
The Visual Computer manuscript No.
(will be inserted by the editor)

David Eppstein1 · Michael T. Goodrich2 · Ethan Kim3 · Rasmus Tamstorf4

Approximate Topological Matching of Quadrilateral Meshes

Abstract In this paper, we study the problem of approxi-
mate topological matching for quadrilateral meshes, that is,
the problem of finding as large a set as possible of match-
ing portions of two quadrilateral meshes. This study is mo-
tivated by applications in graphics that involve shape mod-
eling whose results need to be merged in order to produce
a final unified representation of an object. We show that the
problem of producing a maximum approximate topological
match of two quad meshes in NP-hard and that its decision
version is NP-complete. Given these results, which make an
exact solution extremely unlikely, we show that the natural
greedy algorithm derived from polynomial-time graph iso-
morphism can produce poor results, even when it is possible
to find matches with only a few non-matching quads. Nev-
ertheless, we provide a “lazy-greedy” algorithm that is guar-
anteed to find good matches when mis-matching portions of
mesh are localized. Finally, we provide empirical evidence
that this approach produces good matches between similar
quad meshes.

Keywords quad mesh · topological matching · NP-hard ·
NP-complete · lazy-greedy heuristic · isomorphism

1 Introduction

Quadrilateral meshes represent polyhedral surfaces in such
a way that each face is a quadrilateral, which is quite useful
in computer graphics applications. The usefulness of these
meshes comes in part from the fact that rectangular texture
images are easily mapped without clipping into quadrilater-
als (which we sometimes refer to as “quads”). Thus, quad
meshes are desirable for surface modeling.

1Dept. of Computer Science, Univ. of California, Irvine, CA 92697-
3435. http://www.ics.uci.edu/˜eppstein · 2Dept. of
Computer Science, Univ. of California, Irvine, CA 92697-3435.
http://www.ics.uci.edu/˜goodrich · 3School of Com-
puter Science, McGill University, Montreal, Quebec, Canada H3A
2A7. E-mail: ethan@cs.mcgill.ca · 4Walt Disney Animation Stu-
dios, 500 S. Buena Vista St., Burbank, CA 91521. E-mail: Ras-
mus.Tamstorf@disney.com

Quad meshes are also useful in finite element analysis,
where one desires adaptive refinement into regions of in-
terest, since quadrilaterals are easily partitioned into finer
quadrilateral grids. Indeed, several mesh generation algo-
rithms, such as that of Schonfeld and Weinerfelt (31) and
others (1; 34; 26), begin with a coarse quadrilateral mesh
and then refine each quad of interest into a regular grid of
sub-quads.

In order to best utilize the time of people working with
a given quad mesh, it is common for a single mesh to be
used in a number of different processing paths in parallel.
For example, a single mesh might be processed simultane-
ously for texture mapping, feature mapping, finite-element
analysis for physical simulation purposes, and morphing for
object animation. Unfortunately, the software systems that
perform the multiple simultaneous tasks on a given mesh M
often use different internal representations of M , which in
turn result in different representations of M in the output of
each task. For example, different mesh processing software
systems could be developed by different vendors, each with
its own proprietary way of storing of meshes.

More importantly, many of the computational tasks per-
formed on meshes are likely to slightly change their struc-
ture in places. For example, a physical simulation or anima-
tion task may introduce a “rip” in a surface or a modeler may
detach a model feature (such as a hand or eyebrow), modify
it to reflect a new pose, and re-attach it to the original model.
In addition, models that possess significant symmetries, such
as biological characters and architectural models, often have
their texturing and feature mapping tasks performed on a
single portion with the desire that this work be mapped to
the symmetric portion(s), even if there are a few localized
asymmetries to deal with during this mapping process.

For the above applications, we are interested in matching
pairs of quad meshes in a way that is as independent of ge-
ometric features as possible. That is, we would like matches
that align the topological structure between two given quad
meshes as best as possible, matching the orientations of each
paired-up vertex and quad in the two meshes. Therefore, we
are interested in this paper in the approximate topological
matching problem, which takes two given quad meshes and

http://www.ics.uci.edu/~eppstein
http://www.ics.uci.edu/~goodrich


2

finds the best matching between them based on topological
information alone. (See Figure 1.1.)

Fig. 1.1 The Approximate Topological Matching Problem. Quads in
(dark) red denote mismatched regions. In spite of there being major
pieces of the first mesh missing from the second, the parts of similarly
are still matched (the two right hands actually don’t match topologi-
cally, as the hand of the second model is attached differently).

1.1 Prior Related Work

Before presenting our results, let us review prior related work
on quad meshes and mesh matching.

1.1.1 Quad Mesh Generation

This is not a paper on mesh generation, but let us never-
theless mention some of the modeling approaches that give
rise to quad meshes. There are several quad mesh generation
methods that involve starting from a coarse quad mesh and
subdividing each coarse quad into a finer structured mesh (31;
1; 34; 26). Of course, there are also methods that do not
create structured submeshes as a refinement step (8; 28; 4;
6; 32). Although this is not a paper on mesh generation,
we note that the mesh generation process often provides us
with properties we can exploit in our algorithms. For exam-
ple, many mesh generation algorithms create large patches
of structured submeshes, each having degree 4. Such sub-
meshes are still relatively common, of course, even if not
directly constructed, since, by an easy argument that follows
directly from Euler’s formula, the vertices in any quad mesh
of bounded genus have average degree equal to 4.

1.1.2 Mesh Compression

One tool we use in our approximate topological matching
algorithm is to compress the original quad mesh so as to re-
duce the number of candidate starting points for our match-
ing process. The problem of mesh compression has histor-
ically been studied in the classic sense of data compres-
sion, where one wishes to produce a concise representation
of a mesh for the sake of reduced transmission and storage
costs (20; 35; 36; 9; 18; 21). Our reason for using mesh com-
pression instead is based on the desire to speed up the com-
putation time in an algorithm that operates on quad meshes.
Thus, our approach actually fits the spirit of other algorithms
(e.g., see (33; 15; 14; 38)) that perform data compression so
as to improve algorithmic performance.

