
Super-Efficient Verification of Dynamic
Outsourced Databases�

Michael T. Goodrich1, Roberto Tamassia2, and Nikos Triandopoulos3

1 Dept. of Computer Science, UC Irvine, USA
goodrich@ics.uci.edu

2 Dept. of Computer Science, Brown University, USA
rt@cs.brown.edu

3 Dept. of Computer Science, University of Aarhus, Denmark
nikos@daimi.au.dk

Abstract. We develop new algorithmic and cryptographic techniques for
authenticating the results of queries over databases that are outsourced
to an untrusted responder. We depart from previous approaches by con-
sidering super-efficient answer verification, where answers to queries are
validated in time asymptotically less that the time spent to produce them
and using lightweight cryptographic operations. We achieve this property
by adopting the decoupling of query answering and answer verification in
a way designed for queries related to range search. Our techniques allow
for efficient updates of the database and protect against replay attacks
performed by the responder. One such technique uses an off-line audit
mechanism: the data source and the user keep digests of the sequence of
operations, yet are able to jointly audit the responder to determine if a
replay attack has occurred since the last audit.

1 Introduction

Large databases are increasingly being outsourced to untrusted third parties
(responders) and without some kind of verification mechanisms, users cannot
trust the answers to queries. Thus, an important component of any outsourced
database system is the security of its answer-verification process. Moreover,
database outsourcing is typically realized for efficiency purposes in a distributed
setting where clients are machines that have low computational power running
applications that demand authentic responses of dynamic data at high rates.
In this context, the cryptographic protocols for trustworthy answer verification

� Research supported in part by the U.S. National Science Foundation under grants
IIS–0713403, IIS-0713046, CNS-0312760 and OCI–0724806, the Institute for Infor-
mation Infrastructure Protection under an award from the Science and Technology
Directorate at the U.S. Department of Homeland Security, and the Center for Algo-
rithmic Game Theory at the University of Aarhus under an award from the Carls-
berg Foundation. The views in this paper do not necessarily reflect the views of the
sponsors.

T. Malkin (Ed.): CT-RSA 2008, LNCS 4964, pp. 407–424, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

408 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

should incur small communication and computational overheads that ideally
depend only on the answer size.

This paper studies protocols for authenticating the integrity of outsourced
databases in ways that achieve high security and efficiency levels. Most database
queries boil down to one-dimensional range search queries—asking to report
those records having values of a certain field within a given interval—and most
existing techniques for authenticating such queries have O(log n + t) commu-
nication and computational costs, where n is the total number of records in
the database and t is the number of returned records. Instead, our goal is to
design cryptographic techniques that allow super-efficient answer verification,
that is, allow authentication of range search queries with only O(t) associated
costs, even when t is o(log n). Furthermore, we wish our protocols to involve
lightweight cryptographic operations with, ideally, only O(1) modular exponen-
tiations performed during the answer-verification process.

Additionally, we seek authentication solutions that perform well even if the
database evolves frequently over time. The main challenge in this context is that
a malicious responder may perform a replay attack, i.e., provide verifiable (e.g.,
signed) but stale or currently invalid information (e.g., that was originated from
the owner long in the past) to a client. But here is exactly where super-efficiency
can hurt us, since we want to avoid a verification method that requires more
than O(t) work on the part of the client, and we want to avoid requiring the
data owner to process (e.g., re-sign) all the records of the database with each
update. Ideally, we would like a dynamic system that is super-efficient for the
client, and immune to replay attacks launched by the responder, and that can
process updates efficiently for the data owner and the responder.

Super-efficient verification is a theoretically interesting concept, since it ad-
vances the design of data authentication protocols by exploring the possibility
of removing unnecessary computations at the verifier. But it is also a practically
important property in database systems, since it provides trustworthy function-
ality in dynamic and highly distributed data dissemination models, where small
mobile and computationally limited devices query continuously and at high rates
data that is outsourced to untrusted, geographically dispersed, proxy machines.

Related Work. Extensive work exists on authenticated data structures [19, 25],
which model secure data querying in adversarial environments, where data cre-
ated by a trusted source becomes available to users through queries after it is
replicated to an untrusted remote server. The general approach is to augment
the data structures used by the source and the responder to support authentica-
tion protocols such that, along with an answer to a query, a cryptographic proof
is provided to the user by the server that can be used to verify the authenticity
of the answer. Research has mostly focused on hash-based authentication pro-
tocols, where extensions of Merkle’s hash tree [16] are used for authenticating
membership queries (e.g., [6, 11, 19, 26, 27]) or more general query types, such
as basic operations on relational databases [9], pattern matching and orthogo-
nal range searching [15], graph connectivity and geometric searching [13], XML
queries [4, 8], and two-dimensional grid searching [1]. Many of these queries

Super-Efficient Verification of Dynamic Outsourced Databases 409

essentially boil down to one-dimensional range search queries. General authen-
tication techniques have been also proposed for certain query classes, including
read-write operations on memory cells [5], queries on static data that are mod-
eled as search DAGs [15], and decomposable queries over sequences and iterative
searches over catalogs [13]. These schemes are not super-efficient as they involve
answer proofs and verification times that asymptotically equal the complexity
of answering queries. In [26], for hash-based authentication of set-membership
queries, it is showed that for a set of size n, all costs related to authentication
are at least logarithmic in n in the worst case. Related work on consistency and
privacy of committed databases appears in [6, 17, 22]. Authenticated dictionaries
in the two-party model, where the source keeps minimal state to check the in-
tegrity of its outsourced data, appear in [10, 24]. Finally, in [12] it is showed how
to use the RSA accumulator [7] to realize a dynamic authenticated dictionary
that achieves constant (thus super-efficient) verification costs at the client.

