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1 Introduction 

Intersection is one of the most universal and basic 
problems in geometric modeling. Although all of 
the Boolean operations are axiomatic to geometric 
modeling, intersection is particularly important 
and particularly challenging. It is required for the 
definition of a geometric model [-e.g., CSG (Requi- 
cha 1980)] and is fundamental to the model's appli- 
cations, such as interference detection or hidden- 
surface elimination (Sechrest and Greenberg 1982; 
Mortenson 1985; McKenna 1986). The classic view 
of the intersection of algebraic curves and surfaces 
is that it is equivalent to the solution of a simulta- 
neous system of equations, such as 
{f(x,y)=O,g(x,y)=O} for two plane algebraic 
curves.1 Canonically, the system of equations is re- 
duced to a single univariate equation, the univar- 
iate equation is solved, and full solutions are built 
from these partial solutions. An artifact of this ap- 
proach is that all of the intersections are found. 
However, in geometric modeling a person is usual- 
ly interested only in the intersections between two 
short segments of the curves. Thus, following this 
approach, one must first compute all of the inter- 
sections between the curves and then decide which 
of these intersections actually lie on the segments 
[-a decidedly nontrivial decision involving the sort- 
ing of points along a curve (Johnstone 1987; John- 
stone and Bajaj 1990)]. Therefore, segment inter- 
section is actually more complex than curve inter- 
section when the traditional approach is adopt- 
ed. 
Therefore, a method that makes segment intersec- 
tion simpler than curve intersection, especially if 
the segments are short, is needed. This is especially 
urgent, because as geometric models become more 
complex intersection of higher-degree curves with 
the global system of equations method becomes 
prohibitively expensive, while the curve segments 
involved remain short. In this paper, we present 
a new method for intersecting plane algebraic curve 
segments. The method is input-sensitive: the 
simpler and shorter the segment, the more efficient 
the intersection computation. 
Our method is based upon crawling (or tracing), 
a method for moving along a curve that has re- 
ceived much attention of late (Timmer 1977; Dob- 
kin et al. 1986; Hoffmann 1987; Owen and Rock- 
wood 1987; Bajaj et al. 1988). We find intersections 
by crawling along the two segments in a coordinat- 

1 In this paper, we deal with curves that are defined using 
implicit representation. Thus, methods of intersection that  rely 
on parametric representation (see Mortenson 1985) are not ap- 
plicable 
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ed fashion. Because crawling is a method for mov- ' 
ing along a single curve, we must adapt it to two 
curves (Sect. 3). This crawling is easiest if both seg- 
ments are xy-monotone (monotone with respect to 
both coordinate axes), so that curve segments are 
first decomposed into xy-monotone segments 
(Sect. 7). Two methods of coordinated crawling 
along xy-monotone segments are presented: the si- 
multaneous and the staircase crawl (Sects. 4 and 
5). Several optimizations are also suggested, includ- 
ing a method of recognizing when two xy-mono- 
tone segments cannot intersect and two methods 
of eliminating long crawls within a coordinated 
crawl (Sect. 8). A variant of the plane-sweep meth- 
od (familiar from computational geometry: Bentley 
and Ottmann 1979; Preparata and Shamos 1985; 
Edelsbrunner 1987) is used to find the intersections 
of the collection of xy-monotone segments com- 
prising the two segments we are intersecting, using 
several calls to coordinated crawling (Sect. 9). We 
end with some conclusions. 

2 Elimination method 
of intersection 
In this section, we review the global method of 
intersection, which we refer to as the elimination 
method of intersection. An example will clarify the 
details of this method. It should be noted that the 
use of Groebner bases, rather than elimination, to 
perform curve intersection is also an essentially 
global method. 

solutions by solving more univariate equations. 
For example, f(xo, y) is solved, yielding Yl, --., Yk, 
and yis such that g(xo, yO+O are discarded; the 
remaining yjs define intersections (x0, Y0- Alterna- 
tively, full solutions can be found from partial solu- 
tions by computing a birational map that maps 
the projections xz of the roots back to the actual 
curve intersections, as described by Abhyankar  and 
Bajaj (1989) and Garrity and Warren (1989). 
Note that all of the intersections between the 
curves are found. In particular, it is impossible to 
find only the intersections on a given segment of 
each curve with this method. It is possible to re- 
strict the intersections in a certain range of x and 
range of y. However, even if it is known that the 
desired segment lies in this range, there may be 
many other segments that also lie in this range. 
There is no way of predicting where the intersec- 
tion will be until it is fully computed. Moreover, 
segment intersection requires expensive postpro- 
cessing procedures. The intersections must be 
sorted along each curve (Johnstone 1987; John- 
stone and Bajaj 1990) and those that are not be- 
tween the endpoints of the appropriate segment 
must be discarded. Thus, with the elimination 
method, segment intersection is actually more com- 
plex than curve intersection. Another problem with 
the elimination method is that it requires the solu- 
tion of a univariate equation of high degree. In 
particular, the degree of the resultant polynomial 
h(x) is potentially the product of the degree of 
f (x, y) and the degree of g(x, y). 