1.1.3 Graph Isomorphism

In the classic graph isomorphism problem, we are given a
graphG = (V,E) and a graphH = (W,F ), with |V | = |W |
and |E| = |F |, and we are asked if there is a mapping
f : V −→ W such that edge e = (v, w) is an edge in E
if and only if (f(v), f(w)) is an edge in F . Applied to the
mesh matching problem, graph isomorphism corresponds to
the problem of finding an exact topological match, with no
edges, vertices, or faces unmatched between the two input
meshes. Much work has been done on the graph isomor-
phism problem for general classes of graphs (e.g., see (10;
17; 24)), for which it is not known whether graph isomor-
phism can be solved in polynomial time or if the graph iso-
morphism problem is NP-complete. For the special case of
planar graphs, or more generally for models of bounded genus,
isomorphism can be solved in linear time (19; 23), but these
algorithms are fairly complex.

The problem of solving graph isomorphism for meshes
can be solved in polynomial time, even for models of high
genus. The reason is that, in addition to their graph structure,
meshes possess structure derived from the fact that they are
embedded in manifold surfaces. In particular, such embed-
dings impose a specific, given ordering on the edges around
each vertex, v, which corresponds to a clockwise or counter-
clockwise listing of the edges incident to v. Thus, given a
mapping of an edge in G to an edge in H , it is a simple mat-
ter to “grow out” the respective corresponding matching be-
tweenG andH so long as such matches are possible. That is,
there is a simple O(m2) algorithm for finding an exact topo-
logical match between two m-edge meshes (or determining
that no such matching exists)—attempt to grow out a pos-
sible match between G and H starting from each possible
matching of edges in G to a given edge e in H . In practi-
cal applications, such algorithms are still too slow, however,
and we address practical algorithms for the graph isomor-
phism problem on quad meshes in a different paper (which
is currently under submission elsewhere). Our approach in
this other paper is based on a technique that is inappropriate
for solving the approximate topological matching problem.



3

1.1.4 Graph Edit Distance

The approximate topological matching problem is related
to the problem of computing the edit distance between two
graphs (7; 5; 27; 13). The concept of graph edit distance
was first introduced by Eshera and Fu (13). It involves the
computation of a measure of similarity between two graphs
based on the minimum number of edit operations, such as
edge insertions/deletions and vertex insertions/deletions, that
would be needed to convert one graph into another, which
is a problem shown to be NP-hard. Subsequent work has
focused on heuristic methods for computing graph edit dis-
tance. For example, Berretti et al. (5) describe a distance
metric on graphs and apply it to content retrieval for color
images, and Neuhaus and Bunke (27) use automatic learning
methods to compute the functions for graph edit distance.

The approximate topological matching is not the same
as graph edit distance, however. Graph edit distance is con-
cerned with minimizing the number of edit operations to
convert one graph to another, whereas approximate topolog-
ical matching is concerned with maximizing the amount of
common matching quads between two quad meshes, even
if there are large portions of one of the two meshes that
might not match with any part of the other. Thus, the ap-
proximate topological matching problem is an adaptation
of the maximum common subgraph problem (22) to quad
meshes, where we wish to match oriented quad faces as well
as vertices and edges. The distinction between edit distance
and approximate topological matching is important in object
modeling applications, for instance, where one mesh could
be an early version of a model, such as a character’s face,
before new facial features are added, such as eyebrows, eye
lashes, and warts, and we want to match the earlier version
as best as possible against the current version. In such cases
it is better to ignore the mismatching parts rather than weigh
them negatively in an edit distance value.

1.2 Our Results

In this paper, we study the approximate topological match-
ing problem for quadrilateral meshes. We show that this prob-
lem is NP-hard, and that it has a decision version that is NP-
complete. Together, these results imply that it is very un-
likely that there is a polynomial-time algorithm for approxi-
mate topological matching. Thus, we develop a heuristic al-
gorithm for approximate topological mesh matching, based
on the use of a skeleton graph that is a well-defined, robust
subgraph of the mesh. This skeleton is then used to identify
anchors to begin a matching process similar to the way the
medial axis is visualized for a polygon (e.g., see (11; 29)).
If we imagine that the plane is made of a combustible ma-
terial and we start a fire starting from each boundary edge
of the polygon, then the medial axis is defined by the places
where two waves of fire meet. In our case, we apply this ap-
proach to quad meshes, viewing the quads as “combustible
material” and the anchors as the starting points for our fires.

We grow regions in the two input meshes simultaneously,
matching similar topological substructures as we go.

Such a fire-propagation approach to matching the two
input meshes has an unfortunate complication, however. In
particular, if we use the natural greedy approach to propa-
gate matching portions of the wavefront, then this process
can lead to poor matches. Specifically, we show that even if
one small portion of one mesh is shrunk relative to a por-
tion in the other, this greedy algorithm can produce globally
poor matches. Nevertheless, we show that our fire-growing
approach to approximate matching can be made to work ef-
fectively even in these cases, by growing the wavefronts in a
“lazy-greedy” fashion. In addition, we provide experimental
results that show that the lazy-greedy algorithm can produce
good matches quickly in practice.

2 Preliminaries

Before we discuss our results, let us give some preliminary
definitions and observations about quadrilateral meshes.

2.1 The Topology of Quad Meshes

Any graph drawn on the sphere S0 in three-dimensional space
partitions the surface of S0 into cells such that each is home-
omorphic to a disk (we will always assume in this paper that
graphs are drawn without edge crossings). Each such cell is
called a face in the embedding. Adding g “handles” to S0

gives the surface Sg, which is said to have genus g. For ex-
ample, a traditional coffee cup is of genus 1. Likewise, the
dog toy shown in Figure 2.1 has genus 16.

Fig. 2.1 A dog toy, which has genus 16.

