
The Mastermind Attack on Genomic Data

Michael T. Goodrich

Dept. of Computer Science

Secure Computing and Networking Center

University of California, Irvine

http://www.ics.uci.edu/∼goodrich/

Abstract

In this paper, we study the degree to which a genomic

string, Q, leaks details about itself any time it engages in

comparison protocols with a genomic querier, Bob, even if

those protocols are cryptographically guaranteed to produce

no additional information other than the scores that assess

the degree to which Q matches strings offered by Bob. We

show that such scenarios allow Bob to play variants of the

game of Mastermind with Q so as to learn the complete

identity of Q. We show that there are a number of efficient

implementations for Bob to employ in these Mastermind

attacks, depending on knowledge he has about the structure

of Q, which show how quickly he can determine Q. Indeed,

we show that Bob can discover Q using a number of rounds

of test comparisons that is much smaller than the length of

Q, under various assumptions regarding the types of scores

that are returned by the cryptographic protocols and whether

he can use knowledge about the distribution that Q comes

from, e.g., using public knowledge about the properties of

human DNA. We also provide the results of an experimental

study we performed on a database of mitochondrial DNA,

showing the vulnerability of existing real-world DNA data

to the Mastermind attack.

Keywords: mitochondrial DNA, genomic databases, pri-

vacy, mastermind, attacks.

1. Introduction

As high-throughput genome sequencing technologies con-

tinue to improve, genome sequence data continue to ac-

cumulate at an exponential pace. Not only do scientists

already have the genome sequence of thousands of viruses

and bacteria and dozens of multicellular organisms from

plants to humans, but we are rapidly approaching the day

when sequencing individual diploid human genomes will be

economically affordable. The milestone of the first human

genome sequence draft in 2001 [12], [39] has recently been

followed by the first diploid human genome sequence [26].

Moreover, a project to fully sequence 1,000 human genomes

in the next few years is already under way [24], and the race

for the capability to sequence an individual human genome

for less than $1,000 within a few years is on [33]. In addi-

tion, the Personal Genome Project [10] is currently directed

at the publication of the complete genomes and medical

records of several volunteers. In the foreseeable future, it

is anticipated that millions of individuals could have their

diploid genome fully sequenced in the United States alone,

and many more than that are likely to have partial DNA

information sequenced, with this data tied to deeply personal

information about these individuals. These coming scenarios

obviously raise a number of serious privacy issues that are

going to arise when many individuals have their complete

genomes stored in various genomic databases.

In fact, these privacy issues are already here with respect

to one type of human DNA—mitochondrial DNA. We are

already at the point where hundreds of thousands of people

have had their mitochondrial DNA (mtDNA) sequenced [5],

[29], which is typically about 16,500 base pairs (bp) long,

whereas the entire diploid human genome is roughly 6

billion bp long. Interestingly, mtDNA is transferred only

along the maternal line; hence, scientists have used dif-

ferences from a reference mtDNA sequence as a way to

plot human migration from the earliest days of the modern

human species. (See Figure 1.)
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Figure 1. A confluent illustration [14] of the pattern

of human migration implied by mtDNA mutations [5],

[29]. Each letter stands for a major human mitochondrial

haplogroup, that is, a canonical set of genetic mutations

from a common ancestor.



Because of this knowledge of migration patterns and its

correlation to known mtDNA mutations, given someone’s

mtDNA sequence, it is possible to trace their maternal

ancestry back to individual villages [5], just by identifying

differences in their mtDNA to a reference sequence, rCRS

(see Figure 2). In other words, mtDNA alone is sufficient

to determine a person’s ethnic background with incredible

accuracy.

GATCACAGGTCTATCACCCTATTAA

CCACTCACGGGAGCTCTCCATGCAT

TTGGTATTTTCGTCTGGGGGGTATG

CACGCGATAGCATTGCGAGACGCTG

GAGCCGGAGCACCCTATGTCGCAGT

ATCTGTCTTTGATTCCTGCCTCATC

...

ATCTGGTTCCTACTTCAGGGTCATA

AAGCCTAAATAGCCCACACGTTCCC

CTTAAATAAGACATCACGATG

Figure 2. A portion of the Revised Cambridge Refer-

ence Sequence, rCRS (GenBank accession number:

AC 000021), which is 16,568 bp long.

In addition to ethnicity, there are, of course, other privacy

concerns with respect to genomic data, including sensitive

information related to disease susceptibility, and possible ge-

netic influences on sexual orientation, personality, addiction,

and intelligence. Concerns that employers or insurers will

use genetic information to screen those at high risk for a

disease already loom large and are widespread in the press.

Indeed, the U.S. government and several states have already

created laws dealing with DNA data access, and many more

are considering such legislation. Thus, there is a need for

technologies that can safeguard the privacy and security of

genomic data.

Fortunately, several researchers have started exploring

privacy-preserving data querying methods that can be ap-

plied to genomic sequences (e.g., see [2], [16], [17]). That is,

cryptographic techniques can be used to allow for queries to

be performed in a way that answers the specific question—

such as a score rating the quality of a query for DNA

matching or sequence alignment—but does not reveal any

other information about the data, such as race or disease risk

of the individual whose DNA is being queried.

The purpose of this paper is to show that, while being

sufficient for single-shot comparisons of DNA sequences,

such cryptographic techniques have a weakness when they

are employed repeatedly. Specifically, we explore in this

paper an attack on genomic data, which we call the Mas-

termind attack, because of its similarity with the game,

Mastermind [11], [25]. This attack allows a genomic querier,

Bob, to iteratively discover the full identity of a genomic

query sequence, Q, with surprising efficiency, even if each

comparison of Q with Bob’s sequences are done using

cryptographic privacy-preserving protocols. It is not sur-

prising that iterated privacy-preserving string comparisons

leak information about the strings being compared; what is

surprising is how quickly the Mastermind attack can work,

especially on genomic data.

1.1. Mastermind

Mastermind [11], [25] is a game played between two

players—a codemaker and a codebreaker—using colored

pegs. (See Figure 3.)

Figure 3. The Mastermind game. The four large

pegs in the middle are used for guessing. The four

smaller peg locations on the right are used to score

each guess—with black-peg and white-peg scores.

And the two pegs on the left are used to keep

score across multiple games. (This image is adapted

from http://en.wikipedia.org/wiki/File:Mastermind.jpg,

by User:ZeroOne, under the Creative Commons

Attribution ShareAlike 2.0 License.)

Viewed mathematically, Mastermind is abstracted as a

game where the codemaker selects a plaintext vector, V , of

length N , whose elements are selected from an alphabet of

size K. For consistency with the board game, the members

of this alphabet are often referred to as “colors.” The

codemaker and codebreaker both know the values of N
and K, and play consists of the codebreaker repeatedly

making guesses, V1, V2, . . ., about the identity of V . For

each guess, Vi the codemaker provides a score on how well

Vi matches V . In double-count Mastermind, which is the



standard version based on the board game, this score consists

of a pair of two numbers:

• A black count, b(Vi), which is the number of elements

in Vi and V that match in both value and location. That

is,

b(Vi) = |{j: Vi[j] = V [j]}|.