There has also been a growing body of work on authenticating queries in
outsourced databases. The model is essentially the one of authenticated data
structures, but now the data sets are relational databases residing in exter-
nal memory and are queries through SQL queries which are founded on one-
dimensional range search. In [9, 13] range queries are supported with O(log n+t)
authentication costs. In [21], cryptographic hashing and accumulators are used in
the first hash-based super-efficient, but static, verification scheme that achieves
O(log t) communication cost and O(t) verification cost, whereas in [23], static
hash trees, where each tree node is individually signed, are used to authenticate
range queries, incurring cost of O(t) signature verifications. In [20] signature ag-
gregation is used to accelerate the verification of the (individually signed) answer
records. Both schemes achieve super-efficiency, but not coupled with both effi-
cient updates and replay-attack safety. Finally, in [14] authentication techniques
based on B-trees and aggregated signatures are studied experimentally.

Table 1. A summary of how our results are qualitatively compared with existing work

[5, 13] [21, 18] [20] this work
super-efficient • • •
dynamic • • •
replay safe • n.a. •

Our Contributions. We provide the first super-efficient authentication tech-
niques for one-dimensional range searching (or queries based on it), that are
both dynamic and replay safe. Our schemes can support fast query time for
the untrusted responder, super-efficient verification for clients, and fast update
time for the data source. Our main technique for achieving these properties in-
volves the use of an optimal authentication structure (employed separately by
the source and the responder) that divides a hash tree in a recursive fashion so
that it has O(log∗ n) “special” levels (i.e., a number proportional to the inverse of
the tower-of-twos function). The database owner needs to authenticate only the
hash values of tree nodes that lie on the special levels, which significantly speeds

410 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

up data updates while also simplifying the means to achieve super-efficiency. In-
deed, for all practical applications, there are only a constant number of special
levels in our scheme. Table 1 summarizes the comparison of our work with the
best existing methods for authentication of range searching in outsourced data.

To avoid the possibility of replay attacks, we provide two possible solutions.
One solution involves the use of an RSA accumulator to allow clients to verify a
single secure aggregation to check that the signed responses to a query are still
valid even if some individual signatures are possibly quite old. We use a source-
responder work trade-off to perform updates in O(

√
n) time, which is efficient

for moderately large values of n. Our second solution provides a different trade-
off, between the update cost at the source and responder and the immediacy
in detecting a replay attack. We show how to build an off-line auditing mecha-
nism to detect, and thereby deter, replay attacks through periodic audits of the
responder. The key contribution here is that the auditor mechanism, based on
an off-line memory-checking test introduced in [5], is implemented jointly but
non-interactively by the source and the user and needs only store and process
a constant-sized digest to check the responder (so that auditing is also a super-
efficient computation), and that the responder cannot employ a replay attack
without being caught by the auditing mechanism.

Section 2 describes our authentication model. Section 3 describes our ap-
proach for verifying answers to range queries by decoupling answer verification
from query answering, and presents our core authentication structure designed
to optimally support super-efficient verification. Section 4 describes a dynamic
extension of our scheme that provides a trade-off in update and query costs, and
Section 5 presents an augmentation of our scheme that realizes an efficient off-
line auditing mechanism. Section 6 discusses extensions to support verification of
other query types that are related to range searching, and also our final conclud-
ing remarks. Focused on one-dimensional range search and due to lack of space,
this extended abstract omits some details of our design and proof techniques.

2 Authentication Model

We examine data authentication in the setting commonly used in today’s Inter-
net reality, where a database becomes available for queries at an intermediate
entity that is distinct from the data owner and untrusted by the end user. In
particular, we consider the following three-party data querying and authentica-
tion model. A data source S creates (and owns) a dynamic data set D, which
evolves through update operations, and maintains an authentication structure
for D, appropriately designed for a specific query type. Data set D is stored
by a responder R who maintains the same authentication structure for D and
answers queries issued by a user U . Along with an answer a to a query q, R pro-
vides U with a cryptographic proof p that is computed using the authentication
structure of D; p is used by a verification process ran by U to check the validity
of answer a subject to query q. On any update for D issued by the source, D
and the authentication structure are appropriately updated by S and R.

Super-Efficient Verification of Dynamic Outsourced Databases 411

The merits of this query model include scalability, decentralization and load-
balance: by outsourcing D, S minimizes its operational costs by processing only
data updates (e.g., it minimizes the time being on-line) and heavy query traffics
of an unlimited population of users can be securely handled by one (or more) un-
trusted responders (e.g., proxy servers), without the need of creating or updating
any trust relations, or installing any secure component at the server.

In this model, our goal is to design an authentication structure that allows
trustworthy answer verification, that is, to check that the answer is as accurate
as it would have been, had the answer come directly from S. To achieve this,
we use the following general approach. Using a PKI, we assume that U knows
the public key of S. The corresponding secret key is used by S in combination
with some cryptographic primitives to produce one (or more) authentication
strings (or digests) for data set D, which constitute short descriptions of D that
capture structural information related to the type of queries of interest. Given
any query q, R uses its authentication structure to produce a proof p for the
answer a of q. On input a query-answer pair (q, a), a proof p, and the public key
of S, U runs a verification algorithm that either accepts a as valid or rejects it as
invalid: p securely relates a, q to (some of) the authentication string(s), which are
authenticated by S using a signature scheme. We call the set of authentication
and communication protocols and verification process, an authentication scheme.

We now describe the security requirement that any authentication scheme
must satisfy. Security is captured as two individual requirements, modeling the
desired property: for all queries the verification process should be trustworthy,
accepting an answer-proof pair if and only if the returned answer is the correct
answer to the query. First, we require completeness, which ensures that for any
query the authentication structure generates a correct corresponding answer-
proof pair that the verification algorithm accepts. Second, we require soundness,
which ensures that if, given a query q, an answer-proof pair (a, p) is accepted by
the verification algorithm, then a is the correct answer to q. With respect to this
requirement, we assume the following threat model. The user U trusts only the
source S, not the responder R which is modeled as an entity that is controlled
by an adversary 1. R can maliciously try to cheat, by providing an incorrect
answer to a query and forging a false proof for this answer. Accordingly, the
soundness requirement dictates that given any query issued by U , no polynomial-
time responder R, having oracle access to the algorithm that the source runs
to generate the authentication strings,2 can come up with an answer-proof pair,
such that the answer is incorrect, yet the verification algorithm accepts the
answer as authentic. This definition implies safety against replay attacks.

