in parallel. Incidentally, most MAC algorithnmesd,
see [6, 12, 13, 14]) also require that all devices have adodss
dependent random bits, but we show that this requiremenstis n
strictly necessary.

2.2 Group Testing for Packet Resolution in
Multiple Access Channels

In this subsection, we present a simple reduction of prdisébi
MAC conflict resolution solutions to generalized group itest

In MAC algorithms, each device decides whether to attempt to
send a message based on what has been observed and, if gt attem
is to be made, the decision to send is made by flipping a biasad c
with probability p.

Consider the case in which there ardevices in the system, and
d devices each attempt to transmit with independent praoibabil
p. It is seen that, for large, this scenario is approximated by
using identifying ternary tests on a sipgrrandom subset of a set
of n items, d of which are defective. In the MAC situation, the
probability that exactly devices will transmit is

Pwcli) = ) Bl

A conflict arises when two or more devices transmit.
In the testing situation, the probability that exactlpf the d
defective items are within the randomly selected subseizeffm

is
) d i-1
)= (0] 1]
]:
The subset is impure when two or more defective items areain th
subset.

2.3 Group Testing for Dead Sensor Diagnosis

In this subsection, we present some simple reductions afehd
sensor diagnosis problem to generalized group testingofAdur
reductions fit the broadcast-and-respond paradigm of seaso-
munication, where the base station issues a broadcast egida®
back an aggregated response, which is the result of an atigeci
function applied to the sensor responses, and which is cdpu
by the sensors routing the combined response back to thestzase
tion. Because of the assumed simple nature of sensors, \ie des
aggregate responses based on the use of simple functions.

Given a concise ternary-result group testing algoritbim,we
can use4 to perform dead sensor diagnosis by simulating each
step of 4 with a broadcast and response. Becadsis concise,
each test ird can be defined by a constant-sized expresBitmat
is then broadcast to each live sensor. Moreover, each liveosg

d-1
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can determine i©(1) time whether it belongs to the s€tdefined

defective item will have been identified, then the algoritsrdone.

by E and can participate in an aggregate response back to the bas®therwise, initialize the sét of identified defective items to empty

station. Thus, the remaining detail is to define possiblaegaie
responses that support useful responses, with eitheiifidagtor
anonymous results in the tainted cases:

e Count The first function we consider is a simple count of
the live sensors iff. Each live sensok can determine if
it belongs toT in O(1) time, since we are restricting our
attention to concise testing algorithms. Likewise, eaat se
sory routing an answer back to the base station need only
sum the counts it receives from downstream routers (plus 1
if yisin T). This aggregation function supports ternary re-
sponses, since the base station kn¢Wsand can compare
this value with the count performed by the live sensors. The
count function is associative, and easily fits in the broatica
and-respond model, but it does not allow for identifying the
dead sensor in the tainted case.

e Large-ID summation Suppose that the sensors are as-

and proceed with subroutiridentify(S)as follows:

1. PartitionSinto two subsetsi andB, where|A| = p|S].
2. Test subseA.

(a) If Ais impure, then recursively invokdentify(A).
(b) If Alis tainted with itene, then addzto list L.

3. If Ais pure then we know that subsBtis impure, and so
there is no need to teBt Otherwise, test subsBt

(a) If Bis impure, then recursively invokdentify(B).
(b) If Bis tainted with iteng, then addzto listL.

When partitioningSinto A andB, we can selech as consisting
of those items whose ID values are ranked contiguously,dugir

signed ID numbers that are guaranteed to all be greater thanP|S. The items inA, or B, can be specified by giving lower and up-

2n such that no ID number can be formed as the sum of two
or more other ID numbers. Then a summation of the ID num-
bers of the live sensors ihcan be used to perform a ternary-
result test, which will be an identifying test in the case of a
result indicating thaT is tainted. Specifically, the difference
betweeny .t x and the returned value will either be 0, the
ID of a single sensor, or a value that is the sum of two or more
sensor IDs. Of course, this function requires that sensors ¢
add integers as large gcsx.