• A white count, w(Vi), which is the number of elements

in Vi that appear in V but in different locations than

their locations in Vi. That is, letting π denote an

arbitrary permutation,

w(Vi) = max
π

|{j: Vi[π(j)] = V [j]}| − b(Vi).

In single-count Mastermind, which has been less studied,

the codebreaker is given only the black count, b(Vi), for

each guess, Vi. (Note that it is impossible to solve the

problem given only white-count scores.) The goal is for

the codebreaker to discover V using a small a number of

guesses.

1.2. Previous Related Work

The original Mastermind game was invented in 1970 by

Meirowitz, as a board game having holes for sequences

of length N = 4 and K = 6 colored pegs. Knuth [25]

subsequently showed that this instance of the Mastermind

game can be solved in five guesses or less. Chvátal [11]

studied the combinatorics of general Mastermind, showing

that it can be solved in polynomial time, in the K ≥ N
case, using 2N⌈log K⌉ + 4N guesses, and Chen et al. [9]

showed how this bound can be improved, in this case, to

2N⌈log N⌉ + 2N + ⌈K/N⌉ + 2 guesses. Stuckman and

Zhang [34] showed that is NP-complete to determine if

a sequence of guesses and responses in general double-

count Mastermind is satisfiable. Goodrich [20] shows that

single-count (black-peg) Mastermind satisfiability is NP-

complete and that a specific vector V can be guessed using

a single-count (black-peg) query sequence that is of length

N⌈log K⌉ + ⌈(2 − 1/K)N⌉ + K.

As mentioned above, several researchers have started

exploring privacy-preserving data querying methods that can

be applied to genomic sequences (e.g., see [2], [16], [17]).

In particular, Atallah et al. [2] and Atallah and Li [3] stud-

ied privacy-preserving protocols for edit-distance sequence

comparisons, such as in the longest common subsequence

(LCS) problem [21], [22], [37], where each party learns the

score for the comparison, but neither learns the contents of

the string of the other party. Such comparisons are common

in DNA sequence alignment comparisons, for example.

Troncoso-Pastoriza et al. [36] described a privacy-preserving

protocol for searching for a certain regular-expression pat-

tern in a DNA sequence. In last-year’s Oakland confer-

ence, Jha et al. [23] give privacy-preserving protocols for

computing the edit distance and Smith-Waterman similar-

ity scores between two genomic sequences, improving the

privacy-preserving Smith-Waterman comparison algorithm

of Szajda et al. [35]. Single-count matching results between

two strings can be done in a privacy-preserving manner, as

well, using privacy-preserving set intersection, e.g., using the

method of Freedman et al. [17], Vaidya and Clifton [38] or

Sang and Shen [31], [32]. The string matching problem can

also be done using privacy-preserving dot product computa-

tions [1] or even general multi-party computation protocols

(e.g., see [13], [19], [40]) or systems [6].

In terms of the framework of this paper, the closest

previous work is that of Du and Atallah [15], who studied

a privacy-preserving protocol for querying a string Q in a

database of strings, D, where comparisons are based on

approximate matching (but not sequence-alignment). Their

protocols assume that the parties are honest-but-curious,

however, so that, for instance, the database owner cannot

introduce fake strings in his database whose intent is to

discover the identity of the query string, Q. The attack

model we explore in this paper, on the other hand, allows

for “cheating” in the comparison protocol, so that D can

introduce strings whose sole purpose is to help him discover

the identity of Q.

1.3. Attack Scenarios

In this paper we study the Mastermind attack on genomic

data, which is a way that a genomic querier, Bob, can “play”

a type of Mastermind game with a genomic string Q–for

which Q’s owner, Alice, thinks that she is comparing with

Bob in a privacy-preserving manner—but instead Bob is

discovering the full identity of Q.

The attack scenario is that Alice repeatedly participates in

privacy-preserving comparisons of Q to iteratively compare

Q with strings provided by Bob. All is learned from each

comparison is the score measuring the similarity of the

two strings (Q and a string Vi provided by Bob), with

the score for each string comparison being revealed to Bob

(and possibly also Alice) before the next comparison begins.

Bob’s goal is to learn the complete identity of Q with a

reasonably small of comparisons.

We distinguish two versions of this attack scenario. In the

first scenario, the comparison between Q and each string

Vi provided by Bob is scored according to the single-count

(black-peg) straight-match score,

b(Vi) = |{j: Vi[j] = Q[j]}|.

In our second scenario, which is more common in genomic

databases, the comparison between Q and each Vi provided

by Bob is scored according to a sequence-alignment score,

a(Vi) = |{(j, k) ∈ I: Vi[j] = Q[k]}|,



where I is an ordered index set of pairs of integers so

that if (j, k) appears before (l,m) in I, then j < l
and k < m. This is also known as the longest common

subsequence (LCS) [21], [22], [37] score between Q and

V . (See Figure 4.) Incidentally, the edit distance and Smith-

Waterman scores are strongly related to the LCS score, and

our attack scenarios should be able to be translated to these

other measures, depending on the weights given to various

edit actions.

Figure 4. Illustrating two types of matches between two

strings. (a) A single-count (black-peg) straight-match.

Note that the second “A” in the bottom string is not

matched, since it doesn’t line up exactly with the second

“A” in the top string. (b) A sequence-alignment match.

In going from the top string to the botttom string, the first

“C” in the top string corresponds to a deletion event, the

first “C” in the bottom string corresponds to an insertion

event, and the penultimate characters in each string

correspond to a substitution event.

There are a number of motivating usage environments that

could be susceptible to Mastermind attacks. For example,

Bob could be a genomic database owner, storing genomic

sequences for a number of individuals, and Alice could be

a database user who is searching Bob’s database to find

the closest match to a string Q of interest. Bob could, for

instance, be the owner of a database of DNA from every

male attending a certain university and Alice could be an

FBI agent searching through that database for a match with

DNA evidence gathered after a sexual assault. Both parties

in this example are likely to be under legal restrictions not

to reveal the complete identity of their strings unless there is

a match. In another example, Alice could be the owner of a

database of genomic sequences and Bob could be an attacker

trying to learn the identity of a string Q in Alice’s database,

e.g., which Bob can identify only by an anonymized index,

j. In this case, Bob repeatedly does queries with each of his

strings, Vi, indexing into Alice’s database using the name

“j” to locate Q and get Alice to do a privacy-comparison of

Q with Vi. Bob could, for instance, be an employer trying

to learn the genomic sequence of a prospective employee,

Charlie, by querying a university DNA sequence database

owned by Alice, which he could query simply knowing the

index of Charlie’s DNA in Alice’s database (e.g., Bob might

be able to infer this index from Charlie’s student number). In

every case, Bob gets to ask Alice to compare her string, Q, to

each of his query strings, Vi, in a privacy-preserving manner

until these comparisons have leaked enough information that

he can easily infer the identity of Q.