In this work, we are interested in secure authentication schemes for ver-
ifying the results of range search queries that introduce low computational
and communication overhead to the involved parties. In particular, we seek for

1 We do not consider denial-of-service attacks but assume that R always participates
in the communication protocol and interacts with S and U .

2 That is, R observes the authentication strings of D that are produced by S over
time or selectively query for the authentication strings of specially chosen data sets.

412 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

authentication schemes that primarily incur low verification time, called veri-
fication cost. Other important secondary cost parameters are the update cost
(for updating the authentication structure at S and R after updates) and the
query cost (for producing the answer-proof pairs at R after queries), as well as
the proof size. In the interest of super-efficient verification, we wish to design
schemes that allow very fast answer verification, in time asymptotically less than
the time needed for answer generation and tolerate reasonable trade-offs in the
update and query costs or the update costs and the immediacy of replay-attack
detections.

In our authentication schemes, we use standard cryptographic tools, such as
collision-resistant hash functions and digital signatures, and the dynamic RSA
accumulator [2, 3, 7]. Given a set X of size n, an accumulator can be used to
incrementally and order-independently (through bivariate function f(·, ·)) com-
pute a constant-size accumulation value A(X), with respect to which there exist
(i) constant-size witnesses for all accumulated elements in X , and (ii) a constant-
time computationally secure verification test that accepts witnesses of only el-
ements existing in X . The RSA accumulator results by setting f(a, x) = ax

mod N as the result of accumulating new element x in the current accumulation
value a, where x is a prime number in the appropriate range and N is an RSA
modulo, thus, A(X) = a

∏
x∈X x mod φ(N)

0 , where φ(·) is Euler’s function and a0
an initial (public) value. Membership of x with witness w in set X is tested as
wx = A(X), which is a secure test: under the strong RSA assumption [3, 7], it is
computationally infeasible to find items that are not accumulated in the set and
corresponding fake witnesses that pass the test. In [12], it is showed how to use
this primitive in our three-party authentication model for optimally verifying set
membership, that is, how to update elements’ witnesses without the trapdoor
information φ(N), using O(

√
n) modular operations and multiplications.

3 A New Super-Efficient Authentication Structure

In this section, we present a new authentication structure that allows super-
efficient answer verification of one-dimensional range search queries and that is
the key component of the authentication schemes presented in the next sections.

Let D � {(k1, v1), . . . , (kn, vn)} be a set of n key-value pairs (k, v), where each
key k is a distinct element of a totally ordered universe K, where, for simplicity
and without loss of generality, k1 < . . . < kn and n = 2d. A one-dimensional
range search query q = [qL, qR] on D is an interval with qL, qR ∈ K∪{−∞, +∞},
and maps to answer Aq � {(k, v) ∈ D : qL ≤ k ≤ qR}, the subset of D
consisting of all pairs whose keys are in [qL, qR]. We assume that answer Aq

can be computed by the responder R in O(log n + t) time, using some optimal
technique (e.g., searching in a balanced range tree), where n = |D| and t = |Aq|.

Our approach for achieving super-efficient verification of range searching is
to decouple the authentication structure from the search data structure in or-
der to authenticate a collection of certain relations defined over D. Let the
successor relation σ(X), defined over a totally ordered set X with n elements,

Super-Efficient Verification of Dynamic Outsourced Databases 413

be the set of size n + 1 that consists of all ordered pairs of consecutive ele-
ments in X , augmented with pairs (−∞, x1) and (xn, +∞), where x1 and xn

are the smallest and largest elements of X , respectively (e.g., σ({1, 5, 2}) =
{(−∞, 1)(1, 2)(2, 5)(5, +∞)}). The successor relation of the keys of D is the
essential information for verifying answers of range search queries on D.

Fact 1. Let q = (qL, qR) be a range search query on set D of key-value pairs,
KD be the set of keys in D and Aq = {(ki1 , vi1), . . . , (kit , vit)}, ki1 < . . . < kit , be
a set of key-value pairs. Then A = Aq if and only if there exist keys ki0 , kit+1 ∈
KD such that: (1) {(ki0 , ki1), (ki1 , ki2), . . . , (kit−1 , kit), (kit , kit+1)} ⊆ σ(KD) and
A ⊆ D; and (2) ki0 < qL ≤ ki1 and kit ≤ qR < kit+1 .

Indeed, keys ki0 , kit+1 correspond to the boundaries of the range interval, each
one possibly coinciding with fictitious keys −∞ or +∞, with (ki0 , kit+1) ∈ σ(KD)
if Aq = ∅. The first condition guarantees that the answer A consists of t consec-
utive key-value pairs of data set D, whereas the second that the query range is
exactly covered by the answer range. Thus, in our formulation, answer correct-
ness for range searching captures both inclusiveness (all returned pairs are in
the query range) and completeness (all pairs in the query range are returned).

It follows that, if Aq = {(ki1 , vi1), . . . , (kit , vit)}, ki1 < . . . < kit , is the cor-
rect answer to query q, Aq can be authenticated by verifying (i) t pairs of the
key-value relation, namely, that (kij , vij) ∈ D, 1 ≤ j ≤ t, (ii) t + 1 pairs of the
successor relation on the keys, namely that (kij , kij+1) ∈ KD, 0 ≤ j ≤ t, where
ki0 = −∞ if ki1 = k1, or ki0 = ki1−1 otherwise, and, similarly, kit+1 = +∞
if kit = kn, or kit+1 = kit+1 otherwise, and, finally, (iii) t + 4 inequalities
(i.e., the ordering of these pairs and that ki0 < qL ≤ ki1 , kit ≤ qR < kit+1).
Assuming uniquely defined representations for the key-value and successor re-
lations, we denote by θ(q) the resulting set of 2t + 1 pairs to be verified, i.e.,
θ(q) � {(ki1 , vi1), . . . , (kit , vit)} ∪ {(ki0 , ki1), . . . , (kit , kit+1)}.