Thus, we can use dead sensor diagnosis to motivate idefifyi
ternary-result0/1/2+) group testing as well as anonymous count-
ing group testing. Of course, if we combine these two fumdtio
to operated on paired responses, we can implement an idagtif
counting group testing algorithm. These aggregation fanstare
not meant to be exhaustive.

3. THE BINARY TREE ALGORITHM FOR
TERNARY-RESULT GROUP TESTING

Since it provides a starting point for our more sophistidaaé
gorithms, we review in this section the binary tree alganitfor
ternary-result group testing with identifying results fainted tests,
which was originally presented in the context of MACs [6].at s,
we consider the problem of identifying the defective itemsiiset
of items when we can adaptively test arbitrary subsets achiteat
result indicates whether the number of defective itemsainat in
the tested subset is zero, one, or at least two. We also gravid
simplified analysis of its expected performance.

The main idea of the binary tree algorithm (parameterizeg)by
is to partition a set that is known to be impure into two unéqua
sized subsets, of sizgsandqg = 1— p of the set’s size, and to
recursively test each of these subsets in an obvious bimagy t
fashion. However, the algorithm takes advantage of onelsimp
optimization—if the first subset in a recursive call turng tube
pure (that is, the result is 0 defectives), we can avoid thddwel
testing of the second subset and go immediately to splifting
two and testing the two parts.

The original algorithm use@ = 0.5 and it has been shown [14]
that p &~ .4175 minimizes the expected number of tests. We make
use of the smaller root of the equatiga = (1— p»)?, which is

solved byp, = 3-/5 ~ 0.38197, and ofj, = (1— pz) ~ 0.61803.
The binary tree algorithm begins by testing the $bf items.
If the test indicates thais pure or tainted, in which case the one

per limits on ID values. Thus, the binary tree algorithm iacee.

THEOREM 1. wodlgn+ o(lgn) ternary tests under the iden-
tifying model suffice, in the worst case, to identify all défes
in a set containing n items of which d are defective, where=w
—(1/1g p2) =~ 0.720210

PROOF We analyze the performance of the binary tree algo-
rithm with p = py. Let X4(n) be the worst case number of tests re-
quired by algorithmdentify(S) whenSis a set ofn items of which
d turn out to be defective.

Ford = 2 andd = 3, we have the following recurrence. (Note
that sets with O or 1 defective items require no further nestihus
X4(1) =1, and that it is assumed thé§(n) > X(n).)

24 X4(p2n)
1+ Xq(g2n)

If the first term of the recurrence were to be the maximum term,
thenXg(n) = 2+ Xg(p2n) = —(2/lg p2)lgn. If the second term
of the recurrence were to be the maximum term, tkgm) = 1+
Xdq(qen) = —(1/lga)lgn.
We see thaXz(n) = X3(n) = —(1/1lgqz) lgn=2w»dlgn~ 1.4404Ign.
Ford > 4, we have the following recurrence. (It is assumed that

Xa(n) > Xg-1(n).)

24X (Pp2n) +Xg—i(d2n),
2+4+Xg(p2n)
1+ Xqg(02n)

Xa(n) = max{ o)

forl<i<d-2
X4(n) = max

@)

ConsiderXy(n) = xlgn+o(Ign), and we shall solve fox.

Assume that, for even & i < d, Xi(n) = wsilgn+o(lgn), and
that, for odd 1< i < d, Xj(n) = wx(i —1)Ign+o(lgn).

Consider ang > 4. If the first term of the recurrence were to be
the maximum term, ther> (d — 1)w, > 2.16, sinced > 4. If the
second term were to be the maximum term, tkea —2/Ig p2 =
1.44. If the third term were to be the maximum term, thes
—1/1gap ~ 1.44.

Thus, the first term is the maximum term and

Xq(n) = dX(n)/2 =wodlgn, for evend,

Xg(n) = (d —1)X3(n)/2 =wy(d — 1)lgn, for oddd.
O



Thus, the binary tree algorithm has good worst-case petoce
It also has good average-case performance, as the follaeny
rem shows.