1.4. Our Results

We begin our technical discussion in this paper by show-

ing that, in fact, the problem of determining whether a

sequence of Mastermind responses has a valid solution is

NP-complete, even if each response is a sequence-alignment

response. At first, this might seem to provide some security

for the privacy of the genomic string, Q, for it implies

a degree of intractability to the problem of learning a

query string Q just from Mastermind responses involving

Q. Unfortunately, as was learned with Knapsack cryptosys-

tems [28], having the security of a system be based on

the difficulty of solving an NP-complete problem is no

guarantee that it is safe in practice. Indeed, such is the

case for the security of genomic strings being susceptible to

the Mastermind attack. We show that genomic strings can

be discovered by surprisingly short sequence of guesses. In

particular, we also provide the following results:

• We adapt a method of Goodrich [20] for solving

Mastermind games using black-peg results to genomic

strings, showing how an arbitrary query string, Q, of

length N from an alphabet of size K, can be discovered

with N⌈log K⌉+ ⌈(2− 1/K)N⌉+K guesses, each of

which is a single-count response, and we observe that

this method is still valid even if all such responses are

privacy-preserving.

• We show that an arbitrary query string, Q, of length

N from an alphabet of size K, can be discovered with

(N + 1)K queries, each of which reports the result of

a sequence-alignment test. Such queries are, of course,

different than single-count tests, but they are more

common in genomic applications. We also show that

this bound can be further improved if the distribution

of characters in the alphabet follows Zipf’s Law [27].

• We show how a Mastermind attacker can take advan-

tage of known distributional information for genomic

data. Armed with distributional knowledge about a

query string, Q, with respect to a reference string, R,

such as the Revised Cambridge Reference Sequence,

rCRS (GenBank accession number: AC 000021), the

Mastermind attacker can discover Q much quicker

than in the general cases, using either single-count or

sequence-alignment responses.

• We provide experimental analysis of the distribution-

based Mastermind attack for genomic data, showing

that, for either single-count responses or sequence-

alignment responses, the attack works surprisingly well.

Given the relative abundance of mtDNA data, and its

ethnic sensitivity, we focus our experiments on 1000



human mtDNA sequences, showing that most can be

discovered with a Mastermind attack of just a few

hundred guesses, even though mtDNA strings are typ-

ically over 16,500 bp long. Given that current mtDNA

databases already have thousands of members (e.g.,

see [5]), this experimental analysis shows that it would

be relatively easy for an attacker, Bob, to interleave an

undetected Mastermind attack with privacy-preserving

responses to actual strings.

We conclude by discussing some of the issues that would

have to be addressed in order to defeat Mastermind attacks

on genomic data, as well as some possible directions for

future research.

2. NP-Completeness of Sequence-Alignment

Mastermind Satisfiability

As mentioned above, Stuckman and Zhang [34] show that

double-count Mastermind satisfiability is NP-complete and

Goodrich [20] shows that single-count (black-peg) Master-

mind satisfiability is also NP-complete.

In the Sequence-Alignment Mastermind Satisfiability

problem, we are given a collection of Mastermind queries,

V1, V2, . . . , VN , and the responses, a(V1), a(V2), . . . , a(VN ),
each of which is said to report the sequence-alignment (LCS)

score between each Vi and an unknown vector, V . We are

asked to determine if there indeed exists a vector V that

satisfies all of these responses.

Theorem 1: Sequence-Alignment Mastermind Satisfiability

is NP-complete.

Proof: See appendix.

Thus, it is extremely unlikely that we will be able to find a

polynomial-time algorithm that can always satisfy arbitrary

Mastermind sequence-alignment query sequences, or even

single-count queries [20]. Unfortunately, this is not the same

as a guarantee of security for the kinds of query sequences

that would result from an interaction between a Mastermind

attacker, Bob, and a genomic string owner, Alice, where

Bob is trying to learn Alice’s string, Q, through a sequence

of privacy-preserving string comparisons. For we show, in

the sections that follow, that such query strings, Q, can be

discovered fairly efficiently using the Mastermind attack.

3. The Mastermind Attack for Single-Count

Straight-Match Queries

In this section, we explore the version of the Master-

mind attack where the attacker, Bob, engages in a series

of privacy-preserving protocols with Alice, each of which

reveals only the single-count straight-match score between

Alice’s string, Q, and strings provided by Bob, in an iterative

online fashion (recall Figure 4a). In the attack model we

consider, Bob is allowed to use self-constructed strings in

comparisons with Q. That is, we do not restrict Bob to

use only the strings present in a certain genomic database,

D, or that belong to a certain probability distribution. In

the framework of the Mastermind attack, this scenario is

equivalent to the situation where Bob constructs a determin-

istic plan for discovering Q from the single-count responses

returned by the privacy-preserving protocol used for each

comparison. Here, we show that Bob can learn Q with a

sequence of N⌈log K⌉+⌈(2−1/K)N⌉+K guesses, where

N is the length of Q and K is the size of the alphabet (whose

members we call “colors”). Our algorithm is an adaptation

of an algorithm of Goodrich [20] for solving the boardgame

version of Mastermind to the specific case of a Mastermind

attack on a genomic string Q.

We begin the attack for Bob by having him perform a

query against Q with a reference string, R. For example,

R could be a genomic string derived from a sequencing

of the DNA of a specific reference human or it could be

a canonical genomic reference string derived from analyz-

ing commonalities among a number of human sequences.

Even though few humans have presently had their complete

genomes sequenced [12], [26], [39], any of these could serve

as a reference, R, for a Mastermind attack on a complete

genome sequence. For the more wide-spread instances of

mitochondrial DNA, the Revised Cambridge Reference Se-

quence (rCRS) (GenBank accession number: AC 000021)

is commonly used as a mtDNA reference sequence [7], [8],

[30], and it could serve as the string R in a Mastermind

attack on a mitochondrial DNA string.

Imagine that we cyclically order the K characters in our

alphabet, so, for instance, if our alphabet is {A,C,G,T}, then

we could use the cyclic ordering (A,C,G,T,A,C,G,T,. . .).
Note that this ordering allows us to choose any character

as a base color, i.e., a “color 0,” and then specify all other

characters as offsets from that base. For example, in the

DNA case, we could pick “C” as the base, color 0, in which

case “G” becomes color 1, “T” becomes color 2, and “A”

becomes color 3. Or we could pick “T” as the base, color

0, in which case “A” becomes color 1, “C” becomes color

2, and “G” becomes color 3.

In the context of a Mastermind attack, we consider each

character, Ri, in the reference string, R, to be color “0”

for that position, i. Viewed Mathematically, we can then

number the K − 1 remaining characters, according to our

cyclic ordering, as offsets from these respective color 0’s.

Assuming that Bob’s first guess, of R, is not a perfect match

for the query string, Q, then we can view Bob’s remaining

task as that of determining the cardinality and location of

all the non-zero offset values for positions in R. In fact, if

we think of the characters in the respective positions of R
as the respective color 0’s for those positions, then we can

view the remaining task as that of determining the locations



of the colors 0 through K − 1.

After Bob makes his initial guess using R, we then have

him perform K − 1 additional queries, each of which is a

vector of elements that are all the same offset from R, i.e.,

a vector of all the same “colors” with respect to R. This

allows us to initially know the cardinality, c0, c1, . . . , cK−1,

of every (offset) color in the unknown vector, Q. If any

ci = 0, then we remove the color i from our alphabet

of colors, and update the value of K accordingly. The

remainder of Bob’s computation proceeds as a recursive

divide-and-conquer algorithm, which is similar in structure

to the approach of [11], [20].