By Fact 1, we have that the problem of authenticating any range search query
q on a set D of size n is reduced to the problem of authenticating the membership
of the relations of set θ(q) (of size O(|Aq |) = O(t)) in D∪σ(KD) (the union of the
key-value and successor relations defined by D, a set of size O(n)). We use this
property to decouple the answer verification from the answer generation by de-
signing an authentication structure that for any query q provides super-efficient
verification of the corresponding special relations θ(q) over D. Our construction
securely and compactly encodes and authenticates these special relations by as-
sociating, in a cryptographically sound manner, the answer Aq, a corresponding
proof p and, overall, the relations in θ(q), with one or more authentication strings
that are signed by the source. This structure is used both by S, for computing
and signing the authentication strings, and by R, for producing the proofs that
will allow U to verify the answer to queries.

Authentication Structure. Let D be the data set as before. Our authentica-
tion structure uses a hash tree built over D that essentially encodes the relations
D and σ(KD). In particular, let h be a collision-resistant hash function. We build

414 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

a balanced hash tree T of depth d, storing at the leaves from left to right the
hash values h1, . . . , hn defined as follows, where ‖ denotes string concatenation:

– hi � h(h(ki) ‖ h(vi) ‖ h(ki+1)), i = 2, . . . , n − 1, and
– h1 � h(h(−∞) ‖ h(k1) ‖ h(v1) ‖ h(k2)), hn � h(h(kn) ‖ h(vn) ‖ h(+∞)).

Thus, the hash values at the leaves encode information about various relations:
for 2 ≤ i ≤ n − 1, hi is the digest of the key-value relation (ki, vi) and suc-
cessor relation (ki, ki+1), h1 is the digest of relations (k1, v1), (−∞, k1) and
(k1, k2), and hn is the digest of relations (kn, vn), (kn, +∞). Internal nodes in
T store the hash of the concatenation of the hash values stored at their chil-
dren. So, any node v in T stores a hash value hv that is the digest of the
key-value and successor relations Rv that are associated with the leaves of the
subtree Tv of T rooted at v. For instance, a hash value stored at the parent
u of two sibling leaf nodes j and j + 1 is the digest of the set of relations
Ru = {(kj , vj), (kj+1, vj+1), (kj , kj+1), (kj+1, kj+2)}, whereas the hash value hr

of the root r of T is the digest of all relations Rr = σ(D) ∪ D defined in T .
As we know, in order to authenticate answer Aq, it suffices to authenticate set

θ(q); consequently, due to the collision resistance property of function h and the
fact that hv is the digest of relations Rv associated with the leaves of tree Tv,
it suffices to (1) authenticate any set Sq = {hv1 , . . . , hvm} of hash values stored
at tree nodes v1, . . . , vm such that the set of relations R(Sq) = Rv1 ∪ . . . ∪ Rvm

strictly contain set θ(q), and (2) provide, as proof p, the collection of hash values
and relations that associates Aq with Sq in T . Indeed, Sq contains digests that
serve as a cryptographic commitment of θ(q) (computational binding by the
collision resistance of h), thus when, given the answer Aq and the proof p, the
authenticated hashes in Sq can be recomputed, then one can be assured—subject
to the underlying security assumptions of the cryptographic primitives—that Aq

is correct, simply by checking the validity of Aq with the test of Fact 1. Set Sq

is not uniquely defined but corresponds to a specific query q. Our goal is to
define a fixed collection of special hash values S such that any query q can be
super-efficiently verified by authenticating membership of set Sq ⊂ S in S. In the
simplest case, S can authenticate S by separately signing its hash values; Aq is
verified at hashing and signing costs proportional to |R(Sq)| and |Sq| respectively.

Super-efficient Verification. An efficient approach is to set S = hr, i.e.,
to use as special hash value for all queries the root hash hr. Then, for any
query q, Aq |Aq| = t, can be efficiently associated with hr, by considering as
proof the O(log t) subtrees of total size O(t) that exactly cover the leaves in T
that the relations in θ(q) are associated with, along with the paths connecting
these subtrees to r through O(log n) other tree nodes. The total verification
cost is O(log n + t), which is not super-efficient whenever t = o(log n) (e.g.,
t = O(log log n) or t is constant). We improve the verification cost as follows.

Suppose that we only query for answers of size t < log n (see Figure 1).
We define the set S1 of special hash values to contain the hashes h1

1, . . . , h
1
m1

,
m1 = n/ logn, at level �1 = log log n of the hash tree. It is easy to see that
any answer of size t is covered by the subtrees of at most two nodes at level

Super-Efficient Verification of Dynamic Outsourced Databases 415

...

log n

...

log n

log log n

h1
n

log nh1
2

h2
2

h2
log n

log log n

...
log log n

h1
1

h2
1

q

hr

log log log n

Fig. 1. Our new authentication structure. The set S of special hash values in the tree is
defined recursively and consists of Θ(n) values residing at log∗ n levels: hr at level log n,
{h1

1, ...} at level log log n, {h2
1, ...} at level log log log n, etc. Super-efficient verification

is achieved: answer Aq of size at most t = log log n to query q is verified by hashing
along O(log t) nodes in the hash tree up to at most two special hash values and by
optimally verifying that these hash values are indeed special, i.e., belong in S.