Example 2.1 Suppose that we wish to find the in- 
tersection of the two plane algebraic curves 
f(x, y ) = 0  and g(x, y)=0.  The two equations are 
reduced to a single equation and a variable is elimi- 
nated by taking the Sylvester or Bezout/Cayley re- 
sultant h(x) of f and g with respect to y (Walker 
1950; van der Waerden 1953; Sederberg etal.  
1984). Even if there are more than two equations, 
techniques from the theory of elimination can be 
used to reduce the system to a single univariate 
equation by using several rounds of Sylvester resul- 
tants or a multivariate resultant. Next, the univar- 
iate equation (which encodes the common roots) 
is solved (e.g., by Newton's method), yielding one 
coordinate for each solution of the original system. 
For example, if Xo is a root of h(x), then there 
exists Y0 such that f(xo, yo)=0=g(x0 ,  Yo). Finally, 
the full solutions are built up from these partial 

3 Coordinated crawling 

In this section, we give a short introduction to 
crawling and a general overview of coordinated 
crawling. The reader is referred to Hoffmann (1987) 
and Bajaj et al. (1988) for the details of crawling. 
Crawling is a method of traversing a curve. Pro- 
gress is made by repeatedly making short steps 
away from the curve and relaxing back onto the 
curve (Fig. 1). There are various ways of stepping 
away from the curve, such as stepping along the 
tangent or in a direction parallel to the axes. The 
relaxation back onto the curve can be achieved 
with Newton's method. One of the useful properties 
of crawling is its locality: it relies only on the be- 
havior of the curve in a restricted neighborhood 
of the current position. 
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Fig. 1. Crawling along a curve 
Fig. 2a, b. Two staircase crawls 

3a 

Fig. 3a, b. Simultaneous crawl (a); at the end (b) it must back up in fine increments 

Fig. 4. The danger of a simultaneous crawl along two rising segments 
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The size of each step of a crawl can be adjusted. 
It cannot be too large, because it might lose the 
curve, and it must be particularly small near 
singularities and other places where confusion is 
likely. However, within the bounds of these restric- 
tions, it is possible to talk of coarse crawls with 
large steps and fine crawls with small steps. We 
shall be intent upon keeping the crawl as coarse 
as possible, because the larger the steps, the faster 
the crawl. 
One of the contributions of this paper is to show 
that crawling can also be used to discover the inter- 
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sections between two xy-monotone curve segments. 
Let AB and CD be two xy-monotone curve seg- 
ments. Starting at the beginning of each segment, 
we shall crawl along the two segments in tandem, 
alternating the crawl along AB with the crawl 
along CD so that, at any given time, progress is 
made along only one of the segments (Fig. 2). The 
crawl along a segment continues until a switching 
condition becomes true. The alternation between 
segments continues until an end condition becomes 
true, signalling that an intersection has been found 
or that the two segments do not intersect. The seg- 



ment along which one is presently crawling (or, 
not crawling) is called the active (or, dormant) seg- 
ment. A crawl along an active segment between 
switching conditions is often referred to simply as 
a crawl (of the coordinated crawl). 

Example 3.1 Consider the coordinated crawl of 
Fig. 2a. Horizontal and vertical lines have been 
added to the picture to reveal the structure of the 
crawls. The first crawl is along Aa~ of AB. AB 
then becomes dormant and the second crawl is 
made along Cc 1 of CD, and so on. Eventually, the 
crawls get progressively smaller and converge to 
an intersection x. If no intersection exists, then the 
coordinated crawl reaches the end of one of the 
segments (Fig. 2 b). 
The coordinated crawl, as we have presented it, 
will only find the first intersection. The second in- 
tersection is found by starting another coordinated 
crawl from the first intersection. A new coordinat- 
ed crawl should be begun from each intersection 
until it is determined by the end-condition that 
the segments do not intersect any further. 
We shall present two variants of coordinated 
crawling, because there are two types of xy-mono- 
tone segments. A rising xy-monotone segment in- 
creases in y as it increases in x, while a falling 
xy-monotone segment decreases in y as it increases 
in x. The first method of coordinated crawling, 
which we call the simultaneous crawl, can be used 
to crawl along any pair of xy-monotone segments; 
however, it is best suited to crawling along one 
rising and one falling segment. The second method, 
which we call the staircase crawl, will only apply 
to two rising or two falling segments. 
We need to define some notations and assump- 
tions. Our notation for a curve segment will not 
only specify the endpoints, but also the order of 
the endpoints, in the sense that it is assumed that 
x(A) <_ x(B) is always true of the segment AB, where 
x(A) denotes the x-coordinate of the point A. P, otiw 
(or, Pdorma,t) is our notation for the present point 
on the active (or, dormant) segment during a coor- 
dinated crawl. Finally, in the remainder of this 
paper, we assume that all curves are nonlinear, irre- 
ducible, plane algebraic curves. 