The generic problem is to determine the offset values of

all the elements in a range Q[l..r], which initially is the

entire vector Q = Q[0..N−1], assuming we know the values

of c0, c1, . . . , cK−1, of every color in Q[l..r], and each ci >
0. If K ≤ 1, we are done; so let us assume without loss of

generality that K ≥ 2. In addition, we assume inductively

that we know, d, the number of instances of color 0 outside

of the range Q[l..r]. Initially, of course, d = 0.

Given this initial setup, we split Q[l..r] into Q[l..m] and

Q[m + 1..r], where m is in the middle of the interval

[l, r]. The main challenge, then, is to provide for Q[l..m]
and Q[m + 1..r] the same setup we had for Q[l..r]. This

setup can be accomplished by determining the cardinalities,

x0, x1, . . . , xK−1 and y0, y1, . . . , yK−1, of every color that

respectively appears in Q[l..m] and Q[m+1..r]. We do this

with a series of K−1 additional queries, where we guess that

the elements in Q[l..m] are of color i, for i = 1, 2, . . . ,K−1,

and that the rest of Q is of color 0. Let the values of these

queries be denoted as b1, b2, . . . , bK−1, and note that, at this

point, we know the following:

xi + yi = ci, for i = 0, 1, . . . ,K − 1 (1)

xi + y1 = bi − d, for i = 1, 2, . . . ,K − 1 (2)

x0 + x1 + · · · + xK−1 = m − l + 1. (3)

Thus, we can determine y0, as

y0 =
c0 +

∑K−1

i=1
(bi − d) − (m − l + 1)

K
,

for y0 is counted K times in the sum of c0 and all the

(bi − d)’s, and the sum of the xi’s is m − l + 1, by Equa-

tion (3). Given the value of y0, we can then determine all

the xi values, by using Equation (1) for x0 and Equation (2)

for x1, x2, . . . , xK−1. Moreover, once we have all these

xi values, we can determine the values, y1, y2, . . . , yK−1,

using Equation (1). Finally, we can determine the values

d′ = d + y0 and d′′ = dx0
and use these respectively for

the role of d in Q[l..m] and Q[m + 1..r]. This gives us all

the values necessary to then recursively determine Q[l..m]
and Q[m + 1..r]. Of course, if the ci values for either of

these subproblems are all 0, except for one (which would

be equal to the size of this problem), then there is no need

to recursively solve this problem; so we would not perform

a recursive call in this case.

Let us, therefore, analyze the number, G(N, K), of vector

guesses performed by this algorithm. Ignoring for the time

being the initial set of K guesses, we can bound this

parameter using the following recurrence:

G(N, K) = 2G(N/2, K) + min{N, K − 1}.

Thus, adding the initial K queries back in, we get that the

total number of guesses is at most

N⌈log K⌉ + ⌈(2 − 1/K)N⌉ + K.

Thus, we have the following.

Theorem 2: Given an unknown length-N genomic string

Q, defined on an alphabet of size K, then, starting from

a reference string, R, a malicious Mastermind attacker can

discover Q in polynomial time using at most N⌈log K⌉ +
⌈(2 − 1/K)N⌉ + K tests against Q, in the worst case, each

of which reveals only the number of positions where Q and

the test string match.

One thing to notice in this theorem is that it provides a

worst-case upper bound on the information leakage risks of

the Mastermind attack. As we explore later, in Section 5,

this worst-case can significantly over-estimate these risks,

particularly when the reference string, R, is already a

reasonably good match for Q, which is often the case.

Another observation to make about the above Mastermind

attack is that even though Bob is incrementally making

progress, with each guess, in his goal of discovering Q,

the scores between his guesses and Q need not ever be all

that close to N . He can always be focusing on a specific

recursive call in the above divide-and-conquer algorithm,

dealing with a certain region of the vector, keeping the other

regions unchanged, which will keep the scores relatively low.

In other words, he can run the above divide-and-conquer

algorithm, implementing each iteration using a privacy-

preserving protocol with Alice, where both he and Alice

learn the result, and these scores should not tip off Alice

that he is running a Mastermind attack.

4. The Mastermind Attack for Sequence-

Alignment Queries

In addition to queries that report the number of matching

locations between two strings, which we explored in the

previous section, another type of query that is quite common

in genomic databases is the sequence-alignment query. In

this query, we wish to compare two sequences Q and V ,

where the score for a match is the length of the longest

common subsequence (LCS) [21], [22], [37] between Q and

V . Several researchers have studied this problem and have

come up with privacy-preserving protocols to determine



such scores (e.g., see [2]). In this section, we show that

performing such a series of sequence-alignment queries with

Bob is susceptible to a type of Mastermind attack of its own.

Suppose we are given an unknown string Q of length

N over an alphabet of size K, the members of which we

call “colors.” Suppose further that we are going to engage

in a protocol with Bob to test Q against strings provided

by Bob, where each test returns the length of a longest

common substring between Q and one of Bob’s strings. That

is, we score matches using the sequence-alignment scoring

function, a(V ), for a guess vector V , which is the length

of a longest common substring between V and Q. We are

interested in this section on studying an efficient scheme for

Bob to discover Q using this query scheme.

A Mastermind-attack algorithm for Bob is as follows. Bob

begins by guessing K vectors, V1, V2, . . . , VK , with each

vector Vi consisting of elements of all the same color, i.
(Here we are not starting with a reference string, R, as we

did in the previous section; we explore the improvements

that can come from using a reference string and genetic

distribution knowledge with sequence-alignment queries in

Section 5.2.)

The substring alignment score for each of the initial

guesses will tell Bob the cardinality of each color in Q.

Let us now imagine that we reorder the colors so that they

are listed 1 to K in nondecreasing order of how often

they each appear in Q. Thus, color 1 is now the least

frequent color in Q and K is the most frequent color. Let

ci denote the cardinality of color i in Q. Our algorithm for

Bob’s Mastermind attack continues by repeatedly using the

following observation:

Observation 3: If we create a subsequence S1 of c1 ele-

ments of color 1, then all the other elements of Q appear

between matches with the consecutive elements in S.

Using a sequence S1 of c1 elements of color 1, we

next focus on how the elements of color 2 interleave with

the elements of S1. Let us therefore define c1 variables,

c2,1, c2,2, . . . , c2,n2
, where n2 = c1 + 1 is the number

of “slots” determined by the consecutive elements in S1.

Our goal is for each variable, c2,i, to store the number of

elements of color 2 that appear in the ith slot determined by

S1. We determine these variables by a sequence of guesses,

where the first guess is a vector:

W1 = (2, 2, . . . , 2, 1, 1, . . . , 1),

where we have N − c1 instances of color 2 and c1 instances

of color 1. Note, then, that the number of elements of color

2 in the first slot is c2,1 = a(W1) − c1. So we next form

W2 = (2, 2, . . . , 2, 1, 2, 2, . . . , 2, 1, . . . , 1),

where we have c2,1 elements of color 2, followed by one 1,

followed by N − c1 − c2,1 elements of color 2, followed by

c1−1 elements of color 1. From this, we can determine c2,2

as c2,2 = a(W2) − c1 − c2,1. We then continue in this way,

forming Wi as an alternating sequence of elements of color 2
and single instances of color 1, with the jth sequence of 2’s

having c2,j instances of color 2. At the end of Wi we place

N−c1−
∑i−1

j=1
c2,j elements of color 2 followed by c1−i+1

elements of color 1. Thus, after performing n1 guesses, we

will know the values of all the c2,i variables. From this, we

form a sequence S2 of elements of colors 2 and 1 that forms

the largest such sequence that is a subsequence of Q.