�1, thus can be verified at O(log log n) cost and, if t is o(log n) and Ω(log log n)
we have an improvement and optimal performance. To further improve the ver-
ification cost in the case where t is o(log log n), we use the above technique to
recursively define additional special hash values over the n/ log n trees defined
by the special hash values in S1: we consider each one of the trees of size log n
rooted at level �1 and apply the above technique, assuming that t < log log n.
We define the set S2 of special hash values to contain the hashes h2

1, . . . , h
2
m2

,
m2 = m1

log n
log log n , at level �2 = log �1 = log log log n of the hash tree and answers

of size t with log log log n < t < log log n can be authenticated super-efficiently
at cost O(log log log n). We proceed as above: at the i-th step of the recursion we
define the set Si of special hash values, we stop before level log∗ n, effectively at
the level 2 (or some other small constant) of T and set S � hr∪S1∪. . .∪S(log∗ n)−1
as the final set of special hash values, which is of Θ(n) size3.

Our authentication structure lends itself to a first authentication scheme that
achieves super-efficient verification: an answer of size t is verified with O(log t)
hashing cost where O(1) special hash values need be authenticated, essentially as
being members of the set of special hash values S. In what follows, we consider
the case where authentication in S is performed using a signatures scheme, i.e.,
each value in S is separately signed by the source S. Updates on D are handled
by appropriately updating the hash tree T (by hashing and restructuring T
along a leaf-to-root path; see also Section 4), having S sign O(log∗ n) updated
special hashes. Replay attacks are eliminated by using time-stamps in the signed
statements to check the freshness of a valid signature; this is a state-of-the-art
solution (see, e.g., [13, 14, 19]) where time is partitioned into fixed and publicly

3 In fact |S| < n − 1, thus, S has smaller size than the trivial solution of S = T .

416 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

known time-quanta, and verifiable signatures on digests are accepted only if their
time-stamps belong in the current (at the time of verification), most recent, time-
quantum. For hash-based authentication, i.e., in the most practical setting where
only cryptographic hashing is used to produce the authentication strings, our
authentication structure achieves optimal performance with respect to both the
verification and the update costs. In particular, using the lower-bound framework
of [26], we can show that in the worst case the source needs to authenticate a
set S of Ω(n) special hash values in order to achieve verification costs that are
independent of the size n of the database, and that, in this case, time-stamping
and signature refreshing is an optimal technique against replay attacks. Thus:

Theorem 1. There exists a super-efficient authentication scheme for range-
search queries over a set of n key-value pairs with the following performance,
where t denotes the number of pairs returned by a query: (i) a range query is
answered in O(log n+t) time; (ii) the answer proof has size O(log t) and consists
of two signatures, two keys, and O(log t) hash values; (iii) the answer to a range
query is validated by performing O(t) arithmetic computations, O(t) hash oper-
ations, and O(1) signature verifications; (iv) an update results in O(log n) hash
operations (at both the source and the responder), O(log∗ n) signature genera-
tions (at the source) and O(n) signature renewals (at the source). This authen-
tication scheme is secure with respect to data authentication, safe with respect
to replay attacks, and optimal with respect to super-efficient verification in the
hash-based data authentication model.

4 Super-Efficient Dynamic Authentication Scheme

In this section, we propose an alternative technique that reduces the high update
cost of the previous, optimal but less practical, hash-based authentication scheme
to get the first super-efficient dynamic authentication scheme for range queries,
which provides reasonable trade-offs between the update and query costs.

In Section 3 we constructed a hash tree for a set D of n key-value pairs that
encodes information about the key-value and successor relations in D, and we
defined a set S of O(n) special hash values that are sufficient to support super-
efficient answer verification, provided there is an optimal (in terms of verification)
technique for authenticating set-membership queries. Recall that for any query,
there are at most two special hash values, out of the total O(n), that need to be
verified as members of S, and note that only queries with positive answer need
to be authenticated: a special hash value must be verified to be in set S.

We now describe our new authentication scheme. The main idea is to use a
dynamic RSA accumulator for authenticating set membership queries for the set
of special hash values S. This is performed as follows: the set S of special hash
values is accumulated to accumulation value α = A(S) and α is signed by the
source. Then, verifying that a special hash value belongs in S is performed in
two steps, and still in optimal way (O(1) verification cost): first, the hash value
together with the membership witness are used to verify that the hash value
was used by the accumulator in producing α and, second, the signature on α is

Super-Efficient Verification of Dynamic Outsourced Databases 417

verified. For security reasons, only the source knows the trapdoor information of
the accumulator; the responder does not know the trapdoor. It follows that the
verification is (as in the construction of the previous section) super-efficient.

Let us briefly describe the dynamization of the authentication structure, i.e.,
how updates on the data set can be handled. Assume for simplicity that only
values are updated, that is, no keys are inserted or deleted in D. After any update
of this type in D, we end up rehashing over a unique-per update operation leaf-to-
root path in the hash tree. Thus O(log∗ n) special hash values change and we need
to remove the old special hash values from the accumulation α and add the new
ones into this, i.e., to perform O(log∗ n) element deletions and insertions in S and
update A(S). Inserting and deleting elements in an accumulator involves some
computational cost for updating the new accumulation but also for updating the
set-membership witnesses of all the elements. Suppose that the witnesses of the
O(n) accumulated special hash values are explicitly maintained in the source
and the responder. In a highly dynamic setting updates can be of cost O(n): the
reason is that after any update all n membership witnesses must be updated.
The problem of the high update cost becomes more challenging for deletions,
especially under the necessary restriction that the responder cannot use the
trapdoor information, but using the RSA accumulator and certain algorithmic
techniques [12] we can achieve reasonable update and query costs. We can show:

Theorem 2. There exists a dynamic super-efficient authentication scheme for
range search queries over a set of n key-value pairs with the following perfor-
mance, where t denotes the size of the returned answer: (i) a range query is
answered in O(log n + t) time; (ii) the answer proof has size O(log t) and con-
sists of one signature, two field elements, two keys and O(log t) hash values; (iii)
the answer to a range query is validated by performing O(t) arithmetic compu-
tations, O(t) hash operations and O(1) modular exponentiation and verifying
O(1) signatures; (iv) an update results in O(log n) hash operations (at both the
source and the responder), O(

√
n log∗ n) modular operations and O(1) signature

generations (at the source). This authentication structure is secure with respect
to authentication and safe with respect to replay attacks.