A cellular embedding of a graph on Sg is a drawing that
partitions Sg into cells such that each is homeomorphic to a
disk. We define a quadrilateral mesh to be a cellular embed-
ding of a graph G = (V,E) onto a surface Sg such that each
face is a quadrilateral. We say that the genus of the mesh
is g in this case. We therefore view a quad mesh as a triple
(V,E,Q) where V is a set of vertices, E is a set of edges,
and Q is a set of quadrilaterals. In addition, we assume that
quad meshes are represented with a data structure, like the
“winged edge” structure (3), that supports the following op-
erations:



4

– List the incident edges around a given vertex (in clock-
wise or counter-clockwise order) in time proportional to
the degree of that vertex.

– List the bounding edges around a given face (in clock-
wise or counter-clockwise order) in time proportional to
the size of that face.

– List the two vertices that are the endpoints of a given
edge in constant time.

The simplest form of quad mesh is a structured mesh, where
every vertex has degree four. The average degree of vertices
in a bounded-genus quad mesh is 4, and it is common for
the majority of vertices in a quad mesh to have degree 4. For
this reason, if a vertex in a quad mesh is an interior vertex
with degree different than 4, or an exterior (boundary) vertex
with degree different than 3, then we refer to that vertex as
an extraordinary vertex.

2.2 The Size of a Quad Mesh

Traditionally, an algorithm operating on a graphG is charac-
terized in terms of n = |V |, the number of vertices ofG, and
m = |E|, the number of edges inG. We have these measures
in quad mesh algorithms as well, but we also have q = |Q|,
the number of quads, so it is useful to relate these quantities.

Observation 2.1 In a quad mesh with m edges and q faces,
2q ≤ m ≤ 4q.

Proof If we sum up the number of edges on every face we
will count each edge at least once and at most twice. Since
each face is a quadrilateral, 4q ≤ 2m and m ≤ 4q. ut

Observation 2.2 The number of edges and faces in a quad
mesh can be arbitrarily larger than the number of vertices.

Proof We can place two vertices at opposite poles of a sphere
and add as many edges as we like joining them. Now re-
move the sphere and enlarge each edge to be a thin tube.
Next, take each original vertex and split into two points sep-
arated by the width of a tube, with one on top and one on the
bottom. This creates a shape similar to the dog toy shown
in Figure 2.1. Now, for each tube, run an edge between the
two top vertices, an edge between the two bottom vertices,
and an edge joining top to bottom at each pole. This creates
a quad mesh with four vertices and an arbitrary number of
faces and edges. ut

Although it is not uncommon in the solid modeling lit-
erature to allow for such multiple edges and even self loops
in the graph defined by a quadrilateral mesh, we will restrict
ourselves in this paper to simple meshes, where there dis-
allow multiple edges between the same pair of vertices and
we disallow self loops. Likewise, we disallow multiple edges
and self loops in the dual graph, which is formed by placing
a vertex in each quad and joining two quadsQ andRwith an
edge any timeQ andR have an edge of the mesh in common.
Likewise, we require that the mesh be well-formed, meaning
that it satisfy the following:

1. For each vertex v, the set of quads containing v is con-
nected in the dual graph.

2. The boundary of a quadrilateral mesh M consists of all
edges of E that belong to exactly one quadrilateral in M
and all vertices incident to an edge of this type. For every
cyclic portion C of the boundary of M on Sg (that is, a
“hole” in the mesh), the interior of C is homeomorphic
to a disk. That is, each hole in M is contractible.

3. Every edge in M is adjacent to at least one and and at
most two quadrilateral faces of M .

4. Any two quadrilaterals in Q intersect in a single edge, a
single vertex, or the empty set.

Observation 2.3 In a simple, connected, well-formed quadri-
lateral mesh M of genus g, with n vertices and m edges,

m ≤ 2n+ 4g − 4.

Proof Since M is a simple, cellularly-embedded graph in
Sg, the Euler characteristic implies that

n−m+ q = 2− 2g.

Specifically, the Euler characteristic (which is also known
as “Euler’s formula” or the “Euler-Poincaré characteristic”)
states that, in such embeddings, the number of vertices mi-
nus the number of edges plus the number of faces is equal
to 2 − 2g. That is, in our case, m = n + q + 2g − 2. By
Observation 2.1, q ≤ m/2. Thus, m ≤ 2n+ 4g − 4. ut

In almost all practical applications of quadrilateral meshes,
the genus g of a given mesh is bounded by constant and it
is almost certainly O(n). In fact, g is typically 0 or 1. Thus,
the above lemma implies that in almost every practical ap-
plication using a mesh M with n vertices and m edges, m is
O(n). Thus, for example, the time complexity of the simple
wave-growing exact graph isomorphism algorithm on such
meshes is O(n2). We also have the following.

Lemma 2.1 In a simple, connected, well-formed quadrilat-
eral mesh M of genus g, with n vertices and m edges,

m ≤ (

√
4
3
g + 2)n− 4.

Proof The proof follows that of a similar lemma of Wood
and Telle (37), but is adapted to quad meshes. From Obser-
vation 2.3, we know that

m ≤ 2n+ 4g − 4.

So we need to show that 4g ≤
(√

4
3g
)
n. That is, we need

to show g ≤ n2/12. This follows from the fact that M is
simple and the complete graph on n vertices, Kn, has genus
at most n2/12 (e.g., see (25)). ut



5

3 On the Difficulty of Approximate Topological
Matching of Quad Meshes

As mentioned above, the problem of finding a best approx-
imate topological match between two quad meshes has sev-
eral uses in object representation and rendering applications.
Unfortunately, as we show in this section, the problem of
finding an optimal approximate topological match is NP-
hard.

In order to be precise, let us formalize the approximate
topological matching problem for quad meshes. Suppose we
are given two quadrilateral meshes, M1 and M2. A match-
ing submesh S1 of M1, with respect to M2, is a connected
set of quads in M1 that is mapped one-to-one to a connected
set of quads in M2 by a function µ that maps quads in S1

to quads in M2 such that q1 and q2 are adjacent in S1 if
and only if µ(q1) and µ(q2) are adjacent in M2 (using adja-
cency across edge boundaries). The approximate topological
matching problem is to find a matching submesh S1 of M1,
with respect to M2, and corresponding mapping function µ,
such that S1 has the largest number of quads over all such
submeshes. Unfortunately, we have the following.

