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ABSTRACT
We provide an efficient algorithm for two-site Voronoi diagrams
in geographic networks. A two-site Voronoi diagram labels each
vertex in a geographic network with their two nearest neighbors,
which is useful in many contexts.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations
Keywords: geographic graphs, shortest paths, Voronoi diagrams.

1. INTRODUCTION
The Voronoi diagram is a fundamental geometric structure (e.g.,

see [3, 4, 15, 24]). Given a set K of n points in Rd, called sites,
the Voronoi diagram of K is defined to be the subdivision of Rd

into cells, one for each point in K, where the Voronoi cell for point
p ∈ S is the loci of all points closer to p than to any other point
in K. This simple definition, which is now more than 100 years
old [13, 25], has been used in a host of different application do-
mains, including astronomy (as a way of defining clusters), crys-
tallography (as a way of defining growing regions from seeds), and
robotics (as a way of defining safe zones for motion planning pur-
poses).

When coupled with a data structure for performing point loca-
tions in Rd, the Voronoi diagram provides a solution to Knuth’s
well-known post office problem [18]: given a set of n sites defining
post offices, create a structure that allows us to identify, for each
house, what is its nearest post office. Unfortunately, there is a ma-
jor problem with this “solution.”

The problem with using the Voronoi diagram, as defined above,
as a solution to Knuth’s post office problem is that it is inappro-
priately applying a geometric structure to a geographic problem.
Given that the main purpose for knowing the closest post office to
a given house is so that its inhabitants can find the nearest place to
drive to in order to mail a package, it should be clear that post of-
fices should not be viewed as points in Rd. Post offices are points
in a geographic network—the graph defined by the set of roads in
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a given geographic region—not points in Rd. Therefore, if we de-
sire a more authentic solution to Knuth’s post office problem, we
should be using a version of the Voronoi diagram that is defined for
geographic graphs.

Graph-Theoretic Voronoi Diagrams. A geographic network
is a graph G = (V, E) that represents a transportation or flow net-
work, where commodities or people are constrained to travel along
the edges of that graph. Examples include road networks, flight net-
works, railroad networks, utility distribution grids, and sewer lines.
We assume that the edges of a geographic network are assigned
weights, which represent the cost, distance, or penalty of moving
along that edge, or some combination of these and other factors,
such as scenic or ecological value. The only requirement we make
with respect to these weights is that they be non-negative and that
the weight of traversing a path in G be the sum of the weights of the
edges in that path. This allows us to define the distance, d(v, w),
between two vertices v and w in G as being the length of a short-
est (i.e., minimum weight) path between v and w. (Note: we are
restricting our attention to undirected geographic networks in this
paper.)

Formally, we define a geographic network, G = (V, E), to be a
set V of vertices, a set E of edges (which are unordered pairs of
distinct vertices), and a weight function w : E → R+ mapping E
to non-negative real numbers. Furthermore, we are given a subset
K ⊂ V of special vertices called sites. These are the “post offices”
in Knuth’s post office problem. Each site v ∈ K is uniquely labeled
with a natural number n(v) from 0 to |K| − 1, so that we can refer
to sites by number. The graph-theoretic Voronoi diagram [14, 21]
of G is a labeling of each vertex w in V with the number, n(v), of
the vertex v in K that is closest to w. All the vertices with the same
label, n(v), are said to be in the Voronoi region for v. Intuitively,
if a site v in K is considered a post office, then the Voronoi region
for v consists of all the homes in v’s zip code.

We use these numbers, labeling the vertices in K, to break ties
in distances, which allows us to speak of unique closest sites in K
for each vertex in V . That is, if we have two distinct sites v, w ∈ S
and a third vertex x ∈ V such that d(v, x) = d(w, x), then we say
that x is closer to v if and only if n(v) < n(w), and otherwise x is
closer to y. For example, consider two distinct sites v, w ∈ S with
n(v) = 0 and n(w) = 1, and a third vertex x ∈ V , and with two
edges (v, x) and (w, x) such that d(v, x) = d(w, x). Then x is in
the Voronoi region for site v.