3.1 Approximate vs exact methods 

It is often difficult to be exact in geometric compu- 
tations. The reason for this is twofold: (1) because 
of the use of numerical methods that converge rath- 

er than compute exactly, and (2) because of finite 
machine precision. This is certainly the case with 
the elimination method of intersection, which uses 
numerical methods, such as Newton's method. 
Coordinated crawling is no different. Therefore, we 
make two natural assumptions, both of which can 
be removed if desired, as discussed below. 
a) Two intersections that are less than e distance 
apart are considered to be the same, where e > 0 
is very small and must be part of the input of an 
intersection problem. 
b) If the distance between the two segments de- 
creases below ~, then we are free to decide that 
there is an intersection near this point. In other 
words, if there is an intersection, then we will al- 
ways recognize it; but if there is no intersection, 
then we may sometimes make a mistake and diag- 
nose an intersection. 

may be chosen as small as desired without affect- 
ing the efficiency of the coordinated crawl (see 
Lemma 6.1 below). 
These two assumptions simplify the presentation 
of coordinated crawling considerably. Moreover, 
for the purposes of applications such as graphics, 
the two assumptions are valid not only because 
of inherent error in computations but also because 
of the inherent crudeness of algorithms, e.g., two 
segments may also intersect if they are closer to 
each other than a pixel. However, it is possible 
to do without them. Indeed, for a coordinated 
crawl along a rising and a falling segment, neither 
of the assumptions is necessary at all. (That is, in- 
tersections will always be found within the accura- 
cy of the crawling method that is being used, and 
a near-intersection will never be mistaken for an 
intersection.) 
The first assumption can always be removed by 
the choice of a proper e. For  example, one can 
use Canny's gap theorem (Lemma 3.1), which re- 
veals that the intersections of two algebraic curves 
are never too close together. 

Lemma 3.1 (Canny's gap theorem (Canny 1987)) 
Let ~(d, c) be the class of polynomials of degree 
d and coefficient magnitude c. Let f l ( x i , . . . ,  x,), 
�9 . . , f , (x i ,  ..., x,)e~(d, c) be a collection of n poly- 
nomials in n variables, which has only finitely-many 
solutions when projectivized. Then if (~i . . . . .  ~,) is 
a solution of the system, for any j either 0~j=0 or 
r%] > (3 d C)-"d". 

Corollary 3.1 Let f l(x,  y)--O, f2(x, y ) = 0  be two ir- 
reducible plane algebraic curves of degree d and coef- 
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ficient magnitude c. I f  5<(3dc) -aa2, then no two 
intersections will be within an e-distance of each 
other. 

Proof In order to apply the lemma, translate one 
of the two intersections to the origin. 

The second assumption can be removed as follows. 
Whenever, the distance between the segments de- 
creases below 5, construct a two-dimensional box 
at the point that contains at most one intersection 
(using Canny's gap theorem or other methods) and 
test whether this box contains an intersection, us- 
ing a technique for testing whether a box contains 
an intersection (Sakkalis 1989) or a technique for 
counting the number of intersections in a box (e.g., 
Pedersen 1990). Next jump past the segments in 
the box and consider another box at this new point. 
Continue in this way until the distance between 
the segments increases above 5. 
Note that, due to the expense of exact methods, 
in most cases it will be preferable to make the two 
simplifying assumptions. 

3.2 Coarse vs fine crawls 

In coordinated crawling, we shall distinguish be- 
tween coarse and fine crawls, depending on the 
size of each crawl step. A fine crawl will be used 
to find something accurately and to avoid skipping 
over an intersection. Thus, fine crawl steps are less 
than 5 in length. Coarse crawl steps are as long 
as possible without losing the curve. Obviously, 
for reasons of efficiency, it is important that coarse 
crawls be used as much as possible. The desired 
paradigm is to use coarse crawls to get close to 
the intersection and fine crawls only at the end 
to accurately find the intersection. 
For any pair of xy-monotone segments, we shall 
present a coordinated crawling method such that 
most of the crawling is in coarse steps. Later sec- 
tions (Sects. 8.2 and 8.3) will investigate the use 
of even coarser traversals of the curve, where one 
skips over a large subsegment of the curve in a 
single step (using a line-curve intersection). 