Inductively, we can assume we have a sequence, Ss−1,

of elements of colors, 1, 2, . . . , s − 1, that is largest such

sequence that is a subsequence of Q. We then form variables

cs,1, cs,2, . . . , cs,ns
, where ns = 1 +

∑i−1

j=1
cj , which is the

number of “slots” formed between elements in Ss−1. Each

variable cs,i denotes the number of elements of color s that

appear in the ith slot determined by Ss−1. We then form ns

guesses, similar to as above, with the ith such guess allowing

us to determine the value of cs,i. When we have completed

this set of guesses for color K, we will know the vector Q
in its entirety.

In terms of the analysis of this Mastermind-attack algo-

rithm, note that the total number of queries is

K +
K

∑

i=2

ni = K +
K−1
∑

i=1



1 +
i

∑

j=1

cj





= K + N +

K−1
∑

i=1

(K − i)ci.

Let us perform a substitution of variables, where we let

d1, d2, . . . , dK denote the cardinalities of the colors in Q
in nonincreasing order, so d1 is the most frequent color and

dK is the least frequent. Then the total number of queries

performed becomes

K + N +

K−1
∑

i=1

idi+1.

Note that, by definition, di ≤ N/i, for otherwise, di could

not be the ith largest-cardinality color. Thus, since di+1 ≤
di, the total number of queries is at most

K + N +

K−1
∑

i=1

i(N/i) = K + N + N(K − 1)

= (N + 1)K.

This is the number of tests done by Bob, the Mastermind

attacker, making no additional assumptions about the distri-

bution of colors in the query string, Q.

This analysis can be refined, however, if the colors are

distributed in Q according to Zipf’s Law [27], which in this

context would imply that

di ≤
N

isHN,s
,



where HN,s is the N -th Harmonic number of order s,

HN,s =
∑N

i=1
1/is, and s is typically between 1 and 2. In

this case, the total number of guesses done by Bob would

be at most

K + N +

K−1
∑

i=1

iN

isHN,s
≤ K + N +

N(K − 1)

HN,s

=
(N + 1)K

HN,s
,

for s ≥ 1. Thus, we have the following:

Theorem 4: Given an unknown length-N string Q, defined

on an alphabet of size K, a malicious Mastermind attacker

can discover Q in polynomial time using (N+1)K sequence-

alignment tests tests against Q, each of which reveals only the

length of a longest common subsequence between Q and the

test string match. If the cardinalities of elements of Q follow

Zipf’s Law, with parameter s, then a malicious Mastermind

attacker can discover Q using at most (N + 1)K/HN,s

sequence-alignment tests.

5. Exploiting Genomic Data Distributions

Up to this point, we have focused on how the Mastermind

attacker, Bob, could learn a general string Q using the types

of queries typically asked of genomic databases, even if

those queries are privacy preserving. In this section, we

explore how Bob can significantly improve the effectiveness

of the Mastermind attack if he exploits information, which

is publicly available, about the distributions of characters in

genomic sequences. Moreover, to drive the point home, we

provide experimental evidence of the effectiveness of such

Mastermind attacks on a real-world genomic database, in

the section that follows.

Genomic strings typically have a great deal of similarity.

Indeed, recent compression schemes have shown that it

is effective to view a genomic string with respect to a

compression scheme that represents a string in terms of its

differences with a reference string, R (e.g., see [4]). That is,

we can start from a reference string, R, which contains the

most common components of a typical genomic string. Then

we define each other string, Q, in terms of its differences

with R. Each difference is defined by an index location, i,
in R and an operation to perform at that location, such as a

substitution, insertion, or deletion.

This difference pattern is present, for example, in human

mitochondrial DNA, which is the type of genomic data we

use in our experimental studies. This type of of DNA, which,

as we have already mentioned, is inherited only through the

maternal line and is already available in sequenced form in

sizeable enough quantities to support obfuscated Mastermind

attacks.

As shown in recent work of Baldi et al. [4], mito-

chondrial DNA sequences can be encoded in significantly-

compressed form by using a standard reference sequence [7],

[30]. This reference sequence, R = rCRS, is 16,568 bp

long. So, in terms of the notation used above, we have

N = 16568 and K = 4, since there are 4 types of

base pairs possible. But these parameters suggest that there

is more variation in the data than actually occurs. For

example, using only this information and the Mastermind

attack algorithm summarized in Theorem 2, we would need

roughly 4 + (16568)2 + (1.75)16568 = 62170 guesses to

determine the identity of a query string.

In fact, the vulnerability of DNA strings to the Master-

mind is much worse than this in practice. For example,

there are a limited number of locations along the reference

sequence where any changes appear statistically in the

mitochondrial DNA data. So let us use M to denote the num-

ber of different possible locations where any query string

might differ from the reference string, R. Worse yet, from

a privacy-preservation standpoint, the average number of

difference between any human DNA string and the reference

is orders of magnitude smaller than M in practice. (We

explore these statistics in detail below.) Here we show how

a Mastermind attack can exploit these statistical properties

of genomic data.

5.1. The Substitution-Only Case

Given the above additional knowledge of the distributional

properties of DNA data, we can refine the Mastermind attack

to take this knowledge into consideration. We begin, in this

subsection, with our algorithm that performs single-count

Mastermind tests, adapting the algorithm of Section 3. In this

case, we make the assumption that the query string, Q, dif-

fers from the reference string R only through substitutions,

which is true for example, for 45% of the mitochondrial

DNA data. We will explore the more general case later in

this section.

For any query string, Q, let s(Q) denote the number of

substitutional differences Q has with the reference string, R,

and let D̂ denote the average of the s(Q) values, taken over

the population of genomic strings under consideration.

We perform our Mastermind attack algorithm, in this

case, using a slight modification of our algorithm in Sec-

tion 3. Note that already after the very first query, using

the reference string R, we know s(Q), using the formula

s(Q) = N − b(R). As before, we now view each color in

each position of R as the base color for that position, and

each other color as an offset from that base (using modular

arithmetic). Thus, we can view colors as being numbered as

0, 1, 2, . . . ,K−1, and our remaining job is to determine the

s(Q) locations in Q that have non-zero colors. So far, this

sounds like the same algorithm as we described in Section 3.

Here is where things become different. We follow our

initial guess of the reference string, R, with K−1 additional

guesses for each of the offset values 1, 2, . . . ,K−1, but we



only do so for the M statistically modifiable locations in R.

This tells us the cardinality of each offset value in Q, which

we denote with c0, c1, . . . , cK−1.

Next we begin a divide-and-conquer algorithm, but in-

stead of splitting at the midpoint of a range that is initially

from locations 0 to N − 1 in Q, we perform the splitting

in the midpoint of a range of the M values that we know

could possibly be locations of substitutions. To set up the

recursive calls, we perform K − 1 additional queries, like

in Section 3, with the first half being an offset that ranges

from 1 to K − 1. Using the results of these guesses, we

then recursively solve any subproblems that we have just

determined have a difference with the reference string, R,

reducing the set of offset colors used if we discover any

of them have cardinality of zero in the subproblem. When

we reach the base case of one remaining location, we stop,

having identified its color (offset). Likewise, if all the colors

of a subproblem are determined from the cardinalities of the

colors for that subproblem, then we stop the recursion at that

point, since that subproblem is now solved.

