
Checking Value-Sensitive Data Structures in
Sublinear Space

Michael T. Goodrich1 and Jonathan Z. Sun2

1 Department of Computer Science, University of California, Irvine, CA 92697-3435
goodrich@ics.uci.edu

2 School of Computing, The University of Southern Mississippi
118 College Drive, Box 5106, Hattiesburg, MS 39406

jonathan.sun@usm.edu

Abstract. Checking value-sensitive data structures in sublinear space
has been an open problem for over a decade. In this paper, we suggest
a novel approach to solving it. We show that, in combination with other
techniques, a previous method for checking value-insensitive data struc-
tures in log space can be extended for checking the more complicated
value-sensitive data structures, using log space as well. We present the
theoretical model of checking data structures and discuss the types of
invasions a checker might bring to the data structure server. We also
provide our idea of designing sublinear space checkers for value-sensitive
data structures and give a concrete example – a log space checker for the
search data structures (SDS).

1 Introduction

Checking the correctness of the computing results of a program with less ef-
forts than recomputing those results finds applications in different areas of com-
puter science. These applications include hardware and software reliability, fault
tolerant computing, soundness of algorithms, data authentication, and online
transaction auditing, just to name a few. Here we call a program that checks
the results of another program and reports errors the checker, and the program
under check the checkee. A checker is evaluated with its validity and efficiency.
That is, a checker should be able to catch all the errors and pass all the correct
results, and this should be done as efficiently as possible.

A checker is time efficient if its time complexity is lower than that of the
checkee and the space complexity is not higher than that of the checkee. Similarly,
we can define a checker of being space efficient when its space complexity is lower
and time complexity is not higher. We say that a checker is optimal if it has space
complexity logarithm of the checkee’s space complexity and time complexity
O(1) of checking each operation performed by the checkee. (Recall that O(log n)
is the information theoretic lower bound to encode n bits of information.) For
example, an optimal search data structure uses O(n) (linear) space and O(log n)
time to do a search, insert, or delete operation.

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 353–364, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 M.T. Goodrich and J.Z. Sun

1.1 Theoretic Model

Here we briefly introduce the theoretic model of checking data structures. Most
definitions and terminologies follow [1,3,9], but the idea of classifying invasions
into two types is new.

The encapsulation model. In this model, users access a data structure D through
a set of operations provided by D, for example, insert(x), delete(x), or search(x)
if D is a search data structure. The data structure D performs some computation
to realize the operation. For some operation, D returns a result to user, like for
search(x) it returns a boolean value indicating whether x is contained in D
or not. D encapsulates the realization of the operations so that it is irrelevant
to the users how and how efficient an operation is fulfilled in D. The checker
C is in between of users and D, the checkee, audits the operations issued by
users and the results returned by checkee, and reports “error” if any result of
an operation is incorrect. This model assumes that D is run on untrusted media
with possibility of mistakes or malicious malfunctions, however C is trustworthy.
Therefore if the soundness of C is proved, then C and the unreliable D together
would encapsulate a reliable D to users. A checker C in this model needs to be
individually designed for each data structure D.

Invasions. Checker C is invasive if it requires some augmentation of D to facil-
itate the checking, or if it issues extra operations to D that are not issued by
users. The checkers discussed in this paper and in related work are all invasive
checkers. (See Section 1.2). We categorize the invasions of those checkers into
the following two types:

– Storage Invasions. With such invasions, C requests D to associate additional
information to each data element stored in D, where the additional infor-
mation is not necessary for D to perform any operation it provides. As an
example, the RAM (random access memory) checker by Blum et al. in [3]
requests each value x to be stored as a pair (x, i), with i being a discrete
index indicating the time (order) of insertion.

– Operation Invasions. With such invasions, C issues extra operations to D
to follow up a operation issued by a user. Using again the example of Blum
et al.’s RAM checker [3], the checker C turns each read(x) into a read(x, i)
followed by a write(x, i′). In another example, the linear space SDS (search
data structure) checker by Bright and Sullivan in [5] turns an insert(x) into
an insert(x, i) followed by a predecessor(x).