4 Simultaneous crawl 

With  the simultaneous crawl, one simulates crawl- 
ing along both segments at the same time while 
maintaining the same velocity with respect to the 
x-axis, hence its name (Fig. 3a). The associated 
switching condition is x (Pactive) > x (Pdo . . . .  t)" 
The end-condition must signal an intersection or 
the end of a segment. In the neighborhood of an 
intersection between a rising segment and a falling 
segment, the relative vertical order of the segments 
is reversed. Therefore, a simultaneous crawl along 
a rising and falling segment can proceed with 
coarse steps until the relative vertical order of the 
segments is reversed, and then crawl backwards 
with finer steps to accurately find the intersection 
(Fig. 3b). The backwards crawl should continue 
until the relative vertical order switches once more, 
which is where the intersection is placed. There 
is no danger of skipping over two intersections with 
the coarse crawl, because a rising segment and a 
falling segment can have only one intersection. 
Because of x-monotonicity, it is simple to recognize 
the end of a segment AB or CD: the condition 
is x (Pactive) ~ min {x (B), x (D)}. Thus, for a simulta- 
neous crawl along a rising segment AB and a falling 
segment CD, the entire end condition is 

((y (A') < y (C')) ~ (y (A) < y (C))) 
v x (P, ctlve) > min {x(B), x(D)}, 

where A' (or, C') is the present point on AB (or, CD) 
during the crawl. Recall that the end condition sig- 
naling an intersection actually signals only the 
passing of an intersection, so that one must retrace 
steps back to the intersection before outputting 
it. 
Theoretically, the simultaneous crawl can also be 
used for two rising (or two falling ) segments. How- 
ever, a simultaneous crawl along two rising seg- 
ments is dangerous, because it is possible to skip 
over a pair of intersections without noticing them 
(Fig. 4). Using Lemma 3.1, this danger could be 
avoided if the crawl is fine enough. That is, the 
crawl steps must be finer than 25 where 5 
<(3dc)-Za2. Because a simultaneous crawl along 
two rising or two falling segments would require 
fine steps at all times, the staircase crawl of the 
next section is preferred for these segments. 

In order to fully define a coordinated crawl, the 
switching and end conditions must be defined. In 
this section, we present the first of our two coordin- 
ated crawling methods, the simultaneous crawl. 

5 Staircase crawl 

In this section, we present the second method of 
coordinated crawling, which is used for crawling 
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Fig. 5. The danger of a staircase crawl that 
does not back up one step after each crawl 
Fig. 6. e-zones 

along two rising or two falling segments. Consider 
a coordinated crawl along two rising segments. 
Rather than switching segments as soon as the x- 
coordinate of the active segment exceeds the x- 
coordinate of the dormant segment, in the staircase 
crawl one waits until both the x-coordinate and 
the y-coordinate of the active segment exceed those 
of the dormant segment before switching. We call 
this a staircase crawl, because if the endpoints of 
the crawls are joined by straight lines, a staircase 
leading towards an intersection will result (Fig. 2 
and Lemma 5.1). The associated switching condi- 
tion is 

X (Pae t ive )  > X ( P d o r m a n t ) / k  y (Pactiw) > Y (Pdorman t ) -  

Because of the granularity of the crawl, an intersec- 
tion might be overlooked with this switch condi- 
tion (Fig. 5). To correct this, one should back up 
one step before switching segments so that the ac- 
tive segment remains behind the staircase. 
An intersection is signalled when a stair less than 

in height is encountered. (This is the only place 
that the second assumption from Sect. 3.1 is used.) 
Every intersection will be found with this end-con- 

dition, because the staircase converges to an inter- 
section (see Lemma 5.1), and we do not jump past 
the staircase. Thus, the end-condition for a stair- 
case crawl is simply 

[Y (Pactive) - -  Y (Paormant)[ < 8 
v x (P, otive) > rain {x (B), x (D)}. 

Coarse crawls are used until the coordinated crawl 
approaches an intersection, at which point fine 
crawls are used. If a coarse crawl is used near an 
intersection, it is possible to enter an infinite loop: 
continually going forward one step (at which point 
both x and y coordinates of the active segment 
exceed those of the dormant) and then back one 
step (to stay behind the staircase). This will not 
happen with a fine crawl, because if only one fine 
step (of length less than e) separates the x and y- 
coordinates, the height of the present stair must 
be less than e and an intersection will be signalled. 
Because an infinite loop, as described above, is only 
possible when the length of a stair becomes as short 
as a step of a coarse crawl, fine crawls are only 
necessary near the intersection. In an intermediate 
phase, when strictly coarse crawls are too crude, 
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but strictly fine crawls are too slow, one can use 
a coarse crawl to crawl forward and a fine crawl 
to go backwards. 
We must show that the staircase crawl converges 
to the first intersection of the segments, if one ex- 
ists. 