5 Detection and Elimination of Replay Attacks

In Section 3, we presented an authentication structure for range search queries
that provides super-efficient answer verification, asymptotically optimally in the
hash-based data authentication model. In this section, we propose a new scheme
in our three-party authentication model (S, R, U) that achieves efficient up-
date costs at S and R (only logarithmic in the database size) and super-efficient
verification costs at U (as before), but uses an alternative solution to the replay-
attack problem. In particular, we slightly relax the security requirement with
respect to the time when replay attacks are detected and replayed data is re-
jected. As before, invalid answers are immediately rejected by U , but answers
are checked to be consistent with the update history in an off-line fashion. We
introduce a technique which implements an auditing mechanism and provides

418 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

delayed consistency checking for detecting and effectively eliminating replay at-
tacks. This mechanism augments the authentication scheme of Section 3, so that
U can immediately check any received answer for correctness and at any later
time check, in a batch, all received answers for freshness.

Delayed consistency checking is a useful property in application areas where
the freshness of answers is not critical to be verified in real time. In many ap-
plications, risk management requires that invalid responses must be caught, but
this determination does not always have to be immediate, as long as it is cer-
tain and sufficiently near-term. Indeed, such swift and sure justice is an ideal
circumstance for risk management purposes. Additionally, delayed consistency
checking is appropriate when consecutive queries occur sequentially in a short
time window and share locality in risk management or equivalent trust relations.

In our auditing mechanism, the delayed consistency checking is performed by
the user U , collaboratively with the source S but without any direct interaction
between the two, however. The auditing mechanism corresponds to securely,
compactly and efficiently encoding a series of transactions with the responder
R, i.e., updates and queries over data set D issued by S and U , respectively.
In particular, S maintains an update audit state Σu, that encodes the history
of updates, through information reported after update transactions with R: for
any update u performed on the data set D, an update trail Tu is provided to S
by R that is used to update Σu through operation updU. Similarly, U maintains
a query audit state Σq, that encodes the history of queries, through information
reported after query transactions with R: for any query q issued on D and
returned answer-proof pair, a query trail Tq is provided to U by R that is used
to update Σq through operation updQ. These trails correspond to “receipts”
that the auditing mechanism collects (namely, the update and query trails that
S and U receive). This series of updates of the states Σu and Σq corresponds to
the computation phase of the auditing mechanism.

Verification of the consistency of the two transaction series (update and query)
and, consequently, replay-attack detection are performed by U in the audit phase.
At any point in time (predefined or decided instantly), U can invoke a request for
checking the consistency of the reported transactions with the current set D that
resides at R. This is performed at U through operation audit, which receives as
input the current audit query state Σq of U and the current audit update state
Σu of S, appropriately updated given the current data set D (provided to S
by R), and accepts or rejects its input, accordingly verifying the consistency
of transactions. After an audit operation that accepts its input, the audit state
remains unchanged and a new computation phase begins. If it rejects, the states
are reset and the next computational phase starts for a new data set: in this case,
the data source S is responsible for creating the new data set at R. We call the
triplet of algorithms (updU, updQ, audit) along with the protocols for formatting
the trails an auditing scheme.

An auditing scheme (updU, updQ, audit) is secure if it satisfies the follow-
ing property: operation audit accepts its input if and only if no malicious ac-
tion has been performed by R, i.e., all query-answer pairs verified by U are

Super-Efficient Verification of Dynamic Outsourced Databases 419

consistent with the update history of D and the states computed using oper-
ations updU, updQ. In particular, (updU, updQ, audit) is secure if the following
conditions hold: completeness, dictating that all valid update and query trans-
actions yield (through updU and updQ) audit states that when checked by audit
with a valid (not corrupted by R) data set D always result in accepting; and
soundness, dictating that when audit accepts its inputs, then the audit states cor-
respond to transactions of valid update/query operations subject to the current
data set.

To detect and prevent replay attacks, we augment the authentication scheme
of Section 3 with a secure auditing scheme (updU, updQ, audit) as follows. After
updates, along with the update at S and R of the underlying authentication
structure, S runs updU to update its update audit state, but now no signature
refreshing is performed: only O(log∗ n) hash values are signed by S. After queries,
along with the answer verification, U also runs updQ to update its query audit
state. If R launches a replay attack at some point in time, it will be detected by U
at the first audit phase occurring after the attack since, by the security property,
audit will reject its input. So, a rejecting audit phase is equivalent to detecting a
replay attack launched by R, and a misbehaving R who performs replay attacks
is always caught and exposed to its victim U . Note that this technique provides
only detection and cannot pinpoint which query-answer pairs were replayed.

To construct a secure auditing scheme, we use a simple cryptographic solution
that is inspired from efficient and secure cryptographic mechanisms for off-line
memory checking by Blum et al. [5]. In off-line memory checking, a trusted
checker checks the correctness (or consistency) of an untrusted memory, where
data is written in and read from the memory through operations load and store.
The checker maintains some constant-size state and augments the data that is
written into the untrusted memory with time-stamps, such that at any point
in time, a check can be performed on the memory correctness. The idea is to
use a cryptographic primitive A for generating and updating this state, as a
short description of the memory history. A can produce short digests of large
sets in an incremental fashion (i.e., elements are inserted in the set and the new
digest is updated in O(1) time without recomputing from scratch) and is used as
follows. After any (augmented) load or store operation performed in the memory,
a special encoding of the operation is created and securely enclosed in the state
through A. In particular, two separate digests are maintained over two sets: a
first set encodes the “load” history of the memory (i.e., reading operations); the
second set encodes the “store” history of the memory (i.e., writing operations).
An operation results in updating both sets (e.g., operation load(i) adds an item
di in the “load” history and item d′i with new time-stamp in the “store” history).
The crucial property of the approach in [5] is that if the memory is correct, the
encodings produce load and store digests that are the same when the check is
performed. By choosing the cryptographic primitive A such that it is collision-
resistant, meaning that its computationally infeasible to find distinct sets that
produce the same digest, the memory checking problem is reduced to an equality
testing problem (subject to an appropriate encoding for the operations in the

420 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

memory). Primitives A for incrementally computing collision-resistant digests of
sets exist (e.g., ε-biased hash functions in the original work [5]).