In spite of the similarity of this algorithm to the Master-

mind attack method of Section 3, we analyze this variation

differently. In particular, we can view the recursive calls for

this divide-and-conquer algorithm in terms of a recursion

trace, where we create a node in a binary tree for each

recursive call that we make. Thus, each leaf of this tree

corresponds to a location that we have discovered that differs

from the reference string. Each internal node in this tree

corresponds to a recursive call. Moreover, the number of

guesses that we make at such an internal node v is equal to

the minimum of K−1 and the number of leaf descendents of

v in this tree. Therefore, we can more than account for every

guess that is made (other than the initial K−1) by charging

each leaf w with one guess for each of w’s ancestors in this

tree. Since we always perform splits according to the M
known locations of possible deviation from the reference

string, R, this implies that each leaf is charged at most

⌈log M⌉ times. That is, the total number of guesses made

by this modified algorithm is at most s(Q)⌈log M⌉+K−1.

We can summarize this method and its performance, then,

as follows.

Theorem 5: Given an unknown length-N string Q, defined

on an alphabet of size K, with Q having M possible loca-

tions of deviation from a reference string, R, a malicious

Mastermind attacker can discover Q in polynomial time using

s(Q)⌈log M⌉+K−1 guesses, each of which reveals only the

number of positions where Q and the test string match and

where s(Q) denotes the number of substitutions that would

transform R into Q.

Thus, the average number of tests made by this algorithm

is D̂⌈log M⌉ + K − 1. As we note in Section 6, this

performance is more than adequate to show that nearly half

of all mitochondrial DNA data is vulnerable to this version

of the Mastermind attack. Before we provide those statistics,

however, let us study how the Mastermind attack with

sequence-alignment queries can be streamlined to exploit

DNA data distributions.

5.2. The Sequence-Alignment Case

As mentioned above, roughly half of the sequences in

the mitochondrial DNA data set include insertions and/or

deletions in addition to substitutions in the reference string,

R. Thus, we discuss in this subsection how we can modify

the Mastermind attack algorithm of Section 4 to take advan-

tage of the distributional properties common in genomic data

sets, so as to discover a query string that can have arbitrary

kinds of differences with the reference string, R. In this case,

we view differences with R procedurally as events, each of

which is either a singleton deletion, a singleton deletion, or

an arbitrary-length insertion, which would transform R into

the query string, Q.

In this case, we run the attack algorithm in two phases. In

Phase 1, we aim to discover all the deletion and substitution

events, and in Phase 2, we aim to discover all the insertion

events. In both phases, we make the simplifying assumption

that insertion and deletion events are disjoint. That is, they

don’t overlap or interfere with one another. This assumption

is based on the fact that these events come from a statistical

characterization of genomic strings, which is designed to

keep events disjoint (for overlapping events are better sub-

divided further and considered as separate sub-events). So,

for example, we assume that there is no insertion event that

is then followed by a deletion event that then removes part

of the string that was just inserted.

Since we can view each substitution as a deletion followed

by a singleton insertion, we first discover all the deletion and

substitution events as if they all were deletion events and we

then determine which of them are really substitutions. In

addition, we assume that all deletion events are singleton

deletions, since multiple-length deletions can be broken

down into multiple singleton deletions.

We begin by performing a guess for the reference string,

R. Armed with the sequence-alignment score, a(R), for R,

we then perform a divide-and-conquer computation to find

all the deletion events that occur in going from R to Q.

Note that if we next perform a guess V for a collection of

deletion events at some subset of the M statistically possible

(deletion) locations in R, then we can detect how many

deletions actually occurred at these locations. Namely, for

each deletion event that is present in one of these locations,

then our score will not change with respect to the score for

R, and, for each location that should not be deleted, we will

record a score for V that is one worse than that for R. Thus,

we can determine the number of deletion events for any

test we do by the difference between the score we observe

and the score we would expect if all of the deletions are



removing actual matches. That is, if we test for r singleton

deletion events in V , then the number that actually occur is

a(V ) − (a(R) − r), where a(·) is the sequence-alignment

count.

Let Z1,M = {z1, z2, . . . , zM} be a set of Boolean vari-

ables, such that zi is 1 if and only if the ith statistically

possible deletion event in R actually occurs in going from R
to Q. We can perform a divide-and-conquer search in Z1,M

to determine which of the zi’s are 1. We begin by testing for

all the deletion events in Z1,M . This gives us the number of

1’s in Z1,M . We then perform a test for every deletion event

in Z1,M/2 = {z1, . . . , zM/2}, which by deduction gives us

the number in ZM/2+1,M = {zM/2+1, . . . , zM}. We then

recursively determine the number in either or both of these

two sets so long as there is at least one deletion event in

that set. Thus, we perform a divide-and-conquer parallel

“binary” search for each of the exact locations of singleton

deletions. Once we have completed this computation for

R, with queries against Q, we will have determined the

locations of all the deletion events from R to Q, including

those deletions that are really substitution events. Thus, this

set of guesses uses at most 1+(d(Q)+s(Q))⌈log M⌉ tests,

where d(Q) is the set of (singleton) deletion events in going

from R to Q and s(Q) is the set of substitution events in

going from R to Q.

Once we know the locations of all the deletions in

going from R to Q, we perform a second set of binary

searches, just among these locations, to find the locations

among this group that are actually the sites of substitu-

tion events. In particular, we perform a binary search for

each of the K colors, searching, for each color i, the

locations among the found deletion locations where we

improve our score by adding a character of color i. Thus,

the set of additional guesses we do in this wrap-up set

is at most K + s(Q)⌈log(s(Q) + d(Q))⌉. Therefore, the

total number of guesses that we do in Phase 1 is at most

1+K +(d(Q)+s(Q))⌈log M⌉+s(Q)⌈log(s(Q)+d(Q))⌉.

Let us now define R′ to be the reference string resulting

from performing the events we discovered in Phase 1. We

begin Phase 2 by performing a guess of the reference string,

R′. Now we know that if R′ 6= Q, then the only remaining

events are insertion events. Moreover, we know from our

statistical analysis, that there are only M locations where

these insertions can occur. Next, we consider each character

as a separate “color” and we number them 1, 2, . . . ,K.

As in the deletion case, we let M denote the (relative-

to-R′) locations where insertion and substitution events are

statistically possible. We then perform K guesses, one for

each color, with each guess i consisting of an insertion of

character i at each of the M statistically possible locations

in R′. Note that some insertion events actually involve the

addition of strings longer than a single character, but each

will match at least one of these guesses.

We then perform a divide-and-conquer search algorithm,

like those we have described above, using the M potential

event locations as the ranges we split when doing recursive

calls. We perform such a search for each color i to determine

all the locations where there is an insertion that includes a

character of color i. That is, we split the set of location

in half and perform a guess that counts how many of the

known number of insertions of color i occur in the first half

(and by implication how many occur in the second half).