Lemma 5.1 Let AB and CD be two rising segments. 
The staircase crawl along AB and CD will converge 
to the first intersection of AB and CD, if such an 
intersection exists. Otherwise, it will reach the end- 
point B or D of one of the segments. 

Proof First, one does not jump over an intersec- 
tion. This is best seen by considering the perfect 
staircase: the staircase consisting of true horizontal 
and vertical line segments. (The stairs of the stair- 
case connecting the endpoints of the actual stair- 
case crawl will not be perfectly horizontal or verti- 
cal.) It is easy to see that the perfect staircase con- 
verges to an intersection. The staircase crawl is 
guided by the perfect staircase. Because the stair- 
case crawl backs up before switching segments, it 
is indeed constrained by the perfect staircase. 
Second, progress is made with each crawl. If there 
is no progress, then the stair must be of a height 
less than e and we say that an intersection has 
been found. In particular, progress of at least e 
(usually much more) is made with each crawl. Thus, 
the staircase crawl must eventually find the first 
intersection, if one exists. 
A staircase crawl diagnoses an intersection when 
the stairs become shorter than e. Two questions 
arise: where should the intersection be placed and 
where should the crawl start from to look for the 
next intersection? The crawl cannot place the inter- 
section where it stopped and continue from there, 
because it will immediately stop and diagnose an- 
other intersection. We introduce the concept of an 
e-zone to provide the answer to these questions. 
The e-zone is a pair of subsegments of the curves 
that stay within a vertical distance of e. We enter 
an e-zone when the vertical distance between the 
segments becomes less than e (in practice, the e- 
zone actually begins when a stair of a height < e 
is found) and exit it when the vertical distance be- 
comes greater than e (Fig. 6). 
Now the two questions can be answered. When 
a stair of a staircase crawl becomes shorter than 
e, we skip over the associated e-zone and restart 
the staircase crawl there. The intersection is placed 
in the middle of the e-zone. A simultaneous crawl 
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is used to cross the e-zone. (As mentioned at the 
end of Sect. 4, a simultaneous crawl of two rising 
segments will use fine crawls, so it is perfect for 
crossing the e-zone.) 
The first crawl after an intersection must be treated 
as a special case, because neither segment domi- 
nates. In order to get things started, one should 
make a crawl of length e along one of the segments. 
It might seem that this crawl is dangerous, because 
it may skip over an intersection, being blind and 
unconstrained by any staircase. However, recall 
that any two intersections that are within e of each 
other are considered equivalent; thus, it is impossi- 
ble to skip over a relevant intersection. 
We end this section by noting that the staircase 
crawl cannot be used to find the intersection of 
a rising segment and a falling segment, as illustrat- 
ed by Fig. 7. In as much as we have already noted 
that the simultaneous crawl is not well suited for 
the intersection of two rising segments (because fine 
crawls are always necessary), it can be seen that 
both types of coordinated crawling are necessary. 
With a simultaneous crawl and a staircase crawl, 
one can find the intersection(s) of any pair of xy- 
monotone segments, and most of the crawling uses 
coarse steps. 

6 Efficiency 

A simultaneous crawl continually switches from 
one segment to the other. Indeed, of the two seg- 
ments between any two adjacent vertical lines in 
Fig. 3(a), one will be a single crawl step long. It 
might appear that this large number of switches 
will make the crawl expensive. The following lem- 
ma shows that this is not the case, because switches 
are essentially free. 

Lemma 6.1 The number of switches in a coordinated 
crawl is irrelevant. 

Proof The number of switches does not matter be- 
cause stopping and starting a crawl takes no time. 
This can be seen as follows. Let AB and CD be 
xy-monotone segments. We can keep two separate 
regions in memory, one set up for crawling along 
AB, the other for crawling along CD. Switching 
crawls merely involves jumping to the other part 
of memory. 
It might seem that if the segments remain very close 
for a long time, then a staircase crawl will be slow 



because the staircase is very fine with very short 
stairs. Similarly, it might appear that a staircase 
crawl will slow down as its stairs get very short 
during convergence to an intersection. Lemma 6.1 
shows that these intuitions are wrong. 
In the worst case, a coordinated crawl along two 
segments seems slightly less efficient than crawling 
independently along the entire first segment and 
then crawling independently along the entire sec- 
ond segment, because one must test the switching 
and end conditions at each step. However, in 
Sect. 8 we shall show that a coordinated crawl need 
not crawl along all of the two segments, so that 
the complexity of a coordinated crawl is actually 
less than the complexity of making two indepen- 
dent crawls with condition testing. 