THEOREM 2. On average, when £ p, Identify requires fewer
than2.631d ternary tests to identify all defectives in a set contain-
ing n items of which d are defective, focn> d. Thus, the binary
tree algorithm requires fewer thabh+ 2.631d ternary tests.

ProOFR Provided in the full version. [

Using different values op yields different results. To mini-
mize E,, a value ofp = v2 — 1 ~ 0.4142 is best [14], requiring
3.414 tests. To minimizE3, p~ 0.4226 is best and requires 5.884
tests. To minimizde,, p =~ 0.4197 is best and requires 8.482 tests.
p= p* = 0.41750778 is asymptotically optimal for large The
curves are fairly flat, so, although one could tyndepending on
the expected distribution of the valuesafchoosingp = p* is a
good choice for most distributions and, as noted by Hofri,[is}
optimal for the naturally arising distribution, when thefefgive
items are i.i.d., requiringz 2.6229 tests.

4. THE DEFERRAL ALGORITHM

In this section, we describe how to substantially improvehen
average case of the binary tree algorithm under the assombiat
we have a good approximation on the numblenf defective items.
This algorithm is especially useful for the Multiple Acc&3isannel
problem.

The main idea of our algorithm, which we ca@leferral, begins

3. Finally, if the deferral bucket is non-empty then recuebi
apply Deferral to the set of items in the deferral bucket.

Algorithm BucketSearclproceeds as follows.

1. PartitionK into a first portionA having fractionp of the items
in K, and a second portioB having the remainder fraction
g=1-pofK’'sitems.

2. TestA. One of three results will occur:

(a) If Ais pure, then recursively invokgucketSeardiB).

(b) If Ais tainted, then the lone defective item Anwill
have been identified. In this case, tBstind, only when
B is impure, recursively invokBucketSeard{s).

(c) If Aisimpure, recursively invokBucketSearg). Fi-
nally, mergeB with the deferral bucket.

It might not be immediately obvious, but this algorithm cam b
made concise, usin@(1) words of memory per test element (one
of which, for example, can keep the state of whether an item is
being deferred or not).

4.1 Analysis of the Deferral Algorithm
Let Ps(k) be the probability of a bucket containing exadtlge-
fective items, given that we are usifilg = sdbucketsj.e., we have
a spread factor of. Then
1\9°K 1
_ 5)

(&) (i)k (1 ~ e

Ps(k)

by using an approach used by Greenberg and Ladner [12] where

we use knowledge of the approximate number of defectivestem
to randomly partition the set of items into a detof buckets such
that the expected number of defective items in each buckat is
constant. This process is called@readingaction and, fofL| = sd,

the parametesis called thespread factor Greenberg and Ladner’s
algorithm performs a spreading action using an appropsiatead
factor (they recommend = 0.8), performs a test on each bucket,
and then applies the binary tree algorithm to each buckéhtma
2+ result.

Our approach does something similar, but augments it with a
new deferral technique that may at first seem counter-im¢uitVe
also perform a spreading action, perform a test for eachdiuck
and apply the binary tree algorithm recursively to any btigkieh
a 2+ result, except that we cut recursive calls short in certages
and defer to the future all items whose status remains untlea
all such calls. We then recursively apply the entire alg@poniton
these deferred items. As we show in our analysis, this is a cas
when procrastination provides asymptotic improvemerds tHis
deferral algorithm has a better average-case performaaoedoes
the direct do-it-now approach of Greenberg and Ladner.

Deferral proceeds as follows.

1. Initialize a deferral bucket to empty.

2. For each buckeX in setL, identify some of the defective
items inK (and defer others) as follows.

TestK. If the test shows thd€ is pure or tainted, all de-
fective items oK will have been identified. Otherwise,
use algorithnBucketSearcln bucketk.