Excessiveness. An invasion is excessive if it increases the asymptotic space com-
plexity of the checkee data structure D to store a data element or the asymptotic
time complexity of D to fulfill an original user operation. Otherwise the invasion
is non-excessive. A checker with only non-excessive invasions is a non-excessive
checker. For example, following up an insert(x) by an operation of O(n) time
is an excessive operation invasion to an efficient SDS, which ought to be able to
do insert(x) in O(log n) time. We are only interested in non-excessive checkers.

Checking Value-Sensitive Data Structures in Sublinear Space 355

As two extreme cases, the following invasions are always non-excessive, re-
gardless of the particular time and space complexities of the original unchecked
data structure D.

– An storage invasion that requires only O(1) size additional information to
be associated to each data element.

– An operation invasion such that the extra operations following each original
user operation can be realized in O(1) time by D.

We call such invasions minimal storage invasions and minimal operation inva-
sions. The checker we provide in this paper commits only minimal (storage and
operation) invasions.

Value-insensitive and value-sensitive data structures. Some fundamental data
structures have the property that the value stored at each data element plays
no role in determining how the data is stored and queried. We call them value-
insensitive data structures. Maps, arrays, stacks, queues, linked lists, and linked
directed graphs are all value-insensitive data structures. 1 When these data struc-
tures are queried, the answer is determined solely by the sequence of operations
or a specific argument in an operation, such as a memory address, an array in-
dex, or a link (pointer). In the opposite, in many advanced data structures such
as heaps or binary search trees, the structure to organize data elements and
the results of operations depend on a key value contained in each data element.
We call these data structures value-sensitive data structures. (See [3] for more
details.)

Blum et al.’s open problem. We conclude this brief introduction to theoretical
model with the following open problem raised by Blum et al. in [3]. This paper
will suggest and illustrate a novel approach of solving this problem.

Problem 1. Is there any checker under the encapsulation model that checks a
value-sensitive data structure such as a binary search tree or heap in sub-linear
space? The checker can have only non-excessive storage and operation invasions.

1.2 Related Work

Among the rich literatures on program checking, only a few papers addressed
the problem of sublinear space checking. In their fundamental paper [3], Blum et
al. gave a method of checking unreliable memory (RAM) of size n with a small
reliable memory of size O(log(n)), by using ε-biased hash functions. In the same
paper, authors also applied their method to check two other value-insensitive
data structures stacks and queues. Amato and Loui [1] further extended the
result to work on linked data structures including lists, trees and general graphs.
1 Despite its physical meaning, the random access memory (RAM) studied in [3] can

be viewed as a map data structure. It maps a memory address to the value stored
at this address and supports two operations – writing a value to an address and
reading the value from an address.

356 M.T. Goodrich and J.Z. Sun

These checkers all use the ε-biased hash functions discovered by J. Naor and M.
Naor [14]. Therefore we call them hash-based checkers. These checkers commit
storage and operation invasions but are extremely efficient. They use O(log n))
space and check each operation in O(1) time w.h.p. However, as pointed out by
Blum et al. in the open problem, extending this method onto checking value-
sensitive data structures is nontrivial.

Independent of Blum et al.’s work, some linear space checkers of value-
sensitive data structures have been developed using a different technique, which
we call the certificate-based checking. Sullivan, Wilson and Masson checked the
disjoint set union (DSU) and a simplified priority queue that doesn’t support
delete or change key in [15]. They also checked making convex hull (CH), sorting,
and single-source shortest paths (SSP) in [16]. Bright and Sullivan checked the
full priority queues (PQ) supporting delete and change key and the mergeable
priority queues (MPQ) [4]. These certificate-based checkers are offline because
they don’t report errors immediately but rather maintain a query-result sequence
as a certificate trail and verify the trail periodically to find errors. (Note that
the hash-based checkers are also offline.) Finkler and Mehlhorn gave a different
certificate-based checker for priority queues [9] with the same time and space ef-
ficiencies as the one in [4]. This checker is also offline but uses a trail other than
the sequence of query-result pairs. Online certificate-based checkers maintain no
trail but verify an individual certificate immediately after each operation. Such
checkers are developed by Bright and Sullivan for search data structures (SDS),
splittable search data structures (SSDS), and nearest neighbor queries (NN) [5].
All of the above certificate-based checkers, online or offline, take O(n) (linear)
space and O(1) time per operation. The online checkers commit storage and op-
eration invasions, while the offline checkers commit storage invasions only. There
was no clue of realizing a certificate-based checker in sublinear space.