Mehlhorn [21] shows that the graph-theoretic Voronoi diagram
of a graph G, having n vertices and m edges, can be constructed
in O(n log n + m) time, and a similar algorithm is given by Er-
wig [14]. At a high level, these algorithms basically are performing
n simultaneous runs of Dijkstra’s single-source shortest-path algo-
rithm [12] (see also [10, 16]). In this paper, however, we are not



interested in these types of single-site Voronoi diagrams.
Two-Site Distance Functions. In a number of applications,

we are interested in labeling the vertices of a geographic network,
G, with more information than just their single nearest neighbor
from the set of sites, K. We may instead wish to label each vertex
v in G with the names of the two closest sites in K. For example,
the sites in K may be fire stations, and we may wish to know the
two closest fire stations for each house in our network, just in case
there is a double-alarm fire at that location, and we need to call two
fire stations to put it out. See Figure 1.
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Figure 1: An example graph-theoretic Two-Site Voronoi dia-
gram, under the distance metric where we minimize the Sum
to two of the distinguished sites.

Related Prior Work. Unlike prior work on graph-theoretic
Voronoi diagrams, there is a abundance of prior work for geomet-
ric Voronoi diagrams. It is beyond the scope of this paper to review
all this work and its applications, however. Thus, rather that at-
tempting to review all of this work, we refer the interested reader to
any of the excellent survey articles on the subject (e.g., see [3, 4, 15,
24]) and we focus here on previous work on multi-site geometric
Voronoi diagrams and on graph-theoretic Voronoi diagrams.

Lee [20] studies k-nearest neighbor Voronoi diagrams in the plane,
which are also known as “order-C Voronoi diagrams.” These struc-
tures define each region, for a site p, to be labeled with the C near-
est sites to p. These structures can be constructed for a set of n
points in the plane in O(n2 + C(n − C) log2 n) time [9]. Due
to their computational complexity, however, order-C Voronoi dia-
grams have not been accepted as practical solutions to C-nearest
neighbor queries. In ACM GIS 2007, Patroumpas et al. [22] study
methods for performing C-nearest neighbor queries using an ap-
proximate order-C network Voronoi diagram of points in the plane,
which has better performance than its exact counterpart.

2-site distance functions and their corresponding Voronoi dia-
grams were introduced by Barequet, Dickerson, and Drysdale [7]
(see also [8] for a visualization of this structure). A two-site dis-
tance function is measured from a point to a pair of points. In
Euclidean space, it is a function

Df : R2 × (R2 ×R2) → R

mapping a point p and a pair of points (v, w) to a non-negative
real number. In a graph, it is a function mapping a point p on the

graph (either a vertex or a point on an edge) to a pair of vertices
(v, w)–usually sites. Two-site distance functions Df are symmet-
ric on the pair of points (v, w), though not necessarily on p, thus
Df (p, (v, w)) = Df (p, (w, v)). (For some two site distant func-
tions, Df (p, (v, w)) = Df (v, (p, w)) but this is incidental.) The
Sum combination function, DS , results in the same Voronoi dia-
gram as the 2-nearest neighbor (order-2) Voronoi diagram, but the
authors considered a number of other combination rules as well.

As we mentioned above, single-site graph-theoretic Voronoi di-
agrams were considered by Mehlhorn [21], who presented an al-
gorithm running in O(n log n + m) time, and a similar algorithm
was given by Erwig [14]. More recently, Aichholzer et al. [2] study
a hybrid scheme that combines geometric distance with a rectilin-
ear transportation network (like a subway), and Abellanas et al. [1]
study a similar approach where the subway/highway is modeled
as a straight line. Likewise, Bae and Chwa [5, 6] study hybrid
schemes where distance is defined by a graph embedded in the
plane and distance is defined by edge lengths.

As far as multi-site queries are concerned, Safar [23] studies k-
nearest neighbor searching in road networks, but he does so using
the first-order Voronoi diagram, rather than considering a multi-
site Voronoi diagram for geographic networks. Likewise, Kolah-
douzan and Shahabi [19] also take the approach of constructing a
first-order Voronoi diagram and searching it to perform C-nearest
neighbor queries. Instead, de Almeida and Güting [11] compute
C-nearest neighbors on the fly using Dijkstra’s algorithm. Alterna-
tively, Hurtado et al. [17] study Voronoi diagrams for finding the
nearest neighbor of a farthest color in a graph. None of these meth-
ods actually construct a two-site graph-theoretic Voronoi diagram,
however.

Our Results. In this paper, we study two-site distance Voronoi
diagrams on graphs. We address both the sum function DS and the
perimeter combination function DP for defining these concepts. In
particular, for a vertex p or a point p on an edge e and a pair of sites
v, w, our two-site distance functions are defined as follows:

DS(p, (v, w)) = d(p, v) + d(p, w)

DP (p, (v, w)) = d(p, v) + d(p, w) + d(v, w)

Note that with two-site distance functions, we also have a similar
rule for breaking ties in distances. In the case that D(p, (v, w)) =
D(p, (v′, w′)) for vertex p and sites v, w, v′, w′ and a two-site dis-
tance function D, we consider p closer to whichever of (v, w) and
(v′, w′) has a smaller lexicographical pair of indices.