This set of queries gives us the cardinalities of each “color”

on the two halves. So we then recur on either of the two

subproblems that have at least one event that changes it from

the reference string. Moreover, with each such subproblem,

we only consider the events that have non-zero cardinality in

that subproblem region (defined with relative indices from

the reference string, R′). Thus, the total number of guesses

done by this part of our Phase 2 algorithm is 1 + K +
e(Q)⌈log M⌉, where e(Q) denotes the number of insertion

events in Q relative to the reference string, R′.

To complete the computation, then, we perform a minia-

ture version of our algorithm from Section 4 at each location

determined to be to site of an insertion event. Each such

computation requires (m + 1)K guesses, where m is the

length of the insertion. Thus, the total number of guesses

made in Phase 2 is 1 + K + e(Q)⌈log M⌉ + (ε(Q) + 1)K,

where ε(Q) is a weighted sum of all the insertion events,

where each is given a weight equal to its length. Therefore,

we have the following.

Theorem 6: Given an unknown length-N string Q, defined

on an alphabet of size K, with Q having M possible locations

of deviation from a reference string, R, a malicious Mas-

termind attacker can discover Q in polynomial time using

2 + (d(Q) + s(Q) + e(Q))⌈log M⌉ + (ε(Q) + 3)K +
s(Q)⌈log(s(Q)+d(Q))⌉ guesses, each of which reveals only

the number of positions where Q and the test string match,

using sequence-alignment LCS tests.

6. Experimental Analysis

To demonstrate the vulnerability of real-world DNA data

to the Mastermind attack, we have performed an experi-

mental analysis of our distribution-based Mastermind at-

tack algorithms. We used 1000 human mitochondrial se-

quences downloaded from a recent version of GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/index.html). We fo-

cused on the sequences alone, ignoring any header and

other information, and have simulated Mastermind attacks

on each one. The Revised Cambridge Reference Sequence

(rCRS) (GenBank accession number: AC 000021) was also

downloaded and used as the reference sequence [7], [8],

[30]. The reference sequence is 16,568 bp long. All the

sequences were aligned to the reference sequence and, for

each sequence, the indices of the location of each variation

were recorded together with the type (substitution, insertion,



deletion) and content of each variation. This step is also

essential if one is interested in compressing the data [4], for

example. Statistics for the number of substitutions, deletions,

and insertions for this data set of 1000 mtDNA sequences

is given in Table 1.

mean standard dev.

Substitutions 28.00 18.38
Deletions 0.90 2.46
Insertions 0.95 1.10

Table 1. Frequency statistics for 1000 mtDNA

sequences. Mean and standard deviation statistics are

given for the frequency of substitutions, deletions, and

insertions in going from the reference string,

R = rCRS, to each sampled sequence.

Of the 1000 sequences, 453 have only substitution events

with respect to the reference string, R = rCRS. So we

used this subset of 453 sequences to test the simulated

performance of the method of Theorem 5. The distribution

of the number of substitutions in each of these sequences is

shown in Figure 5.

Figure 5. Histogram of number of substitutions in 1000

mtDNA with respect to the reference string, R = rCRS.

Note that these frequencies do not follow a normal dis-

tribution, which shows the importance of our using real-

world data, such as this, rather than randomly-generated or

simulated data. The statistical diversity of the mtDNA data

is actually a reflection of the racial diversity of the people

whose mtDNA data is included in our data set. That is,

edit distance from the reference string, R = rCRS, across

the human species, is not uniformly or normally distributed.

Instead, edit distance from rCRS is a reflection of human

migration patterns, as illustrated in Figure 1.

The 45.3% of the sampled mtDNA sequences with

substitution-only modifications from rCRS are exactly the

set of sequences that can be effectively discovered by the

single-count Mastermind attack of Theorem 5. Thus, we

simulated the performance of this attack on each one of

these sequences and tabulated the number of guesses that

would be needed in each case in order to discover the

complete identity of each sequence. Interestingly, 90% of the

simulated substitution-only Mastermind attacks completed

with 375 guesses or less. The complete distribution of single-

count Mastermind attack lengths for this data set are shown

in Figure 6.

Figure 6. Histogram of Mastermind attack lengths

for 453 substitution-only mtDNA strings with stan-

dard single-count Mastermind scores. The mean attack

length for this data set was 219.6 and the standard

deviation was 139.1.

All 1000 sampled mtDNA sequences were then used

to test the performance of the method of Theorem 6.

Sequence-alignment Mastermind attacks were simulated for

each such mtDNA sequence while the number of sequence-

alignment tests were counted for each. Interestingly, 90% of

these simulated subsequence-alignment Mastermind attacks

completed with 875 guesses or less. And some completed

with much fewer than this. The complete distribution of

sequence-alignment Mastermind attack lengths for this data

set is shown in Figure 7.

7. Discussion and Future Directions

We have shown that, even though the single-count and

sequence-alignment Mastermind satisfiability problems are

NP-complete, one can effectively mount Mastermind attacks

on arbitrary character strings just by knowing basic infor-

mation about the length of the strings and the number of

characters in the alphabet used to construct those strings.

Moreover, if these strings are genomic sequences and one

has some basic statistical information about these strings,

relative to a reference string, then one can mount the

Mastermind attack with surprising effectiveness. In fact, we

have shown experimentally that such attacks are already

possible and surprisingly efficient for mtDNA sequences.



Figure 7. Histogram of simulated Mastermind at-

tack lengths for 1000 mtDNA strings with sequence-

alignment scores. The mean sequence-alignment sim-

ulated Mastermind attack length was 536.3 with a stan-

dard deviation of 373.9.

One conclusion to draw from this work is that privacy-

preserving protocols for performing a query with a sequence,

Q, against a genomic database, D, should take into account

the entire set of comparisons [15], with Q and the strings in

D, rather than relying on the privacy-preservation of each

individual comparison in turn. For example, in the usage

model where Bob is a user querying a genomic database,

the Mastermind attack is weakened if it is difficult for Bob

to know the index of the strings he is comparing against—for

example, if the database owner, Alice, presents her strings

in a different random order each time. Such an obfuscation

does not defeat the Mastermind attack, however, if Bob is

able to use other reasoning inferences to match scores of his

query strings across multiple queries in Alice’s database of

strings.

In terms of further exploration of the vulnerability of

genomic data to the Mastermind attack, one interesting

direction for future work would be to test the vulnerability

of entire human genomes to the Mastermind attack, once we

have enough completed genomes to do such an experimen-

tal study. In addition, other directions for future research

therefore could include new, efficient privacy-preserving

schemes for querying entire genomic databases with respect

to sequence-alignment queries. Such results would negate

the privacy-exposing vulnerabilities of the Mastermind at-

tack.
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Appendix

Proving that Sequence-Alignment Mastermind

Satisfiability is NP-Complete

Recall that in the Sequence-Alignment Mastermind

satisfiability problem, we are given a sequence of

Mastermind queries, V1, V2, . . . , VN , and the responses,

a(V1), a(V2), . . . , a(VN ), each of which is presumed to be

the sequence-alignment score of Vi and an unknown string

V . We are asked to determine if there exists a vector V that

satisfies all of these responses. We give the complete proof

here of the following theorem.