1.3 Our Contribution

Inspired by both methods of the hash-based and the certificate-based checking,
we suggest a novel approach to checking value-sensitive data structures in sublin-
ear space. We argue that the correctness of value-sensitive data structures con-
sists of two components: integrity and validity. Then we observe that the hash-
based checking technique checks not only the correctness of value-insensitive
data structures but also the integrity of value-sensitive data structures. Next,
we propose the concept of self-certification of a (value-sensitive) data struc-
ture, which is an augmented implementation of the data structure such that
the result of an operation is self-certified to guarantee the validity. Using the
self-certification and the hash-based techniques together, we realize a checker
for SDS (search data structures), a fundamental value-sensitive data structure,
which takes O(log n) space and checks each operation in O(1) time w.h.p. Al-
though the self-certification for SDS is quite simple, this may not be the case
for other value-sensitive data structures. Thus, applying our method onto other
value-sensitive data structures is non-trivial. However, the frame of our approach
does isolate the process of self-certification as the only open part that needs to

Checking Value-Sensitive Data Structures in Sublinear Space 357

Table 1. Comparison of different checking techniques

Technique Space Time Invasions
1 hash-based O(log(n)) O(1) w.h.p. storage, operation
2 online certificate-based O(n) O(1) storage, operation
3 offline certificate-based O(n) O(1) storage
4 hash + self-certification* O(log(n)) O(1) w.h.p. storage, operation
∗: New in this paper.

Table 2. Data structures that have been checked

Technique Applicable to
1 hash-based RAM, stack, queue, linked structures
2 online certificate-based SDS, SSDS, NN, PQ
3 offline certificate-based DSU, PQ, MPQ, CH, sorting, SSP
4 hash + self-certification* SDS*

∗: New in this paper.

be designed individually for each data structure or each ADT (abstract data
type) operation. Therefore, we expect to see more sublinear space checkers of
value-sensitive data structures inspired by our work. A comparison of our result
and the previous results is shown in Table 1 and 2.

2 Our Idea

2.1 Describing Value-Sensitive Data Structures

We redefine any data structure D as a triple D = (E, P, R), where E, P, R are
the set of elements, operations and rules. Here we use the rules to describe
all value-sensitive properties of the operations. (Therefore, a value-insensitive
data structure is just a data structure with empty set of rules.) For example, a
priority queue can be defined as (E, P, R) where

– each data element e ∈ E stores a key value x;
– P includes operations of insert(x), delete(x), change key(x, x′), min, and

extract min; and
– R contains one rule: “the element accessed by min or extract min has the

minimum key value among all key values stored in E”.

That is, we consider a data structure as a repository of data elements (a bag
of balls) that users can check out and check in elements via some operations
following some rules. Observe that the only access or modification an operation
can make to E is to check out or check in an element, defined as the following
two basic operations :

– put(e): check in an element e into E, i.e., change the status from e �∈ E to
e ∈ E.

– get(e): check out an element e from E, i.e., change the status from e ∈ E to
e �∈ E.

358 M.T. Goodrich and J.Z. Sun

Any operation is described as the combination of put and get plus some rules
to follow. For example, the change key operation in the above priority queue
consists of a get(e) and a put(e′); and the min operation consists of a get(e) and
a put(e) following the rule that e contains the minimum value in E. Note that, as
showed with the min, even if we just want to take a look at an element, we need
to get it from E then put the same element back into E. In order to distinguish
the two basic operations get and put and the original operations provided to
users by the checkee, we call the original operations data operations.