Theorem 3.1 The approximate topological matching prob-
lem for quad meshes is NP-hard.

Proof We will give a reduction from the known NP-complete
problem of determining if a given cubic planar graph is Hamil-
tonian (16). Suppose then that we are given an n-vertex cu-
bic planar graphG as input, that is, a graphG that has degree
3 and which can be drawn in the plane without crossings.
Our proof is based on showing that we can construct two
meshes M1 and M2 in polynomial time such that all but n
quads ofM1 can be matched with part ofM2 if and only ifG
is Hamiltonian, that is, G contains as a cycle that visits each
vertex inG exactly once. We begin our construction by using
any existing polynomial-time method (e.g., see (12; 2; 30))
to produce an embedding of G in an O(n) × O(n) integer
grid, where n is the number of vertices in G. This embed-
ding allows us to associate integer coordinates in the plane
to the vertices of G, from which we will build a quad mesh,
M2. Before we perform this construction, however, let us
first build the mesh M1 that we want to match completely to
M2.

In particular, let C be a simple cycle with n vertices, say,
embedded at regular intervals around the boundary of a suf-
ficiently large circle in the plane (separate from the grid G
is embedded in). We construct a mesh M1 from C by ex-
panding each edge of C into a connected sequence of four
quads, linked in a “chain,” and expanding each vertex of C
according to the replacement submesh of four quads shown
in Figure 3.1a. That is, if we have an edge (u, v) in C con-
necting u to v that is followed by an edge (v, w), we replace
(u, v) by a chain of four quads that connect to v’s four quads
as in the lower-right part of Figure 3.1a and we have the
chain of four quads for (v, w) connect as in the upper-left
part of Figure 3.1a.

(a)

(b)

Fig. 3.1 Gadgets used to prove that approximate topological matching
is NP-hard: (a) the vertex replacement submesh for C, (b) the vertex
replacement submesh for G.

We convert G into a second quad mesh M2 by expand-
ing each edge into a chain of four quads, as in our construc-
tion of M1, but we connect them to vertices in a different
way. Specifically, each vertex in G has degree 3, so we in-
stead connect each edge chain of four quads according to the
replacement mesh shown in Figure 3.1b. The dashed lines
in the figure show all the possible ways that a maximum
number of quads in a vertex submesh from M1 can match
a maximum number of quads in the vertex submesh in M2.
Namely, a vertex submesh of 4 quads in M1 can match at
most 3 quads in a vertex submesh M2. That is, all but one of
the quads in a vertex submesh of M1 can match in a vertex
submesh of M2. Also, note that the same cannot be said of
the submeshes of M1 associated with edges of C. Namely,
note that since each edge in C is expanded into a connected
chain of 4 quads, the quads in an edge submesh of M1 can
match at most 2 quads in a vertex submesh of M2. In other
words, to get the largest number of matching quads between
M1 and M2, we need to match vertex submeshes in M1 to
vertex submeshes in M2.

So we have yet to show thatG is Hamiltonian if and only
if all but n of the quads in M1 can be matched with quads in
M2. Suppose thatG is Hamiltonian. That is, C is a subgraph
of G; hence, we can match each vertex submesh of M1 with
a vertex submesh of M2, using the cycle C as a guide on



6

how to similarly match each edge submesh of M1 with an
edge submesh of M2, again, using the embedding of C in G
as a guide. Then there is a topological match of M1 in M2

that pairs up all but n quads from M1, i.e., the number of
matched quads between M1 and M2 is 7n.

Suppose, on the other hand, that there is a match of M1

and M2 that matches 7n quads, that is, all but n quads from
M1. As we have noted above, the only way this can occur is
if the edge submeshes of M1 match edge submeshes of M2

and 3 quads in each vertex submesh of M1 match inside a
vertex submesh of M2. Thus, C is a subgraph of G, that is,
G is Hamiltonian. This completes the proof. ut

In addition to the optimization problem of finding the
best approximate topological match between two quadrilat-
eral meshes, we can create a decision version of the problem:

Given two quad meshes, M1 and M2, and an in-
teger parameter, K, is there a topological match of
meshes fromM1 toM2 such that the number of matched
quads is at least K?

This decision problem is also difficult.

Theorem 3.2 The decision version of the approximate topo-
logical matching problem for quad meshes is NP-complete.

Proof To show that this decision version is NP-compete, we
need to show it is in NP and that it NP-hard. First, to see
that it is NP, note that if we non-deterministically guess an
assignment of quads in M1 to M2, we can verify in poly-
nomial time that this assignment satisfies the connectivity
requirements to be a toplogical match and that the number
of matching quads is at least K. Thus, this decision version
of approximate topological matching is in NP. To show that
it is NP-hard, all we need to do is repeat the proof of Theo-
rem 3.1 using K = 7n. ut

4 A Heuristic Algorithm for Approximate Topological
Matching

Given that the approximate topological matching problem
is NP-hard, and that it has a decision version that is NP-
complete, it is very unlikely that there is an efficient algo-
rithm for solving it exactly. Thus, let us discuss heuristic
approaches.

4.1 Identifying Anchors via Color Assignment

Let us begin with the starting point for our heuristic algo-
rithm, the identification of good anchors that can seed the
process of matching pairs of quads in the input meshes M1

and M2. That is, extraordinary vertices in M1 and M2 that
have relatively distinctive neighborhoods. Note: if there are
no extraordinary vertices at all (e.g., if M1 and M2 are tori),
then we pick an arbitrary pair of vertices in M1 and M2 as
anchors.