7 XY-Monotone decomposition 

As our coordinated crawling methods work upon 
xy-monotone segments, the first step in intersecting 
two segments with the coordinated crawling meth- 
od is to partition each curve segment into xy- 
monotone curve segments. Observe that a curve 
segment is xy-monotone if and only if it contains 
no local extrema (no changes in direction with re- 
spect to the x-axis or y-axis). An xy-monotone de- 
composition of a segment can be computed by 
crawling along the segment. One simply marks 
points at which x(P) or y(P) changes direction, 
where P=(x(P),  y(P)) is the present point on the 
crawl. The properties of crawling guarantee that 
one will not miss any directional changes during 
a crawl. Therefore, the complexity of the xy-mono- 
tone decomposition of a segment is the complexity 
of crawling along the segment. 
An alternative method is to compute the local ex- 
trema of the segment algebraically, using the fact 
that the local extrema of a curve f ( x ,  y ) = 0  are 
the solutions of { f ~ = 0 , / = 0 }  and { fy=0 , f=0} ,  
wherefx andfy are the derivatives o f f  with respect 
to x and y, respectively. After computing the extre- 
ma, they must be sorted along the curve in order 
to pair them into xy-monotone segments. Note 
that the local extrema may already be known, be- 
cause it is trivial to compute the local extrema of 
a curve as part of computing the singularities of 
a curve (the singularities are the solutions of {fx 
= 0, fy = 0, f =  0}); and the singularities of an alge- 
braic curve are fundamental to many geometric 
modeling algorithms (e.g., Abhyankar  and Bajaj 

1986; Johnstone 1987). If local extrema are not 
known, the elimination method of Sect. 2 can be 
used to compute them. This may appear to lead 
to a circularity in our method. However, xy-mono- 
tone decomposition is a one-time overhead. The 
expense of preprocessing is well warranted for 
curves in a solid model, because they are relatively 
permanent and intersection is a common opera- 
tion. For example, consider the pairwise intersec- 
tion of a large collection of segments. The cost of 
xy-monotone decomposition can be amortized 
over all of the intersections, whereas the elimina- 
tion method would require a curve-curve intersec- 
tion for each of the pairwise intersections. 
Although the elimination method of xy-monotone 
decomposition is mentioned in the interests of 
completeness, the first method using crawling will 
usually be the best choice, because a local method 
for xy-monotone decomposition is appropriate for 
a local method of curve intersection. 

8 Improvements 

8.1 Early abortion 

In this section, we outline some methods for im- 
proving the efficiency of a coordinated crawl. A 
coordinated crawl can be aborted as soon as it 
becomes apparent that the two segments cannot 
intersect. We begin with a set of conditions that 
guarantees the distinctness of two xy-monotone 
segments. 

Lemma 8.1 Let AB and CD be xy-monotone seg- 
ments. I f  any of the following conditions is true, then 
AB and CD do not intersect. 

a) x (B) < x (C). 
b) x (D) < x (A). 
c) {y(A), y(B)) < {y(C), y(D)}. 
d) {y(C), y(D)} < {y(A), y(B)}. 
e) AB and CD are convex (a segment is convex 
if no line has more than two distinct intersections 
with it) and A AB n A CD = O, where A AB is the tri- 
angle whose sides are the tangent at A, the tangent 
at B, and AB (Fig. 8). 

Proof The sufficiency of conditions a-d  is a 
straightforward consequence of the xy-monotonic- 
ity of the segments. (Recall that x (A)<x(B)  is im- 
plicit from the notation AB.) The sufficiency of the 
fifth condition follows from noting that if AB is 
convex, then A AB contains AB. 
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Fig, 7. A staircase crawl cannot  be used for a rising segment and a 
falling segment 

Fig. 8. AB and CD cannot  intersect 

Fig. 9, The length of AB is bounded by a + b 

Fig. 10. A binary search for the intersection 

Fig. 11. A curve comparison between C' and p: crawl from q to r 

These conditions should be tested throughout the 
coordinated crawl. (The condition involving con- 
vex segments should only be tested if there is prior 
knowledge that the segments are convex as well 
as xy-monotone.) In order to lighten the computa- 
tional burden, they might only be tested intermit- 
tently, rather than after every step. 