2.2 Integrity and Validity

The correctness of an operation then bears two meanings: integrity and validity,
which we describe in the following.

– Integrity refers to the authentic execution of each get and put. That is, a)
e ∈ E is “true” before the execution of get(e) and becomes “false” after it;
and b) e ∈ E is “false” before the execution of put(e) and becomes “true”
after it.

– Validity of an operation means that all rules associated to this operation are
followed, such as min indeed gets the minimum value.

In another word, the integrity is to get or put a ball in the bag honestly, and
the validity is to pick the right ball. The data structure D functions correctly if
and only if the integrity and the validity are both guaranteed.

2.3 Checking Integrity and Validity Separately

Recall that we define the put and get as basic operations and the original opera-
tions supported by the data structure D as data operations. Given a data struc-
ture D (the checkee), we follow the encapsulation model to design a checker and
place it in between of users and D. The checker audits the queries and answers
communicated between users and D and reports errors. It maintains a (E, P, R)
description of D and checks the integrity and the validity in two separate com-
ponents.

The validity is checked online. The checker appends additional data operations
to a user’s data operation and sends them together to the checkee. Based on
the results of the additional operations, validity of the user’s operation can be
verified. Here we must augment D in advance to make it capable of certifying the
validity of one data operation with the results of some other data operations. We
call this technique the self-certification of D, which we will illustrate with SDS
in Section 3. Since the validity checking is done online and there is no need to
keep a trail, this part of the checker takes constant space. Furthermore, the self-
certification of SDS in this paper takes O(1) storage invasions and the additional
data operations appended to each user’s data operation are done in O(1) time
at the checkee. It remains open to do self-certification for other value-sensitive
data structures (such as priority queues) with O(1) storage invasions and O(1)
time overhead.

Checking Value-Sensitive Data Structures in Sublinear Space 359

In order to check the integrity, the checker transforms every data operation
it sends to the checkee (including those of users and those appended by the
checker itself) into basic operations and maintains a transcript of the data oper-
ations in the form of a sequence of basic operations. It then checks the integrity
offline, i.e., to ensure that the basic operations recorded in the transcript are
executed honestly at D, by using Blum et al.’s hash-based method in [3]. (See
Section 3.3.) Since the transcript can be encoded in O(log n) space using the
ε-biased hash functions, this part of the checker takes O(log n) space. Note that
a data operation with constant size of input and output will be transformed into
the combination of constant number of basic operations, regardless of the run-
ning time of that data operation at D. Therefore this integrity checking process
brings O(1) time overhead to any data structure that is already self-certificated.

The model of our checking scheme is showed in Figure 1. Next we’ll use SDS
as a concrete example to demonstrate how to design sublinear space checkers
for value-sensitive data structures using our scheme. In Section 3.2 we show how
to do self-certification and online validity checking for SDS. This part is not
a uniform procedure for all data structures. It must be individually designed
for each data structure. For many value-sensitive data structures, it could be
a challenging task to do self-certification with non-excessive invasions. This is
why our work is not a complete solution to Blum et al.’s open problem but
only a feasible approach. In Section 3.3 we cite the method provided in [14,3] to
show how to check the integrity of a sequence of put and get operations. This
part is uniform for the integrity checking of all data structures. The two parts
together give a complete checker for SDS, as well as an approach to checking
other value-sensitive data structures.

3 Checking Search Data Structures (SDS) in Log Space

3.1 The Search Data Structures (SDS)

SDS=(E, P, R) is defined as follows. Each element in E contains a key value,
and the values are comparable according to a total order. P includes the op-
erations insert(x), delete(x), search(x) predecesor(x), succesor(x), min and
max.2 Rules in R are summarized into two groups in the following.

1. Operation search(x) returns an element e ∈ E, if x is the key value e; or
returns “not exist” if x is not the key value of any e ∈ E.