We next design an efficient secure auditing scheme that is based on the above
checking technique. The challenge in applying this idea in our three-party model
is to implement the checking functionality collaboratively by S and U without
destroying super-efficiency at U . We use the RSA accumulator as a collision-
resistance primitive A for incrementally computing digests over sets and use
A(S) to denote the digest of set S. Thus, given A(S) and a new element x
not in S, A(S ∪ x) can be computed in O(1) time; also, it is hard to find sets
S �= S′ such that A(S) = A(S′). We use A to define the audit states Σu and
Σq stored by S and U . The main idea is as follows. We view the set S of special
values defined over our super-efficient authentication structure of Section 3 as
an untrusted memory: memory locations correspond to the unique identifiers of
the tree nodes (according to a fixed ordering, e.g., in-order tree traversal) and
memory items correspond to the special hash values and their signatures.

Every transaction (update or query) uniquely defines a subset of special hash
values in the tree: for updates, the hashes in the O(log∗ n) special tree lev-
els in the corresponding leave-to-root path; for queries, the two hashes of the
lowest special tree level that exactly covers the answer. These two subsets of
special hashes respectively define the update trail Tu and the query trail Tq that
are returned by R. For each tree node v in a subset, the tuple (idv, hv, σv, tv)
is included in the corresponding trail. Here, idv is the identifier of v, hv the
hash value, σv the corresponding signature and tv the associated timestamp.
Algorithms updU and updQ process these trails to update the audit states
Σu = (Au,l, Au,s) and Σq = (Aq,l, Aq,s). Each audit state is a pair of values, one
for “load” history, one for “store”; Au,l, Au,s are integer values and Aq,l ,Aq,s are
accumulations. The tuple of v is encoded (according to fixed way) to a unique
string xv (e.g., by applying an one-way hash function) and for each tuple in the
trails the states are updated to Σ′

u = (A′
u,l, A

′
u,s) and Σ′

q = (A′
q,l, A

′
q,s), as fol-

lows: A′
u,l = Au,l·e(xv) mod φ(N), A′

u,s = Au,s·e(x′
v) mod φ(N), A′

q,l = A
e(xv)
q,l

mod N , A′
q,s = A

e(x′
v)

q,s mod N , where e(·) is a function for computing prime rep-
resentative values, N is the RSA modulo, and x′

v is encoding xv but with a fresh
time-stamp (monotonically increasing, synchronized for all parties) and possibly
with a new identifier, hash value and signature (only for updates).

The audit phase is as follows. First R forwards the request for the audit to S,
along with a final audit trail that contains a tuple for each special node in set
S (final reading of memory). S updates its update audit state (only the “load”
part), signs the final Σu and forwards it to U , through R. Given (Au,l, Au,s),
(Aq,l, Aq,s), audit (run at U) accepts if and only if: A

Au,l

q,l ≡ A
Au,s
q,s mod N .

Theorem 3. There exists a hash-based, dynamic, super-efficient and audited au-
thentication scheme for range search queries over a set of size n with the following
performance, where t denotes the number of data items returned by a query: (i)
a query is answered in O(log n + t) time; an update results in O(log n) hash op-
erations (at both the source and the responder), O(log∗ n) signature generations

Super-Efficient Verification of Dynamic Outsourced Databases 421

(at the source); (ii) the answer proof has size O(log t) and consists of two signa-
tures, two keys and O(log t) hash values; (iii) the answer to a query is validated by
performing O(t) hash operations and verifying O(1) signatures; (iv) the auditing
scheme stores O(1) audit state, performs O(log n) work per update (at the source)
and O(1) work per query (at the user) during the computation phase and performs
O(n) work (at the source) and O(1) work (at the user) during the audit phase; (v)
replay attacks performed by the responder are always detectable by the user at the
audit phase.

Proof. (Sketch.) The complexity for the queries and updates follow from Theo-
rems 1 and 2, by observing that no signature refreshing is necessary after updates
at S. The update and query audit states are both of O(1) size (a pair of values).
At the computation phase, each update incurs O(log n) cost at S for updating the
authentication structure (hashing along the update path and updating O(log∗ n)
signatures and the audit state with O(log∗ n) exponent accumulations). Each
query incurs O(1) cost at U (at most two values are accumulated in the audit
state). At the audit phase, the cost at S is O(n), since S accumulates in the
exponent all special hash values currently in the authentication structure; the
cost at U is O(1) as before. Security follows from the correctness of the checking
mechanism of [5] and the collision-resistance property of the RSA accumulator.
Recall that R does not know the trapdoor φ(N) of the accumulator. Regarding
soundness, suppose that audit fails to detect a replay attack launched by R. Ei-
ther the provided by R update and query trails were correct or there existed one
trail that was invalid. In the former case and given that the audit mechanism
accepts, the memory checking technique is incorrect; in the latter case, there
exist different sets S and S′ that produce the same RSA-based accumulations
A(S) = A(S′). We must conclude that either the R was able to compute the
trapdoor φ(N) for the RSA modulo N (a task that is computationally equivalent
to factoring N) or R was able, given A

Au,l

q,l mod N , to compute (through the
query trails that R provided U with, which are distinct from the update trails)
values Aq,s and Au,s such that A

Au,l

q,l mod N = A
Au,s
q,s mod N (a task that is

computationally infeasible under the strong RSA assumption). �

6 Extensions and Concluding Remarks

Our authentication schemes are based on the authentication structure for range
search queries of Section 3. Many other query types are related to range searching
or consist of more complex search problems that eventually boil down to range
searching. This suggests that our authentication schemes can be used as general
design tools for achieving super-efficient authentication of other types of queries.
Indeed, all that is needed is to consider a (different) hashing scheme over the
data set D (computed along the hash tree), which should be appropriate for the
target query type. Similar to the construction in Section 3, the hashing scheme
over D should securely encode these relations that are sufficient for verifying
the answers to the queries in consideration. Super-efficiency would then follow

422 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

simply by authenticating at most two special hash values at the appropriate
special level of the tree, depending on the exact range defined by the query.