In order to find a good set of anchors in the general case,
we apply a few iterations of the Weisfeiler and Leman (WL)
algorithm for exact graph isomorphism (e.g., see (17)). Re-
call that in the WL algorithm, we initially label each vertex
with a label associated with its degree1. Then, each vertex is
labeled by a string of its neighbors’ labels in an order that
appears in the topological embedding. In turning the cyclic
ordering into a linear ordering, we pick the one that is lexico-
graphically minimum. Then we let these strings be the new
labels of the vertices (which we can re-normalize to be the
integers from 1 to n with a simple radix sort). Algorithm 1
gives a pseudocode for this procedure, which views the ver-
tex labels as “colors.”

foreach vertex u ∈M do
tmpColor[u] = deg(u);

end
foreach u ∈M do

Color[u] = ();
foreach v ∈ neighbor(u) do

Color[u] = Color[u] + tmpColor[v];
end
Color[u]= Lexicographical minimum ordering of
Color[u];

end
return the set of vertices with unique color label;

Algorithm 1: Algorithm for ColorGraph

Observe that the second loop in Algorithm 1 can be re-
peated to refine the color labels of vertices. This repetition
should be done until we reach a reasonable stopping con-
dition. For example, we used the stopping condition of re-
peating until we reach a set upper bound, k, on the number
of iterations or until at least one pair of uniquely labeled
vertices are found, one from each mesh. If we repeat this
loop i times, the label of each vertex u will contain infor-
mation about the vertices that are within distance i from u.
The running time of this second loop is 2m = O(m), which
is O(n) in the case of planar meshes or meshes of at most
linear genus, by Observation 2.3.

The final step of the algorithm for identifying seeds to
initiate mesh-matching growth from is that of finding corre-
sponding anchors from the labeled compressed meshes. In
order to find such seeds, we first match the rarest (hope-
fully unique) labeled vertices returned from the two com-
pressed meshes, and then look for matching neighbors of
the two matched vertices. Again, for most meshes, this pro-
cess takes O(n) time in the worst case, by Observation 2.3
or Lemma 2.1.

1 Not only the degree of each vertex can serve as the seed for labels,
we may also choose to use the edge weights in the compressed meshes.
In order to do so, we can label each edge by number of edges contracted
while compressing the meshes.



7

4.2 Skeleton Graphs: Compressing Meshes for Improved
Anchor Finding

As noted above, we are interested in finding rare or even
uniquely-labeled anchors, so as to limit the number of pos-
sible candidate starting points for growing matching sets of
quads between the two input meshes. Thus, it makes intu-
itive sense that we should concentrate on extraordinary ver-
tices. In order to focus on the adjacencies between these ver-
tices, we apply a compression scheme that focuses on ex-
traordinary vertices and in most cases reduces the size of the
graph we must deal with.

4.3 Particle Shooting

The idea for constructing this compressed skeleton graph in-
side each mesh is quite simple: we imagine that we shoot
a particle out along every possible edge going out of each
extraordinary vertex. These particles travel separately along
the edges going out from extraordinary vertices. When a par-
ticle enters a normal vertex it continues through that vertex
and leaves out the opposite side (unless this is a boundary
vertex and there is no edge on the other side). In propagat-
ing these fictitious particles in this way we trace out a sub-
graph in each input mesh, M1 and M2. We let the particles
continue to move, tracing out the compressed graph we are
going to use for color label assignment, until each such par-
ticle reaches another extraordinary vertex (which is a very
common occurrence given the way that people build quad
meshes in practice) or the particle reaches a boundary edge.
We then perform our anchor-finding procedure on this skele-
ton graph. (See Figure 4.1.)

start

Fig. 4.1 Anchor finding in a simple quad mesh, M1. This mesh has
five extraordinary vertices, consisting of the four corners and the vertex
marked “start.” The vertex marked “start” is the best candidate for an
anchor in this mesh, since the neighborhood structure of the other four
extraordinary vertices are similar to each another. The edges traversed
in the “particle-shooting” process are shown bold.

4.4 A False Start: The Greedy Algorithm

Given a set of anchors to begin our matching process, per-
haps the most natural heuristic algorithm for solving the
approximate topological matching problem is to start with
a seed pair of matching quads, starting at some candidate
anchors, and grow out matching meshes from this starting
point.

The natural greedy algorithm that is based on this ap-
proach would be to grow out the matching set of quads in
waves, adding as many quads as possible so as to satisfy the
adjacency constraint for quads (e.g., by restricting our at-
tention to quads that are adjacent across an edge or vertex).
Unfortunately, this greedy approach suffers from a serious
drawback, which is highlighted by a simple example.

Suppose we are given two similar meshes, M1 and M2,
as, for example, shown in Figures 4.1 and 4.2, such that M2

is an exact match for M1 except that some small group of
quads in M2 is compressed into a set of edges.

start

Fig. 4.2 A candidate quad mesh, M2. Note that M2 is an exact match
for the quad mesh M1 from 4.1 except that three quads in the middle
are compressed into individual edges in M2.

Suppose further that we grow out sets of matching quads
in M1 and M2 starting from some anchor point, using the
greedy approach of matching as many quads as possible with
each wavefront propagation. When this propagating wave-
front reaches the set of compressed quads, it will correctly
match long sets of quads on each side of the mis-matching
portion. But it will also incorrectly match as many quads as
possible across the compressed edges as well. Unfortunately,
this sets off a cascading failure, as the wavefront that propa-
gated across the compressed quads will be out of phase with
the (correct) sets of quads that are being matched as they
go around the compressed region. The cascade continues
because the incorrectly-matched quads are being “grown”
ahead of the correctly-matching quads. Thus, the correctly-



8

matching quads never have a chance to “catch up” to this
wave, and this bad behavior can continue cascading across
the entire mesh. This unfortunate growth pattern is illus-
trated for the meshes M1 and M2 of Figures 4.1 and 4.2
in Figure 4.3.

start

Fig. 4.3 An unfortunate cascading failure in M2 caused by the greedy
mesh growing algorithm applied to the meshes of Figures 4.1 and 4.2.