1This theorem simplifies a result of [14] and it implies a ramdo
ized algorithm with the same performance if we preface tharyi
tree algorithm with an initial random permutation of thenite

For example, if we use a spread factorsof .75, thenPs(0) <
0.2636,P5(1) < 0.3515,Ps(2) < 0.2344,..., Ps(6) < 0.0021, and
Ps(7) < 0.0004. We observe that we expect that 99.9% of all buck-
ets contain fewer than seven defective items in this cask tf@s

is true for all spread factors greater thad)0 FurthermorePs(i)

is monotonic decreasing for> 2. Therefore, in analyzing the ex-
pected behavior of algorithms that use a spreading stepanitia-
sonable spread factor, the expected number of tests is diediby

the expected number of tests performed on buckets with févaer
seven defective items.

4.1.1 Analyzing the Expected Number of Tests per
Bucket

We begin by estimating the expected numlgy, of tests per-
formed in a bucket containingjdefectives (not counting the global
test for the bucket or future deferred tests for items culyan
the bucket). Certainlyeq < E/}, whereE} is the expected number
of tests in the standard binary tree algorithm, since evesyer-
formed by the deferral binary tree algorithm would also belena
by the standard algorithm. Moreover, for large valuesipthis
estimate will be sufficient for our purposes.

Therefore, we concentrate on boundlgfor small values ofl.
By constructionEg = E; = 0. Ford > 1, we consider the casgsy
that arise when partitioning a set containohgefective items into
two subsets that turn out to contain, respectivelgndy defective
items. Ifd = 2, then the 2-0 case entails 1 test and a recursive call
(and a deferral of a pure set), the 1-1 case entails 2 tesishan
0-2 case entails 1 test and a recursive call. Thus, lettiadl — p,

Ex P?(E2+1) +2pg(2) + 6% (E2 +1)
P?Ez -+ (P? + 2pa-+ ) + 2pg+ G2 Ez
1+2pg  1+2pq

1-p>—¢? 2pq -




Likewise, if d = 3, the 3-0 case entails 1 test and a recursive call
(and a deferral of a pure set), the 2-1 case entails 1 test srmlia
sive call on a 2-defective set (and a deferral of a 1-defectit),
the 1-2 case entails 2 tests and a recursive call on a 2-defeet,
and the 0-3 case entails 1 test and a recursive call. Thus,

Es = Pp°(Es+1)+3p?q(E2+1)+3pf(Ex+2) + P (Ez+1)
1+3pc? + (3p°q+ 3pP ) Ez
N 1-p*—¢? '
Similarly,

o 1+4pd’+(4p°a+4pd’)Es + 6P,

Es4

1-p*—q
Likewise,
1+5pd* + (5p*a+5pcf')E4 + 10p°q?Es + 10p*g°E;
Es < = .
1-p°—q
Moreover,

oo 1t 6pa® + (6p°q-+ 6pa°)Es + 15p*0PE4 + 20p°PEs + 15p%q E2
6 > .
1— p6 _ q6

Finally (which will be sufficient for our analysis),

1+ 7pc® + (7p%q+ 7pcP)Es + 21p°qPEs + 35p*q°E,4
+35p3q*E3 + 21p°PE;

E, <
T= 1-p —¢

But this is only for the first round. We still need to account fo
the expected number of defective items deferred from thinddo
future rounds.

4.1.2 Analyzing the Expected Number of Deferred
Defective Items

Let Dy denote the expected number of defective items deferred in
a bucket withd defective items. Certainly, since we are guaranteed
to find at least 2 defective items for any bucket with> 2, we
can boundDy < d—2 ford > 2. Moreover, we trivially have that
Do = D; = 0. We derive a more accurate bound @g for some
small values ofi, beginning withD3.

Whend = 3, the 3-0, 1-2, and 0-3 cases all entail recursive calls,
but only the 2-1 case causes a defective item to be deferrads, T

3p*q
1— p3 _ q3 -
Ford = 4, the 4-0 and 0-4 cases both entail recursive calls, the
3-1 case entails a 3-defective recursive call and 1 defetral2-
2 case entails 2 deferrals, and the 1-3 case entails a 3tgefec
recursive call. Thus,

p°D3+3p%q+q°D3 <

D3

p.