2. Key values of the elements returned by predecessor(x), successor(x), min,
and max follow the sorted order of all values stored in E. (Predecessor of
the minimum and successor of the maximum are “null”.)

2 Some description to (a succinct version of) SDS contains only three operations
insert(x), delete(x), and search(x). However, it is straightforward to augment any
implementation of the succinct SDS to support the rest operations in the context by
using O(1) size storage invasions and O(1) time operation invasions. Therefore any
checker of the (full version) SDS in this paper also checks the succinct version SDS
with the same efficiencies and invasions, under Blum et al.’s model.

360 M.T. Goodrich and J.Z. Sun

User

online validity error

hash value of the “get” sequence

hash value of the “put” sequence

verify

integrity

offline scan

Operation

Operation 1

Operation 2

… …

verify

validity
Result

YES
Result

offline integrity error

Data

initiate new

sequences

NO

NO

YES

Fig. 1. The scheme of checking value-sensitive data structures

In one word, SDS organizes a set of values in sorted order and supports order
preserving queries and updates. An efficient SDS would take O(n) space for
storage, O(log n) time to do each search, insert, or delete operation, and O(1)
time to do each of the other operations. A balanced binary search tree with
modest augmentations to support a sorted linked list as well (details are omitted)
is an example of efficient SDS implementations.

3.2 Self-certification and Validity Checking

We describe this process demonstrated with SDS.

Self-certification. Self-certification of a data structure D = (E, P, R) includes
the following three tasks.

1. The augmentation of each data element in E to associate additional infor-
mation to the element via non-excessive storage invasions. Here for SDS we
augment each element e ∈ E to be e = (x, predecessor(x), successor(x), i),
where x is the key value stored in e. Here predecessor(x) and successor(x)
associated to e are the key values of (not the links to) the predecessor and
successor of x in E according to the sorted order, and i is an integer index
indicating the order (discrete time) of insertion of x.

Checking Value-Sensitive Data Structures in Sublinear Space 361

Any data operation that updates the SDS elements, such as an insertion
or deletion, must be augmented accordingly as well in order to update the
augmented data items consistently. For example, insert(x) now needs to
update the elements containing the values predecessor(x) and successor(x)
after adding a new element containing x into E. This is like the process of in-
serting a new node into a linked list. The element containing predecessor(x)
must update its successor from successor(x) to x, and the element contain-
ing successor(x) must update its predecessor from predecessor(x) to x. We
omit the details of augmenting each SDS data operation.

2. A mapping from each data operation in P to a sequence of data operations
in P . When auditing the user-checkee correspondence, the checker will sub-
stitute the corresponding sequence of operations for each user operations,
and use the results of the sequence of operations as a certificate to verify
the result of the user operation. Operation invasions caused by this mapping
must be non-excessive, meaning that the time complexity of the sequence
of operations at D must not exceed that of the original user operation. The
mapping for SDS operations is showed in Table 3.

3. Algorithms for the checker to verify the result of each data operation with
the results of the sequence of data operations it maps to. This verification
checks the validity of the result of a user operation. (I.e., if there is no
integrity error, then the operation result follows the rules in R correctly.)
The verification algorithms for SDS are showed in the next.

Table 3. The operation mapping of SDS for validity checking

Data operation from user Sequence of data operations sent to D

insert(x) predecessor(x), successor(x), insert(x)
delete(x) predecessor(x), successor(x), delete(x)
search(x) search(x), predecessor(x), successor(x)

predecessor(x) predecessor(x), successor(x)
successor(x) predecessor(x), successor(x)

min min
max max

Verification algorithms. Algorithms showed below to verify the validity of SDS
data operations are straightforward and involve only simple value comparisons.
It is easy to justify the soundness of these algorithms, and to see that verifying
each data operation takes O(1) time and O(1) space at the checker.

Recall that an element in E with key value x is e = (x, y, z, i) where y and
z are the predecessor and successor of x. To assist the presentation, we also
denote by (x1, y1, z1, i1) the element returned by the operation predecessor(x),
and (x2, y2, z2, i2) the element returned by the operation successor(x).