We show that two-site Voronoi diagrams in geographic networks
can be constructed in O(n log n + m) time, under the Sum com-
bination rule, for a graph with n vertices and m edges, indepen-
dent of the number, k, of sites. Under the perimeter combina-
tion function, we show that such a diagram can be constructed in
O(km + kn(k + log n)) in the worst case.

2. CONSTRUCTING GRAPH-THEORETIC
VORONOI DIAGRAMS

In this section, we review the approach of Mehlhorn [21] and
Erwig [14] for constructing a (single-site) graph-theoretic Voronoi
diagram of a graph G, having n vertices and m edges, which runs
in O(n log n + m) time.

So suppose we are given a geographic network, G = (V, E),
together with a set of sites, K ⊆ V , and a non-negative weight
function on the edges in E that define our notion of distance. The
main idea for constructing a graph-theoretic Voronoi diagram for
G is to imagine that we create a new vertex, a, called the apex,



which was originally not in V , and connect a to every site in K
by a zero-weight edge. We then perform a single-source, shortest-
path (SSSP) algorithm from a to every vertex in G, using an ef-
ficient implementation of Dijkstra’s algorithm (e.g., see [10]). In-
tuitively, this algorithm grows the Voronoi region for each site out
from its center, with the growth for all the sites occurring in paral-
lel. Moreover, since all the Voronoi regions grow simultaneously
and each region is contiguous and connected by a subgraph of the
shortest-path tree from a, we can label vertices with the name of
their Voronoi region as we go.

In more detail, the algorithm begins by labeling each vertex v
in K with correct distance D[v] = 0 and every other vertex v
in V with tentative distance D[v] = +∞, and we add all these
vertices to a priority queue, Q, using their D labels as their keys.
In addition, for each vertex v in K, we label v with the name of its
Voronoi region, R(v), which in each case is clearly R(v) = n(v).
In each iteration, the algorithm removes a vertex v from Q with
minimum D value, confirming its D label and R label as being
correct. It then performs a relaxation for each edge (v, u), incident
to v, by testing if D[v] + w(v, u) < D[u]. If this condition is true,
then we set D[u] = D[v] + w(v, u), updating this key for u in Q,
and we set R(u) = R(v), to indicate (tentatively) that, based on
what we know so far, u and v should belong to the same Voronoi
region. When the algorithm completes, each vertex will have its
Voronoi region name confirmed, as well as the distance to the site
for this region. Since each vertex is removed exactly once from Q
and each key is decreased at most O(m) times, the running time of
this algorithm is O(n log n+m) if Q is implemented as a Fibonacci
heap (e.g., see [10]). In addition, note that this algorithm “grows”
out the Voronoi regions in increasing order by distance from the
apex, a, and it automatically stops the growing of each Voronoi
region as soon as it touches another region, since the vertices in an
already completed region are (by induction) closer to the apex than
the region we are growing.

3. TWO-SITE VORONOI DIAGRAMS AND
THE SUM FUNCTION

As mentioned above, the two-site sum function Voronoi diagram
is equivalent to the second order two-nearest neighbor Voronoi di-
agram, which identifies for each vertex v in our graph, G, the two
nearest sites to v. We state and prove the equivalence of these
two types of Voronoi diagrams in the following simple lemma, the
proof of which holds for both Voronoi diagrams in the plane and on
weighted undirected graphs.

LEMMA 1. If v and w are the two closest sites to a vertex p in
G, then the pair (v, w) minimizes DS(p, (v, w)).

PROOF. Suppose that v and w are the two closest sites to a ver-
tex p in G, but that the pair (v, w) did not minimize DS(p, (v, w)).
Without loss of generality, let d(p, v) ≤ d(p, w). By our assump-
tion, there exists a vertex x such that d(p, x) < d(p, w). It follows
immediately that DS(p, (v, x)) < DS(p, (v, w)) which is a con-
tradiction.

It follows that the two-site Voronoi diagram is equivalent to the
two-nearest neighbor Voronoi diagram for a set of points in the
plane or a graph. So we are ready to formally define our construc-
tion problem.

PROBLEM 1. Given a graph G = (V, K, E) of n vertices V , m
edges E, and a subset K ⊂ V of s special vertices called "sites",
compute the 2-site Sum function Voronoi diagram of G; that is, la-
bel each vertex v ∈ V with the closest pair of sites in K according
to the 2-site Sum distance function.