Thus, we do not recommend that the greedy algorithm be
used as a heuristic for solving the approximate topological
matching problem. Instead, we advocate the use of a lazy-
greedy approach.

4.5 The Lazy-Greedy Algorithm

In this section, we discuss our lazy-greedy approach to solv-
ing the approximate topological matching problem for two
quad meshes by using a wavefront “fire-propagation” method.

4.5.1 The Main Idea Behind our Matching Algorithm

The main idea behind this oxymoronic algorithm is to grow
out waves of matching quads, as in the greedy algorithm
given above as a false start, but to do so in a more relaxed
way that helps to avoid the cascading failures that can arise
from the straightforward greedy algorithm.

Let us assume that we have done an initial color label-
ing and have found a set of anchors to begin the matching
process from in M1 and M2. The goal of the lazy-greedy
algorithm is to incrementally build a mapping function, µ,
that matches quads in M1 to quads in M2. Initially, µ maps
the two anchor quads in M1 and M2 to each other (defining
an edge in the dual graph). As we proceed, we track of the
set of quads where we can expand the matching function µ

to more quads. Let S be the set of currently matched quads,
that is, each quad q in M1 for which we have determined a
matching quad, µ(q). Since we start matching from a seed,
at each iteration, S forms a contiguous block of quads inM1

with a corresponding set of matching quads, µ(S) in M2.
Now, let S′ be a subset of quads in S on the boundary of
the contiguous submesh S, that is, quads that have adjacent
unmatched neighbors. When growing the match at each it-
eration, note that we only need to consider quads that are
either vertex or edge adjacent to quads in S′ or µ(S′), since
the quads that are interior to the contiguous block have no
adjacent unmatched quads.

4.5.2 Using a Compatibility Graph for Growing Matching
Submeshes

Let A be the set of unmatched quads in M1 that are ver-
tex or edge adjacent to quads in S′, and let B be the set of
unmatched quads in M2 that are vertex or edge adjacent to
quads in µ(S′). For each quad q in A, let M(q) be the set
of quads in B that could match with q, that is, we include in
M(q) each quad r in B such that r is adjacent to a quad µ(t)
with q being adjacent to t in the same way as r and µ(t) (i.e.,
across a corresponding vertex or edge adjacency).

Let us create a compatibility graph L by defining, for
each M(q), a vertex vi,q for each quad in M(q). Note that
same quad in B might be listed in different M(q) sets, in
which case we create a different vertex in L for each copy
of that quad in the different M(q) sets. We say that a vertex
vi,q is adjacent to vertex vi,s in L if

– q and s are adjacent across an edge in M1.
– The quads, r and t in M2, corresponding respectively to
vi,q and vi,s are compatible in M2, meaning that if we
were to extend µ by mapping q to r and s to t, then the
submesh in M1 consisting of q and s and all their adja-
cent quads in S′ would be consistent (in the topological
sense) with the submesh in M2 consisting of r and t and
all their adjacent quads in µ(S′).

Note that the graph L consists of paths, isolated vertices, or
a cycle, i.e., vertices in L have degree at most 2.

4.5.3 The Lazy-Greedy Heuristic

The lazy-greedy heuristic is to extend µ in each iteration by
adding the matches defined by a largest connected compo-
nent (i.e., path or cycle) in L. Note that this is a greedy algo-
rithm in the sense that it is augmenting our match using an
optimization criterion that maximizes an objective function.
But it is also a lazy algorithm in that it postpones perform-
ing a lot of potentially valid matches between quads in M1

and M2 just because they didn’t belong to the largest con-
nected component in the compatibility graph L. We repeat
this lazy-greedy heuristic process until the current version
of L contains no vertices. (See Figure 4.4.)

The benefit of the lazy-greedy approach is that it allows
our matching process to match the quads around a small



9

Fig. 4.4 The lazy-greedy algorithm. The shaded (blue) regions col-
lectively denote S′, the currently matched quads. The labeled quads
in both meshes correspond to the pairs of quads that share the same
adjacent quads in S′. Finally, we show the compatibility graph L con-
structed from the quads adjacent to S′. Since quads 4,5 and 6 form
the largest connected component in L, we match these quads at this
iteration.

mismatching region even when the mismatch is caused by
a compression of quads into individual edges. Such a com-
pression causes the greedy algorithm to immediately march
through these bad regions, whereas the lazy-greedy algo-
rithm will only venture into such regions as a last resort. We
illustrate the difference this approach makes for the meshes
M1 and M2 of Figures 4.1 and 4.2 in Figure 4.5.

start

Fig. 4.5 An isolation of a small mismatching region in M2, showing
how the lazy-greedy algorithm avoids the unfortunate cascading failure
caused by the greedy mesh growing algorithm applied to the meshes
of Figures 4.1 and 4.2.

5 Experimental Results

We have empirically tested the two main claims of our ap-
proach on real-world meshes from the character database
at Walt Disney Animation Studios. The first claim that we
tested is the following:

– The skeleton graph constructed by our algorithm signif-
icantly compresses quad meshes in a way that preserves
essential features.

Table 5.1 gives an overview of the size of skeleton graphs
for a number of the models in the Disney character database.

Model Original mesh Skeleton graph Reduction
vertices edges vertices edges (%)

bear 1070 2110 202 393 81%
chick 932 1827 32 56 97%
shirt 3099 6134 518 1015 83%

director 9958 19889 2510 5001 75%
tommy 10281 20530 2496 4973 76%
body 13238 26457 3176 6339 76%
girl 6976 13903 2340 4647 66%

Table 5.1 Sizes of skeleton graphs for various quad mesh models.

Note that the reduction percentages average around 75%,
and that they range from a low of 66% for the girl of Fig-
ure 5.3 and a high of 97% for the chick of Figure 5.1. The
main point of this compression is not for storage savings,
however, although it could be used for this purpose, since the
regions bounded by edges of the skeleton graph are all struc-
tured meshes. Instead, we use the skeleton graph to drive our
approximate matching process.