Dy = p*Da+4p’q+(4p°a+4pe)Dz+12p°q7 +q* Dy
4p%q+ 12022 + (4p>q+ 4pa’) D3
- 1-p*—qt '
Likewise,

D. < 5P"d+20p°¢? + 30p°q° + (5p*q -+ 5pqf!) Da+ 10p°9”Dg
5> .
1— p5 _ q5

Finally (which will be sufficient for our analysis),

6p°q+ 30p*a? + 60p°a° + 60p?q° + (6p°q+ 6pq°)Ds
+15p*?D4 + 20p°q°D3

De <

It does not result in elegant equations, but we can nevegkel
combine this analysis with the previous boundssgrandPs(K) to
derive the expected number of tests performed by our algorit
For example, with a spread factor £ 0.8 and a split parameter
of p=0.479, we obtain that the expected number of tests is less
than 2054d.

4.2 Estimating the Number of Defectives

Greenberg and Ladner [12] give a simple repeated doubling al
gorithm for estimating the number of defectivels,in a set. Their
algorithm repeatedly selects a random set of siz2, for i =
1,2,..., until a test results in a non-collision (that is, a 0- or 1-
result), and then it sets its estimate of the number of dietects
d = 2'. Unfortunately, this simple approximation is not suffidign
accurate for our purposes, so we provide in this section alsim
improvement of the doubling algorithm, which increasesabeu-
racy of the estimate while only increasing the number oftbgta
small additive factor.

We begin by applying the simple doubling algorithm. Thiscalg
rithm is 99.9% likely to us®©(logd) tests and produce an estimate,
d, such thatl/32 < d < 32d. However, the estimate is within a fac-
tor of 2 ofd only about 75% of the time. (It varies, approximately
65% to 90%, depending on how clogdés to a power of 2.) While
this is insufficient to produce a useful estimateddbr the sake of
computing a spread factor, it is sufficient as a first step éoniag
up with a better approximation fat. )

Let us, therefore, assume we have computed the estonate
next perform a sequence of experiments,iferj,j+1,..., where
experimenti involves choosing a constant numbey,of random
subsets of sizaﬂ/g'/"’1 and performing a test for each one, where
j = max{1,a(logd —5)} with a a small integer such as 2 or 4.
We stop the sequence of experiments as soon as one oftéises
returns a non-collision result (i.e., a result of 0 or 1). \Mert use
the value ofi to produce a refined estimat¥, for d. WeAused’ =
f(a,c)-2/2, wheref is a normalizing function so that #] = d.

The probability that alt subsets for experimemtcontain colli-
sions quickly approaches-1(1— (t +1)e '), wheret = d/2/2.
This fact can then be used to find a good estimatd, dfased on
the values ok andc. For example, whea = 2 andc = 16, then
the best estimate af’ is 2/22. Whena = 4 andc = 8, using
f(a,c) = 4.3 results in the estimate being within a factor of 2 of
d about 99.3% of the time (varying about 98% to 100%, depend-
ing ond). Moreover, combining this estimate algorithm with our
deferred binary tree algorithm results in a testing albaonitthat
uses an expecteddBd + O(logd) tests, and which does not need
to know the value ofl in advance.

4.3 Reducing the Randomness of the Deferral
Algorithm

In this subsection, we show how to reduce the randomnessdeed
for the deferral algorithm, while keeping it concise. Intparar,
we do not need(logn) random bits associated with each defec-
tive item; we can use an expect@dlogn) random bits associated
with a group controller instead. Moreover, even with thidueed
randomness, we show that we will make oflgd) tests, with high
probability, 1- O(1/d).