– Certifying insert(x) or delete(x) with predecessor(x) and successor(x).
Checker verifies if z1 = x2, y2 = x1, and x1 < x < x2. Certifying delete(x)

362 M.T. Goodrich and J.Z. Sun

is similar. Note that if one of the predecessor(x) and successor(x) is null,
then verifying the other one still suffices the certification of validity. We omit
the details of doing so. We also omit the details when x is already in E be-
fore the insert(x) or when x �∈ E before the delete(x), for which cases the
verification is still necessary and the process of doing it is similar.

– Certifying search(x) with predecessor(x) and successor(x).
• If the search result is an element containing x, then the checker verifies

if z1 = x = y2.
• If it returns “not exist”, then the checker verifies if z1 = x2, y2 = x1,

and x1 < x < x2.
Again, if one of the predecessor(x) and successor(x) is null, then verifying
the other one is sufficient. Details are omitted.

– Certifying predecessor(x) with successor(x) or certifying successor(x) with
predecessor(x). Checker verifies either z1 = x = y2 or (z1 = x2, y2 = x1, and
x1 < x < x2). We again omit the cases when predecessor(x) or successor(x)
is null.

– Certifying min or max by itself. Simply verify if the predecessor value of the
assumed min is null, or the successor value of the assumed max is null.

The above algorithms yield the following result. We omit the proof in this
preliminary version.

Theorem 1. We can check the validity of each SDS data operation in O(1) time
and O(1) space, by introducing storage invasions of O(1) size per data element
and operation invasions of O(1) time per user operation, which are minimal.

3.3 Checking Integrity with Blum et al.’s Method

Properties of ε-biased hash functions were studied and fast algorithm to update
the hash values was provided by J. Naor and M. Naor in [14]. Its application in
checking value-insensitive data structures was discovered by Blum et al. in [3].
In fact this technique checks not only the value-insensitive data structures but
the integrity of any data structures. (The reason it works solely for checking
value-insensitive data structures is that these data structures have empty rules
so there is no validity to check.) We present the method in [3] of using hash-based
technique to check integrity in the following.

– Checker maintains an integer timer t that increases by 1 after each put,
which determines the index i of an element e = (x, y, z, i) that is put into E.

– Checker maintains two transcripts W and R to record respectively the se-
quence of elements that have been put into E and the sequence of elements
that have been got from E. Checker transforms every data operation sent
to the checkee (including the user’s operations and the checker’s invasive
operations appended to it for validity checking) into the form of put and get,
and appends them to the sequences W and R accordingly.

Checking Value-Sensitive Data Structures in Sublinear Space 363

– If an element e is got out of E and put back later, the time stamp i of it
must be updated to the current time t. In another word, the element put
back to E is not the one that was got out but a new element. This means
that each element is involved in exactly one put and one get in its life cycle.
Elements that are still contained in E have not experienced the get.

– Checker periodically scans E to get all elements out. Thus during this period
of time the transcripts R for the sequence of get and W for the sequence of
put should be identical. Comparing the two transcripts is sufficient to verify
the integrity of the execution of the basic operations put and get during the
past period. (The elements scanned are put back to E after the verification,
and those put operations are recorded in a new transcript W starting with
a new period of integrity checking.)

– Instead of maintaining R and W (each of length O(n)) explicitly, the checker
maintains the description of an ε-biased hash function h and two hash values
h(R) and h(W) as fingerprints of R and W . This takes O(log n + k) space
with a constant parameter k. Whenever a new get or put is appended to R or
W , the checker updates h(R) or h(W) accordingly. The amazing properties
of ε-biased hash functions allow updates to be done bit by bit, without re-
hashing the hash value, taking only O(k) time to record a get or put. All
together, the integrity checker uses O(log n) space and linear time (amortized
O(1) time per operation) with a constant parameter k, and reports integrity
errors offline (periodically) with probability 1 − 2−k.