Fig. 5.1 A Compressed Mesh; edges in red denote the compressed
mesh.

Another claim of our method is the following:

– The lazy-greedy algorithm runs fast enough for interac-
tive modeling purposes.

The running times for our matching process, applied to the
same characters as used for skeleton graph computations are



10

shown in Table 5.2. Note that the average running time for
this set of models is less than half a second and that it corre-
sponds proportionally to the mesh sizes. The second meshes
in these cases correspond to similar models (e.g., two bears),
alternate poses, and across symmetries (e.g., in a shirt).

Model Mesh size Time
vertices edges seconds

bear 1070 2110 0.04
chick 932 1827 0.02
shirt 3099 6134 0.12

director 9958 19889 0.72
tommy 10281 20530 0.76
body 13238 26457 1.08
girl 6976 13903 0.65

Table 5.2 Running times for approximate topological matching of var-
ious quad mesh models.

Note that all the running times for approximate matching
are at a second or less. This is certainly sufficient for inter-
active modeling purposes. Moreover, it significantly speeds
up what used to be a semi-automated process that involved
human input of a pair of edges to use as anchors.

Finally, we also make the following claim for our algo-
rithm:

– The lazy-greedy algorithm finds good approximate matches.

Naturally, since we are not aware of any other approximate
topological matching algorithms, testing this claim against
other algorithms is not possible. Nevertheless, we can prove
that our algorithm is successful in many cases. Suppose, for
example, that there is a mapping between two simple, con-
nected, well-formed quad meshesM1 andM2 such that each
connected mismatched region has boundary complexity of at
most δ. Suppose further that the medial axis of the matched
region for M1 and M2 is connected and has a spanning tree
T such that each edge of T has a cross-sectional width of at
least ε > 2δ. Then our algorithm will succeed in finding a
match at least as good as this match.

In addition, a subjective evaluation of the matches our al-
gorithm produced on the Disney character database demon-
strated that our algorithm empirically found good matches.
For example, we show the quality of the matches produced
by our algorithm on the bears and girl models in Figures 5.2
and 5.3. In addition, an animation of our algorithm is avail-
able for download at the following location:

www.ics.uci.edu/˜eppstein/projects/firefront.mov

6 Conclusion and Future Directions

In this paper, we study the approximate topological match-
ing problem for quad meshes, showing this problem is NP-
hard in general. Nevertheless, we provide an efficient heuris-
tic algorithm that works well in practice and provably well
for a large class of models that is common in practice.

Fig. 5.2 Approximate Matching; quads in (dark) red denote mis-
matched regions. Only the ears, which are indeed topologically dif-
ferent, were not matched.

Fig. 5.3 An Approximate Matching Result; quads in (dark) red denote
mismatched regions. This example shows how the lazy-greedy algo-
rithm tolerates both modest mis-matches and massive mis-matches, as
in Figure 1.1, unlike approaches based on minimizing edit distance.
(The two right hands actually don’t match topologically, as the hand of
the second model is attached differently.)

www.ics.uci.edu/~eppstein/projects/firefront.mov


11

Directions for future work include the following:

– Our methods are directed at connected models. How hard
is it to extend the lazy-greedy algorithm to handle dis-
connected models?

– Our methods find a single connected region of match-
ing quads. Is there a way to generalize the lazy-greedy
approach to handle disconnected matching regions in a
way that maintains distance and intuitive correspondence
as much as possible?

Acknowledgements This research was done while the first two au-
thors were consultants for Walt Disney Animation Studios. Likewise,
this research was done while the third author was a summer intern for
Walt Disney Animation Studios.

References

1. C. G. Armstrong, D. J. Robinson, R. M. McKeag, T. S. Li, S. J.
Bridgett, and R. J. Donaghy. Applications of the medial axis
transform in analysis modelling. In NAFEMS, Proc. 5th Int.
Conf. Reliability of FEM for Engineering Applications, pages
415–426, 1995.

2. G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1998.

3. B. G. Baumgart. Winged edge polyhedron representation.
Technical Report CS-TR-72-320, Stanford University, 1972.

4. M. W. Bern and D. Eppstein. Quadrilateral meshing by circle
packing. Int. J. Computational Geometry and Applications,
10(4):347–360, 2000.

5. S. Berretti, A. D. Bimbo, and P. Pala. A graph edit distance based
on node merging. In Image and Video Retrieval, volume 3115 of
Lecture Notes in Computer Science, pages 464–472, 2004.

6. T. D. Blacker and M. B. Stephenson. Paving: a new approach to
automated quadrilateral mesh generation. Int. J. Numerical
Methods in Engineering, 32:811–847, 1991.

7. H. Bunke. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Letters,
18(8):689–694, 1997.

8. S.-W. Chae and J.-H. Jeong. Unstructured surface meshing using
operators. In Proc. 6th Int. Meshing Roundtable, pages 281–291,
1997.

9. D. Cohen-Or, D. Levin, and O. Remez. Progressive compression
of arbitrary triangular meshes. In Proc. 10th IEEE Visualization
(VIS ’99), page 11, 1999.

10. D. G. Corneil and C. C. Gotlieb. An efficient algorithm for graph
isomorphism. J. ACM, 17(1):51–64, 1970.

11. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, Germany, 2nd edition, 2000.

12. H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting
fary embeddings of planar graphs. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing,
pages 426–433, New York, NY, USA, 1988. ACM Press.

13. M. A. Eshera and K. S. Fu. An image understanding system using
attributed symbolic representation and inexact graph-matching.
IEEE Trans. Pattern Anal. Mach. Intell., 8(5):604–618, 1986.

14. T. Feder and R. Motwani. Clique partitions, graph compression
and speeding-up algorithms. In Proc. 23rd ACM Symp. Theory of
Computing, pages 123–133, 1991.

15. P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. 41st Symp. Foundations of Computer
Science, pages 390–398, 2000.

16. M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

17. M. Grohe. Isomorphism testing for embeddable graphs through
definability. In STOC ’00: Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pages 63–72,
New York, NY, USA, 2000. ACM Press.