8.2 Eliminating long crawls in the 
staircase cra wl 

We have noted that a coordinated crawl should 
use coarse crawls whenever possible. In this sec- 

6 8  

tion, we show how to make even larger jumps in 
a staircase craM. In particular, it is possible to 
replace a crawl (from one stair endpoint to the 
next) by a single line-curve intersection. 
In a staircase crawl, one climbs a staircase towards 
an intersection. This process can be fully character- 
ized by the series of endpoints of the stairs. For  
example, the staircase crawl of Fig. 2 can be repre- 
sented by C, a t ,  cl ,  a2, cz . . . .  The act of climbing 
a stair (i.e., finding the next endpoint in the series) 
is equivalent to finding the intersection of a line 
with one of the curve segments. In particular, the 
endpoint that follows endpoint E on curve segment 



1 is the intersection with curve segment 2 of a hori- 
zontal or vertical line through E. This suggests an- 
other method for climbing the stair: find the inter- 
section of the line and curve segment with the elim- 
ination method of Sect. 2. 
Because a staircase crawl is being used, it can be 
assumed that the elimination method is inferior 
for the intersection of the two curve segments. 
However, it may still be feasible for the simpler 
intersection of a line and one of the curve segments. 
The time to climb a stair EiEi+l of the staircase 
El, E z . . . . .  E, by crawling depends upon the 
length of the segment E~_ 1Ei+ 1, whereas the time 
to climb a stair with a line-curve intersection de- 
pends on the degree of the curve to which we are 
climbing. Therefore, the higher the stair and the 
lower the degree of the curve, the more attractive 
it is to climb the stair with a line-curve intersec- 
tion. 
It may be difficult to decide when the next stair 
should be climbed with a line-curve intersection 
rather than a crawl. The following lemma could 
be used to approximate the cost of climbing it with 
a crawl. 

not possible for the intersection of two rising seg- 
ments, because there may be more than one inter- 
section, and a binary search only makes sense when 
searching for a single element.) A probe of this 
'binary search' is the intersection of a vertical line 
with both curve segments to determine their rela- 
tive vertical order. If the relative vertical order is 
the same as the beginning of the segments, then 
the intersection must lie to the right of the probe. 
The binary search may allow the simultaneous 
crawl to begin closer to the intersection. It is diffi- 
cult to determine the number of probes that should 
be made. There is a tradeoff between the number 
of line-curve intersections that are computed and 
the amount of crawling that is saved. As a general 
rule, the binary search should continue longer if 
the degree of the curves is low (because line-curve 
intersections will be inexpensive) or if the curve 
segments are long (because a lot of crawling is more 
likely). 

9 Intersecting arbitrary 
curve segments 

Lemma 8.2 The length of an xy-monotone segment 
AB is bounded by V~dist(A, B). 

Proof Consider the right triangle with hypotenuse 
AB, whose other sides are horizontal and vertical 
(Fig. 9). By xy-monotonicity, it is easy to see that 
the length of the curve segment AB is bounded 
by the sum of the lengths of two of the sides of 
the triangle Ix (B) -x (A) l+]y(B)-y (A) l=a+b.  
The result follows by noticing that a + b = c ( s i n O  

+ cos O) and max0(sin 0 + cos O) = ~ (at 0 = 4 ) .  

8.3 Accelerating the simultaneous crawl 

The simultaneous crawl can also benefit from the 
use of line-curve intersections. In this case, the 
analogy is to root-finding of univariate polyno- 
mials, where binary search is used to isolate a re- 
gion for the root before Newton's method is ap- 
plied. In finding the unique intersection of a rising 
segment and a falling segment, it may be useful 
to use a binary search for the intersection with 
line-curve intersections before beginning the actual 
simultaneous crawl (Fig. 10). (A binary search is 

We have discussed how to intersect two xy-mono- 
tone segments. However, the original goal was to 
intersect two arbitrary segments. In as much as 
the two original segments were decomposed into 
xy-monotone segments, we must show how to find 
the intersections of a collection of xy-monotone 
segments. Rather than using the naive O(n 2) algo- 
rithm of intersecting every pair, we shall use a vari- 
ant of plane sweep to reduce this to looking at 
only O (n + k) pairs, where k is the number of inter- 
sections. The advantage of this plane-sweep meth- 
od (based on the familiar plane sweep of Bentley 
and Ottmann 1979) is it avoids testing pairs that 
are never vertically adjacent. 
We begin by inserting all of the xy-monotone seg- 
ment endpoints into a priority queue E (sorted by 
x-coordinate). We will be sweeping a vertical line 
L through the plane from left to right. As we sweep, 
we will maintain a database D, which consists of 
all curve segments that intersect L, stored in sorted 
order by their intersections with L. We represent 
D as a (2,3)-tree (Aho et al. 1974) (or some equiva- 
lent efficient dynamic-search structure). Note that 
because the segments are xy-monotone, each seg- 
ment will intersect L at most once. As we sweep 
L to the right we need to stop at various event 
points to maintain the consistency of the database 

69 



D. The priority queue E determines the events. An 
event is either an endpoint or an intersection point. 
With each curve C, we also keep a priority queue 
E(C), which stores the names of all the curves that 
we have compared with C already. These lists will 
prevent us from performing any redundant inter- 
section tests. 
A generic step in the plane-sweep algorithm is as 
follows. Remove the point in E with minimum x- 
coordinate. Let p be this point. Intuitively, this cor- 
responds to moving L to the right until it hits p. 
We must then update D, depending on the identity 
of p. We identify each of the possible cases below. 