The main idea of our modified algorithm is to apply teferral
algorithm, as described above, but use a random hash fartctio
define the top-level partitioning to be performed. Indeéd, top-
level distribution of our algorithm is closely related teethashing
of d out of n elements into a table of size(d), in that mapping
items to cells without collisions is quite helpful (corresyling to
identifying tests in our case). The main difference between



Algorithm AN (' S)
Il Given setSof items
// Return identity of all defective items

if test(S) < 1 then identify the defective via binary search aexit

listL<— 0

ReducéS)

if list L has only 2 setsh andB then Final2(A, B)
elseFinal3(L)

SubroutineReducd S)

I/l Given setSof items that includes at least 2 defective items
/l Return list L of disjoint subsets aBthat each contain one defective item

p2 «— 0.38196601
PartitionSinto two subsetsA andB, where|A| = py|S
t) — test(A)
if ty >2 then Reducéd)
ifty =1 then addAto listL
ifty =0 then th—2
else t, — test(B)
if tp >2 then ReducéB)
ifto =1 then addBto listL

SubroutineFinal2 (A, B)
/I Given two disjoint tainted sets
// Return identity of the 2 defective items
p3 < 0.3176722 Iz = (1— pg)
while |A| >1and|B| > 1

/I Start with setgA, B) having sizegx,y)

PartitionA into A; andAyp, where|A;| = p3|A|
PartitionB into B; andB;, where|B;| = p3|B|
ty — test{A; UBs)
if 1 = 0then
elseif t; = 1then
ty — test(Aq)

(A,B) — (A2,B) /I RO sizes(qzx,dsy), 1 test

if t, =0then (A /B) — (A,B1) // RL sizes(qgsx, psy), 2 tests

else
else/* (ty =2) */

(A,B) «— (A1,Bp) /I R1 sizes(psx,qzy), 2 tests
(A,B) — (A1,B1) /I R2 sizes(psx, p3y), 1 test

use binary search to identify defectives in the (at most tLlp&A andB whose size> 1

Figure 1: Analysis algorithm using anonymous ternary tests

problem and the hashing problem is that, in the case of ssmoili
(corresponding to an impure test set in our case), we do rmw kn
which items or even how many items have collided. We provige t
details of this algorithm and its analysis in the full versiproving
the following:

THEOREM 3. Given a set of n items with d defectives, the num-
ber of tests performed by the reduced-randomness terresyhr
group testing algorithm is @l) with probability 1 — O(1/d).

5. OUR ANONYMOUS ALGORITHM

In this section, we discuss an efficient concise deterniirtistnary-
result group testing algorithm for the case in which a tesaof
tainted set does not identify the defective item.

Consider algorithnAN(S), shown in Figures 1 and 2.

SubroutineReducereduces the original problem to one of iden-
tifying the d defective items in a collectioh of d tainted sub-
sets. Note thaReducds essentially our earliddentify algorithm,
in which testing a tainted set immediately identified theed&fie
item. Here, we require additional testing to identify théedtive
item. Whend = 2, subrouting=inal2 iterates reducing the size of

the two sets irL until they are singletons. Wheh> 3, subroutine
Final3 iterates reducing the size of three of the sets iantil at
most two of thed sets are non-singleton, and then utilizes either
Final2 or binary search to reduce the remaining set(s) to become
singleton(s).

All subsets can be selected so that the items of each sub&et ha
ID value ranks that are contiguous. All tests involve theoarof
at most three subsets, each of which can be specified as thomsis
of items whose ID values are in a specified range. Thus, dhgori
ANis concise.

5.1 Analysis of Algorithm AN

Let Wy(n), for d > 1, be the worst-case numbers of tests made
by AN(S) when|S = n and there turns out to ke defectives. We
provide the analysis and prove the correctness oAflialgorithm
in the full version, proving the following theorem:

THEOREM 4. Wh(n) < 1.8756Ign+o(lgn)
and, ford> 3,

Wy (n) < (0.3307+0.72024)Ig n+ o(Ign).