We briefly discuss two types of queries that fall into this category. Consider
the class of queries that ask for any associative function over some field of data
records that lie in a query range. The canonical members of this class are ag-
gregate queries, e.g., SUM, MAX, AVG. An appropriate hashing scheme for these
queries would be constructed such that it encodes the information (relations)
about ranges, the corresponding aggregation values and the neighboring data
records. In particular, the hash tree node v defining subtree Tv stores a hash
value that encodes information about the aggregation value av computed over
the records that correspond to the leaves of Tv, the left-most and right-most
records in Tv and, also, their predecessor and successor records (not in Tv), re-
spectively. Using this hashing scheme, these queries can be authenticated by
considering the (at most two) allocation nodes that correspond to the query
range and lie in some special tree level and without applying any associate op-
eration. Similarly, we can use our schemes for the class of path property queries
that are studied in [13]—all related to range searching. Our hashing scheme of
Section 3 and, accordingly, all of our authentication schemes can be extended to
these classes of queries (aggregation and path-property queries).

In conclusion, in this paper we study data authentication in a setting where
critical information is queried at high rates from dynamic outsourced databases
that reside in untrusted sites. We propose a new approach for query authenti-
cation, where, by decoupling the answer-generation and answer-verification pro-
cedures, super-efficient answer verification is enabled, a theoretically interesting
and practically important property. We design the first authentication schemes
for range searching that achieve super-efficiency (answers of size t are verified in
time O(t), using only O(1) modular exponentiations), allow for efficient updates
on the database and eliminate the replay attacks from the database responder.
To prevent replay attacks on old invalid data, we design an authentication proto-
col that implements an off-line auditing mechanism, which checks the consistency
of a dynamic database and reliably reports malicious actions of the responder.
Open problems include further improving the update costs of our authentication
schemes and extending our auditing scheme in a multi-user setting.

References

[1] Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environ-
ment of untrusted third-party distributors. In: Proceedings of International Con-
ference on Data Engineering (ICDE) (to appear, 2008)

[2] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

[3] Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Proceedings of Advances in Cryptology — EUROCRYPT,
pp. 274–285 (1994)

Super-Efficient Verification of Dynamic Outsourced Databases 423

[4] Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B., Gupta, A.: Selective
and authentic third-party distribution of XML documents. IEEE Transactions on
Knowledge and Data Engineering 16(10), 1263–1278 (2004)

[5] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

[6] Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using un-
deniable attestations. In: Proceedings of ACM Conference on Computer and Com-
munications Security, pp. 9–18. ACM Press, New York (2000)

[7] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[8] Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G., Stubblebine, S.:
Flexible authentication of XML documents. Journal of Computer Security 6, 841–
864 (2004)

[9] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic data publication
over the Internet. Journal of Computer Security 11(3), 291–314 (2003)

[10] Di Battista, G., Palazzi, B.: Authenticated relational tables and authenticated
skip lists. In: Proc. Working Conference on Data and Applications Security (DB-
SEC), pp. 31–46 (2007)

[11] Gassko, I., Gemmell, P.S., MacKenzie, P.: Efficient and fresh certification. In:
Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 342–353. Springer,
Heidelberg (2000)

[12] Goodrich, M.T., Tamassia, R., Hasic, J.: An efficient dynamic and distributed
cryptographic accumulator. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 372–388. Springer, Heidelberg (2002)

[13] Goodrich, M.T., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated data
structures for graph and geometric searching. In: Joye, M. (ed.) CT-RSA 2003.
LNCS, vol. 2612, pp. 295–313. Springer, Heidelberg (2003)

[14] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 121–132 (2006)

[15] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

[16] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[17] Micali, S., Rabin, M., Kilian, J.: Zero-Knowledge sets. In: Proceedings of Sympo-
sium of Foundations of Computer science (FOCS), pp. 80–91 (2003)

[18] Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: Proceeding of Network and Distributed System Security
(NDSS) (2004)

[19] Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Proceed-
ings 7th USENIX Security Symposium, pp. 217–228 (1998)

[20] Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signa-
ture aggregation and chaining. In: Proceedings of 11th International Conference
on Database Systems for Advanced Applications, pp. 420–436 (2006)

[21] Nuckolls, G.: Verified query results from hybrid authentication trees. In: Proceed-
ings of Data and Applications Security (DBSec), pp. 84–98 (2005)

[22] Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized
queries on a committed database. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg
(2004)

424 M.T. Goodrich, R. Tamassia, and N. Triandopoulos

[23] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying completeness of re-
lational query results in data publishing. In: Proceedings of ACM SIGMOD Int.
Conference on Management of data, pp. 407–418 (2005)

[24] Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two
party authenticated data structures. In: Qing, S., et al. (eds.) ICICS 2007. LNCS,
vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

[25] Tamassia, R.: Authenticated data structures. In: Proceedings of European Sym-
posium on Algorithms, pp. 2–5 (2003)

[26] Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data pro-
cessing with applications to information security. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
153–165. Springer, Heidelberg (2005)

[27] Tamassia, R., Triandopoulos, N.: Efficient content authentication in peer-to-peer
networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372.
Springer, Heidelberg (2007)

	Super-Efficient Verification of Dynamic Outsourced Databases
	Introduction
	Authentication Model
	A New Super-Efficient Authentication Structure
	Super-Efficient Dynamic Authentication Scheme
	Detection and Elimination of Replay Attacks
	Extensions and Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