Case 1. The point p is the left endpoint of a curve 
segment C (Fig. 11). In order to maintain the con- 
sistency of our database, we must insert C in to 
D. To do this, we must find the curve segment 
C1 in D such that Ca intersects L in the highest 
point below p, i.e., Ca is directly below p. We can 
do this by making O(logn) curve comparisons to 
find a path in the tree D from the root to the place 
where C belongs. Each such curve comparison de- 
termines whether a curve C' intersects L above or 
below p and is implemented by crawling along C' 
from the previous event point on C' until reaching 
L, as in Fig. 11 (or by performing a line-curve inter- 
section). After locating where C belongs in D, sup- 
pose that C1 (or, C2) is C's predecessor (or, succes- 
sor) curve in D. We check if C~ is already in E(C) 
and, if not, intersect C with Ca (using coordinated 
crawling). Similarly, we check if C2 is already in 
E(C) and, if not, intersect C with C2. We add all 
discovered intersection points p to the priority 
queue E as long as the two curves cross at p (as 
opposed to simply 'touching'). We also add C to 
E(C1) and E(C2) and add C~ and C 2 to E(C). At 
first glance, one might worry that the crawling in- 
volved in the curve comparisons might become 
prohibitive. However, even in the pathological 
worst case, the entire time required for inserting 
C into D is bounded by the time to crawl along 
log n segments, which is not a significant expense 
when compared with the alternative of finding the 
intersections between all 0 (n 2) segment-pairs. 
The coordinated crawl for intersecting two xy- 
monotone segments should be started from L, not 
from the beginning of the segments. 

Case 2. The point p is an intersection point. If Ca 
and C2 are the two curves that intersect at p, then 
we swap them in D. Without loss of generality, 
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assume C2 now occurs before Ca in the list D. Let 
Co be the new predecessor of Ca and let C3 be 
the new successor of C1. Provided C O is not in 
E(C2), we find the intersections of Co and C2 (and 
insert them into the event queue E). Similarly, we 
intersect Ca and C3, provided C3 is not in E(C1). 
We then update E(Co), E(CI), E(C2), and E(C3) 
as necessary. 

Case 3. The point p is a right endpoint of a curve 
C. In this case, we delete C from D. We then need 
to intersect the two neighbors Ca and Ca of C 
at p (which are now adjacent), after checking if 
C1 is already in E(C2). Of course, we then update 
E(CO and E(C2) as necessary. 
Because these are all the possible cases, this com- 
pletes the algorithm. We summarize with the fol- 
lowing theorem: 

Theorem 9.1 Given n xy-monotone curve segments 
in the plane, one can compute all of their intersection 
points with O(n + k) segment-segment intersections, 
where k is the number of intersection points. 

Proof The only time that segment-segment inter- 
sections are made is when inserting or deleting an 
event from the event queue E. Each (of 2 n) segment 
endpoints and each (of k intersections) are inserted 
and deleted from E, and at most two segment-seg- 
ment intersections are performed with each inser- 
tion or deletion. 
The benefits of this algorithm will be most strongly 
felt when the segments S are of a different order 
of complexity from the curves C ~ S. Note  that the 
same plane-sweep algorithm can be applied to the 
intersection of any number of algebraic curve seg- 
ments, as well as two algebraic curve segments. 

10 Conclusions 

By extending the technique of crawling along one 
segment to a technique of coordinated crawling 
along two segments, we have introduced a new 
method for intersecting plane algebraic curve seg- 
ments. It takes advantage of the locality and sim- 
plicity of the segments, unlike the elimination 
method of intersection. Rather than first finding 
all of the intersections between the curves, our 
method directly finds only the intersections be- 
tween the segments. 



The coordinated crawling method can be especially 
useful when degree explosion is encountered in the 
elimination method. That is, among other things, 
the conventional elimination method entails the so- 
lution of a univariate equation (the resultant of 
the two curves) whose degree is the product of the 
degrees of the curves, and the solution of an equa- 
tion of high degree soon becomes prohibitive. The 
coordinated crawling method only involves the 
evaluation of equations whose degree is the degree 
of the curves (for crawling), which is simpler for 
two reasons: because of the lower degree of the 
equation and because evaluation is easier than so- 
lution. 
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