18. S. Gurnhold and W. Strasser. Real time compression of triangle
mesh connectivity. In Proc. 25th Conf. Computer Graphics and
Interactive Technology, pages 133–140, 1998.

19. J. E. Hopcroft and J. K. Wong. Linear time algorithm for
isomorphism of planar graphs. In Proc. 6th ACM Symp. Theory
of Computing, pages 172–184, 1974.

20. A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schröder.
Near-optimal connectivity encoding of 2-manifold polygon
meshes. Graph. Models, 64(3/4):147–168, 2002.

21. D. King, J. Rossignac, and A. Szymczak. Connectivity
compression for irregular quadrilateral meshes. Technical Report
GIT-GVU-99-36, Georgia Institute of Technology, 1999.

22. S. Marini, M. Spagnuolo, and B. Falcidieno. From exact to
approximate maximum common subgraph. In Graph-Based
Representations in Pattern Recognition, pages 263–272.
Springer-Verlag, Lecture Notes in Computer Science 3434, 2005.

23. G. Miller. Isomorphism testing for graphs of bounded genus. In
Proc. 12th ACM Symp. Theory of Computing, pages 225–235,
1980.

24. G. L. Miller. Graph isomorphism, general remarks. In STOC ’77:
Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 143–150, New York, NY, USA, 1977. ACM
Press.

25. B. Mohar and C. Thomassen. Graphs on Surfaces. Johns
Hopkins University Press, 2001.

26. M. Müller-Hannemann. High quality quadrilateral surface
meshing without template restrictions: a new approach based on
network flow techniques. In Proc. 6th Int. Meshing Roundtable,
pages 293–307, 1997.

27. N. Neuhaus and H. Bunke. Automatic learning of cost functions
for graph edit distance. Information Science, 177(1):239–247,
2007.

28. D. Nowottny. Quadrilateral mesh generation via geometrically
optimized domain decomposition. In Proc. 6th Int. Meshing
Roundtable, pages 309–320, 1997.

29. F. P. Preparata and M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, NY, 1985.

30. W. Schnyder. Embedding planar graphs on the grid. In SODA
’90: Proceedings of the first annual ACM-SIAM symposium on
Discrete algorithms, pages 138–148, Philadelphia, PA, USA,
1990. Society for Industrial and Applied Mathematics.

31. T. Schonfeld and P. E. R. Weinerfelt. The automatic generation of
quadrilateral multi-block grids by the advancing front technique.
In Numerical grid generation in computational fluid dynamics
and related fields; Proceedings of the 3rd International
Conference, Barcelona, Spain, pages 743–754, 1991.

32. K. Shimada, J.-H. Liao, and T. Itoh. Quadrilateral meshing with
directionality control through the packing of square cells. In
Proc. 7th Int. Meshing Roundtable, pages 61–75, 1998.

33. B. C. Smith and L. A. Rowe. Algorithms for manipulating
compressed images. Computer Graphics and Applications,
13(5):34–42, 1993.

34. J. A. Talbert and A. R. Parkinson. Development of an automatic
two-dimensional finite element mesh generator using
quadrilateral elements and Bezier curve boundary definition. Int.
J. Numerical Methods in Engineering, 29:1551–1567, 1991.

35. G. Taubin and J. Rossignac. Geometric compression through
topological surgery. ACM Trans. Graphics, 17(2):84–115, 1998.

36. C. Touma and G. C. Triangle mesh compression. In Proc.
Graphics Interface, pages 26–34, 1998.

37. D. R. Wood and J. A. Telle. Planar decompositions and the
crossing number of graphs with an excluded minor. New York
Journal of Mathematics, 13:117–146, 2007.

38. B.-L. Yeo and B. Liu. Rapid scene analysis on compressed video.
IEEE Trans. Circuits and Systems for Video Technology,
5(6):533–544, 1995.



12

David Eppstein is a professor and co-chair of the Computer Science
Department at the University of California, Irvine. He received his
Ph.D. in Computer Science from Columbia University in 1989, af-
ter majoring in Mathematics at Stanford University, and worked as a
postdoctoral researcher at the Xerox Palo Alto Research Center from
1989 to 1990 before joining the UCI faculty. His research specialties
include computational geometry, graph algorithms, and graph draw-
ing.

Michael T. Goodrich is a Chancellor’s Professor at the University
of California, Irvine, where he has been a faculty member in the De-
partment of Computer Science since 2001. He received his B.A. in
Mathematics and Computer Science from Calvin College in 1983 and
his PhD in Computer Sciences from Purdue University in 1987, and
he worked as a professor in the Department of Computer Science at
Johns Hopkins University from 1987-2001. His research is directed
at algorithms for solving large-scale problems motivated from infor-
mation assurance and security, the Internet, information visualiza-
tion, and geometric computing.

Ethan D.H. Kim is a Ph.D. student at School of Computer Science,
McGill University. His research interests lie in discrete mathematics
and approximation algorithms, particularly with geometric graphs,
and is now working on graph-theoretic problems from computational
biology. He is a recipient of NSERC Canada Graduate Award (2006)
and Postgraduate Award (2007). His work on this paper was done
while he was visiting Walt Disney Feature Animation as a graduate
research associate.

Rasmus Tamstorf is a research scientist at Walt Disney Animation
Studios. Over the past 10 years at Disney he has worked on a variety
of projects including geometrical problems in rendering, a produc-
tion pipeline based on subdivision surfaces, and deformation algo-
rithms for character animation. He is currently working on various
aspects of cloth simulation and whatever it takes to create the Disney
magic. Rasmus has a MS EE degree from the Technical University of
Denmark and film credits on Tarzan, Dinosaurs, Lilo & Stitch, and
Chicken Little, among others.


	Introduction
	Preliminaries
	On the Difficulty of Approximate Topological Matching of Quad Meshes
	A Heuristic Algorithm for Approximate Topological Matching
	Experimental Results
	Conclusion and Future Directions