We omit further details of how this method works. Interested readers are
referred to read [14,3]. The result of integrity checking is in the following.

Theorem 2. [14,3] The integrity of any data structure of size O(n) can be
checked with probability 1 − 2−k, k is a constant, by a hash-based checker using
O(log n) space and amortized O(1) time per operation. Such an integrity checker
commits O(1) size storage invasions per data element and O(1) time operation
invasions per data operation, which are minimal.

4 Conclusion

We have provided an approach to designing sublinear space checkers for value-
sensitive data structures. The framework and the integrity checking component
apply for all data structures. The validity checking component must be individ-
ually designed for each value-sensitive data structure. We’ve only showed as a
demonstration how to do it on SDS. The two components in Section 3.2 and 3.3
together fulfill a log space, optimal time, and minimal invasion checker for SDS.
We conclude with this result in the following theorem, which can be viewed as
a step towards a positive answer to the open problem of Blum et al. in [3].

Theorem 3. We can check a search data structure (SDS) with probability 1 −
2−k, k is a constant, in O(log n) space and amortized O(1) time per operation,
while committing only minimal storage and operation invasions.

364 M.T. Goodrich and J.Z. Sun

References

1. Amato, N.M., Loui, M.C.: Checking linked data structures. In: FTCS-24: 24th
International Symposium on Fault Tolerant Computing, Austin, Texas, pp. 164–
175. IEEE Computer Society Press, Los Alamitos (1994)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proc. of the 2002 ACM Symp. on Principles of Database
Systems (PODS 2002) (2002)

3. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12, 225–244 (1994)

4. Bright, J.D., Sullivan, G.: Checking mergeable priority queues. In: Digest of the
24th Symposium on Fault-Tolerant Computing, 1994, pp. 144–153. IEEE Com-
puter Society Press, Los Alamitos (1994)

5. Bright, J.D., Sullivan, G.: On-line error monitoring for several data structures. In:
Digest of the 25th Symposium on Fault-Tolerant Computing, 1995, pp. 392–401.
IEEE Computer Society Press, Los Alamitos (1995)

6. Bright, J.D., Sullivan, G., Masson, G.M.: Checking the integrity of trees. In: Digest
of the 25th Symposium on Fault-Tolerant Computing, 1995, pp. 402–411. IEEE
Computer Society Press, Los Alamitos (1995)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT & McGraw-Hill (2001)

8. Devanbu, P., Stubblebine, S.: Stack and queue integrity on hostile platforms. IEEE
Tran. Software Engineering 28(1), 100–108 (2002)

9. Finkler, U., Mehlhorn, K.: Checking priority queues. In: Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms, Baltimore, Maryland, pp.
901–902 (1999)

10. Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java, 2nd edn.
Wiley, Chichester (2001)

11. Kratsch, D., McConnell, R., Mehlhorn, K., Spinrad, J.: Certifying algorithms for
recognizing interval graphs. In: SODA 2003, pp. 158–167 (2003)

12. Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1999)

13. Muthukrishnan, S.: Data streams: algorithms and applications. Technical report,
Rutger (2003)

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM J. Comput. 22(4), 838–856 (1993)

15. Sullivan, G., Wilson, D., Masson, G.: Certification trails for data structures. In:
Proceedings of the 21st Annual Symposium on Fault-Tolerant Computing, pp.
240–247 (1991)

16. Sullivan, G., Wilson, D., Masson, G.M.: Certification of computational results.
IEEE Transactions on Computers 44(7), 833–847 (1995)

17. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. Journal
of the ACM 44(6), 826–849 (1997)

	Checking Value-Sensitive Data Structures in Sublinear Space
	Introduction
	Theoretic Model
	Related Work
	Our Contribution

	Our Idea
	Describing Value-Sensitive Data Structures
	Integrity and Validity
	Checking Integrity and Validity Separately

	Checking Search Data Structures (SDS) in Log Space
	The Search Data Structures (SDS)
	Self-certification and Validity Checking
	Checking Integrity with Blum et al.'s Method

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