Theorem 1: Sequence-Alignment Mastermind Satisfiability

is NP-complete.

Proof: Our proof is an adaptation of the NP-completeness

proof of Goodrich [20] showing that single-count (black-

peg) Mastermind Satisfiability is NP-complete. It is easy

to see that Sequence-Alignment Mastermind Satisfiability is

in NP. For example, we could nondeterministically guess a

vector V and then test in polynomial time whether it satisfies

all the responses, a(V1), a(V2), . . . , a(VN ).
To prove that Sequence-Alignment Mastermind Satis-

fiability is NP-hard, we provide a reduction from 3-

Dimensional Matching (3DM), which is a well-known

NP-complete problem (e.g., see [18]). In the 3DM prob-

lem, we are given three sets, X = {x1, . . . , xn}, Y =
{y1, . . . , yn}, and Z = {z1, . . . , zn}, of n elements

each. In addition, we are given a set T of m triples,

{(xi1 , yj1 , zk1
), . . . , (xim

, yjm
, zkm

)}, whose elements are

respectively taken from the three sets, X , Y , and Z. The

problem is to determine if there is a subset of triples such

that each element in X , Y , and Z appears in exactly one

triple in this subset.

Suppose, then, that we are given an instance of the 3DM

problem, as described above. We consider the unknown

vector, V , to consist of the following sequence of variables:

(X1, . . . , X2n; Y1, . . . , Y2n; Z1, . . . , Z2n; T1, . . . , T2m−1),

where the semi-colons are used for the sake of notation

to separate the four sections in the unknown vector, V .

We perform our reduction by constructing a sequence of

guess vectors, V0, V1, . . . , VN , together with their sequence-

alignment responses, a(V0), a(V1), . . . , a(VN ), so that there

is a satisfying vector V for these responses if and only if

there is a solution to the given instance of the 3DM problem.

Our construction begins by setting the number of colors,

K, to be m + 2. Intuitively, there is a color associated with

each triple in T , plus a “null” color, φ, which is guaranteed

to appear nowhere in our unknown vector, V , and a separator

color, µ, which occurs in every other (even-indexed) position

of V . We begin our sequence of queries with four special

“enforcer” queries. The first two of these are

V0 = (φ, . . . , φ; φ, . . . , φ; φ, . . . , φ; φ, . . . , φ),

which has response a(V0) = 0, and

V1 = (µ, . . . , µ; µ, . . . , µ; µ, . . . , µ; µ, . . . , µ),

which has response a(V1) = 3n + m − 1. Intuitively, V0

enforces the fact that the null color, φ, appears nowhere

in the unknown vector, and V1 enforces the fact that the

separator color, µ, appears exactly often enough to separate

every other (non-µ) character in the unknown vector. So as

to better understand the characteristics of the other queries,

let us set h = 3n + m − 1, the number of µ colors in our

unknown vector V . We then define two additional enforcer

queries,

V2 = (φ, µ, . . . , µ, φ, µ; φ, µ, . . . , φ, µ;

φ, µ, . . . , φ, µ; 1, µ, 1, µ, . . . , µ, 1),

which has response a(V2) = h + n, and

V3 = (φ, µ, . . . , µ, φµ; φ, µ, . . . , µ, φµ;

φ, µ, . . . , µ, φµ; 0, µ, 0, µ, . . . , µ, 0),

which has response a(V3) = h + m − n. Intuitively, V2

enforces a counting rule that exactly n of the Ti’s will be

set to 1, and V3 enforces a counting rule that the remaining

m − n of the Ti’s will be set to 0. For each triple, Ts =
(xis

, yjs
, zks

), we construct three query vectors, as follows.

Vs,1 =

(φ, µ, . . . , µ, φ, µ, s, µ, φ, µ, . . . , µ, φ, µ; φ, µ, . . . , µ, φ, µ;
φ, µ, . . . , µ, φ, µ; φ, µ, . . . , µ, φ, µ, 0, µ, φ, µ, . . . , µ, φ),

where the s is in position 2is − 1 in the first group and the

0 is in position 2s − 1 in the fourth group. This vector has

response, a(Vs,1) = h + 1.

Vs,2 =

(φ, µ, . . . , µ, φ, µ; φ, µ, . . . , µ, φ, µ, s, µ, φ, µ, . . . , µ, φ, µ;
φ, µ, . . . , µ, φ, µ; φ, µ, . . . , µ, φ, µ, 0, µ, φ, µ, . . . , µ, φ),

where the s is in position 2js − 1 in the second group and

the 0 is in position 2s − 1 in the fourth group. This vector

has response, a(Vs,2) = h + 1.

Vs,3 =

(φ, µ, . . . , µ, φ, µ; φ, µ, . . . , µ, φ, µ;
φ, µ, . . . , µ, φ, µ, s, µ, φ, µ, . . . , µ, φ, µ;
φ, µ, . . . , µ, φ, µ, 0, µ, φ, µ, . . . , µ, φ),

where the s is in position 2ks −1 in the third group and the

0 is in position 2s − 1 in the fourth group. This vector has

response, a(Vs,3) = h + 1. Intuitively, these three responses

collectively form a “chooser” gadget, where we will either



have T2s−1 = 0 or the three variables X2is−1, Y2js−1, and

Z2ks−1, will each be set to have color s (and T2s−1 = 1).

Moreover, note that there are m odd-index positions in the

T , and each of them has to match either a 0 or 1 color.

This reduction can clearly be done in polynomial time.

So all that remains is for us to show that it works. Suppose,

then, that there is a possible solution to the given instance of

3DM. Then for each chosen triple, Ts = (xis
, yjs

, zks
), we

can assign colors T2s−1 = 1, X2is−1 = s, Y2js−1 = s, and

Z2ks−1 = s, which will satisfy each of the Vs,1, Vs,2, and

Vs,3 vector responses for this value of s. Likewise, setting

T2s−1 = 0 will satisfy each of the Vs,1, Vs,2, and Vs,3 vector

responses for a triple T2s−1 that is not chosen. Finally, given

that there are n chosen vectors, we will satisfy the four

preliminary vector responses as well.

Suppose, alternatively, that we have a vector V that

satisfies all our vector responses. We know that each Xi, Yj ,

and Zk must be assigned a color other than φ. Moreover,

every even-indexed position in V must be assigned the color

µ and every odd-indexed position must be a color other than

µ, because there are exactly h = 3n + m − 1 instances

of µ in V and we have introduced a query that enforces

the fact that there is exactly one non-µ color between every

consecutive pair of µ-colored positions. Since there are only

m+2 colors, this implies each odd-indexed position X2i−1,

Y2j−1, and Z2k−1 must be assigned a color corresponding

to a triple number, s, that is, it is not assigned φ or µ. If the

corresponding T2s−1 = 1, then in order to have satisfied the

vectors Vs,1, Vs,2, and Vs,3, we must have set X2is−1 = s,

Y2js−1 = s, and Z2ks−1 = s, which implies we can include

the triple (Xis
, Yjs

Zks
) in our matching. If T2s−1 = 0, then

we do not include this triple in our matching. By the vector

responses V2 and V3, we know that the number of triples

chosen in this way is exactly n. Thus, we have found a

valid 3-dimensional matching.