The Algorithm. Intuitively, our algorithm for constructing a
two-site Voronoi diagram under the Sum combination rule is to per-
form a Dijkstra single-source shortest-path (SSSP) algorithm from
each site, in parallel, but visit each vertex twice—once for each of
the two closest sites to that vertex.

More specifically, we begin by labeling each vertex v in K with
correct first-neighbor distance D1[v] = 0 and every other vertex
v in V with tentative first-neighbor distance D1[v] = +∞, and
we add all these vertices to a priority queue, Q, using their D1

labels as their keys. We also assign each vertex v ∈ V (including
each site in K) its tentative second-neighbor distance, D2[v] =
+∞, but we don’t yet use these values as keys for vertices in Q.
In addition, for each vertex v in K, we label v with the name of
its first-order Voronoi region, R1(v), which in each case is clearly
R1(v) = n(v). In each iteration, the algorithm removes a vertex v
from Q with minimum key. How we then do relaxations depends
on whether this key is a D1 or D2 value.

• Case 1: The key for v is a D1 value. In this case we confirm
the D1 and R1 values for v, and we add v back into Q, but
this time we use D2[v] as v’s key. We then perform a re-
laxation for each edge (v, u), incident to v, according to the
following test:

Relaxation(v, u):
if u has had its R2 label confirmed then

Return (for we are done with u).
else if u has had its R1 label confirmed then

if R1(v) 6= R1(u) and D1[v] + w(v, u) < D2[u]
then

Set D2[u] = D1[v] + w(v, u)
Set R2(u) = R1(v)

if D2[v] + w(v, u) < D2[u] then
Set D2[u] = D2[v] + w(v, u)
Set R2(u) = R2(v).

else
if R1(v) 6= R1(u) and D1[v] + w(v, u) < D1[u]
then

Set D1[u] = D1[v] + w(v, u)
Set R1(u) = R1(v).

In addition, if the D1 or D2 label for u changes, then we
update this key for u in Q. Moreover, since we are confirm-
ing the D1 and R1 labels for v, in this case, we also do a
reverse relaxation for each edge incident to v by calling Re-
laxation(u, v) on each one.

• Case 2: The key for v is a D2 value. In this case we con-
firm the D2 and R2 values for v, and we do a relaxation for
each edge (v, u), incident to v, as above (but with no reverse
relaxations).

When the algorithm completes, each vertex will have its two-site
Voronoi region names confirmed, as well as the distance to each of
its two-nearest sites for this region.

The correctness of this algorithm follows from the correctness of
the SSSP algorithm and from Lemma 1. The SSSP algorithm guar-
antees that vertices will be visited in increasing order of distance
from the origin(s) of the search. Lemma 1 states that the closest
two sites to v are also the closest pair according to the sum two-site
distance function.

For the analysis of this algorithm, first note that no vertex will
be visited more than twice, since each vertex is added to the queue,
Q, twice—once for its first-order nearest neighbor and once for its
second-order nearest neighbor. Moreover, once a vertex is added



to Q, its key value is only decreased until it is removed from Q.
Thus, this algorithm requires O(n log n + m) time in the worst
cast when Q is implemented using a Fibonacci heap, where n is
the number of vertices in G and m is the number of edges. By the
same reasoning, the priority queue Q won’t grow larger than O(n)
during the algorithm and only a constant amount of information is
stored at each vertex/edge, so the space required is O(n).

4. TWO-SITE VORONOI DIAGRAMS WITH
THE PERIMETER DISTANCE FUNCTION

Using the Sum function as the combination rule for a two-site
graph-theoretic Voronoi diagram allowed us to label each vertex in
G with its two nearest neighbors. Such a labeling is appropriate,
for example, for fire stations or police stations, where we might
want agents from both locations to travel to our home. If instead
we want to leave our home, travel to two nearby sites, such as two
grocery stores (e.g., because each has a limit on coffee purchases),
and return home, then we will need a different combination rule
than the Sum rule—we will need to use the Perimeter function. We
can solve the two-site Voronoi diagram function by first computing
the shortest paths from each site to every other vertex, which, with
additional processing, also gives the distance from each vertex to
each other site. Taking minimums from these distances, we can
compute all distances between vertices and sites and between sites.
Finally, we can compute for each vertex v the lengths of all the
triangles formed by v and two sites, and determine the smallest
such triangle. This algorithm runs in O(km+kn(k +log n)) time
for k sites in an n vertex graph with m edges.
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