SubroutineFinal3 (L)
I/l Given list L of d > 3 disjoint tainted sets
/l Return identity of thed defective items
ps < 0.27550804 by = (1—pa)
while 3 at least three non-singleton setd.in
(a,b,c) < indices of the largest three non-singleton sets in
/I Start with setgLa, Lp, L¢) having sizegx,y, z)
PartitionL, into A; andAy, where|A1| = ps|Lal
PartitionLy, into B; andByp, where|B1| = ps|Lp|
PartitionLc into C; andCy, where|Cy| = py|L¢]|
ty —testA;UB1UCy)
if t1 = 0then (La,Lp, Le) < (A2,B2,Cp) /I RQ: sizes(aaX, 04y, 042), 1 test
else ift; = 1then
ty — test(A; UBy)
if to =0then (La,Lp, Lc) < (A2,B1,Cp) /I R sizes(aaX, paY,042), 2 tests
else ifty = 1then (La,Lp,Lc) — (A2,B2,C1) /] R1 sizes(qaX, Qay, Paz), 2 tests
else/* (t, =2)* (La,Lp,Lc) — (A1,B2,Co) I/ R1 sizes(paX,QaY,taz), 2 tests
else/l (t1 =2)
ty — test(A; UBy)
if to = 0then (La,Lp, Lc) < (A2,B1,C1) /I R2 sizes(aaX, pay, paz), 2 tests
else ift, = 1 then
t3 — test(Cy)
if t=0then (La,Lp,Lc) < (A1,B1,Co) // R2 sizes(pgX, pay,daz), 3 tests
else (La,Lp, Le) < (A1,B1,C1) /I R3 sizes(paX, pay, paz), 3 tests
else/* (t, =2)* (La,Lp,Lc) < (A1,B2,C1) /] R2 sizes(paX, aaY, P42), 2 tests
if 3 two non-singleton set#\(andB) in L then Final2(A, B)
else if3 one non-singleton seA, in L then identify A’s defective by using binary search

Figure 2: Final subroutine whend > 3



6. LOWER BOUNDS

Let Tq(n) be the worst-case minimum number of tests required
by any algorithm that uses ternary tests under the anonymodsl|
to identify all defective items in a set containingtems of which
d are defective. The following is an immediate corollary oe®h
rem 4.

COROLLARY 1.
To(n) < 1.87561gn+ o(lgn)
and, ford> 3,

Tq(n) < (0.3307+0.7202) Ig n+ o(Ign).
We prove the following theorem in the full version.

THEOREM 5.

To(n) > 1.8133Ign,

Ts(n) > 2.1507 Ign,
and, for d> 4,

Tq(n) > 0.6304Ign.

7. USING COUNTING QUERIES

In this section, we discuss a variant of our testing algorifor
the case when the queries provide an exact count of the nushber
defectives in a test set, and the result in the case of a lt-idsn-
tifies the defective item in the test set. As we show, the ebegec
performance of this algorithm is significantly better thaattof the
ternary-result group testing algorithm.

We apply an initial spreading action to distribute itemsoasr

a set of buckets and we then perform a test for each bucket. The 3]

main difference is in the binary tree algorithm we then apply
each buckeB whose test indicates it has> 2 defective items:

1. We set a partition factop, according to the analysis, and we
split B into subset®; andB; so thatB; hasp|B| items from
B andBy has the remaining items.

2. We perform a test foB; and, if the numbett;, of defective
items inBy is at least two, then we recursively searclBin

3. If the (possibly recursive) testing Bf has revealed atlde-
fective items fromB, then we skip the testing d,, for it
contains no defective items in this case.

4. Otherwise, if the test foB; revealedt; =t — 1 defectives,
then we immediately te& to identify its one defective item.

5. If, on the other hand, the test 84 revealed; defectives,
with

0<ty<t—1,

then we recursively searchB3 (without performing a global
test forBy, since we know it must have at least 2 defectives).

Note that no deferral is needed in this algorithm.

7.1 Analysis of the Counting Algorithm

In the full version, we provide a set of bounds, similar tosto
given above for the ternary-result algorithm, on the exgectum-
ber of tests performed for small-sized buckets. These uoad
then be combined with an analysis (as given above) for bagndi
the number of buckets of various sizes to derive an expectedd
on the number of tests performed by our algorithm. For exampl
if we choose a spread factor of

s=0.58
and a split parameter
p=.4715
then we find that
Eq < 1.896d,

which is significantly better than that obtained by the teyrrasult
group testing algorithm.
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